ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (10,224)
  • Other Sources
  • American Institute of Physics (AIP)  (10,224)
  • American Chemical Society
  • Review of Scientific Instruments  (6,936)
  • Physics of Fluids  (3,288)
  • 1295
  • 1811
  • Physics  (10,224)
Collection
  • Articles  (10,224)
  • Other Sources
Publisher
Years
  • 1
    Publication Date: 2015-08-11
    Description: Electrochemical in operando X-ray diffraction (XRD) is a powerful method to analyze structural changes of energy storage materials while inserting/de-inserting charge carriers, such as Li- or Na-ions, into/from a host structure. The design of an XRD in operando cell is presented, which enables the use of thin (6 μ m) aluminum foil as X-ray window as a non-toxic alternative to conventional beryllium windows. Owing to the reduced thickness, diffraction patterns and their changes during cycling can be observed with excellent quality, which was demonstrated for two cathode materials for sodium-ion batteries in a half-cell set-up, P2-Na 0.7 MnO 2 and Na 2.55 V 6 O 16 ⋅ 0.6H 2 O.
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-13
    Description: The classical gravitational instability of a layer of denser fluid overlying a layer of less dense fluid, commonly known as the Rayleigh-Taylor instability, has been studied for well over a hundred years. In this article, we present the results of numerical simulations of a variant of this instability in which a plug of dense fluid is released from rest in a thin channel between two flat, vertical walls, causing a downward acceleration of the entire fluid column and formation of boundary layers near the walls. The plug of dense fluid undergoes distinctly different evolution near the walls and in the fluid interior. The instability in the interior, which we label the “hammerhead” instability based on its shape, is robust over a range of physical parameters, but disappears below a threshold Schmidt number. Fluid near the wall is slowed, and thin tendrils that link the near wall fluid to the main body of the fluid plug form, and in some cases undergo their own instability. We characterize the fully three-dimensionalized state, finding that while bulk measures of kinetic energy three-dimensionalization do not discriminate between low and high Schmidt number cases, the geometric distributions of the dynamical parameters Q and R from the turbulence literature are profoundly different in the high Schmidt number case. Finally, we consider the role of shear in situations in which the two plates are not exactly vertical, demonstrating that shear diminishes the importance of three-dimensionalization, while the hammerhead instability remains relevant.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-13
    Description: Flow past two cylinders of different diameters in close proximity is simulated numerically for a constant diameter ratio of 0.45, a gap ratio of 0.0625, and a Reynolds number of 1000 (defined using the diameter of the main cylinder). The effect of the position angle α of the small cylinder relative to the large one on force coefficients and wake flow patterns are studied. Depending on the position angle α of the small cylinder, four wake flow modes are identified: the upstream interference mode for α = 0°, 22.5°, and 45°, the intermittent attached gap flow mode for α = 67.5° and 90°, the attached gap flow mode for α = 112.5° and 135°, and the wake interference mode for α = 157.5° and 180°. The RMS lift coefficients of both cylinders are reduced significantly compared with that of a single cylinder, regardless of the position angle of the small cylinder. Although the variation trends of the mean drag and lift coefficients with the position angle of the small cylinder obtained from the two-dimensional (2D) and three-dimensional (3D) simulations are similar, the 2D simulations overestimate the mean drag coefficient, the RMS drag and lift coefficients compared with those obtained from the 3D simulations.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-14
    Description: A high-speed impedance measurement system was developed, which enables the measurement of various characteristics of CW and pulsed plasmas with time resolution of less than a microsecond. For this system, a voltage and current sensor is implemented in a printed circuit board to sense the radio frequency signals. A digital board, which has a high-speed analog to digital converter and a field-programmable gate-array, is used to calculate the impedance of the signal. The final output of impedance is measured and stored with a maximum speed of 3 Msps. This sensor system was tested in a pulsed-plasma by applying it to the point between the matching box and the plasma chamber. The experimental equipment was constructed connecting the matching box, a 13.56 MHz generator, a 2 MHz generator that produced pulsed power, and a pulse-signal generator. From the temporal behavior of the measured impedance, we were able to determine the time intervals of transient states, especially of the initial active state. This information can be used to set the pulse frequency and duty for plasma processing.
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-14
    Description: The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C 4+ and C 6+ ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10 10 C 4+ ions per pulse and about 5 × 10 9 C 6+ ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10 11 C 6+ ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the 11 C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C 4+ ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of 11 C, transporting to the tumor with the primary accelerated 11 C 4+ beam, this efficiency is preliminarily considered to be large enough to produce the 11 C 4+ beam from radioactive methane and to inject this beam into synchrotrons.
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-08-04
    Description: This paper investigates the effects of particle shape and Stokes number on the behaviour of non-spherical particles in turbulent channel flow. Although there are a number of studies concerning spherical particles in turbulent flows, most important applications occurring in process, energy, and pharmaceutical industries deal with non-spherical particles. The computation employs a unique and novel four-way coupling with the Lagrangian point-particle approach. The fluid phase at low Reynolds number ( Re τ = 150) is modelled by direct numerical simulation, while particles are tracked individually. Inter-particle and particle-wall collisions are also taken into account. To explore the effects of particles on the flow turbulence, the statistics of the fluid flow such as the fluid velocity, the terms in the turbulence kinetic energy equation, the slip velocity between the two phases and velocity correlations are analysed considering ellipsoidal particles with different inertia and aspect ratio. The results of the simulations show that the turbulence is considerably attenuated, even in the very dilute regime. The reduction of the turbulence intensity is predominant near the turbulence kinetic energy peak in the near wall region, where particles preferentially accumulate. Moreover, the elongated shape of ellipsoids strengthens the turbulence attenuation. In simulations with ellipsoidal particles, the fluid-particle interactions strongly depend on the orientation of the ellipsoids. In the near wall region, ellipsoids tend to align predominantly within the streamwise ( x ) and wall-normal ( y ) planes and perpendicular to the span-wise direction, whereas no preferential orientation in the central region of the channel is observed. Important conclusions from this work include the effective viscosity of the flow is not affected, the direct dissipation by the particles is negligible, and the primary mechanism by which the particles affect the flow is by altering the turbulence structure around the turbulence kinetic energy peak.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-08-04
    Description: A grid image refractometer (GIR) has been implemented at the Nike krypton fluoride laser facility of the Naval Research Laboratory. This instrument simultaneously measures propagation angles and transmissions of UV probe rays ( λ = 263 nm, Δ t = 10 ps) refracted through plasma. We report results of the first Nike-GIR measurement on a CH plasma produced by the Nike laser pulse (∼1 ns FWHM) with the intensity of 1.1 × 10 15 W/cm 2 . The measured angles and transmissions were processed to construct spatial profiles of electron density ( n e ) and temperature ( T e ) in the underdense coronal region of the plasma. Using an inversion algorithm developed for the strongly refracted rays, the deployed GIR system probed electron densities up to 4 × 10 21 cm −3 with the density scale length of 120 μm along the plasma symmetry axis. The resulting n e and T e profiles are verified to be self-consistent with the measured quantities of the refracted probe light.
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-05
    Description: Reynolds Averaged Navier Stokes (RANS) models are widely used in industry to predict fluid flows, despite their acknowledged deficiencies. Not only do RANS models often produce inaccurate flow predictions, but there are very limited diagnostics available to assess RANS accuracy for a given flow configuration. If experimental or higher fidelity simulation results are not available for RANS validation, there is no reliable method to evaluate RANS accuracy. This paper explores the potential of utilizing machine learning algorithms to identify regions of high RANS uncertainty. Three different machine learning algorithms were evaluated: support vector machines, Adaboost decision trees, and random forests. The algorithms were trained on a database of canonical flow configurations for which validated direct numerical simulation or large eddy simulation results were available, and were used to classify RANS results on a point-by-point basis as having either high or low uncertainty, based on the breakdown of specific RANS modeling assumptions. Classifiers were developed for three different basic RANS eddy viscosity model assumptions: the isotropy of the eddy viscosity, the linearity of the Boussinesq hypothesis, and the non-negativity of the eddy viscosity. It is shown that these classifiers are able to generalize to flows substantially different from those on which they were trained. Feature selection techniques, model evaluation, and extrapolation detection are discussed in the context of turbulence modeling applications.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-05
    Description: Conventional techniques for characterization of thermoelectric performance require bringing measurement equipment into direct contact with the thermoelectric device, which is increasingly error prone as device size decreases. Therefore, the novel work presented here describes a non-contact technique, capable of accurately measuring the maximum ΔT and maximum heat pumping of mini to micro sized thin film thermoelectric coolers. The non-contact characterization method eliminates the measurement errors associated with using thermocouples and traditional heat flux sensors to test small samples and large heat fluxes. Using the non-contact approach, an infrared camera, rather than thermocouples, measures the temperature of the hot and cold sides of the device to determine the device ΔT and a laser is used to heat to the cold side of the thermoelectric module to characterize its heat pumping capacity. As a demonstration of the general applicability of the non-contact characterization technique, testing of a thin film thermoelectric module is presented and the results agree well with those published in the literature.
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-08-05
    Description: To estimate the coefficient of friction between tire and runway surface during airplane touchdowns, we designed an experimental rig to simulate such events and to record the impact and friction forces being executed. Because of noise in the measured signals, we developed a filtering method that is based on the ensemble empirical mode decomposition and the bandwidth of probability density function of each intrinsic mode function to extract friction and impact force signals. We can quantify the coefficient of friction by calculating the maximum values of the filtered force signals. Signal measurements are recorded for different drop heights and tire rotational speeds, and the corresponding coefficient of friction is calculated. The result shows that the values of the coefficient of friction change only slightly. The random noise and experimental artifact are the major reason of the change.
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...