ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (7,613)
  • Molecular Diversity Preservation International  (5,498)
  • MDPI Publishing  (2,115)
  • American Meteorological Society
  • Cell Press
  • Forests  (2,115)
  • 128597
  • 1
    Publication Date: 2020-08-27
    Description: The genus Thujopsis (Cupressaceae) comprises monoecious coniferous trees endemic to Japan. This genus includes two varieties: Thujopsis dolabrata (L.f.) Siebold et Zucc. var. dolabrata (southern variety, Td) and Thujopsis dolabrata (L.f.) Siebold et Zucc. var. hondae Makino (northern variety, Th). The aim of this study is to understand the phylogeographic and genetic population relationships of the genus Thujopsis for the conservation of genetic resources and future breeding. A total of 609 trees from 22 populations were sampled, including six populations from the Td distribution range and 16 populations from the Th distribution range. The genotyping results for 19 expressed sequence tag (EST)-based simple sequence repeat (SSR) markers, followed by a structure analysis, neighbor-joining tree creation, an analysis of molecular variance (AMOVA), and hierarchical F statistics, supported the existence of two genetic clusters related to the distribution regions of the Td and Th varieties. The two variants, Td and Th, could be defined by their provenance, in spite of the ambiguous morphological differences between the varieties. The distribution ranges of both variants, which have been defined from their morphology, was confirmed by genetic analysis. The Th populations exhibited relatively uniform genetic diversity, most likely because Th refugia in the glacial period were scattered throughout their current distribution area. On the other hand, there was a tendency for Td’s genetic diversity to decrease from central to southern Honshu island. Notably, the structure analysis and neighbor-joining tree suggest the hybridization of the two varieties in the contact zone. More detailed studies of the genetic structure of Td are required in future analyses.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-26
    Description: Species with wide geographical ranges exhibit specific adaptations to local climates, which may result in diverging responses among populations to changing conditions. Climate change has advanced spring phenology worldwide, but questions of whether and how the phenological responses to warming differ among individuals across the natural range of a species remain. We conducted two experiments in January and April 2019, and performed daily observations of the timings of bud break in 1-year-old seedlings of sugar maple (Acer saccharum Marshall) from 25 Canadian provenances at two thermal conditions (14/10 and 18/14 °C day/night temperature) in a controlled environment. Overall, bud break started 6 days from the beginning of the experiments and finished after 125 days. The earlier events were observed in seedlings originating from the colder sites. Bud break was delayed by 4.8 days per additional degree Celsius in the mean annual temperature at the origin site. Warming advanced the timing of bud break by 17–27 days in January and by 3–8 days in April. Similar advancements in bud break were observed among provenances under warming conditions, which rejected our hypothesis that sugar maple populations have different phenological responses to warming. Our findings confirm the differentiation in ecotypes for the process of bud break in sugar maple. In cases of homogenous spring warming across the native range of sugar maple, similar advancements in bud phenology can be expected in different populations.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-26
    Description: Research Highlights: The informed decisions on land use require assessment of the impacts of these decisions on the supply of different ecosystem services. Background and Objectives: Scenario modeling can be used to provide harmonized and quantitative information on the impacts of various zoning decisions on the provision of various ecosystem services. In this study, we explored the effects of land-use zoning decisions on the provision of roundwood and energy wood, carbon stock of living tree components, berry yields, scenic beauty and recreation. Materials and Methods: Three alternative forest scenarios were formulated in terms of restrictions on forest management for already established land-use zones by the provinces in Finland. These data were integrated with the National Forest Inventory (NFI) plot data for forest dynamics modeling. Results: In Finland, 9% of the forest land was protected and 9% was under restricted forest management due to legislative decisions, forest owners’ decisions, or regional land use plans in 2016. These established zoning decisions resulted in an estimated 17% smaller roundwood and energy wood removals per year in 2016–2025 compared to the estimated wood removals in the scenario without any restrictions. The decrease in annual gross stumpage earnings was EUR 775 million per year. The carbon stock of living tree components in 2025 was 12% larger than in the scenario without any restrictions. Bilberry yield increased due to the restrictions considered in our study, while the restrictions had only a slight effect on cowberry yield at province and country levels. The restrictions increased the recreation value, particularly in Lapland, but only slightly affected scenic beauty at province and country levels. Conclusions: Scenario analyses support informed decision making and the balancing of different forest uses. Harmonized translation of restrictions and the use of standard indicators to model the impacts also support comparisons between the regions.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-26
    Description: In this study, dynamic hardness tests on solid and engineered wood flooring specimens of Eucalyptus globulus Labill. and Eucalyptus grandis W. Hill ex Maiden hardwoods were performed because nowadays, these fast-growing hardwoods are still scarcely employed for this use. Furthermore, another two examples of hardwood commonly applied on wood flooring, Quercus robur L. and Hymenaea courbaril L., were also tested. To compare their properties, a dynamic impact hardness test based on the impact of steel balls, with several diameters, and drop heights was developed. Accordingly, 120 solid wood flooring specimens and 120 engineering wood flooring specimens were producing with these four hardwood species. Dynamic impact tests were made with three steel balls of different diameters (30–40–50 mm), and they were carried out from five different drop heights (0.60–0.75–0.90–1.05–1.20 m). The impact of the steel ball drew the size of the footprint on the surface and this mark was measured with a digital caliper for both dimensions, diameter and depth, as footprint diameter (FD) and indentation depth (ID). Data from 3000 samples, corresponding to 120 different individual groups (4 species × 3 ball diameters × 5 drop height × 2 floor type) were analyzed. Results indicated that the variability of ID (CV between 19.25–25.61%) is much greater than the values achieved for FD (CV between 6.72–7.91%). Regarding the fast-growing hardwood species tested, E. globulus showed a similar behavior to traditional hardwood applied on wood flooring in Europe, Q. robur, and it could be a promising growth in the flooring industry. However, E. grandis showed the worst values compared to traditional hardwood in all test configurations.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-29
    Description: Eucalyptus grandis and E. dunnii have high productive potential in the South of Brazil, Uruguay, and central Argentina. This is based on the similarity of the climate and soil of these areas, which form an eco-region called Campos. However, previous results show that these species have differences in their distribution caused by the prioritization of Uruguayan soils for forestry, explained by the particular conditions of each site. In this study, the site variables (climate, soil, and topography) that better explain the distribution of both species were identified, and prediction models of current and future distribution were adjusted for different climate change scenarios (years 2050 and 2070). The distribution of E. grandis was associated with soil parameters, whereas for E. dunnii a greater effect of the climatic variables was observed. The ensemble biomod2 model was the most precise with regard to predicting the habitat for both species with respect to the simple models evaluated. For E. dunnii, the average values of the AUC, Kappa, and TSS index were 0.98, 0.88, and 0.77, respectively. For E. grandis, their values were 0.97, 0.86, and 0.80, respectively. In the projections of climatic change, the distribution of E. grandis occurrence remains practically unchanged, even in the scenarios of temperature increase. However, current distribution of E. dunnii shows high susceptibility in a scenario of increased temperature, to the point that most of the area currently planted may be at risk. Our results might be useful to political government and foresters for decision making in terms of future planted areas.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-29
    Description: Although compacted soil can be recovered through root development of planted seedlings, the relationship between root morphologies and soil physical properties remain unclear. We investigated the impacts of soil compaction on planted hybrid larch F1 (Larix gmelinii var. japonica×L. kaempferi, hereafter F1) seedlings with/without N loading. We assumed that N loading might increase the fine root proportion of F1 seedlings under soil compaction, resulting in less effects of root development on soil recovery. We established experimental site with different levels of soil compaction and N loading, where two-year-old F1 seedlings were planted. We used a hardness change index (HCI) to quantify a degree of soil hardness change at each depth. We evaluated root morphological responses to soil compaction and N loading, focusing on ectomycorrhizal symbiosis. High soil hardness reduced the total dry mass of F1 seedlings by more than 30%. Significant positive correlations were found between HCI and root proportion, which indicated that F1 seedling could enhance soil recovery via root development. The reduction of fine root density and its proportion due to soil compaction was observed, while these responses were contrasting under N loading. Nevertheless, the relationships between HCI and root proportion were not changed by N loading. The relative abundance of the larch-specific ectomycorrhizal fungi under soil compaction was increased by N loading. We concluded that the root development of F1 seedling accelerates soil recovery, where N loading could induce root morphological changes under soil compaction, resulting in the persistent relationship between root development and soil recovery.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-08-29
    Description: We evaluated surface-based analysis for assessing the possible relationship between the microstructural properties and particulate matter (i.e., two size fractions of PM2.5 and PM10) adsorption efficiencies of their leaf surfaces on ten woody species. We focused on the effect of PM adsorption capacity between micro-morphological features on leaf surfaces using a scanning electron microscope and a non-contact surface profiler as an example. The species with higher adsorption of PM10 on leaf surfaces were Korean boxwood (Buxus koreana Nakai ex Chung & al.) and evergreen spindle (Euonymus japonicus Thunb.), followed by yulan magnolia (Magnolia denudata Desr.), Japanese yew (Taxus cuspidata Siebold & Zucc.), Japanese horse chestnut (Aesculus turbinata Blume), retusa fringetree (Chionanthus retusus Lindl. & Paxton), maidenhair tree (Ginkgo biloba L.), and royal azalea (Rhododendron schlippenbachii Maxim.). There was a higher capacity for the adsorption of PM2.5 on the leaf surfaces of B. koreana and T. cuspidata, followed by A. turbinata, C. retusus, E. japonicus, G. biloba, and M. denudata. In wax layer tests, T. cuspidata, A. turbinata, R. schlippenbachii, and C. retusus showed a statistically higher PM2.5 capturing capacity than the other species. Different types of trichomes were distributed on the adaxial and abaxial leaves of A. turbinata, C. retusus, M. denudata, pagoda tree (Styphnolobium japonicum (L.) Schott), B. koreana, and R. schlippenbachii; however, these trichomes were absent on both sides of the leaves of G. biloba, tuliptree (Liriodendron tulipifera L.), E. japonicus, and T. cuspidata. Importantly, leaf surfaces of G. biloba and S. japonicum with dense or thick epicuticular leaf waxes and deeper roughness revealed lower PM adsorption. Based on the overall performance of airborne PM capture efficiency, evergreen species such as B. koreana, T. cuspidata, and E. japonicus showed the best results, whereas S. japonicum and L. tulipifera had the lowest capture. In particular, evergreen shrub species showed higher PM2.5 depositions inside the inner wall of stomata or the periphery of guard cells. Therefore, in leaf microstructural factors, stomatal size may be related to notably high PM2.5 holding capacities on leaf surfaces, but stomatal density, trichome density, and roughness had a limited effect on PM adsorption. Finally, our findings indicate that surface-based microstructures are necessarily not a correlation for corresponding estimates with leaf PM adsorption.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-30
    Description: Emerald ash borer is an invasive pest in North American forests. Ecological impacts of ash mortality from emerald ash borer are wide-ranging, including shifts in insect communities and wildlife behavior. Additionally, loss of ash from forests may have important implications regarding plant succession. Surveys of overstory, midstory, and understory trees within forests in northeastern Indiana, Lower Peninsula of Michigan, and northwestern Ohio were conducted to quantify the change in forest composition over a 10 year period. Interpolation of ash dominance illustrated inversion of live and dead ash values between 2007 and 2017. Even though more than 83% of overstory live ash basal area was lost across the study area, green ash was the most abundant midstory and understory species representing regeneration. Additionally, loss of ash from many of the sites resulted in compositional changes that were greater than merely the subtraction of ash. Due to the relatively large number of forest types with which ash species are associated, loss of ash will have broad ecological consequences, including on community composition.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-07-01
    Description: In order to meet the growing global demand for bioproducts, areas of forests planted for productive purposes tend to increase worldwide. However, there are several controversies about the possible negative impacts of such forests, such as invasive potential, influence on water balance and biodiversity, and competition with other types of land use. As a result, there is a need to optimize land use, in order to achieve improvements in terms of sustainability in the broadest sense. In this study, the environmental and economic performances of pine and eucalyptus forest production systems for multiple purposes are compared aiming an optimized allocation of land use in the Center-West Region of Brazil. Life cycle assessment, life cycle cost and analysis of financial and economic indicators were used to assess potential environmental and economic impacts, covering the agricultural and industrial phases of pine and eucalyptus forest systems managed for the production of cellulose and sawn wood and, for pine, the production of rosin and turpentine from the extraction of gumresin and by applying the kraft process. Subsequently, the TOPSIS multicriteria decision-making method was applied to rank production systems in different combinations of phases and criteria, and multi-objective optimization was used to allocate land use according to different restrictions of areas and efficiency. The adoption of cleaner energy sources and the use of more efficient machines, equipment and vehicles are the main solutions to improve the environmental and economic performance of the forestry sector. The production systems of pine for cellulose and pine for sawn wood, rosin and turpentine were identified as the best solutions to optimize land use. For this reason, they must be considered as alternatives for the expansion and diversification of the Brazilian forest productive chain.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-08-30
    Description: In the process of urbanization in China, the problem of atmospheric suspended particulate matter pollution is becoming increasingly serious. It has been impossible to completely rely on pollution source control measures to solve this problem for a long time due to the diversity and complexity of pollution sources. Therefore, there is an urgent need to explore alternate solutions to significantly improve air quality through increasing the capacity of green space in cities as these locations can provide multiple ecosystem services. In this study, a three-dimensional classification system was created by utilizing Beijing’s urban forest as a study area. Considering the meteorological factors, change of month and time and the characteristics of the forest itself, the significance and difference of reducing the concentration of atmospheric suspended particulate matter by the forest with different vegetation structures were tested. The results showed that meteorological factors such as wind velocity, temperature, and relative humidity all had a very significant effect on the concentration of atmospheric suspended particulate matter in the conditions of this study. The concentration was highest in winter, followed by spring and autumn, and lowest in summer. The concentration in the morning was the lowest of the day, increasing in the noon and afternoon with time. It was the lowest in the closed single-layered mixed forest, and the highest in the open lawn green space. By comparing the forest with gradient areas of 0.5 ha and 3.0 ha, it was found that with the increase in the area, the green space did not necessarily show a better dust retention effect, and the vegetation structure type of the green space often had more important influence. There was a very significant correlation between vegetation structure and plant diversity (Shannon–Wiener Diversity Index and Simpson Diversity Index). Biodiversity could significantly support and strengthen urban forest ecological service functions that improve air quality. Increasing the plant species diversity could lead to lower particulate matter concentration. The research conclusions could provide theoretical and practical bases for how to select the combination of vegetation structure in the planning and design of urban forest oriented to improve air quality.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...