ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (3,920)
  • 2015-2019  (3,920)
  • 2005-2009
  • 1970-1974
  • 2019  (3,920)
  • Forests  (1,037)
  • 128597
  • 170442
  • 55979
  • Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition  (2,224)
  • Biology  (1,696)
  • Law
Collection
  • Journals
  • Articles  (3,920)
Years
  • 2015-2019  (3,920)
  • 2005-2009
  • 1970-1974
Year
Topic
  • Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition  (2,224)
  • Biology  (1,696)
  • Law
  • 1
    Publication Date: 2019
    Description: The growth effects of mixtures are generally assumed to be a result of canopy structure and crown plasticity. Thus, the distribution of leaf area at tree and stand level helps to explain these mixing effects. Therefore, we investigated the leaf area distribution in 12 stands with a continuum of proportions of European larch (Larix decidua Mill.) and Norway spruce (Picea abies (L.) Karst.). The stands were between 40 and 170 years old and located in the northern part of the Eastern Intermediate Alps in Austria at elevations between 900 and 1300 m asl A total of 200 sample trees were felled and the leaf area distribution within their crowns was evaluated. Fitting beta distributions to the individual empirical leaf area distributions, the parameters of the beta distributions were shown to depend on the leaf area of the individual trees and, for spruce, on the proportion of spruce in the stands. With the equations determined, the leaf area distribution of all trees in the stand, and thus its distribution in the stands, was calculated by species and in 2 m height classes. For the individual trees, we found that the leaf area distribution of larch is more symmetric, and its peak is located higher in the crown than it is the case for spruce. Furthermore, the leaf area distribution of both species becomes more peaked and skewed when the leaf area of the trees increases. The mixture only influences the leaf area distribution of spruce in such a way that the higher the spruce proportion of the stand, the higher the leaf area is located within the crown. At the stand level, a strong relationship was found between the proportion of spruce and the distance between the peaks of the leaf area distributions of larch and spruce.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Currently, ultrasonic measurement is a widely used nondestructive approach to determine wood elastic properties, including the dynamic modulus of elasticity (DMOE). DMOE is determined based on wood density and ultrasonic wave velocity measurement. The use of wood average density to estimate DMOE introduces significant imprecision: Density varies due to intra-tree and intra-ring differences and differing silvicultural treatments. To ensure accurate DMOE assessment, we developed a prototype device to measure ultrasonic wave velocity with the same resolution as that provided by the X-ray densitometer for measuring wood density. A nondestructive method based on X-ray densitometry and the developed prototype was applied to determine radial and intra-ring wood DMOE profiles. This method provides accurate information on wood mechanical properties and their sources of variation. High-order polynomials were used to model intra-ring wood density and DMOE profiles in black spruce and jack pine wood. The transition from earlywood to latewood was defined as the inflection point. High and highly significant correlations were obtained between predicted and measured wood density and DMOE. An examination of the correlations between wood radial growth, density, and DMOE revealed close correlations between density and DMOE in rings, earlywood, and latewood
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: Liriodendron chinense (Hemsl.), a Tertiary relic tree, is mainly distributed in subtropical China. The causes of the geographical distribution pattern of this species are poorly understood. In this study, we inferred historical dispersal routes and glacial refugia of this species by combining genetic data (chloroplast DNA (cpDNA), nuclear ribosomal DNA (nrDNA), and nuclear DNA (nDNA)) and geospatial data (climate and geology) with the methods of landscape genetics. Additionally, based on sequence variation at multiple loci, we employed GenGIS and Barrier software to analyze L. chinense population genetic structure. Dispersal corridors and historical gene flow between the eastern and western populations were detected, and they were located in mountainous regions. Based on species distribution model (SDMs), the distribution patterns in paleoclimatic periods were consistent with the current pattern, suggesting the presence of multiple refuges in multiple mountainous regions in China. The genetic structure analysis clustered most eastern populations into a clade separated from the western populations. Additionally, a genetic barrier was detected between the eastern and western populations. The dispersal corridors and historical gene flow detected here suggested that the mountains acted as a bridge, facilitating gene flow between the eastern and western populations. Due to Quaternary climatic fluctuations, the habitats and dispersal corridors were frequently inhabited by warm-temperate evergreen forests, which may have fragmented L. chinense habitats and exacerbated the differentiation of eastern and western populations. Ultimately, populations retreated to multiple isolated mountainous refugia, shaping the current geographical distribution pattern. These dispersal corridors and montane refugia suggested that the mountains in subtropical China play a crucial role in the conservation of genetic resources and migration of subspecies or related species in this region.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: Vegetation indices derived from remote sensing measurements are commonly used to describe and monitor vegetation. However, the same plant community can have a different NDVI (normalized difference vegetation index) depending on weather conditions, and this complicates classification of plant communities. The present study develops methods of classifying the types of plant communities based on long-term NDVI data (MODIS/Aqua). The number of variables is reduced by introducing two integrated parameters of the NDVI seasonal series, facilitating classification of the meadow, steppe, and forest plant communities in Siberia using linear discriminant analysis. The quality of classification conducted by using the markers characterizing NDVI dynamics during 2003–2017 varies between 94% (forest and steppe) and 68% (meadow and forest). In addition to determining phenological markers, canonical correlations have been calculated between the time series of the proposed markers and the time series of monthly average air temperatures. Based on this, each pixel with a definite plant composition can be characterized by only four values of canonical correlation coefficients over the entire period analyzed. By using canonical correlations between NDVI and weather parameters and employing linear discriminant analysis, one can obtain a highly accurate classification of the study plant communities.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: Foliar water uptake (FWU) has been investigated in an increasing number of species from a variety of areas but has remained largely understudied in deciduous, temperate tree species from non-foggy regions. As leaf wetting events frequently occur in temperate regions, FWU might be more important than previously thought and should be investigated. As climate change progresses, the number of drought events is expected to increase, basically resulting in a decreasing number of leaf wetting events, which might make FWU a seemingly less important mechanism. However, the impact of drought on FWU might not be that unidirectional because drought will also cause a more negative tree water potential, which is expected to result in more FWU. It yet remains unclear whether drought results in a general increase or decrease in the amount of water absorbed by leaves. The main objectives of this study are, therefore: (i) to assess FWU-capacity in nine widely distributed key tree species from temperate regions, and (ii) to investigate the effect of drought on FWU in these species. Based on measurements of leaf and soil water potential and FWU-capacity, the effect of drought on FWU in temperate tree species was assessed. Eight out of nine temperate tree species were able to absorb water via their leaves. The amount of water absorbed by leaves and the response of this plant trait to drought were species-dependent, with a general increase in the amount of water absorbed as leaf water potential decreased. This relationship was less pronounced when using soil water potential as an independent variable. We were able to classify species according to their response in FWU to drought at the leaf level, but this classification changed when using drought at the soil level, and was driven by iso- and anisohydric behavior. FWU hence occurred in several key tree species from temperate regions, be it with some variability, which potentially allows these species to partly reduce the effects of drought stress. We recommend including this mechanism in future research regarding plant–water relations and to investigate the impact of different pathways used for FWU.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: Research Highlights: Warming alters the chemical composition of Cunninghamia lanceolata (Lamb.) Hook, resulting in increased production of macromolecular compounds that protect against heat stress. Background and Objectives: Low latitude forests are experiencing obvious climatic warming; however, the plant physiological responses to warming are not well understood. As warming induces moisture stress, we hypothesized that warming activates metabolites (i.e., lipids, phenolic compounds, amino acids) and causes damage to the leaves, exemplified by the increased concentrations of reactive oxygen species. Materials and Methods: We conducted a warming experiment in a C. lanceolata plantation. Plant physiological traits associated with nutrient status, reactive oxygen species, antioxidant enzymes species, and metabolites were measured. Results: Warming altered the chemical composition of C. lanceolata as it increased C:N ratios of leaves and roots. In particular, the concentrations of N and P in leaves and roots were significantly decreased under the warming condition, which might be related to the biomass production, namely, a dilution effect. Under the warming condition, most of the phospholipid compounds and proteins significantly increased. Leaf C, carbohydrates, amino acids, organic acids, flavonoids, and phenolic compounds were identified to have significantly lower concentrations under the warming treatment than those under the control treatment. These results suggested that moisture stress under the warming treatment may drive C deficiency and metabolic restriction in plants. Conclusions: Under the warming condition, C. lanceolata changed its energy utilization strategy and invested more resources to produce macromolecular compounds for protecting against heat stress. Warming in sub-tropical forests alters plant chemical properties, and thus may have an important consequence for nutrient cycling and soil C sequestration.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: The current level of tropospheric ozone (O3) is expected to reduce the net primary production of forest trees. Here, we evaluated the negative effects of O3 on the photosynthetic CO2 uptake of Japanese forest trees species based on their cumulative stomatal O3 uptake, defined as the phytotoxic O3 dose (POD). Seedlings of four representative Japanese deciduous broad-leaved forest tree species (Fagus crenata, Quercus serrata, Quercus mongolica var. crispula and Betula platyphylla var. japonica) were exposed to different O3 concentrations in open-top chambers for two growing seasons. The photosynthesis–light response curves (A-light curves) and stomatal conductance were measured to estimate the leaf-level cumulative photosynthetic CO2 uptake (ΣPn_est) and POD, respectively. The whole-plant-level ΣPn_est were highly correlated with the whole-plant dry mass increments over the two growing seasons. Because whole-plant growth is largely determined by the amount of leaf area per plant and net photosynthetic rate per leaf area, this result suggests that leaf-level ΣPn_est, which was estimated from the monthly A-light curves and hourly PPFD, could reflect the cumulative photosynthetic CO2 uptake of the seedlings per unit leaf area. Although the O3-induced reductions in the leaf-level ΣPn_est were well explained by POD in all four tree species, species-specific responses of leaf-level ΣPn_est to POD were observed. In addition, the flux threshold appropriate for the linear regression of the responses of relative leaf-level ΣPn_est to POD was also species-specific. Therefore, species-specific responses of cumulative photosynthetic CO2 uptake to POD could be used to accurately evaluate O3 impact on the net primary production of deciduous broad-leaved trees.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: Because of its high phosphorus (P) demands, it is likely that the abundance, distribution, and N-fixing capacity of Alnus in boreal forests are tightly coupled with P availability and the mobilization and uptake of soil P via ectomycorrhizal fungi (EMF). We examined whether Alnus shifts EMF communities in coordination with increasingly more complex organic P forms across a 200-year-old successional sequence along the Tanana River in interior Alaska. Root-tip activities of acid phosphatase, phosphodiesterase, and phytase of A. tenuifolia-associated EMF were positively intercorrelated but did not change in a predictable manner across the shrub, to hardwood to coniferous forest successional sequence. Approximately half of all Alnus roots were colonized by Alnicola and Tomentella taxa, and ordination analysis indicated that the EMF community on Alnus is a relatively distinct, host-specific group. Despite differences in the activities of the two Alnus dominants to mobilize acid phosphatase and phosphodiesterase, the root-tip activities of P-mobilizing enzymes of the Alnus-EMF community were not dramatically different from other co-occurring boreal plant hosts. This suggests that if Alnus has a greater influence on P cycling than other plant functional types, additional factors influencing P mobilization and uptake at the root and/or whole-plant level must be involved.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: Most populations of Scots pine in Spain are locally adapted to drought, with only a few populations at the southernmost part of the distribution range showing maladaptations to the current climate. Increasing tree heights are predicted for most of the studied populations by the year 2070, under the RCP 8.5 scenario. These results are probably linked to the capacity of this species to acclimatize to new climates. The impact of climate change on tree growth depends on many processes, including the capacity of individuals to respond to changes in the environment. Pines are often locally adapted to their environments, leading to differences among populations. Generally, populations at the margins of the species’ ranges show lower performances in fitness-related traits than core populations. Therefore, under expected changes in climate, populations at the southern part of the species’ ranges could be at a higher risk of maladaptation. Here, we hypothesize that southern Scots pine populations are locally adapted to current climate, and that expected changes in climate may lead to a decrease in tree performance. We used Scots pine tree height growth data from 15-year-old individuals, measured in six common gardens in Spain, where plants from 16 Spanish provenances had been planted. We analyzed tree height growth, accounting for the climate of the planting sites, and the climate of the original population to assess local adaptation, using linear mixed-effect models. We found that: (1) drought drove differences among populations in tree height growth; (2) most populations were locally adapted to drought; (3) tree height was predicted to increase for most of the studied populations by the year 2070 (a concentration of RCP 8.5). Most populations of Scots pine in Spain were locally adapted to drought. This result suggests that marginal populations, despite inhabiting limiting environments, can be adapted to the local current conditions. In addition, the local adaptation and acclimation capacity of populations can help margin populations to keep pace with climate change. Our results highlight the importance of analyzing, case-by-case, populations’ capacities to cope with climate change.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Description: Erwinia billingiae S31R1 and Bacillus simplex S11R41, isolated from the rhizosphere of a healthy tree located in a Pinus radiata D. Don plantation with high presence of fungal pathogens, are antagonists of pine root rot fungi Heterobasidion annosum and Armillaria mellea in vitro and in young trees. For effective biocontrol of these pathogens, the bacteria must stably colonize P. radiata roots following their application. To determine root colonization patterns, the bacteria were transformed with stable plasmids encoding green fluorescent protein (GFP). Transformed E. billingiae was visualized on roots 24 days after soil inoculation by confocal and epifluorescence microscopy, and GFP was detected by ELISA 31 days after inoculation. The presence of E. billingiae microcolonies, in some cases in root intercellular spaces, suggests that bacterial growth was active and localized. Fluorescence of B. simplex S11R41 was visualized on P. radiata roots 31 days after inoculation and its colonization pattern changed from scattered cells to localized microcolonies. Although the populations decreased over time, microcolony formation and localization in specific regions of roots indicated that E. billingiae, normally considered to be an epiphyte, and B. simplex can stably colonize roots of P. radiata.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...