ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (15)
  • Hindawi  (15)
  • American Chemical Society (ACS)
  • Oxford University Press
  • Springer Nature
  • 2015-2019  (15)
  • 1990-1994
  • 1950-1954
  • 1925-1929
  • 2017  (15)
  • 1992
  • 1950
  • 1929
  • 1926
  • Advances in Physical Chemistry  (10)
  • 124471
  • Physics  (15)
  • Psychology
  • Mathematics
  • Architecture, Civil Engineering, Surveying
Collection
  • Articles  (15)
Publisher
  • Hindawi  (15)
  • American Chemical Society (ACS)
  • Oxford University Press
  • Springer Nature
Years
  • 2015-2019  (15)
  • 1990-1994
  • 1950-1954
  • 1925-1929
Year
Topic
  • 1
    Publication Date: 2017
    Description: (E)-N-Aryl-2-ethene-sulfonamide and its derivatives are potent anticancer agents; these compounds inhibit cancer cells proliferation. A study of quantitative structure-activity relationship (QSAR) has been applied on 40 compounds based on (E)-N-Aryl-2-ethene-sulfonamide, in order to predict their anticancer biological activity. The principal components analysis is used for minimizing the base matrix and the multiple linear regression (MLR) and multiple nonlinear regression have been used to design the relationships between the molecular descriptor and anticancer properties of the sulfonamide derivatives. The validation of the models MLR and MNLR has been done by dividing the dataset into training and test set, the external validation of multiple correlation coefficients was RpIC50 = 0.81 for MLR and RpIC50 = 0.91 for MNLR. The artificial neural network (ANN) showed a correlation coefficient close to 0.96, which concluded that this latter model is more effective and much better than the other models. This obtained model (ANN) has been confirmed by two methods of LOO cross-validation and scrambling (or Y-randomization). The high correlation between experimental and predicted activity values was observed, indicating the validation and the good quality of the derived QSAR model.
    Print ISSN: 1687-7985
    Electronic ISSN: 1687-7993
    Topics: Chemistry and Pharmacology , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017
    Description: In this work, we synthesized In2S3 powder through chemical bath deposition method (CBD) in acid medium; we used thioacetamide as sulphide source and InCl3 as indium ion source. X-ray diffraction, diffuse reflection, and Raman spectroscopy measurements were used for In2S3 powder physicochemical characterization. Optical analysis indicated that In2S3 was active in the visible region of electromagnetic spectrum; it had a band gap of 2.47 eV; the diffraction patterns and Raman spectroscopy suggested that powder had polycrystalline structure. Furthermore, we also studied the adsorption process of methylene blue (MB) on In2S3 powder; adsorption studies indicated that the Langmuir model describes experimental data. Finally, photocatalytic degradation of MB was studied under visible irradiation in aqueous solution; besides, pseudo-first-order model was used to obtain kinetic information about photocatalytic degradation; results indicated that the powder catalyst reduces 26% concentration of MB under visible irradiation.
    Print ISSN: 1687-7985
    Electronic ISSN: 1687-7993
    Topics: Chemistry and Pharmacology , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017
    Description: In this work, we fabricated system In(O,OH)S/i-ZnO/n+-ZnO to be used as potential optical window in thin films solar cells. i-ZnO/n+-ZnO thin films were synthesized by reactive evaporation (RE) method and In(O,OH)S thin films were synthesized by chemical bath deposition (CBD) method; all thin films were deposited on soda lime glass substrates. Thin films were characterized through X-ray diffraction (XRD), atomic force microscopy (AFM), and spectral transmittance measurements. Structural results indicated that both thin films were polycrystalline; furthermore, morphological results indicated that both thin films coated uniformly soda lime glass substrate; besides, optical characterization indicated that system had more than 80% of visible radiation transmittance.
    Print ISSN: 1687-7985
    Electronic ISSN: 1687-7993
    Topics: Chemistry and Pharmacology , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017
    Description: Lawsonia inermis also known as henna was studied as a corrosion inhibitor for aluminum alloy in seawater. The inhibitor has been characterized by optical study via Fourier transform infrared spectroscopy (FTIR). The FTIR proves the existence of hydroxyl and carbonyl functional groups in Lawsonia inermis. Aluminum alloy 5083 immersed in seawater in the absence and presence of Lawsonia inermis was tested using electrochemistry method, namely, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PP). EIS and PP measurements suggest that the addition of Lawsonia inermis has caused the adsorption of inhibitor on the aluminum surface. The adsorption behavior of the inhibitor follow Langmuir adsorption model where the value of free energy of adsorption, , is less than 40 kJ/mol indicates that it is a physical adsorption. Finally, it was inferred that Lawsonia inermis has a real potential to act as a corrosion inhibitor for aluminum alloy in seawater.
    Print ISSN: 1687-7985
    Electronic ISSN: 1687-7993
    Topics: Chemistry and Pharmacology , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017
    Description: Cathodic electrochemical deposition (CED) is introduced as an efficient and effective method for synthesis and surface coating of superparamagnetic iron oxide nanoparticles (SPIONs). In this way, bare Fe3O4 nanoparticles were electrosynthesized through CED method from aqueous solution Fe3+ : Fe2+ chloride (molar ratio of 2 : 1). In the next step, the surface of NPs was coated with polyethyleneimine (PEI) and polyethylene glycol (PEG) during the CED procedure, and PEG/PEI coated SPIONs were obtained. The prepared NPs were evaluated by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic light scattering (DLS), vibrating sample magnetometer (VSM), and field-emission scanning electron microscopy (FE-SEM). The pure magnetite phase and nanosize (about 15 nm) of the prepared NPs were confirmed by XRD and FE-SEM. The presence of two coats (i.e., PEG and PEI) on the surface of electrosynthesized NPs was proved via FTIR results. The percentage of polymer coat (37.5%) on the NPs surface was provided by TGA analysis. The high magnetization value, negligible coercivity, and remanence measured by VSM indicate the superparamagnetic nature of both prepared NPs. The obtained results confirmed that the prepared Fe3O4 nanoparticles have suitable physicochemical and magnetic properties for biomedical applications.
    Print ISSN: 1687-7985
    Electronic ISSN: 1687-7993
    Topics: Chemistry and Pharmacology , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017
    Description: (E)-N-Aryl-2-ethene-sulfonamide and its derivatives are potent anticancer agents; these compounds inhibit cancer cells proliferation. A study of quantitative structure-activity relationship (QSAR) has been applied on 40 compounds based on (E)-N-Aryl-2-ethene-sulfonamide, in order to predict their anticancer biological activity. The principal components analysis is used for minimizing the base matrix and the multiple linear regression (MLR) and multiple nonlinear regression have been used to design the relationships between the molecular descriptor and anticancer properties of the sulfonamide derivatives. The validation of the models MLR and MNLR has been done by dividing the dataset into training and test set, the external validation of multiple correlation coefficients was RpIC50 = 0.81 for MLR and RpIC50 = 0.91 for MNLR. The artificial neural network (ANN) showed a correlation coefficient close to 0.96, which concluded that this latter model is more effective and much better than the other models. This obtained model (ANN) has been confirmed by two methods of LOO cross-validation and scrambling (or Y-randomization). The high correlation between experimental and predicted activity values was observed, indicating the validation and the good quality of the derived QSAR model.
    Print ISSN: 1687-7985
    Electronic ISSN: 1687-7993
    Topics: Chemistry and Pharmacology , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017
    Description: In this work, we synthesized In2S3 powder through chemical bath deposition method (CBD) in acid medium; we used thioacetamide as sulphide source and InCl3 as indium ion source. X-ray diffraction, diffuse reflection, and Raman spectroscopy measurements were used for In2S3 powder physicochemical characterization. Optical analysis indicated that In2S3 was active in the visible region of electromagnetic spectrum; it had a band gap of 2.47 eV; the diffraction patterns and Raman spectroscopy suggested that powder had polycrystalline structure. Furthermore, we also studied the adsorption process of methylene blue (MB) on In2S3 powder; adsorption studies indicated that the Langmuir model describes experimental data. Finally, photocatalytic degradation of MB was studied under visible irradiation in aqueous solution; besides, pseudo-first-order model was used to obtain kinetic information about photocatalytic degradation; results indicated that the powder catalyst reduces 26% concentration of MB under visible irradiation.
    Print ISSN: 1687-7985
    Electronic ISSN: 1687-7993
    Topics: Chemistry and Pharmacology , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017
    Description: In this work, we fabricated system In(O,OH)S/i-ZnO/n+-ZnO to be used as potential optical window in thin films solar cells. i-ZnO/n+-ZnO thin films were synthesized by reactive evaporation (RE) method and In(O,OH)S thin films were synthesized by chemical bath deposition (CBD) method; all thin films were deposited on soda lime glass substrates. Thin films were characterized through X-ray diffraction (XRD), atomic force microscopy (AFM), and spectral transmittance measurements. Structural results indicated that both thin films were polycrystalline; furthermore, morphological results indicated that both thin films coated uniformly soda lime glass substrate; besides, optical characterization indicated that system had more than 80% of visible radiation transmittance.
    Print ISSN: 1687-7985
    Electronic ISSN: 1687-7993
    Topics: Chemistry and Pharmacology , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017
    Description: Lawsonia inermis also known as henna was studied as a corrosion inhibitor for aluminum alloy in seawater. The inhibitor has been characterized by optical study via Fourier transform infrared spectroscopy (FTIR). The FTIR proves the existence of hydroxyl and carbonyl functional groups in Lawsonia inermis. Aluminum alloy 5083 immersed in seawater in the absence and presence of Lawsonia inermis was tested using electrochemistry method, namely, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PP). EIS and PP measurements suggest that the addition of Lawsonia inermis has caused the adsorption of inhibitor on the aluminum surface. The adsorption behavior of the inhibitor follow Langmuir adsorption model where the value of free energy of adsorption, , is less than 40 kJ/mol indicates that it is a physical adsorption. Finally, it was inferred that Lawsonia inermis has a real potential to act as a corrosion inhibitor for aluminum alloy in seawater.
    Print ISSN: 1687-7985
    Electronic ISSN: 1687-7993
    Topics: Chemistry and Pharmacology , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017
    Description: Cathodic electrochemical deposition (CED) is introduced as an efficient and effective method for synthesis and surface coating of superparamagnetic iron oxide nanoparticles (SPIONs). In this way, bare Fe3O4 nanoparticles were electrosynthesized through CED method from aqueous solution Fe3+ : Fe2+ chloride (molar ratio of 2 : 1). In the next step, the surface of NPs was coated with polyethyleneimine (PEI) and polyethylene glycol (PEG) during the CED procedure, and PEG/PEI coated SPIONs were obtained. The prepared NPs were evaluated by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic light scattering (DLS), vibrating sample magnetometer (VSM), and field-emission scanning electron microscopy (FE-SEM). The pure magnetite phase and nanosize (about 15 nm) of the prepared NPs were confirmed by XRD and FE-SEM. The presence of two coats (i.e., PEG and PEI) on the surface of electrosynthesized NPs was proved via FTIR results. The percentage of polymer coat (37.5%) on the NPs surface was provided by TGA analysis. The high magnetization value, negligible coercivity, and remanence measured by VSM indicate the superparamagnetic nature of both prepared NPs. The obtained results confirmed that the prepared Fe3O4 nanoparticles have suitable physicochemical and magnetic properties for biomedical applications.
    Print ISSN: 1687-7985
    Electronic ISSN: 1687-7993
    Topics: Chemistry and Pharmacology , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-02-13
    Description: Cathodic electrochemical deposition (CED) is introduced as an efficient and effective method for synthesis and surface coating of superparamagnetic iron oxide nanoparticles (SPIONs). In this way, bare Fe3O4 nanoparticles were electrosynthesized through CED method from aqueous solution Fe3+ : Fe2+ chloride (molar ratio of 2 : 1). In the next step, the surface of NPs was coated with polyethyleneimine (PEI) and polyethylene glycol (PEG) during the CED procedure, and PEG/PEI coated SPIONs were obtained. The prepared NPs were evaluated by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic light scattering (DLS), vibrating sample magnetometer (VSM), and field-emission scanning electron microscopy (FE-SEM). The pure magnetite phase and nanosize (about 15 nm) of the prepared NPs were confirmed by XRD and FE-SEM. The presence of two coats (i.e., PEG and PEI) on the surface of electrosynthesized NPs was proved via FTIR results. The percentage of polymer coat (37.5%) on the NPs surface was provided by TGA analysis. The high magnetization value, negligible coercivity, and remanence measured by VSM indicate the superparamagnetic nature of both prepared NPs. The obtained results confirmed that the prepared Fe3O4 nanoparticles have suitable physicochemical and magnetic properties for biomedical applications.
    Print ISSN: 1687-7985
    Electronic ISSN: 1687-7993
    Topics: Chemistry and Pharmacology , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-18
    Description: (E)-N-Aryl-2-ethene-sulfonamide and its derivatives are potent anticancer agents; these compounds inhibit cancer cells proliferation. A study of quantitative structure-activity relationship (QSAR) has been applied on 40 compounds based on (E)-N-Aryl-2-ethene-sulfonamide, in order to predict their anticancer biological activity. The principal components analysis is used for minimizing the base matrix and the multiple linear regression (MLR) and multiple nonlinear regression have been used to design the relationships between the molecular descriptor and anticancer properties of the sulfonamide derivatives. The validation of the models MLR and MNLR has been done by dividing the dataset into training and test set, the external validation of multiple correlation coefficients was RpIC50 = 0.81 for MLR and RpIC50 = 0.91 for MNLR. The artificial neural network (ANN) showed a correlation coefficient close to 0.96, which concluded that this latter model is more effective and much better than the other models. This obtained model (ANN) has been confirmed by two methods of LOO cross-validation and scrambling (or Y-randomization). The high correlation between experimental and predicted activity values was observed, indicating the validation and the good quality of the derived QSAR model.
    Print ISSN: 1687-7985
    Electronic ISSN: 1687-7993
    Topics: Chemistry and Pharmacology , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-02-16
    Description: Lawsonia inermis also known as henna was studied as a corrosion inhibitor for aluminum alloy in seawater. The inhibitor has been characterized by optical study via Fourier transform infrared spectroscopy (FTIR). The FTIR proves the existence of hydroxyl and carbonyl functional groups in Lawsonia inermis. Aluminum alloy 5083 immersed in seawater in the absence and presence of Lawsonia inermis was tested using electrochemistry method, namely, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PP). EIS and PP measurements suggest that the addition of Lawsonia inermis has caused the adsorption of inhibitor on the aluminum surface. The adsorption behavior of the inhibitor follow Langmuir adsorption model where the value of free energy of adsorption, -ΔG, is less than 40 kJ/mol indicates that it is a physical adsorption. Finally, it was inferred that Lawsonia inermis has a real potential to act as a corrosion inhibitor for aluminum alloy in seawater.
    Print ISSN: 1687-7985
    Electronic ISSN: 1687-7993
    Topics: Chemistry and Pharmacology , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-03-15
    Description: In this work, we fabricated system In(O,OH)S/i-ZnO/n+-ZnO to be used as potential optical window in thin films solar cells. i-ZnO/n+-ZnO thin films were synthesized by reactive evaporation (RE) method and In(O,OH)S thin films were synthesized by chemical bath deposition (CBD) method; all thin films were deposited on soda lime glass substrates. Thin films were characterized through X-ray diffraction (XRD), atomic force microscopy (AFM), and spectral transmittance measurements. Structural results indicated that both thin films were polycrystalline; furthermore, morphological results indicated that both thin films coated uniformly soda lime glass substrate; besides, optical characterization indicated that system had more than 80% of visible radiation transmittance.
    Print ISSN: 1687-7985
    Electronic ISSN: 1687-7993
    Topics: Chemistry and Pharmacology , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-16
    Description: In this work, we synthesized In2S3 powder through chemical bath deposition method (CBD) in acid medium; we used thioacetamide as sulphide source and InCl3 as indium ion source. X-ray diffraction, diffuse reflection, and Raman spectroscopy measurements were used for In2S3 powder physicochemical characterization. Optical analysis indicated that In2S3 was active in the visible region of electromagnetic spectrum; it had a band gap of 2.47 eV; the diffraction patterns and Raman spectroscopy suggested that powder had polycrystalline structure. Furthermore, we also studied the adsorption process of methylene blue (MB) on In2S3 powder; adsorption studies indicated that the Langmuir model describes experimental data. Finally, photocatalytic degradation of MB was studied under visible irradiation in aqueous solution; besides, pseudo-first-order model was used to obtain kinetic information about photocatalytic degradation; results indicated that the powder catalyst reduces 26% concentration of MB under visible irradiation.
    Print ISSN: 1687-7985
    Electronic ISSN: 1687-7993
    Topics: Chemistry and Pharmacology , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...