ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (12,765)
  • Copernicus  (12,765)
  • American Association for the Advancement of Science
  • 2010-2014  (12,765)
  • 1980-1984
  • 1965-1969
  • 1925-1929
  • Atmospheric Chemistry and Physics Discussions  (3,214)
  • Hydrology and Earth System Sciences Discussions  (1,487)
  • Atmospheric Measurement Techniques Discussions  (1,070)
  • 123569
  • 19030
  • 54330
Collection
  • Articles  (12,765)
Publisher
  • Copernicus  (12,765)
  • American Association for the Advancement of Science
Years
Year
Topic
  • 101
    Publication Date: 2013-04-06
    Description: Present and future nitrogen deposition to national parks in the United States: critical load exceedances Atmospheric Chemistry and Physics Discussions, 13, 9151-9178, 2013 Author(s): R. A. Ellis, D. J. Jacob, M. Payer, L. Zhang, C. D. Holmes, B. A. Schichtel, T. Blett, E. Porter, L. H. Pardo, and J. A. Lynch National parks in the United States are protected areas wherein the natural habitat is to be conserved for future generations. Deposition of anthropogenic nitrogen (N) transported from areas of human activity (fuel combustion, agriculture) may affect these natural habitats if it exceeds an ecosystem-dependent critical load (CL). We quantify and interpret the deposition to Class I US national parks for present-day and future (2050) conditions using the GEOS-Chem global chemical transport model with 1/2° × 2/3° horizontal resolution over North America. We estimate CL values in the range 2.5–5 kg N ha −1 yr −1 for the different parks with the goal of protecting the most sensitive ecosystem receptors. For present-day conditions, we find 24 out of 45 parks to be in CL exceedance and 14 more to be marginally so. Many of these are in remote areas of the West. Most (40–85%) of the deposition originates from NO x emissions (fuel combustion). We then project future changes in N deposition using the Representative Concentration Pathway (RCP) emission scenarios for 2050. These feature 52–73% declines in US NO x emissions relative to present but 19–50% increases in US ammonia (NH 3 ) emissions. Nitrogen deposition at US national parks then becomes dominated by domestic NH 3 emissions. While deposition decreases in the East relative to present, there is little progress in the West and increases in some regions. We find that 17–25 US national parks will have CL exceedances in 2050 based on the RCP scenarios. Even in total absence of anthropogenic NO x emissions, 14–18 parks would still have a CL exceedance. Returning all parks to N deposition below CL by 2050 will require at least a 55% decrease in anthropogenic NH 3 emissions relative to RCP-projected 2050 levels.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2013-04-06
    Description: Redox activity of naphthalene secondary organic aerosol Atmospheric Chemistry and Physics Discussions, 13, 9107-9149, 2013 Author(s): R. D. McWhinney, S. Zhou, and J. P. D. Abbatt Chamber secondary organic aerosol (SOA) from low-NO x photooxidation of naphthalene by hydroxyl radical was examined with respect to its redox cycling behaviour using the dithiothreitol (DTT) assay. Naphthalene SOA was highly redox active, consuming DTT at an average rate of 118 ± 14 pmol per minute per μg of SOA material. Measured particle-phase masses of the major previously identified redox active products, 1,2- and 1,4-naphthoquinone, accounted for only 21 ± 3% of the observed redox cycling activity. The redox-active 5-hydroxy-1,4-naphthoquinone was identified as a new minor product of naphthalene oxidation, and including this species in redox activity predictions increased the predicted DTT reactivity to 30 ± 5% of observations. Similar attempts to predict redox behaviour of oxidised two-stroke engine exhaust particles by measuring 1,2-naphthoquinone, 1,4-naphthoquinone and 9,10-phenanthrenequinone predicted DTT decay rates only 4.9 ± 2.5% of those observed. Together, these results suggest that there are substantial unidentified redox-active SOA constituents beyond the small quinones that may be important toxic components of these particles. A gas-to-SOA particle partitioning coefficient was calculated to be (7.0 ± 2.5) × 10 −4 m 3 μg −1 for 1,4-naphthoquinone at 25 °C. This value suggests that under typical warm conditions, 1,4-naphthoquinone is unlikely to contribute strongly to redox behaviour of ambient particles, although further work is needed to determine the potential impact under conditions such as low temperatures where partitioning to the particle is more favourable. As well, higher order oxidation products that likely account for a substantial fraction of the redox cycling capability of the naphthalene SOA are likely to partition much more strongly to the particle phase.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2013-04-11
    Description: McClear: a new model estimating downwelling solar radiation at ground level in clear-sky conditions Atmospheric Measurement Techniques Discussions, 6, 3367-3405, 2013 Author(s): M. Lefèvre, A. Oumbe, P. Blanc, B. Espinar, B. Gschwind, Z. Qu, L. Wald, M. Schroedter-Homscheidt, C. Hoyer-Klick, A. Arola, A. Benedetti, J. W. Kaiser, and J.-J. Morcrette A new fast clear-sky model called McClear was developed to estimate the downwelling shortwave direct and global irradiances received at ground level under clear skies. McClear implements a fully physical modelling replacing empirical relations or simpler models used before. It exploits the recent results on aerosol properties, and total column content in water vapor and ozone produced by the MACC project (Monitoring Atmosphere Composition and Climate). It accurately reproduces the irradiance computed by the libRadtran reference radiative transfer model with a computational speed approximately 10 5 times greater by adopting the abaci, or look-up tables, approach combined with interpolation functions. It is therefore suited for geostationary satellite retrievals or numerical weather prediction schemes with many pixels or grid points, respectively. McClear irradiances were compared to 1 min measurements made in clear-sky conditions in several stations within the Baseline Surface Radiation Network in various climates. For global, respectively direct, irradiance, the correlation coefficient ranges between 0.95 and 0.99, resp. 0.86 and 0.99. The bias is comprised between −14 and 25 W m −2 , resp. −49 and +33 W m −2 . The RMSE ranges between 20 W m −2 (3% of the mean observed irradiance) and 36 W m −2 (5%), resp. 33 W m −2 (5%) and 64 W m −2 (10%). These results are much better than those from state-of-the-art models. This work demonstrates the quality of the McClear model combined with MACC products, and indirectly the quality of the aerosol properties modeled by the MACC reanalysis.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2013-04-11
    Description: Experimental quantification of contact freezing in an electrodynamic balance Atmospheric Measurement Techniques Discussions, 6, 3407-3437, 2013 Author(s): N. Hoffmann, A. Kiselev, D. Rzesanke, D. Duft, and T. Leisner Heterogeneous nucleation of ice in a supercooled water droplet induced by an external contact with a dry aerosol particle has long been known to be more effective than freezing induced by the same nucleus immersed in the droplet. However, the experimental quantification of contact freezing is challenging. Here we report an experimental method allowing to determine the temperature dependent ice nucleation probability of size selected aerosol particles. The method uses supercooled charged water droplets suspended in a laminar flow of air containing aerosol particles as contact freezing nuclei. The rate of droplet–particle collisions is calculated numerically with account for Coulomb attraction, drag force and induced dipole interaction between charged droplet and aerosol particles. The calculation is verified by direct counting of aerosol particles collected by a levitated droplet. By repeating the experiment on individual droplets for a sufficient number of times, we are able to reproduce the statistical freezing behavior of a large ensemble of supercooled droplets and measure the average rate of freezing events. The freezing rate is equal to the product of the droplet–particle collision rate and the probability of freezing on a single contact, the latter being a function of temperature, size and composition of the contact ice nuclei. Based on these observations, we show that for the types of particles investigated so far, contact freezing is the dominating freezing mechanism on the time scale of our experiment.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2013-04-11
    Description: Impacts of tropical cyclones on hydrochemistry of a subtropical forest Hydrology and Earth System Sciences Discussions, 10, 4537-4566, 2013 Author(s): C. T. Chang, S. P. Hamburg, J. L. Hwong, N. H. Lin, M. L. Hsueh, M. C. Chen, and T. C. Lin Tropical cyclones (typhoons/hurricanes) have major impacts on the biogeochemistry of forest ecosystems, but the stochastic nature and the long intervals between storms means that there are limited data on their effects. We characterized the impacts of 14 typhoons over six years on hydrochemistry of a subtropical forest plantation in Taiwan, a region experiencing frequent typhoons. Typhoons contributed 1/3 of annual rainfall on average, but ranged from 4% to 55%. The stochastic nature of annual typhoon related precipitation poses a challenge with respect to managing the impacts of these extreme events. This challenge is exacerbated by the fact that typhoon-related rainfall is not significantly correlated with wind velocity, the current focus of weather forecasts. Thus little advance warning is provided for the hydrological impacts of these storms. The typhoons we studied contributed approximately one third of the annual input and output of most nutrients (except nitrogen) during an average 9.5d yr −1 period, resulting in nutrient input/output rates an order of magnitude greater than during non-typhoon period. Nitrate output balanced input during the non-typhoon period, but during the typhoon period an average of 10 kg ha −1 yr −1 nitrate was lost. Streamwater chemistry exhibited similarly high variability during typhoon and non-typhoon periods and returned to pre-typhoon levels one to three weeks following each typhoon. The streamwater chemistry appears to be very resilient in response to typhoons, resulting in minimal loss of nutrients.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2013-09-07
    Description: Factors that influence surface PM 2.5 values inferred from satellite observations: perspective gained for the Baltimore-Washington Area during DISCOVER-AQ Atmospheric Chemistry and Physics Discussions, 13, 23421-23459, 2013 Author(s): S. Crumeyrolle, G. Chen, L. Ziemba, A. Beyersdorf, L. Thornhill, E. Winstead, R. Moore, M. A. Shook, and B. Anderson During the NASA DISCOVER-AQ campaign over the Washington D.C., - Baltimore, MD, metropolitan region in July 2011, the NASA P-3B aircraft performed extensive profiling of aerosol optical, chemical, and microphysical properties. These in-situ profiles were coincident with ground based remote sensing (AERONET) and in-situ (PM 2.5 ) measurements. Here, we use this data set to study the correlation between the PM 2.5 observations at the surface and the column integrated measurements. Aerosol optical depth (AOD) calculated with the extinction (532 nm) measured during the in-situ profiles was found to be strongly correlated with the volume of aerosols present in the boundary layer (BL). Despite the strong correlation, some variability remains, and we find that the presence of aerosol layers above the BL (in the buffer layer – BuL) introduces a significant uncertainties in PM 2.5 estimates based on column-integrated measurements. This motivates the use of active remote sensing techniques to dramatically improve air quality retrievals. Since more than a quarter of the AOD values observed during DISCOVER-AQ are dominated by aerosol water uptake, the f (RH) amb (obtained from two nephelometers at different relative humidities – RHs) is used to study the impact of the aerosol hygroscopicity. The results indicate that PM 2.5 can be predicted within a factor of 1.6 even when the vertical variability of the f (RH) amb is assumed to be negligible.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2013-09-07
    Description: Separating mixtures of aerosol types in airborne High Spectral Resolution Lidar data Atmospheric Measurement Techniques Discussions, 6, 8269-8309, 2013 Author(s): S. P. Burton, M. A. Vaughan, R. A. Ferrare, and C. A. Hostetler Knowledge of aerosol type is important for source attribution and for determining the magnitude and assessing the consequences of aerosol radiative forcing. However, atmospheric aerosol is frequently not a single pure type, but instead occurs as a mixture of types, and this mixing affects the optical and radiative properties of the aerosol. This paper extends the work of earlier researchers by using the aerosol intensive parameters measured by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL-1) to develop a comprehensive and unified set of rules for characterizing the external mixing of several key aerosol intensive parameters: extinction-to-backscatter ratio (i.e. lidar ratio), backscatter color ratio, and depolarization ratio. We present the mixing rules in a particularly simple form that leads easily to mixing rules for the covariance matrices that describe aerosol distributions, rather than just scalar values of measured parameters. These rules can be applied to infer mixing ratios from the lidar-observed aerosol parameters, even for cases without significant depolarization. We demonstrate our technique with measurement curtains from three HSRL-1 flights which exhibit mixing between two aerosol types, urban pollution plus dust, marine plus dust, and smoke plus marine. For these cases, we infer a time-height cross-section of mixing ratio along the flight track, and partition aerosol extinction into portions attributed to the two pure types.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2013-09-07
    Description: On clocks and clouds Atmospheric Chemistry and Physics Discussions, 13, 23461-23490, 2013 Author(s): M. K. Witte, P. Y. Chuang, and G. Feingold Cumulus clouds exhibit a life cycle that consists of: (a) the growth phase (increasing size, most notably in the vertical direction); (b) the mature phase (growth ceases; any precipitation that develops is strongest during this period); and (c) the dissipation phase (cloud dissipates because of precipitation and/or entrainment; no more dynamical support). Although radar can track clouds over time and give some sense of the age of a cloud, most aircraft in situ measurements lack temporal context. We use large eddy simulations of trade wind cumulus cloud fields from cases during the Barbados Oceanographic and Meteorological Experiment (BOMEX) and Rain In Cumulus over the Ocean (RICO) campaigns to demonstrate a potential cumulus cloud "clock". We find that the volume-averaged total water mixing ratio r t is a useful cloud clock for the 12 clouds studied. A cloud's initial r t is set by the subcloud mixed-layer mean r t and decreases monotonically from the initial value due primarily to entrainment. The clock is insensitive to aerosol loading, environmental sounding and extrinsic cloud properties such as lifetime and volume. In some cases (more commonly for larger clouds), multiple pulses of buoyancy occur, which complicate the cumulus clock by replenishing r t . The clock is most effectively used to classify clouds by life phase.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2013-09-10
    Description: Lidar-based remote sensing of atmospheric boundary layer height over land and ocean Atmospheric Measurement Techniques Discussions, 6, 8311-8338, 2013 Author(s): T. Luo, R. Yuan, and Z. Wang Atmospheric boundary layer (ABL) processes are important in climate, weather and air quality. A better understanding of the structure and the behavior of the ABL is required for understanding and modeling of the chemistry and dynamics of the atmosphere on all scales. Based on the systematic variations of ABL structures over different surfaces, different lidar-based methods were developed and evaluated to determine the boundary layer height and mixing layer height over land and ocean. With Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) micropulse lidar (MPL) and radiosonde measurements, diurnal and season cycles of atmospheric boundary layer depth and ABL vertical structure over ocean (TWP_C2 cite) and land (SGP_C1) are analyzed. The new methods are also applied to satellite lidar measurements. The derived global marine boundary layer structure database shows good agreement with marine ABL stratiform cloud top height.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2013-09-11
    Description: Assessment of the effect of air pollution controls on trends in shortwave radiation over the United States from 1995 through 2010 from multiple observation networks Atmospheric Chemistry and Physics Discussions, 13, 23719-23755, 2013 Author(s): C.-M. Gan, J. Pleim, R. Mathur, C. Hogrefe, C. N. Long, J. Xing, S. Roselle, and C. Wei Long term datasets of all-sky and clear-sky downwelling shortwave (SW) radiation, cloud cover fraction and aerosol optical depth (AOD) are analyzed together with surface concentration from several networks (e.g. SURFRAD, CASTNET, IMPROVE and ARM) in the United States (US). Seven states with varying climatology are selected to better understand the effects of aerosols and clouds on SW radiation. This analysis aims to assess the effects of reductions in anthropogenic aerosol burden resulting from substantial reductions in emissions of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ) over the past 16 yr across the US on trends in SW radiation. The SO 2 and NO x emission data show decreasing trends from 1995 to 2010 which indirectly validates the effects of the Clean Air Act (CAA) in the US. Meanwhile, the total column AOD and surface total PM 2.5 observations also show decreasing trends in the eastern US but slightly increasing trends in the western US. Moreover, measured surface concentrations of several other pollutants (i.e. SO 2 , SO 4 and NO x ) have the same behavior as the AOD and total PM 2.5 . First, all-sky downwelling SW radiation is assessed together with the cloud cover. Results of this analysis show strong increasing trends in all-sky downwelling SW radiation with decreasing trends in cloud cover. However, since observations of both all-sky direct and diffuse SW radiation are increasing, there may be other factors contributing to the radiation trends in addition to the decreasing trends in overall cloud cover. To investigate the role of direct radiative effects of aerosols, clear-sky downwelling radiation is analyzed so that cloud effects are eliminated. However, similar increasing trends in clear-sky direct and diffuse SW radiation are observed. While significantly decreasing trends in AOD and surface concentration along with increasing SW radiation (both all-sky and clear-sky) in the eastern US during 1995–2010 imply the occurrence of direct aerosol mediated "brightening", the increasing trends of both all-sky and clear sky diffuse SW radiation contradicts this conclusion since diffuse radiation would be expected to decrease as aerosols direct effects decrease. After investigating several confounding factors, the increasing trend in diffuse SW may be due to more high-level cirrus from increasing air traffic over the US. In contrast to the eastern US, radiation observations in the western US do not show any indication of "brightening" which is consistent with the observations (e.g. AOD, PM 2.5 and surface concentration) that show the aerosol loading increasing slightly. This outcome is not unexpected because the CAA controls were mainly aimed at reducing air pollutants emission in the eastern US and air pollutant level in the western US are much lower.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2013-09-12
    Description: Modeled global effects of airborne desert dust on air quality and premature mortality Atmospheric Chemistry and Physics Discussions, 13, 24023-24050, 2013 Author(s): D. Giannadaki, A. Pozzer, and J. Lelieveld Fine particulate matter is one of the most important factors contributing to air pollution. Epidemiological studies have related increased levels of atmospheric particulate matter to premature human mortality caused by cardiopulmonary disease and lung cancer. However, a limited number of investigations have focused on the contribution of airborne desert dust particles. Here we assess the effects of dust particles with an aerodynamic diameter smaller than 2.5 μm (DU 2.5 ) on human mortality for the year 2005. We used the EMAC atmospheric chemistry general circulation model at high resolution to simulate global atmospheric dust concentrations. We applied a health impact function to estimate premature mortality for the global population of 30 yr and older, using parameters from epidemiological studies. We estimate a global cardiopulmonary mortality of about 402 thousand and about 10 thousand by lung cancer in 2005. The associated years of life lost are about 3.47 million and 96 thousand per year due to cardiopulmonary disease and lung cancer, respectively. We estimate the global fraction of the cardiopulmonary and lung cancer deaths caused by atmospheric desert dust to be about 1.7%, though in the 20 countries most affected by dust this is much higher, about 15–50%. These countries are primarily found in the so-called "dust belt" from North Africa across the Middle East and South Asia to East Asia.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2013-09-12
    Description: Aerosols optical and physical characteristics and direct radiative forcing during a "Shamal" dust storm, a case study Atmospheric Chemistry and Physics Discussions, 13, 23895-23941, 2013 Author(s): T. M. Saeed, H. Al-Dashti, and C. Spyrou Dust aerosols are analyzed for their optical and physical properties during an episode of dust storm that hit Kuwait on 26 March 2003 when "Iraqi Freedom" military operation was in full swing. The intensity of the dust storm was such that it left a thick suspension of dust throughout the following day, 27 March, resulting in a considerable cooling effect at the surface on both days. Ground-based measurements of aerosol optical thickness reached 3.617 and 4.17 on 26–27 March respectively while Ångstrom coefficient, α 870/440 , dropped to −0.0234 and −0.0318. Particulate matter concentration of diameter 10 μm or less, PM 10 , peaked at 4800 μg m −3 during dust storm hours of 26 March. Moderate resolution imaging spectrometer (MODIS) retrieved optical and physical characteristics that exhibited extreme values as well. The synoptic of the dust storm is presented and source regions are identified using total ozone mapping spectrometer (TOMS) aerosol index retrieved images. The vertical profile of the dust layer was simulated using SKIRON atmospheric model. Instantaneous net direct radiative forcing is calculated at top of atmosphere (TOA) and surface level. The thick dust layer of 26 March resulted in cooling the TOA by −60 Wm −2 and surface level by −175 Wm −2 for a surface albedo of 0.35. Slightly higher values were obtained for 27 March due to the increase in aerosol optical thickness. The large reduction in the radiative flux at the surface level had caused a drop in surface temperature by approximately 6 °C below its average value. Radiative heating/cooling rates in the shortwave and longwave bands were also examined. Shortwave heating rate reached a maximum value of 2 °K day −1 between 3 and 5 km, dropped to 1.5 °K day −1 at 6 km and diminished at 8 km. Longwave radiation initially heated the lower atmosphere by a maximum value of 0.2 °K day −1 at surface level, declined sharply at increasing altitude and diminished at 4 km. Above 4 km longwave radiation started to cool the atmosphere slightly reaching a maximum rate of −0.1 °K day −1 at 6 km.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2013-09-12
    Description: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling Atmospheric Chemistry and Physics Discussions, 13, 23845-23893, 2013 Author(s): G. A. Grell and S. R. Freitas A convective parameterization is described and evaluated that may be used in high resolution non-hydrostatic mesoscale models as well as in modeling systems with unstructured varying grid resolutions and for convection aware simulations. This scheme is based on a stochastic approach originally implemented by Grell and Devenyi (2002). Two approaches are tested on resolutions ranging from 20 to 5 km. One approach is based on spreading subsidence to neighboring grid points, the other one on a recently introduced method by Arakawa et al. (2011). Results from model intercomparisons, as well as verification with observations indicate that both the spreading of the subsidence and Arakawa's approach work well for the highest resolution runs. Because of its simplicity and its capability for an automatic smooth transition as the resolution is increased, Arakawa's approach may be preferred. Additionally, interactions with aerosols have been implemented through a CCN dependent autoconversion of cloud water to rain as well as an aerosol dependent evaporation of cloud drops. Initial tests with this newly implemented aerosol approach show plausible results with a decrease in predicted precipitation in some areas, caused by the changed autoconversion mechanism. This change also causes a significant increase of cloud water and ice detrainment near the cloud tops. Some areas also experience an increase of precipitation, most likely caused by strengthened downdrafts.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2013-09-12
    Description: Fast reconstruction of hyperspectral radiative transfer simulations by using small spectral subsets: application to the oxygen A band Atmospheric Measurement Techniques Discussions, 6, 8339-8370, 2013 Author(s): A. Hollstein and R. Lindstrot Hyperspectral radiative transfer simulations are a versatile tool in remote sensing but can pose a major computational burden. We describe a simple method to construct hyperspectral simulation results by using only a small spectral subsample of the simulated wavelength range, thus leading to major speedups in such simulations. This is achieved by computing principal components for a small number of representative hyperspectral spectra and then deriving a reconstruction matrix for a specific spectral subset of channels to compute the hyperspectral data. The method is applied and discussed in detail using the example of top of atmosphere radiances in the oxygen A band, leading to speedups in the range of one to two orders of magnitude when compared to radiative transfer simulations at full spectral resolution.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2013-09-13
    Description: An assessment of cloud top thermodynamic phase products obtained from A-Train passive and active sensors Atmospheric Measurement Techniques Discussions, 6, 8371-8411, 2013 Author(s): S. Zeng, J. Riedi, F. Parol, C. Cornet, and F. Thieuleux The A-Train observations provide an unprecedented opportunity for the production of high quality dataset describing cloud properties. We illustrate in this study the use of one year of coincident POLDER (Polarization and Directionality of the Earth Reflectance), MODIS (MODerate Resolution Imaging Spectroradiometer) and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) observations to establish a reference dataset for the description of cloud top thermodynamic phase at global scale. We present the results of an extensive comparison between POLDER and MODIS cloud top phase products and discuss those in view of cloud vertical structure and optical properties derived simultaneously from collocated CALIOP active measurements. These results allow to identify and quantify potential biases present in the 3 considered dataset. Among those, we discuss the impacts of observation geometry, thin cirrus in multilayered and single layered cloud systems, supercooled liquid droplets, aerosols, fractional cloud cover and snow/ice or bright surfaces on global statistics of cloud phase derived from POLDER and MODIS passive measurements. Based on these analysis we define criteria for the selection of high confidence cloud phase retrievals which in turn can serve for the establishment of a reference cloud phase product. This high confidence joint product derived from POLDER/PARASOL and MODIS/Aqua can be used in the future as a benchmark for the evaluation of other cloud climatologies, for the assessment of cloud phase representation in models and the development of better cloud phase parametrization in the general circulation models (GCMs).
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2013-09-13
    Description: Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics Hydrology and Earth System Sciences Discussions, 10, 11519-11557, 2013 Author(s): A. D. Jayakaran, T. M. Williams, H. Ssegane, D. M. Amatya, B. Song, and C. C. Trettin Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal watersheds in South Carolina in terms of stream flow and vegetation dynamics, both before and after the hurricane's passage in 1989. The study objectives were to quantify the magnitude and timing of changes including a reversal in relative streamflow-difference between two paired watersheds, and to examine the selective impacts of a hurricane on the vegetative composition of the forest. We related these impacts to their potential contribution to change watershed hydrology through altered evapotranspiration processes. Using over thirty years of monthly rainfall and streamflow data we showed that there was a significant transformation in the hydrologic character of the two watersheds – a transformation that occurred soon after the hurricane's passage. We linked the change in the rainfall-runoff relationship to a catastrophic shift in forest vegetation due to selective hurricane damage. While both watersheds were located in the path of the hurricane, extant forest structure varied between the two watersheds as a function of experimental forest management techniques on the treatment watershed. We showed that the primary damage was to older pines, and to some extent larger hardwood trees. We believe that lowered vegetative water use impacted both watersheds with increased outflows on both watersheds due to loss of trees following hurricane impact. However, one watershed was able to recover to pre hurricane levels of canopy transpiration at a quicker rate due to the greater abundance of pine seedlings and saplings in that watershed.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2013-09-14
    Description: Climatology of new particle formation events in the subtropical North Atlantic free troposphere at Izaña GAW observatory Atmospheric Chemistry and Physics Discussions, 13, 24127-24169, 2013 Author(s): M. I. García, S. Rodríguez, Y. González, and R. D. García A climatology of new particle formation (NPF) events in the subtropical North Atlantic free troposphere is presented. A four year data set (June 2008–June 2012), which includes number size distributions (10–600 nm), reactive gases (SO 2 , NO x , and O 3 ), several components of solar radiation and meteorological parameters, measured at Izaña Global Atmospheric Watch observatory (2400 m above sea level; Tenerife, Canary Islands) was analysed. On average, NPF occurred during 30% of the days,the mean values of the formation and growth rates during the study period were 0.49 cm −3 s −1 and 0.42 nm h −1 , correspondingly. There is a clearly marked NPF season (May to August), when these events account for 50 to 60% of the days/month. Monthly mean values of the formation and growth rates exhibit higher values during this season (0.50–0.95 cm −3 s −1 and 0.48–0.58 nm h −1 , respectively) than during other periods. The two steps (formation and growth) of the NPF process mostly occur under the prevailing northern winds typical of this region. Sulphur dioxide and UV radiation show higher levels during NPF events than in other type of episodes. The presence of Saharan dust in the free troposphere is associated with a decrease in the formation rates of new particles. In the analysis of the year-to-year variability, mean sulphur dioxide concentration (within the range 60–300 ppt) was the parameter that exhibited the highest correlation with the frequency of NPF episodes. The availability of this trace gas (i.e. their oxidation products) seems also to have a influence on the duration of the events, number of formed nucleation particles, formation rates and growth rates. We identified a set of NPF events in which two nucleation modes (that may evolve at different rates) occur simultaneously and for which further investigations are necessary.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2013-09-14
    Description: Numerical analysis of the chemical kinetic mechanisms of ozone depletion and halogen release in the polar troposphere Atmospheric Chemistry and Physics Discussions, 13, 24171-24222, 2013 Author(s): L. Cao, H. Sihler, U. Platt, and E. Gutheil In recent years, the role of halogen species (e.g. Br, Cl) in the troposphere of polar regions is investigated after the discovery of their importance for boundary layer ozone destruction in the polar spring. Halogen species take part in an auto-catalytic chemical cycle including key self reactions. In this study, several chemical reaction schemes are investigated, and the importance of specific reactions and their rate constants is identified by a sensitivity analysis. A category of heterogeneous reactions related to HOBr activate halogen ions from sea salt aerosols, fresh sea ice or snow pack, driving the "bromine explosion". In the Arctic, a small amount of NO x may exist, which comes from nitrate contained in the snow, and this NO x may have a strong impact on ozone depletion. The heterogeneous reaction rates are parameterized by considering the aerodynamic resistance, a reactive surface ratio, β, i.e. ratio of reactive surface area to total ground surface area, and the boundary layer height, L mix . It is found that for β = 1, the ozone depletion process starts after five days and lasts for 40 h for L mix = 200 m. Ozone depletion duration becomes independent of the height of the boundary layer for about β≥20, and it approaches a value of two days for β=100. The role of nitrogen and chlorine containing species on the ozone depletion rate is studied. The calculation of the time integrated bromine and chlorine atom concentrations suggests a value in the order of 10 3 for the [Br] / [Cl] ratio, which reveals that atomic chlorine radicals have minor direct influence on the ozone depletion. The NO x concentrations are influenced by different chemical cycles over different time periods. During ozone depletion, the reaction cycle involving the BrONO 2 hydrolysis is dominant. A critical value of 0.002 of the uptake coefficient of the BrONO 2 hydrolysis reaction at the aerosol and saline surfaces is identified, beyond which the existence of NO x species accelerate the ozone depletion event – for lower values, deceleration occurs.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2013-09-17
    Description: Modeling the influence of precursor volatility and molecular structure on secondary organic aerosol formation using evaporated fuel experiments Atmospheric Chemistry and Physics Discussions, 13, 24405-24434, 2013 Author(s): S. H. Jathar, N. M. Donahue, P. J. Adams, and A. L. Robinson We use SOA production data from an ensemble of evaporated fuels to test various SOA formation models. Except for gasoline, traditional SOA models focusing exclusively on volatile species in the fuels under-predict the observed SOA formation. These models can be improved dramatically by accounting for lower volatility species, but at the cost of a large set of free parameters. In contrast, a SOA model based only on the volatility of the precursor, starting with the volatility distribution of the evaporated fuels and optimized for the volatility reduction of first-generation products, reasonably reproduces the observed SOA formation with relatively few free parameters. The exceptions are exotic fuels such as Fischer-Tropsch fuels that expose the central assumption of the volatility based model that most emissions consist of complex mixtures displaying reasonably average behavior. However, for the vast majority of fuels, the volatility based model performs well.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2013-09-17
    Description: Secondary organic aerosol production from diesel vehicle exhaust: impact of aftertreatment, fuel chemistry and driving cycle Atmospheric Chemistry and Physics Discussions, 13, 24223-24262, 2013 Author(s): T. D. Gordon, A. A. Presto, N. T. Nguyen, W. H. Robertson, K. Na, K. N. Sahay, M. Zhang, C. Maddox, P. Rieger, S. Chattopadhyay, H. Maldonado, M. M. Maricq, and A. L. Robinson Environmental chamber ("smog chamber") experiments were conducted to investigate secondary organic aerosol (SOA) production from dilute emissions from two medium-duty diesel vehicles (MDDVs) and three heavy-duty diesel vehicles (HDDVs) under urban-like conditions. Some of the vehicles were equipped with emission control aftertreatment devices including diesel particulate filters (DPF), selective catalytic reduction (SCR) and diesel oxidation catalysts (DOC). Experiments were also performed with different fuels (100% biodiesel and low-, medium- or high-aromatic ultralow sulfur diesel) and driving cycles (Unified Cycle, Urban Dynamometer Driving Schedule, and creep+idle). During normal operation, vehicles with a catalyzed DPF emitted very little primary particulate matter (PM). Furthermore, photo-oxidation of dilute emissions from these vehicles produced essentially no SOA (below detection limit). However, significant primary PM emissions and SOA production were measured during active DPF regeneration experiments. Nevertheless, under reasonable assumptions about DPF regeneration frequency, the contribution of regeneration emissions to the total vehicle emissions is negligible, reducing PM trapping efficiency by less than 2%. Therefore, catalyzed DPFs appear to be very effective in reducing both primary and secondary fine particulate matter from diesel vehicles. For both MDDVs and HDDVs without aftertreatment substantial SOA formed in the smog chamber – with the emissions from some vehicles generating twice as much SOA as primary organic aerosol after three hours of oxidation at typical urban VOC : NO x ratios (3:1). Comprehensive organic gas speciation was performed on these emissions, but less than half of the measured SOA could be explained by traditional (speciated) SOA precursors. The remainder presumably originates from the large fraction (~30%) of the non-methane organic gas emissions that could not be speciated using traditional one-dimensional gas-chromatography. The unspeciated organics – likely comprising less volatile species, such as intermediate volatility organic compounds – appear to be important SOA precursors; we estimate that the effective SOA yield (defined as the ratio of SOA mass to reacted precursor mass) was 9 ± 6% if both speciated SOA precursors and unspeciated organics are included in the analysis. SOA production from creep+idle operation was 3–4 times larger than SOA production from the same vehicle operated over the Urban Dynamometer Driving Schedule (UDDS). Fuel properties had little or no effect on primary PM emissions or SOA formation.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2013-09-17
    Description: Primary to secondary organic aerosol: evolution of organic emissions from mobile combustion sources Atmospheric Chemistry and Physics Discussions, 13, 24263-24300, 2013 Author(s): A. A. Presto, T. D. Gordon, and A. L. Robinson A series of smog chamber experiments were conducted to investigate the transformation of primary organic aerosol (POA) and formation of secondary organic aerosol (SOA) during the photo-oxidation of dilute gasoline and diesel motor vehicle exhaust. In half of the experiments POA was present in the chamber at the onset of photo-oxidation. In these experiments positive matrix factorization (PMF) was used to determine separate POA and SOA factors from aerosol mass spectrometer data. A two-factor solution, with one POA factor and one SOA factor, was sufficient to describe the organic aerosol in all but one experiment. In the other half of the experiments, POA was not present at the onset of photo-oxidation; these experiments are considered "pure SOA" experiments. The POA mass spectrum was similar to the mass spectra of the hydrocarbon-like organic aerosol factor determined from ambient datasets with one exception, a diesel vehicle equipped with a diesel oxidation catalyst. The SOA in all experiments had a constant composition over the course of photo-oxidation, and did not appear to age with continued oxidation. The SOA mass spectra for the various gasoline and diesel vehicles were similar to each other, but markedly different than ambient oxidized organic aerosol factors. Van Krevelen analysis of the POA and SOA factors for gasoline and diesel experiments reveal slopes of −0.68 and −0.43, respectively. This suggests that the oxidation chemistry in these experiments is a combination of carboxylic acid and alcohol/peroxide formation, consistent with ambient oxidation chemistry. These experiments also provide insight to the mixing behavior of the POA and SOA. Analysis of the time series of the POA factor concentration and a basis-set model both indicate that for all but one of the vehicles tested here, the POA and SOA seem to mix and form a single organic aerosol phase.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2013-09-17
    Description: CARIBIC DOAS observations of nitrous acid and formaldehyde in a large convective cloud Atmospheric Chemistry and Physics Discussions, 13, 24343-24403, 2013 Author(s): K.-P. Heue, H. Riede, D. Walter, C. A. M. Brenninkmeijer, T. Wagner, U. Frieß, U. Platt, A. Zahn, G. Stratmann, and H. Ziereis The CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) flying laboratory measures once per month the chemical composition at cruise altitude (10...12 km) during 4 consecutive Lufthansa flights. Here we present a case study of enhanced nitrogen oxides (NO x ), nitrous acid (HONO), and formaldehyde (HCHO) in a thunderstorm cloud over the Caribbean islands of Guadeloupe in August 2011. Nitrous acid is an important reservoir gas for OH radicals, and only few observations of HONO at cruise altitude exist. CARIBIC is designed as a long period atmospheric observation system, the actual system has been flying almost monthly since 8 yr now. During this period only very few similar events (one since 2008) were observed. Due to multiple scattering the light path inside clouds is enhanced, thereby lowering the detection limit of the DOAS instrument. Under background conditions the detection limits are 46 ppt for HONO, 387 ppt for \chem{HCHO}, and 100 ppt for NO 2 and are roughly three times lower inside the cloud. Based on radiative transfer simulations we estimate the path length to 90{\ldots}100 km and the cloud top height to ≈15 km. The inferred mixing ratios of HONO, HCHO and NO 2 are 37 ppt, 400 ppt and 170 ppt, respectively. Bromine monoxide (BrO) remained below the detection limit of 1 ppt. Because the uplifted air masses originated from the remote marine boundary layer and lightning was observed in the area by the World Wide Lightning Location Network several hours prior to the measurement, the NO (≈1.5 ppb) enhancement was in all likelihood caused by lightning. The main source for the observed HCHO is probably updraught from the boundary layer, because the chemical formation of formaldehyde due to methane oxidation is too weak. Besides HCHO also CH 3 OOH and isoprene are considered as precursors. The chemical box model CAABA is used to estimate the \chem{NO} and HCHO source strengths, which are necessary to explain our measurements. For NO a source strength of 8.25 × 10 9 molec cm −2 s −1 km −1 is found, which corresponds to the lightning activity as observed by the World Wide Lightning Location network and a lightning emission of 4.2 × 10 25 NO molec/flash. The HCHO updraught is of the order of 121 × 10 9 molec cm −2 s −1 km −1 . Also isoprene and CH 3 OOH as possible HCHO sources were studied and similar source strengths were found.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2013-09-18
    Description: Oligomer formation within secondary organic aerosol: equilibrium and dynamic considerations Atmospheric Chemistry and Physics Discussions, 13, 24605-24634, 2013 Author(s): E. R. Trump and N. M. Donahue We present a model based on the volatility basis set to consider the potential influence of oligomer content on volatility-driven SOA yields. The implications for aerosol evaporation studies, including dilution, chamber thermo-equilibration, and thermodenuder studies are also considered. A simplified description of oligomer formation reproduces essentially all of the broad classes of equilibrium and dynamical observations related to SOA formation and evaporation: significant oligomer content may be consistent with mass yields that increase with organic aerosol mass concentration; reversible oligomerization can explain the hysteresis between the rate of SOA formation and its evaporation rate upon dilution; and the model is consistent with both chamber thermo-equilibration studies and thermodenuder studies of SOA evaporation.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2013-09-18
    Description: Factors controlling variability in the oxidative capacity of the troposphere since the Last Glacial Maximum Atmospheric Chemistry and Physics Discussions, 13, 24517-24603, 2013 Author(s): L. T. Murray, L. J. Mickley, J. O. Kaplan, E. D. Sofen, M. Pfeiffer, and B. Alexander The oxidative capacity of past atmospheres is highly uncertain. We present here a new climate-biosphere-chemistry modeling framework to determine oxidant levels in the present and past troposphere. We use the GEOS-Chem chemical transport model driven by meteorological fields from the NASA Goddard Institute of Space Studies (GISS) ModelE, with land cover and fire emissions from dynamic global vegetation models. We present time-slice simulations for the present day, late preindustrial (AD 1770), and the Last Glacial Maximum (LGM; 19–23 ka), and we test the sensitivity of model results to uncertainty in lightning and fire emissions. We find that most preindustrial and paleo climate simulations yield reduced oxidant levels relative to the present day. Contrary to prior studies, tropospheric mean OH in our ensemble shows little change at the LGM relative to the preindustrial (0.5 ± 12%), despite large reductions in methane concentrations. We find a simple linear relationship between tropospheric mean ozone photolysis rates, water vapor, and total emissions of NO x and reactive carbon that explains 72% of the variability in global mean OH in 11 different simulations across the last glacial-interglacial time interval and the Industrial Era. Key parameters controlling the tropospheric oxidative capacity over glacial-interglacial periods include overhead stratospheric ozone, tropospheric water vapor, and lightning NO x emissions. Variability in global mean OH since the LGM is insensitive to fire emissions. Our simulations are broadly consistent with ice-core records of Δ 17 O in sulfate and nitrate at the LGM, and CO, HCHO, and H 2 O 2 in the preindustrial. Our results imply that the glacial-interglacial changes in atmospheric methane observed in ice cores are predominantly driven by changes in its sources as opposed to its sink with OH.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2013-09-18
    Description: Recent evolution of China's virtual water trade: analysis of selected crops and considerations for policy Hydrology and Earth System Sciences Discussions, 10, 11613-11641, 2013 Author(s): J. Shi, J. Liu, and L. Pinter China has dramatically increased its virtual water import unconsciously for recent years. Many studies have focused on the quantity of traded virtual water but very few go into analysing geographic distribution and the properties of China's virtual water trade network. This paper provides a calculation and analysis of the crop-related virtual water trade network of China based on 27 major primary crops between 1986 and 2009. The results show that China is a net importer of virtual water from water-abundant areas of North and South America, and a net virtual water exporter to water-stressed areas of Asia, Africa, and Europe. Virtual water import is far larger than virtual water export and in both import and export a small number of trade partners control the supply chain. Grain crops are the major contributors to virtual water trade, and among grain crops soybeans, mostly imported from the US, Brazil and Argentina are the most significant. As crop yield and crop water productivity in North and South America are generally higher than those in Asia and Africa, the effect of China's crop-related virtual water trade positively contributes to optimizing crop water use efficiency at the global scale. In order to mitigate water scarcity and secure the food supply, virtual water should be actively incorporated into national water management strategies. From the national perspective, China should reduce the export and increase the import of water-intensive crops. But the sources of virtual water import need to be further diversified to reduce supply chain risks and increase resilience.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2013-09-24
    Description: Odin-OSIRIS detection of the Chelyabinsk meteor Atmospheric Measurement Techniques Discussions, 6, 8435-8443, 2013 Author(s): L. A. Rieger, A. E. Bourassa, and D. A. Degenstein On 15 February 2013 an 11 000 ton meteor entered Earth's atmosphere south east of Chelyabinsk creating a large fireball at 23 km altitude. The resulting stratospheric aerosol loading was detected by the Ozone Mapping and Profiler Suite (OMPS) in a high altitude polar belt. This work confirms the presence and lifetime of the stratospheric debris using the Optical Spectrograph and InfraRed Imaging System (OSIRIS) onboard the Odin satellite. Although OSIRIS coverage begins in mid-March, the measurements show a belt of enhanced scattering near 35 km altitude between 50° N and 70° N. Initially, enhancements show increased scattering of up to 15% over the background conditions, decaying in intensity and dropping in altitude until they are indistinguishable from background conditions by mid-May.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2013-09-25
    Description: Characterizing the impact of urban emissions on regional aerosol particles; airborne measurements during the MEGAPOLI experiment Atmospheric Chemistry and Physics Discussions, 13, 24885-24924, 2013 Author(s): E. J. Freney, K. Sellegri, F. Canonaco, A. Colomb, A. Borbon, V. Michoud, J.-F. Doussin, S. Crumeyrolle, N. Amarouch, J.-M. Pichon, A. S. H. Prévôt, M. Beekmann, and A. Schwarzenböeck The MEGAPOLI experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) giving detailed information of the non-refractory submicron aerosol species. The mass concentration of BC, measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), black carbon and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NO x . Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (−log(NO x / NO y ). Plotting the equivalent ratios for the Positive Matrix Factorization (PMF) resolved species (LV-OOA, SV-OOA, and HOA) illustrate that the increase in OA is a result of secondary organic aerosol (SOA). Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in Mexico city, Mexico and in New England, USA. Using the measured VOCs species together with recent organic aerosol formation yields we predicted ~ 50% of the measured organics. These airborne measurements during the MEGAPOLI experiment show that urban emissions contribute to the formation of OA, and have an impact on aerosol composition on a regional scale. They provide a quantitative measure of this impact in terms of urban plume composition and evolution relative to background aerosol composition.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2013-09-25
    Description: Role of ozone in SOA formation from alkane photooxidation Atmospheric Chemistry and Physics Discussions, 13, 24713-24754, 2013 Author(s): X. Zhang, R. H. Schwantes, M. M. Coggon, C. L. Loza, K. A. Schilling, R. C. Flagan, and J. H. Seinfeld Long-chain alkanes, which can be categorized as intermediate volatile organic compounds (IVOCs), are an important source of secondary organic aerosol (SOA). Mechanisms for the gas-phase OH-initiated oxidation of long-chain alkanes have been well documented; particle-phase chemistry, however, has received less attention. The δ-hydroxycarbonyl, which is generated from the isomerization of alkoxy radicals, can undergo heterogeneous cyclization to form substituted dihydrofuran. Due to the presence of C=C bonds, the substituted dihydrofuran is predicted to be highly reactive with OH, and even more so with O 3 and NO 3 , thus opening a reaction pathway that is not usually accessible to alkanes. This work focuses on the role of substituted dihydrofuran formation and its subsequent reaction with OH, and more importantly ozone, in SOA formation from the photooxidation of long-chain alkanes. Experiments were carried out in the Caltech Environmental Chamber using dodecane as a representative alkane to investigate the difference in aerosol composition generated from "OH-oxidation dominating" vs. "ozonolysis dominating" environments. A detailed mechanism incorporating the specific gas-phase photochemistry, together with the heterogeneous formation of substituted dihydrofuran and its subsequent gas-phase OH/O 3 oxidation, is presented to evaluate the importance of this reaction channel in the dodecane SOA formation. We conclude that: (1) the formation of δ-hydroxycarbonyl and its subsequent heterogeneous conversion to substituted dihydrofuran is significant in the presence of NO x ; (2) the ozonolysis of substituted dihydrofuran dominates over the OH-initiated oxidation under conditions prevalent in urban and rural air; and (3) a spectrum of highly-oxygenated products with carboxylic acid, ester, and ether functional groups are produced from the substituted dihydrofuran chemistry, thereby affecting the average oxidation state of the SOA.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2013-09-25
    Description: A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO 2 fluxes and 3-D atmospheric CO 2 concentrations from observations Atmospheric Chemistry and Physics Discussions, 13, 24755-24784, 2013 Author(s): X. Tian, Z. Xie, Y. Liu, Z. Cai, Y. Fu, H. Zhang, and L. Feng To quantitatively estimate CO 2 surface fluxes (CFs) from atmospheric observations, a joint data assimilation system ("Tan-Tracker") is developed by incorporating a joint data assimilation framework into the GEOS-Chem atmospheric transport model. In Tan-Tracker, we choose an identity operator as the CF dynamical model to describe the CFs' evolution, which constitutes an augmented dynamical model together with the GEOS-Chem atmospheric transport model. In this case, the large-scale vector made up of CFs and CO 2 concentrations is taken as the prognostic variable for the augmented dynamical model. And thus both CO 2 concentrations and CFs are jointly assimilated by using the atmospheric observations (e.g., the in-situ observations or satellite measurements). In contrast, in the traditional joint data assimilation frameworks, CFs are usually treated as the model parameters and form a state-parameter augmented vector jointly with CO 2 concentrations. The absence of a CF dynamical model will certainly result in a large waste of observed information since any useful information for CFs' improvement achieved by the current data assimilation procedure could not be used in the next assimilation cycle. Observing system simulation experiments (OSSEs) are carefully designed to evaluate the Tan-Tracker system in comparison to its simplified version (referred to as TT-S) with only CFs taken as the prognostic variables. It is found that our Tan-Tracker system is capable of outperforming TT-S with higher assimilation precision for both CO 2 concentrations and CO 2 fluxes, mainly due to the simultaneous assimilation of CO 2 concentrations and CFs in our Tan-Tracker data assimilation system.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2013-09-26
    Description: AERONET-based microphysical and optical properties of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth Atmospheric Chemistry and Physics Discussions, 13, 25013-25065, 2013 Author(s): A. M. Sayer, N. C. Hsu, T. F. Eck, A. Smirnov, and B. N. Holben Smoke aerosols from biomass burning are an important component of the global aerosol cycle. Analysis of Aerosol Robotic Network (AERONET) retrievals of size distribution and refractive index reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke transported to coastal/island AERONET sites also mostly lie within the range of variability at near-source sites. Two broad ''families'' of aerosol properties are found, corresponding to sites dominated by boreal forest burning (larger, broader fine mode, with midvisible SSA ∼0.95), and those influenced by grass, shrub, or crop burning with additional forest contributions (smaller, narrower particles with SSA ∼0.88–0.9 in the midvisible). The strongest absorption is seen in southern African savannah at Mongu (Zambia), with average SSA ∼0.85 in the midvisible. These can serve as candidate sets of aerosol microphysical/optical properties for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean are often insufficiently absorbing to represent these biomass burning aerosols. A corollary of this is an underestimate of AOD in smoke outflow regions, which has important consequences for applications of these satellite datasets.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2013-09-26
    Description: Probabilistic approach to cloud and snow detection on AVHRR imagery Atmospheric Measurement Techniques Discussions, 6, 8445-8507, 2013 Author(s): J. P. Musial, F. Hüsler, M. Sütterlin, C. Neuhaus, and S. Wunderle The derivation of probability estimates complementary to geophysical data sets has gained special attention over the last years. The information about a confidence level of provided physical quantities is required to construct an error budget of higher level products and to correctly interpret final results of a particular analysis. Regarding the generation of products based on satellite data the common input consists of a cloud mask which allows discrimination between surface and cloud signals. Further the surface information is divided between snow and snow-free components. At any step of this discrimination process a misclassification in a cloud/snow mask propagates to higher level products and may alter their usability. Within this scope a novel Probabilistic Cloud Mask (PCM) algorithm suited for the 1×1 km Advanced Very High Resolution Radiometer (AVHRR) data is proposed which provides three types of probability estimates between: cloudy/clear-sky, cloudy/snow and clear-sky/snow conditions. As opposed to the majority of available techniques which are usually based on a decision-tree approach in the PCM algorithm all spectral, angular and ancillary information is used in a single step to retrieve the probability estimates from the pre-computed Look Up Tables (LUTs). Moreover, the issue of derivation of a single threshold value for a spectral test was overcome by the concept of multidimensional information space which is divided into small bins by an extensive set of thresholds. The discrimination between snow and ice clouds and detection of broken, thin clouds was enhanced by means of the Invariant Coordinate System (ICS) transformation. The study area covers a wide range of environmental conditions spanning from Iceland through central Europe to northern parts of Africa which exhibit diverse difficulties for cloud/snow masking algorithms. The retrieved PCM cloud classification was compared to the PPSv2012 and MOD35 collection 6 cloud masks, SYNOP weather reports, CALIPSO vertical feature mask version 3 and to MOD10A1 collection 5 snow mask. The outcomes of conducted analyses proved fine detection skills of the PCM method with comparable or better results than the reference PPS algorithm.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2013-09-27
    Description: Henry's law constants of diacids and hydroxypolyacids: recommended values Atmospheric Chemistry and Physics Discussions, 13, 25125-25156, 2013 Author(s): S. Compernolle and J.-F. Müller In spite of the importance of diacids and functionalised diacids for organic aerosol formation through aqueous-phase processes in droplets and aerosol water, there seems to be no reliable set of experimental values for their Henry's law constants (HLC). We show that their estimation through the use of infinite dilution activity coefficients is also prone to error. Here we present HLC values for diacids and hydroxy polyacids determined from solubilities, water activities and vapour pressures of solids or solutions, by employing thermodynamic relationships. The vapour pressures are found to be the largest source of error, but the analysis of the obtained HLC points to inconsistencies among specific vapour pressure data sets. Although there is considerable uncertainty, the HLC of diacids appear to be higher than estimated by the often cited review work of Saxena and Hildemann (1996).
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2013-09-27
    Description: Retrieval techniques for airborne imaging of methane concentrations using high spatial and moderate spectral resolution: application to AVIRIS Atmospheric Measurement Techniques Discussions, 6, 8543-8588, 2013 Author(s): A. K. Thorpe, C. Frankenberg, and D. A. Roberts Two quantitative retrieval techniques were evaluated to estimate methane (CH 4 ) enhancement in concentrated plumes using high spatial and moderate spectral resolution data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). An Iterative Maximum a Posteriori Differential Optical Absorption Spectroscopy (IMAP-DOAS) algorithm performed well for an ocean scene containing natural CH 4 emissions from the Coal Oil Point (COP) seep field near Santa Barbara, California. IMAP-DOAS retrieval precision errors are expected to equal between 0.31 to 0.61 ppm CH 4 over the lowest atmospheric layer (height up to 1.04 km), corresponding to about a 30 to 60 ppm error for a 10 m thick plume. However, IMAP-DOAS results for a terrestrial scene were adveresly influenced by the underlying landcover. A hybrid approach using Singular Value Decomposition (SVD) was particularly effective for terrestrial surfaces because it could better account for spectral variability in surface reflectance. Using this approach, a CH 4 plume was observed immediately downwind of two hydrocarbon storage tanks at the Inglewood Oil Field in Los Angeles, California, with a maximum near surface enhancement of 8.45 ppm above background. At COP, the distinct plume had a maximum enhancement of 2.85 ppm CH 4 above background and was consistent with known seep locations and local wind direction. A sensitivity analysis also indicates CH 4 sensitivity should be more than doubled for the next generation AVIRIS sensor (AVIRISng) due to improved spectral resolution and sampling. AVIRIS-like sensors offer the potential to better constrain emissions on local and regional scales, including sources of increasing concern like industrial point source emissions and fugitive CH 4 from the oil and gas industry.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2013-09-28
    Description: Effects of solar activity and geomagnetic field on noise in CALIOP profiles above the South Atlantic Anomaly Atmospheric Measurement Techniques Discussions, 6, 8589-8602, 2013 Author(s): V. Noel, H. Chepfer, C. Hoareau, M. Reverdy, and G. Cesana By documenting noise levels in 6.5 yr of nighttime measurements by the spaceborne lidar CALIOP above the South Atlantic Anomaly (SAA), we show they contain information about the evolution of upwelling high-energy radiation levels in the area. We find the amount of noisy profiles is influenced by the 11 yr cycle of solar activity, fluctuates by ±5% between 2006 and 2013, and is anticorrelated with solar activity with a 1 yr lag. The size of the SAA grows as solar activity decreases, and an overall westward shift of the SAA region is detectable. We predict SAA noise levels will increase anew after 2014, and will affect future spaceborne lidar missions most near 2020. In other areas, supposedly unaffected by incoming sunlight, nighttime noise levels are much weaker but follow the same 11 yr cycle, superimposed with a one-year cycle that affects both hemispheres similarly and could be attributed to geomagnetic activity.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2014-12-13
    Description: Extending periodic eddy covariance latent heat fluxes through tree sapflow measurements to estimate long-term total evaporation in a peat swamp forest Hydrology and Earth System Sciences Discussions, 11, 13607-13661, 2014 Author(s): A. D. Clulow, C. S. Everson, M. G. Mengistu, J. S. Price, A. Nickless, and G. P. W. Jewitt A combination of measurement and modelling was used to find a pragmatic solution to estimate the annual total evaporation (ET) from the rare and indigenous Nkazana Peat Swamp Forest (PSF) on the east coast of Southern Africa to improve the water balance estimates within the area. Total evaporation was measured during three window periods (between seven and nine days each) using an eddy covariance (EC) system on a telescopic mast above the forest canopy. Sapflow of an understory and an emergent tree was measured using a low maintenance heat pulse velocity system for an entire hydrological year (October 2009 to September 2010). An empirical model was derived, describing the relationship between the observed ET of the Nkazana PSF measured during two of the window periods ( R 2 = 0.92 and 0.90) which, overlapped with sapflow measurements, thereby providing hourly estimates of predicted ET of the Nkazana PSF for a year, totalling 1125 mm (while rainfall was 650 mm). In building the empirical model, it was found that including the understory tree sapflow provided no benefit to the model performance. In addition, the observed emergent tree sapflow relationship with observed ET between the two field campaigns was consistent and could be represented by a single empirical model ( R 2 = 0.90; RMSE = 0.08 mm). During the window periods of EC measurement, no single meteorological variable was found to describe the Nkazana PSF ET satisfactorily. However, in terms of evaporation models, the hourly FAO56 Penman–Monteith equation best described the observed ET from EC during the August 2009 ( R 2 = 0.75), November 2009 ( R 2 = 0.85) and March 2010 ( R 2 = 0.76) field campaigns, compared to the Priestley–Taylor model ( R 2 = 0.54, 0.74 and 0.62 during the respective field campaigns). From the empirical model of ET and the FAO56 Penman–Monteith equation, a monthly crop factor ( K c ) was derived for the Nkazana PSF providing a method of estimating long-term swamp forest ET from meteorological data. The monthly crop factor indicated two distinct periods. From February to May, it was between 1.2 and 1.4 compared with June to January, when the crop factor was 0.8 to 1.0. The derived monthly K c values were verified as accurate (to one significant digit) using historical data measured at the same site, also using EC, from a~previous study. The measurements provided insights into the microclimate within a subtropical peat swamp forest and the contrasting sapflow of emergent and understory trees. They showed that expensive, high maintenance equipment can be used during manageable window periods in conjunction with low maintenance systems, dedicated to individual trees, to derive a model to estimate long-term ET over remote heterogeneous forests. In addition, the contrast in ET and rainfall emphasises the reliance of the Nkazana PSF on groundwater.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2014-12-16
    Description: Dye tracing for investigating flow and transport properties of hydrocarbon-polluted Rabots glaciär, Kebnekaise, Sweden Hydrology and Earth System Sciences Discussions, 11, 13711-13744, 2014 Author(s): C. C. Clason, C. Coch, J. Jarsjö, K. Brugger, P. Jansson, and G. Rosqvist Over 11 000 L of hydrocarbon pollution was deposited on the surface of Rabots glaciär on the Kebnekaise Massif, northern Sweden, following the crash of a Royal Norwegian Air Force aircraft in March 2012. An environmental monitoring programme was subsequently commissioned, including water, snow and ice sampling. The scientific programme further included a series of dye tracing experiments during the 2013 melt season, conducted to investigate flow pathways for pollutants through the glacier hydrological system, and to gain new insight to the internal hydrological system of Rabots glaciär. Results of dye tracing reveal a degree of homogeneity in the topology of the drainage system throughout July and August, with an increase in efficiency as the season progresses, as reflected by decreasing temporary storage and dispersivity. Early onset of melting likely led to formation of an efficient, discrete drainage system early in the melt season, subject to decreasing sinuosity and braiding as the season progressed. Analysis of turbidity-discharge hysteresis further supports the formation of discrete, efficient drainage, with clockwise diurnal hysteresis suggesting easy mobilisation of readily-available sediments in channels. Dye injection immediately downstream of the pollution source zone revealed prolonged storage of dye followed by fast, efficient release. Twinned with a low dye recovery, and supported by sporadic detection of hydrocarbons in the proglacial river, we suggest that meltwater, and thus pollutants in solution, may be released periodically from this zone of the glacier hydrological system. The here identified dynamics of dye storage, dispersion and breakthrough indicate that the ultimate fate and permanence of pollutants in the glacier system is likely to be governed by storage of pollutants in the firn layer and ice mass, or within the internal hydrological system, where it may refreeze. This shows that future studies on the fate of hydrocarbons in pristine, glaciated mountain environments should address the extent to which pollutants in solution act like water molecules or whether they are more susceptible to, for example, refreezing into the surrounding ice, becoming stuck in micro-fractures and pore spaces, or sorption onto subglacial sediments.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2014-12-17
    Description: Mesoscale modeling study of the interactions between aerosols and PBL meteorology during a haze episode in China Jing–Jin–Ji and its near surrounding region – Part 1: Aerosol distributions and meteorological features Atmospheric Chemistry and Physics Discussions, 14, 31675-31717, 2014 Author(s): H. Wang, M. Xue, X. Y. Zhang, H. L. Liu, C. H. Zhou, S. C. Tan, H. Z. Che, B. Chen, and T. Li The urbanized region of Beijing–Tianjin–Hebei – often shortened to Jing–Jin–Ji and referred to as the 3JNS region in this paper – and its near surrounding region is becoming China's most polluted area by haze, exceeding even the Yangtze and Pearl river deltas. Aside from pollutant emission, the meteorology of the planetary boundary layer (PBL) is the most important factor affecting haze pollution. Focusing on July 2008, the aerosol optical properties and PBL meteorology features closely related with haze formation were simulated in 3JNS region using an online atmospheric chemical transport model. The relationship between regional PBL meteorology, PM 2.5 , and haze is discussed. Model results accurately simulated the aerosol optical depth (AOD), single scattering albedo (SSA) and asymmetry parameter (ASY), validate by comparison with observations from the MODerate Resolution Imaging Spectroradiometer (MODIS), the China Aerosol Remote Sensing NETwork (CARSNET) and the Aerosol Robotic NETwork (AERONET). Modeled PBL wind speeds showed reasonable agreement with those from the National Centers for Environmental Prediction (NCEP) Reanalysis 2. A monthly mean AOD value as high as 1.2 was found from both model and observations, with a daily mean larger than 2.0 during haze episodes in the 3JNS Region. Modeled and observed SSA values of 0.9–0.96 and ASY values of 0.72–0.74 demonstrated the high scattering characteristic of summer aerosols in this region. PBL wind speeds from modeled and NCEP data both showed a reversing trend of PM 2.5 variation, illustrating the importance of the "PBL window shadow" on haze formation. Turbulence diffusion and PBL height showed had opposite phases to surface PM 2.5 , indicating that lower PBL height and weaker PBL turbulence diffusion are essential to haze formation. It is noted that homogeneous air pressure does not occur at the surface but at an 85–950 hPa height during the haze episode. The momentum transmitting downward of the cold air from above the PBL to the low PBL and surface lead to an increase in surface wind speeds and haze dispersal.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2014-11-07
    Description: Long term measurements of optical properties and their hygroscopic enhancement Atmospheric Chemistry and Physics Discussions, 14, 27731-27767, 2014 Author(s): M. Hervo, K. Sellegri, J. M. Pichon, J. C. Roger, and P. Laj Optical properties of aerosols were measured from the GAW Puy de Dôme station (1465 m) over a seven year period (2006–2012). The impact of hygroscopicity on aerosol optical properties was calculated over a two year period (2010–2011). The analysis of the spatial and temporal variability of the optical properties showed that while no long term trend was found, a clear seasonal and diurnal variation was observed on the extensive parameters (scattering, absorption). Scattering and absorption coefficients were highest during the warm season and daytime, in concordance with the seasonality and diurnal variation of the PBL height reaching the site. Intensive parameters (single scattering albedo, asymmetry factor, refractive index) did not show such a strong diurnal variability, but still indicated different values depending on the season. Both extensive and intensive optical parameters were sensitive to the air mass origin. A strong impact of hygroscopicity on aerosol optical properties was calculated, mainly on aerosol scattering, with a dependence on the aerosol type. At 90% humidity, the scattering factor enhancement ( f σ sca ) was more than 4.4 for oceanic aerosol that have mixed with a pollution plume. Consequently, the aerosol radiative forcing was estimated to be 2.8 times higher at RH = 90% and 1.75 times higher at ambient RH when hygroscopic growth of the aerosol was considered. The hygroscopicity enhancement factor of the scattering coefficient was parameterized as a function of humidity and air mass type.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2014-11-08
    Description: Sampling frequency trade-offs in the assessment of mean transit times of tropical montane catchment waters under semi-steady-state conditions Hydrology and Earth System Sciences Discussions, 11, 12443-12488, 2014 Author(s): E. Timbe, D. Windhorst, R. Celleri, L. Timbe, P. Crespo, H.-G. Frede, J. Feyen, and L. Breuer Stream and soil waters were collected on a weekly basis in a tropical montane cloud forest catchment for two years and analyzed for stable water isotopes in order to infer transit time distribution functions and to define the mean transit times. Depending on the water type (stream or soil water), lumped distribution functions such as Exponential-Piston flow, Linear-Piston flow and Gamma models using temporal isotopic variations of precipitation event samples as input, were fitted. Samples were aggregated to daily, weekly, biweekly, monthly and bimonthly time scales in order to check the sensitivity of temporal sampling on model predictions. The study reveals that the effect of decreasing sampling frequency depends on the water type. For soil waters with transit times in the order of weeks to months, there was a clear trend of over prediction. In contrast, the trend of prediction for stream waters, with a dampened isotopic signal and mean transit times in the order of 2 to 4 years, was less clear and depending on the type of model used. The trade-off to coarse data resolutions could potentially lead to misleading conclusions on how water actually moves through the catchment, while at the same time predictions can reach better fitting efficiencies, lesser uncertainties, errors and biases. For both water types an optimal sampling frequency seems to be one or at most two weeks. The results of our analyses provide information for the planning (in particular in terms of cost-benefit and time requirements) of future fieldwork in similar Andean or other catchments.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2014-11-05
    Description: Quantitative high-resolution observations of soil water dynamics in a complicated architecture with time-lapse Ground-Penetrating Radar Hydrology and Earth System Sciences Discussions, 11, 12365-12404, 2014 Author(s): P. Klenk, S. Jaumann, and K. Roth High-resolution time-lapse Ground-Penetrating Radar (GPR) observations of advancing and retreating water tables can yield a wealth of information about near-surface water content dynamics. In this study, we present and analyze a series of imbibition, drainage and infiltration experiments which have been carried out at our artificial ASSESS test site and observed with surface based GPR. The test site features a complicated but known subsurface architecture constructed with three different kinds of sand. It allows studying soil water dynamics with GPR under a wide range of different conditions. Here, we assess in particular (i) the accurate determination of soil water dynamics averaged over the whole vertical extent by evaluating the bottom reflection and (ii) the feasibility of monitoring the dynamic shape of the capillary fringe reflection. The phenomenology of the GPR response of a dynamically changing capillary fringe is developed from a soil physical point of view. We then explain experimentally observed phenomena based on numerical simulations of both the water content dynamics and the expected GPR response.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2014-11-05
    Description: Simulating long-term past changes in the balance between water demand and availability and assessing their main drivers at the river basin management scale Hydrology and Earth System Sciences Discussions, 11, 12315-12364, 2014 Author(s): J. Fabre, D. Ruelland, A. Dezetter, and B. Grouillet The aim of this study was to assess the balance between water demand and availability and its spatial and temporal variability from 1971 to 2009 in the Herault (2500 km 2 , France) and the Ebro (85 000 km 2 , Spain) catchments. Natural streamflow was evaluated using a conceptual hydrological model. The regulation of river flow was accounted for through a widely applicable demand-driven reservoir management model applied to the largest dam in the Herault basin and to 11 major dams in the Ebro basin. Urban water demand was estimated from population and monthly unit water consumption data. Water demand for irrigation was computed from irrigated area, crop and soil data, and climatic forcing. Finally, a series of indicators comparing water supply and water demand at strategic resource and demand nodes were computed at a 10 day time step. Variations in water stress in each catchment over the past 40 years were successfully modeled, taking into account climatic and anthropogenic pressures and changes in water management strategies over time. Observed changes in discharge were explained by separating human and hydro-climatic pressures on water resources: respectively 20 and 3% of the decrease in the Ebro and the Herault discharges were linked to human-induced changes. Although key areas of the Herault basin were shown to be highly sensitive to hydro-climatic variability, the balance between water uses and availability in the Ebro basin appears to be more critical, owing to high agricultural pressure on water resources. The proposed modeling framework is currently being used to assess water stress under climatic and socio-economic prospective scenarios. Further research will investigate the effectiveness of adaptation policies aimed at maintaining the balance between water use and availability.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2014-11-05
    Description: Time-series analysis of the long-term hydrologic impacts of afforestation in the Águeda watershed of North-Central Portugal Hydrology and Earth System Sciences Discussions, 11, 12223-12256, 2014 Author(s): D. Hawtree, J. P. Nunes, J. J. Keizer, R. Jacinto, J. Santos, M. E. Rial-Rivas, A.-K. Boulet, F. Tavares-Wahren, and K.-H. Feger The north-central region of Portugal has undergone significant afforestation of the species Pinus pinaster and Eucalyptus globulus since the early 1900s; however, the long-term hydrologic impacts of this land cover change are not fully understood. To contribute to a better understanding of the potential hydrologic impacts of this land cover change, this study examines the temporal trends in 7 years of data from the Águeda watershed (part of the Vouga Basin) over the period of 1936 to 2010. Meteorological and hydrological records were analysed using a combined Thiel–Sen/Mann–Kendall trend testing approach, to assess the magnitude and significance of patterns in the observed data. These trend tests indicated that there had been no significant reduction in streamflow yield over either the entire test period, or during sub-record periods, despite the large-scale afforestation which had taken place. This lack of change is attributed to both the characteristics of the watershed and the nature of the land cover change. By contrast, a number of significant trends were found for baseflow index, which showed positive trends in the early data record (primarily during Pinus pinaster afforestation), followed by a reversal to negative trends later in the data record (primarily during Eucalyptus globulus afforestation). These changes are attributed to vegetation impacts on streamflow generating processes, both due to the species differences and to alterations in soil properties (i.e. promoting water repellency of the topsoil). These results highlight the importance of considering both vegetation types/dynamics and watershed characteristic when assessing hydrologic impacts, in particular with respect to soil properties.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2014-11-05
    Description: Reply to D. L. Peters' comment on "Streamflow input to Lake Athabasca, Canada" by Rasouli et al. (2013) Hydrology and Earth System Sciences Discussions, 11, 12257-12270, 2014 Author(s): K. Rasouli, M. A. Hernández-Henríquez, and S. J. Déry This paper provides a reply to a comment from Peters (2014) on our recent effort focused on evaluating changes in streamflow input to Lake Athabasca, Canada. Lake Athabasca experienced a 21.2% decline in streamflow input between 1960 and 2010 that has led to a marked decline in its water levels in recent decades. A reassessment of trends in naturalized Lake Athabasca water levels shows insignificant changes from our previous findings reported in Rasouli et al. (2013), and hence our previous conclusions remain unchanged. The reply closes with recommendations for future research to minimize uncertainties in historical assessments of trends in Lake Athabasca water levels and to better project its future water levels driven by climate change and anthropogenic activities in the Athabasca Lake Basin.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2014-11-05
    Description: Is sinuosity a function of slope and bankfull discharge? – A case study of the meandering rivers in the Pannonian Basin Hydrology and Earth System Sciences Discussions, 11, 12271-12290, 2014 Author(s): J. Petrovszki, G. Timár, and G. Molnár Pre-regulation channel sinuosities of the meandering rivers of the Pannonian Basin are analysed in order to define a mathematical model to estimate the influence of the bankfull discharge and the channel slope on them. As a primary database, data triplets of slope, discharge and sinuosity values were extracted from historical and modern datasets and pre-regulation historical topographic maps. Channel slope values were systematically modified to estimate figures valid before the river regulation works. The bankfull discharges were estimated from the average discharges using a robust yet complex method. The "classical" graphs of Leopold and Wolman (1957), Ackers and Charlton (1970b) and Schumm and Khan (1972) were compiled to a set up a theoretical surface, whose parameters are estimated by the real values of the above database, containing characteristics of the Pannonian Basin rivers. As a result it occurred that there is a two-dimensional function of the bankfull discharges, which provides a good estimation of the most probable sinuosity values of the rivers with the given slope and discharge characteristics. The average RMS error of this estimation is around 15% on this dataset and believed to be the effect of the non-analysed changes in the sediment discharge and size distribution.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2014-11-05
    Description: Technical Note: Field experiences using UV/VIS sensors for high-resolution monitoring of nitrate in groundwater Hydrology and Earth System Sciences Discussions, 11, 12291-12314, 2014 Author(s): M. Huebsch, F. Grimmeisen, M. Zemann, O. Fenton, K. G. Richards, P. Jordan, A. Sawarieh, P. Blum, and N. Goldscheider Two different in-situ spectrophotometers are compared that were used in the field to determine nitrate-nitrogen (NO 3 -N) concentrations at two distinct spring discharge sites. One sensor was a double wavelength spectrophotometer (DWS) and the other a multiple wavelength spectrophotometer (MWS). The objective of the study was to review the hardware options, determine ease of calibration, accuracy, influence of additional substances and to assess positive and negative aspects of the two sensors as well as troubleshooting and trade-offs. Both sensors are sufficient to monitor highly time-resolved NO 3 -N concentrations in emergent groundwater. However, the chosen path length of the sensors had a significant influence on the sensitivity and the range of detectable NO 3 -N. The accuracy of the calculated NO 3 -N concentrations of the sensors can be affected, if the content of additional substances such as turbidity, organic matter, nitrite or hydrogen carbonate significantly varies after the sensors have been calibrated to a particular water matrix. The MWS offers more possibilities for calibration and error detection, but requires more expertise compared with the DWS.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2014-12-16
    Description: Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence Atmospheric Measurement Techniques Discussions, 7, 12545-12588, 2014 Author(s): L. Guanter, I. Aben, P. Tol, J. M. Krijger, A. Hollstein, P. Köhler, A. Damm, J. Joiner, C. Frankenberg, and J. Landgraf Global monitoring of sun-induced chlorophyll fluorescence (SIF) can improve our knowledge about the photosynthetic functioning of terrestrial ecosystems. The feasibility of SIF retrievals from spaceborne atmospheric spectrometers has been demonstrated by a number of studies in the last years. In this work, we investigate the potential of the upcoming TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor satellite mission for SIF retrieval. TROPOMI will sample the 675–775 nm spectral window with a spectral resolution of 0.5 nm and a pixel size of 7 km × 7 km. We use an extensive set of simulated TROPOMI data in order to assess the uncertainty of single SIF retrievals and subsequent spatio-temporal composites. Our results illustrate the enormous improvement in SIF monitoring achievable with TROPOMI with respect to comparable spectrometers currently in-flight, such as the Global Ozone Monitoring Experiment-2 (GOME-2) instrument. We find that TROPOMI can reduce global uncertainties in SIF mapping by more than a factor 2 with respect to GOME-2, which comes together with an about 5-fold improvement in spatial sampling. Finally, we discuss the potential of TROPOMI to accurately map other important vegetation parameters, such as leaf photosynthetic pigments and proxies for canopy structure, which will complement SIF retrievals for a self-contained description of vegetation condition and functioning.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2014-12-16
    Description: A global model simulation for 3-D radiative transfer impact on surface hydrology over Sierra Nevada and Rocky Mountains Atmospheric Chemistry and Physics Discussions, 14, 31603-31625, 2014 Author(s): W.-L. Lee, Y. Gu, K. N. Liou, L. R. Leung, and H.-H. Hsu We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky Mountains and Sierra Nevada using CCSM4 (CAM4/CLM4) global model with a 0.23° × 0.31° resolution for simulations over 6 years. In 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation [3-D − PP (plane-parallel)] adjustment to ensure that energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations of the net surface fluxes are not only affected by 3-D mountains, but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while decreases for higher elevations with a minimum in April. Liquid runoff significantly decreases in higher elevations after April due to reduced SWE and precipitation.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2014-12-16
    Description: Complex networks, streamflow, and hydrometric monitoring system design Hydrology and Earth System Sciences Discussions, 11, 13663-13710, 2014 Author(s): M. Halverson and S. Fleming Network theory is applied to an array of streamflow gauges located in the Coast Mountains of British Columbia and Yukon, Canada. The goal of the analysis is to assess whether insights from this branch of mathematical graph theory can be meaningfully applied to hydrometric data, and more specifically, whether it may help guide decisions concerning stream gauge placement so that the full complexity of the regional hydrology is efficiently captured. The streamflow data, when represented as a complex network, has a global clustering coefficient and average shortest path length consistent with small-world networks, which are a class of stable and efficient networks common in nature, but the results did not clearly suggest a scale-free network. Stability helps ensure that the network is robust to the loss of nodes; in the context of a streamflow network, stability is interpreted as insensitivity to station removal at random. Community structure is also evident in the streamflow network. A community detection algorithm identified 10 separate communities, each of which appears to be defined by the combination of its median seasonal flow regime (pluvial, nival, hybrid, or glacial, which in this region in turn mainly reflects basin elevation) and geographic proximity to other communities (reflecting shared or different daily meteorological forcing). Betweenness analyses additionally suggest a handful of key stations which serve as bridges between communities and might therefore be highly valued. We propose that an idealized sampling network should sample high-betweenness stations, as well as small-membership communities which are by definition rare or undersampled relative to other communities, while retaining some degree of redundancy to maintain network robustness.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2014-12-17
    Description: Spatial and temporal variation of CO over Alberta using measurements from satellite, aircrafts, and ground stations Atmospheric Chemistry and Physics Discussions, 14, 31767-31812, 2014 Author(s): H. S. Marey, Z. Hashisho, L. Fu, and J. Gille Alberta is Canada's largest oil producer and its oil sand deposits comprise 30% of the world's oil reserves. The process of bitumen extraction and upgrading releases trace gases and aerosols to the atmosphere. In this study we present satellite-based analysis to explore, for the first time, various contributing factors that affect tropospheric carbon monoxide (CO) levels over Alberta. The multispectral product that uses both near-infrared (NIR) and the thermal-infrared (TIR) radiances for CO retrieval from the Measurements of Pollution in the Troposphere (MOPITT) are examined for the 12 year period from 2002–2013. Moderate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly product from 2001 to 2013 is employed to investigate the seasonal and temporal variations of forest fires. Additionally, in situ CO measurements at industrial and urban sites are compared to satellite data. Furthermore, the available MOZAIC/IAGOS (Measurement of Ozone, Water Vapor, Carbon Monoxide, Nitrogen Oxide by Airbus In-Service Aircraft/In service Aircraft for Global Observing System) aircraft CO profiles (April 2009–December 2011) are used to validate MOPITT CO data. The climatological time curtain plot and spatial maps for CO over northern Alberta indicate the signatures of transported CO for two distinct biomass burning seasons, summer and spring. Distinct seasonal patterns of CO at the urban site s (Edmonton and Calgary cities) point to the strong influence of traffic. Meteorological parameters play an important role on the CO spatial distribution at various pressure levels. Northern Alberta shows stronger upward lifting motion which leads to larger CO total column values while the poor dispersion in central and south Alberta exacerbate s the surface CO pollution. Inter-annual variations of satellite data depict a slightly decreasing trend for both regions while the decline trend is more evident from ground observations, especially at the urban sites. MOPITT CO vertical averages and MOZAIC/IAGOS aircraft profiles were in good agreement within the standard deviation at all pressure levels. There is consistency between the time evolution of high CO episodes monitored by satellite and ground measurements and the fire frequency peak time which implies that biomass burning has affected the tropospheric CO distribution in northern Alberta. These findings have further demonstrated the potential use of MOPITT V5 multispectral (NIR+TIR) product for assessing a complicated surface process.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2014-12-17
    Description: Particulate emissions from residential wood combustion in Europe – revised estimates and an evaluation Atmospheric Chemistry and Physics Discussions, 14, 31719-31765, 2014 Author(s): H. A. C. Denier van der Gon, R. Bergström, C. Fountoukis, C. Johansson, S. N. Pandis, D. Simpson, and A. Visschedijk Currently residential wood combustion (RWC) is increasing in Europe because of rising fossil fuel prices but also due to climate change mitigation policies. However, especially in small-scale applications, RWC may cause high emissions of particulate matter (PM). Recently we have developed a new high-resolution (7 km × 7 km) anthropogenic carbonaceous aerosol emission inventory for Europe. The inventory indicated that about half of the total PM 2.5 emission in Europe is carbonaceous aerosol and identified RWC as the largest organic aerosol (OA) source in Europe. The inventory was partly based on national reported PM emissions. Use of this OA inventory as input for two Chemical Transport Models (CTMs), PMCAMx and EMEP MSC-W, revealed major underestimations of OA in winter time, especially for regions dominated by RWC. Interestingly, this was not universal but appeared to differ by country. In the present study we constructed a new bottom-up emission inventory for RWC accounting for the semi-volatile components of the emissions. The new RWC emissions are higher than those in the previous inventory by a factor of 2–3 but with substantial inter-country variation. The new emission inventory served as input for the CTMs and a substantially improved agreement between measured and predicted organic aerosol was found. The new RWC inventory improves the model calculated OA significantly. Comparisons to Scandinavian source apportionment studies also indicate substantial improvements in the modeled wood-burning component of OA. This suggests that primary organic aerosol emission inventories need to be revised to include the semi-volatile OA that is formed almost instantaneously due to cooling of the flue gas or exhaust. Since RWC is a key source of fine PM in Europe, a major revision of the emission estimates as proposed here is likely to influence source-receptor matrices and modelled source apportionment. Since usage of biofuels, such as wood, in small combustion units is a globally significant source, this insight may also dramatically change global estimates of organic aerosol emissions.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2014-12-17
    Description: Impact of planetary boundary layer turbulence on model climate and tracer transport Atmospheric Chemistry and Physics Discussions, 14, 31627-31674, 2014 Author(s): E. L. McGrath-Spangler, A. Molod, L. E. Ott, and S. Pawson Planetary boundary layer (PBL) processes are important for weather, climate, and tracer transport and concentration. One measure of the strength of these processes is the PBL depth. However, no single PBL depth definition exists and several studies have found that the estimated depth can vary substantially based on the definition used. In the Goddard Earth Observing System (GEOS-5) atmospheric general circulation model, the PBL depth is particularly important because it is used to calculate the turbulent length scale that is used in the estimation of turbulent mixing. This study analyzes the impact of using three different PBL depth definitions in this calculation. Two definitions are based on the scalar eddy diffusion coefficient and the third is based on the bulk Richardson number. Over land, the bulk Richardson number definition estimates shallower nocturnal PBLs than the other estimates while over water this definition generally produces deeper PBLs. The near surface wind velocity, temperature, and specific humidity responses to the change in turbulence are spatially and temporally heterogeneous, resulting in changes to tracer transport and concentrations. Near surface wind speed increases in the bulk Richardson number experiment cause Saharan dust increases on the order of 1 × 10 −4 kg m −2 downwind over the Atlantic Ocean. Carbon monoxide (CO) surface concentrations are modified over Africa during boreal summer, producing differences on the order of 20 ppb, due to the model's treatment of emissions from biomass burning. While differences in carbon dioxide (CO 2 ) are small in the time mean, instantaneous differences are on the order of 10 ppm and these are especially prevalent at high latitude during boreal winter. Understanding the sensitivity of trace gas and aerosol concentration estimates to PBL depth is important for studies seeking to calculate surface fluxes based on near-surface concentrations and to studies projecting future concentrations.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2014-12-09
    Description: Monitoring and modelling of soil–plant interactions: the joint use of ERT, sap flow and Eddy Covariance data to characterize the volume of an orange tree root zone Hydrology and Earth System Sciences Discussions, 11, 13353-13384, 2014 Author(s): G. Cassiani, J. Boaga, D. Vanella, M. T. Perri, and S. Consoli Mass and energy exchanges between soil, plants and atmosphere control a number of key environmental processes involving hydrology, biota and climate. The understanding of these exchanges also play a critical role for practical purposes e.g. in precision agriculture. In this paper we present a methodology based on coupling innovative data collection and models in order to obtain quantitative estimates of the key parameters of such complex flow system. In particular we propose the use of hydro-geophysical monitoring via 4-D Electrical Resistivity Tomography (ERT) in conjunction with measurements of plant transpiration via sap flow and evapotranspiration from Eddy Covariance (EC). This abundance of data is fed to a spatially distributed soil model in order to characterize the distribution of active roots. We conducted experiments in an orange orchard in Eastern Sicily (Italy), characterized by the typical Mediterranean semi-arid climate. The subsoil dynamics, particularly influenced by irrigation and root uptake, were characterized mainly by the ERT setup, consisting of 48 buried electrodes on 4 instrumented micro boreholes (about 1.2 m deep) placed at the corners of a square (about 1.3 m in side) surrounding the orange tree, plus 24 mini-electrodes on the surface spaced 0.1 m on a square grid. During the monitoring, we collected repeated ERT and TDR soil moisture measurements, soil water samples, sap flow measurements from the orange tree and EC data. We conducted a laboratory calibration of the soil electrical properties as a function of moisture content and pore water electrical conductivity. Irrigation, precipitation, sap flow and ET data are available allowing knowledge of the system's long term forcing conditions on the system. This information was used to calibrate a 1-D Richards' equation model representing the dynamics of the volume monitored via 3-D ERT. Information on the soil hydraulic properties was collected from laboratory and field experiments. The successful results of the calibrated modeling exercise allow the quantification of the soil volume interested by root water uptake. This volume is much smaller (with a surface area less than 2 m 2 , and about 40 cm thickness) than expected and assumed in the design of classical drip irrigation schemes that prove to be losing at least half of the irrigated water that is not uptaken by the plants.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2014-12-10
    Description: Examining the major contributors and controlling factors of ozone production in a rural area of the Yangtze River Delta region during harvest season Atmospheric Chemistry and Physics Discussions, 14, 30913-30945, 2014 Author(s): X. Pan, Y. Kanaya, H. Tanimoto, S. Inomata, Z. Wang, S. Kudo, and I. Uno Open biomass burning (OBB) has been reported to emit substantial amounts of non-methane hydrocarbons (NMHCs), and the mixing of OBB with urban plumes could exacerbate regional ozone (O 3 ) pollution. In the present study, an observational field campaign was performed in a rural area at the edge of Yangtze River Delta region (YRDR) during harvest season when intensive open burning of wheat residues was observed. The O 3 production rate at the site was calculated using a photochemical box model (Regional Atmospheric Chemical Mechanism, Version 2) constrained by real-time ambient measurements (e.g., O 3 , volatile organic compounds (VOCs), the sum of NO 2 + NO (NO x ), J values). During the period impacted by OBB, the O 3 concentration frequently exceeded 100 ppbv. Analysis showed that the net O 3 production was pronounced, in particular when the site was characterized by a prevailing southerly wind that also brought substantial amounts of NO x emitted from urban areas. At these times, the maximum rate of O 3 production was 20 ppbv h −1 with potential production rate of 102 ppbv on a daily basis. The O 3 production at the site was typically VOC-sensitive in the morning because NO x dominated the plumes. However, in the afternoon, conditions became NO x -sensitive due to the rapid photochemical consumption of NO x in the production of O 3 . A positive matrix factorization analysis indicated that solvent usage and OBB were the primary contributors to the mass fraction of ambient NMHCs observed at the study site, and were responsible for 35 and 23% of the total O 3 production, respectively. The preferential presence of NO x in the morning inhibited net O 3 production; meanwhile O 3 built up in the afternoon due to a decrease in NO x concentrations. These results indicated that a joint effort in the regulation of solvent (aromatics) usage and OBB, as well as NO x from on-road vehicle exhaust may be effective in eliminating high-O 3 pollution risk in the rural areas of the YRDR.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2011-06-10
    Description: The Level 2 research product algorithms for the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) Atmospheric Measurement Techniques Discussions, 4, 3593-3645, 2011 Author(s): P. Baron, J. Urban, H. Sagawa, J. Möller, D. P. Murtagh, J. Mendrok, E. Dupuy, T. O. Sato, S. Ochiai, K. Suzuki, T. Manabe, T. Nishibori, K. Kikuchi, R. Sato, M. Takayanagi, Y. Murayama, M. Shiotani, and Y. Kasai This paper describes the algorithms of the level-2 research (L2r) processing chain developed for the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES). The chain has been developed in parallel to the operational chain for conducting researches on calibration and retrieval algorithms. L2r chain products are available to the scientific community. The objective of version 2 is the retrieval of the vertical distribution of trace gases in the altitude range of 18–90 km. An theoretical error analysis is conducted to estimate the retrieval feasibility of key parameters of the processing: line-of-sight elevation tangent altitudes (or angles), temperature and O 3 profiles. The line-of-sight tangent altitudes are retrieved between 20 and 50 km from the strong ozone (O 3 ) line at 625.371 GHz, with low correlation with the O 3 volume-mixing ratio and temperature retrieved profiles. Neglecting the non-linearity of the radiometric gain in the calibration procedure is the main systematic error. It is large for the retrieved temperature (between 5–10 K). Therefore, atmospheric pressure can not be derived from the retrieved temperature, and, then, in the altitude range where the line-of-sight tangent altitudes are retrieved, the retrieved trace gases profiles are found to be better represented on pressure levels than on altitude levels. The error analysis for the retrieved HOCl profile demonstrates that best results for inverting weak lines can be obtained by using narrow spectral windows. Future versions of the L2r algorithms will improve the temperature/pressure retrievals and also provide information in the upper tropospheric/lower stratospheric region (e.g., water vapor, ice content, O 3 ) and on stratospheric and mesospheric line-of-sight winds.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2011-06-11
    Description: Near infrared nadir sounding of vertical column densities: methodology and application to SCIAMACHY Atmospheric Measurement Techniques Discussions, 4, 3685-3737, 2011 Author(s): S. Gimeno García, F. Schreier, G. Lichtenberg, and S. Slijkhuis Nadir observations with the shortwave infrared channels of SCIAMACHY onboard the ENVISAT satellite can be used to derive information on atmospheric gases such as CO, CH 4 , N 2 O, CO 2 , and H 2 O. For the operational level 1b–2 processing of SCIAMACHY data a new retrieval code BIRRA (Beer InfraRed Retrieval Algorithm) has been developed: BIRRA performs a nonlinear least squares fit of the measured radiance, where molecular concentration vertical profiles are scaled to fit the observed data. Here we present the forward modeling (radiative transfer) and inversion (least squares optimization) fundamentals of the code along with the further processing steps required to generate higher level products such as global distributions and time series. Moreover, various aspects of level 1 (observed spectra) and auxiliary input data relevant for successful retrievals are discussed. BIRRA is currently used for operational analysis of carbon monoxide vertical column densities from SCIAMACHY channel 8 observations, and is being prepared for methane retrievals using channel 6 spectra. A set of representative CO retrievals and first CH 4 results are presented to demonstrate BIRRA's capabilities.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2011-06-11
    Description: Volatilizable biogenic organic compounds (VBOCs) with two dimensional gas chromatography-time of flight mass spectrometry (GC × GC-TOFMS): sampling methods, VBOC complexity, and chromatographic retention data Atmospheric Measurement Techniques Discussions, 4, 3647-3684, 2011 Author(s): J. F. Pankow, W. Luo, A. N. Melnychenko, K. C. Barsanti, L. M. Isabelle, C. Chen, A. B. Guenther, and T. N. Rosenstiel Two dimensional gas chromatography (GC × GC) with detection by time-of-flight mass spectrometry (TOFMS) was applied in the rapid analysis of air samples containing highly complex mixtures of volatilizable biogenic organic compounds (VBOCs). VBOC analytical methodologies are briefly reviewed, and optimal conditions are discussed for sampling with both adsorption/thermal desorption (ATD) cartridges and solid-phase microextraction (SPME) fibers. Air samples containing VBOC emissions from leaves of two tree species ( Cedrus atlantica and Calycolpus moritzianus ) were obtained by both ATD and SPME. The optimized gas chromatographic conditions utilized a 45 m, 0.25 mm I.D. low-polarity primary column (DB-VRX, 1.4 μm film) and a 1.5 m, 0.25 mm I.D. polar secondary column (Stabilwax® 0.25 μm film). Excellent separation was achieved in a 36 min temperature programmed GC × GC chromatogram. Thousands of VBOC peaks were present in the sample chromatograms; hundreds of tentative identifications by NIST mass spectral matching are provided. Very few of the tentatively identified compounds are currently available as authentic standards. Method detection limit values for a 5 l ATD sample were 3.5 pptv (10 ng m −3 ) for isoprene, methyl vinyl ketone, and methacrolein, and ~1.5 pptv (~10 ng m −3 ) for monoterpenes and sesquiterpenes. Kovats-type chromatographic retention index values on the primary column and relative retention time values on the secondary column are provided for 21 standard compounds and for 417 tentatively identified VBOCs. 19 of the 21 authentic standard compounds were found in one of the Cedrus atlantica SPME samples. In addition, easily quantifiable levels of at least 13 sesquiterpenes were found in an ATD sample obtained from a branch enclosure of Calycolpus moritzianus . Overall, the results obtained via GC × GC-TOFMS highlight an extreme, and largely uncharacterized diversity of VBOCs, consistent with the hypothesis that sesquiterpenes and other compounds beyond the current list of typically determined VBOC analytes may well be important contributors to global atmospheric levels of organic particulate matter.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2011-06-11
    Description: Sensing Hadley cell with space lidar Atmospheric Chemistry and Physics Discussions, 11, 16599-16610, 2011 Author(s): W. Sun and B. Lin This letter shows that the extent of the Hadley cell could reliably be estimated by measuring the height of the uppermost super-thin clouds in the troposphere with space-borne lidar. Through consecutive multi-year measurements of the height of the uppermost super-thin clouds, a good estimation of the expansion of the Hadley cell could be obtained.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2011-06-16
    Description: Domestic wells have high probability of pumping septic tank leachate Hydrology and Earth System Sciences Discussions, 8, 5701-5732, 2011 Author(s): J. E. Horn and T. Harter Onsite wastewater treatment systems such as septic systems are common in rural and semi-rural areas around the world; in the US, about 25–30 % of households are served by a septic system and a private drinking water well. Site-specific conditions and local groundwater flow are often ignored when installing septic systems and wells. Particularly in areas with small lots, thus a high septic system density, these typically shallow wells are prone to contamination by septic system leachate. Typically, mass balance approaches are used to determine a maximum septic system density that would prevent contamination of the aquifer. In this study, we estimate the probability of a well pumping partially septic system leachate. A detailed groundwater and transport model is used to calculate the capture zone of a typical drinking water well. A spatial probability analysis is performed to assess the probability that a capture zone overlaps with a septic system drainfield depending on aquifer properties, lot and drainfield size. We show that a high septic system density poses a high probability of pumping septic system leachate. The hydraulic conductivity of the aquifer has a strong influence on the intersection probability. We conclude that mass balances calculations applied on a regional scale underestimate the contamination risk of individual drinking water wells by septic systems. This is particularly relevant for contaminants released at high concentrations, for substances which experience limited attenuation, and those being harmful even in low concentrations.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2011-06-16
    Description: CARIBIC aircraft measurements of Eyjafjallajökull volcanic plumes in April/May 2010 Atmospheric Chemistry and Physics Discussions, 11, 16693-16744, 2011 Author(s): A. Rauthe-Schöch, A. Weigelt, M. Hermann, B. G. Martinsson, A. K. Baker, K.-P. Heue, C. A. M. Brenninkmeijer, A. Zahn, D. Scharffe, S. Eckhardt, A. Stohl, and P. F. J. van Velthoven The Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container (CARIBIC) project investigates physical and chemical processes in the Earth's atmosphere using a Lufthansa Airbus long-distance passenger aircraft. After the beginning of the explosive eruption of the Eyjafjallajökull volcano on Iceland on 14 April 2010, the first CARIBIC volcano-specific measurement flight was carried out over the Baltic Sea and Southern Sweden on 20 April. Two more flights followed: one over Ireland and the Irish Sea on 16 May and the other over the Norwegian Sea on 19 May 2010. During these three special mission flights the CARIBIC container proved its merits as a versatile and comprehensive flying laboratory. The elemental composition of particles collected over the Baltic Sea during the first flight (20 April) indicated the presence of volcanic ash. Over Northern Ireland and the Irish Sea (16 May), the DOAS system detected SO 2 and BrO co-located with volcanic ash particles that increased the aerosol optical depth. Over the Norwegian Sea (19 May), the optical particle counter detected a strong increase of particles larger than 400 nm diameter in a region where ash clouds were predicted by aerosol dispersion models. Aerosol particle samples collected over the Irish Sea and the Norwegian Sea showed large relative enhancements of the elements silicon, iron, titanium and calcium. Non-methane hydrocarbon concentrations in whole air samples collected on 16 May and 19 May 2010 showed a pattern of removal of several hydrocarbons that is typical for chlorine chemistry in the plumes. Comparisons of measured ash concentrations and simulations with the FLEXPART dispersion model demonstrate the difficulty of detailed volcanic ash dispersion modelling due to the large variability of the volcanic plume sources, extent and patchiness as well as the thin ash layers formed in the volcanic plumes.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2011-06-21
    Description: Explicit modeling of organic chemistry and secondary organic aerosol partitioning for Mexico City and its outflow plume Atmospheric Chemistry and Physics Discussions, 11, 17013-17070, 2011 Author(s): J. Lee-Taylor, S. Madronich, B. Aumont, M. Camredon, A. Hodzic, G. S. Tyndall, E. Apel, and R. A. Zaveri The evolution of organic aerosols (OA) in Mexico City and its outflow is investigated with the nearly explicit gas phase photochemistry model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere), wherein precursor hydrocarbons are oxidized to numerous intermediate species for which vapor pressures are computed and used to determine gas/particle partitioning in a chemical box model. Precursor emissions included observed C3–10 alkanes, alkenes, and light aromatics, as well as larger n -alkanes (up to C25) not directly observed but estimated by scaling to particulate emissions according to their volatility. Conditions were selected for comparison with observations made in March 2006 (MILAGRO). The model successfully reproduces the magnitude and diurnal shape for both primary (POA) and secondary (SOA) organic aerosols, with POA peaking in the early morning at 15–20 μg m −3 , and SOA peaking at 10–15 μg m −3 during mid-day. The majority (≥75 %) of the model SOA stems from the large n -alkanes, with the remainder mostly from the light aromatics. Simulated OA elemental composition reproduces observed H/C and O/C ratios reasonably well, although modeled ratios develop more slowly than observations suggest. SOA chemical composition is initially dominated by δ-hydroxy ketones and nitrates from the large alkanes, with contributions from peroxy acyl nitrates and, at later times when NO x is lower, organic hydroperoxides. The simulated plume-integrated OA mass continues to increase for several days downwind despite dilution-induced particle evaporation, since oxidation chemistry leading to SOA formation remains strong. In this model, the plume SOA burden several days downwind exceeds that leaving the city by a factor of 〉3. These results suggest significant regional radiative impacts of SOA.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2011-06-21
    Description: Nudging technique for scale bridging in air quality/climate atmospheric composition modelling Atmospheric Chemistry and Physics Discussions, 11, 17177-17199, 2011 Author(s): A. Maurizi, F. Russo, M. D'Isidoro, and F. Tampieri The interaction between air quality and climate involves dynamical scales that cover an immensely wide range. Bridging these scales in numerical simulations is fundamental in studies devoted to megacity/hot-spot impacts on climate. The nudging technique is proposed as a bridging method that can couple different models at different scales. Here, nudging is used to force low resolution chemical composition models using a high resolution run on critical areas. A one-year numerical experiment focused on the Po Valley hot spot is performed using the BOLCHEM model to asses the method. The results show that the model response is stable to perturbation induced by the nudging and that, if a high resolution run is taken as a reference, there is an increase in model skills of low resolution run when the technique is applied. This improvement depends on the species and the season. The effect spreads outside the forcing area and remains noticeable over an extension about 9 times larger.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2011-06-21
    Description: Use of ENVISAT ASAR Global Monitoring Mode to complement optical data in the mapping of rapid broad-scale flooding in Pakistan Hydrology and Earth System Sciences Discussions, 8, 5769-5809, 2011 Author(s): D. O'Grady, M. Leblanc, and D. Gillieson Envisat ASAR Global Monitoring Mode (GM) data are used to produce maps of the extent of the flooding in Pakistan which are made available to the rapid response effort within 24 h of acquisition. The high temporal frequency and independence of the data from cloud-free skies makes GM data a viable tool for mapping flood waters during those periods where optical satellite data is unavailable, which may be crucial to rapid response disaster planning, where thousands of lives are affected. Image differencing techniques are used, with pre-flood baseline image backscatter values being deducted from target values to eliminate regions with a permanent flood-like radar response due to volume scattering and attenuation, and to highlight the low response caused by specular reflection by open flood water. The effect of local incidence angle on the received signal is mitigated by ensuring that the deducted image is acquired from the same orbit track as the target image. Poor separability of the water class with land in areas beyond the river channels is tackled using a region-growing algorithm which seeks threshold-conformance from seed pixels at the center of the river channels. The resultant mapped extents are tested against MODIS SWIR data where available, with encouraging results.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2011-06-21
    Description: Soil weathering rates in 21 catchments of the Canadian Shield Hydrology and Earth System Sciences Discussions, 8, 5743-5768, 2011 Author(s): D. Houle, P. Lamoureux, N. Bélanger, M. Bouchard, C. Gagnon, S. Couture, and A. Bouffard Soil mineral weathering represents an essential source of nutrient base cation (Ca, Mg and K) for forest growth in addition to provide a buffering power against precipitation acidity for soils and surface waters. Weathering rates of base cations were obtained for 21 catchments located within the temperate and the boreal forest of the Canadian Shield with the geochemical model PROFILE. Weathering rates ranged from 0.58 to 4.46 kmol c ha −1 yr −1 and their spatial variation within the studied area was mostly in agreement with spatial variations in soil mineralogy. Weathering rates of Ca and Mg were significantly correlated ( r = 0.80 and 0.64) with their respective lake concentrations. Weathering rates of K and Na did not correlate with lake concentrations of K and Na. The modeled weathering rates for each catchment were also compared with estimations of net catchment exportations. The result show that modeled weathering rates of Ca were not significantly different than the net catchment exportations while modeled weathering rates of Mg were higher by 51 %. Larger differences were observed for K and Na weathering rates that were significantly different than net catchment exportations being 6.9 and 2.2 times higher than net exportations, respectively. The results for K were expected given its high reactivity with biotic compartments and suggest that most of the K produced by weathering reactions was retained within soil catchments and/or above ground biomass. This explanation does not apply to Na, however, which is a conservative element in forest ecosystems because of the insignificant needs of Na for soil microorganisms and above ground vegetations. It raises concern about the liability of the PROFILE model to provide reliable values of Na weathering rates. Overall, we concluded that the PROFILE model is powerful enough to reproduce spatial geographical gradients in weathering rates for relatively large areas as well as adequately predict absolute weathering rates values for the sum of base cations, Ca and Mg.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2011-06-22
    Description: Measurements of ozone and its precursors in Beijing during summertime: impact of urban plumes on ozone pollution in downwind rural areas Atmospheric Chemistry and Physics Discussions, 11, 17337-17373, 2011 Author(s): J. Xu, J. Z. Ma, X. L. Zhang, X. B. Xu, X. F. Xu, W. L. Lin, Y. Wang, W. Meng, and Z. Q. Ma Sea-land and mount-valley circulations are the dominant mesoscale synoptic systems affecting the Beijing area during summertime. Under the influence of these two circulations, the prevailing wind is southwesterly from afternoon to midnight, and then changes to northeasterly till forenoon. In this study, surface ozone (O 3 ), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO 2 ), nitrogen oxide (NO x ) and non-methane hydrocarbons (NMHCs) were measured at four sites located along the route of prevailing wind, including two upwind urban sites (Fengtai (FT) and Baolian (BL)), an upwind suburban site (Shunyi (SY)) and a downwind rural site (Shangdianzi (SDZ)) during 20 June–16 September 2007. The purpose is to improve our understanding of ozone photochemistry in urban and rural areas of Beijing and the influence of urban plumes on ozone pollution in downwind rural areas. It is found that ozone pollution was synchronism in the urban and rural areas of Beijing, coinciding with the regional-scale synoptic processes. Due to the high traffic density and local emissions, the average levels of reactive gases NO x and NMHCs at the non-rural sites were much higher than those at SDZ. The level of long-lived gas CO at SDZ was comparable to and slightly lower than it was at other sites. The daily-averaged ozone concentration at SDZ was much higher than at other sites due to weak titration. Ranking by OH loss rate coefficient ( L OH ), alkenes played a dominant role in total NMHCs reactivity at both urban and rural sites during the experiment, accounting for 48.6 % and 52.1 % of total L OH , respectively. The NMHCs data were also used to estimate the ozone potential formation (OFP) in Beijing. The leading contributors to ozone formation were aromatics at both urban and rural sites during the experiment, which accounts for 55.5 % and 49.4 % of total OFP, respectively. The ozone peak values are found to lag behind one site after another along the route of prevailing wind from SW to NE. Intersection analyses of trace gases reveal that polluted air masses arriving at SDZ were more aged with both higher O 3 and O x concentrations than those at BL. The results indicate that urban plume can transport not only O 3 but its precursors, the latter leading more photochemical O 3 production when being mixed with background atmosphere in the downwind rural area.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2011-06-22
    Description: Correcting orbital drift signal in the time series of AVHRR derived convective cloud fraction using rotated empirical orthogonal function Atmospheric Measurement Techniques Discussions, 4, 3877-3890, 2011 Author(s): A. Devasthale, K. Karlsson, J. Quaas, and H. Grassl The AVHRRs instruments onboard the series of NOAA satellites offer the longest available meteorological data records from space. These satellites have drifted in orbit resulting in shifts in the local time sampling during the life span of sensors onboard. Depending on the amplitude of a diurnal cycle of the geophysical parameters derived, orbital drift may cause spurious trends in their time series. We investigate tropical deep convective clouds, which show pronounced diurnal cycle amplitude, to bracket an upper bound of the impact of orbital drift on their time series. We carry out a rotated empirical orthogonal function analysis and show that the REOFs are useful in delineating orbital drift signal and, more importantly, in correcting this signal in the time series of convective cloud amount. These results will help facilitate the derivation of homogenized data series of cloud amount from NOAA satellite sensors and ultimately analyzing trends from them. However, we suggest detailed comparison of various methods and their rigorous testing before applying final orbital drift corrections.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2011-06-22
    Description: Ice nucleation properties of volcanic ash from Eyjafjallajökull Atmospheric Chemistry and Physics Discussions, 11, 17201-17243, 2011 Author(s): C. R. Hoyle, V. Pinti, A. Welti, B. Zobrist, C. Marcolli, B. Luo, Á. Höskuldsson, H. B. Mattsson, T. Thorsteinsson, G. Larsen, and T. Peter The ice nucleation ability of volcanic ash particles collected close to the Icelandic volcano Eyjafjallajökull during its eruptions in April and May 2010 is investigated experimentally, in the immersion and deposition modes, and applied to atmospheric conditions by comparison with airborne measurements and microphysical model calculations. The number of ash particles which are active as ice nuclei (IN) is strongly temperature dependent, with a very small minority being active in the immersion mode at temperatures of 250–263 K. Average ash particles show only a moderate effect on ice nucleation, by inducing freezing at temperatures between 236 K and 240 K (i.e. approximately 3–4 K higher than temperatures required for homogeneous ice nucleation, measured with the same instrument). By scaling the results to aircraft and lidar measurements of the conditions in the ash plume days down wind of the eruption and by applying a simple microphysical model, it was found that the IN active in the immersion mode in the range 250–263 K generally occurred in atmospheric number densities at the lower end of those required to have an impact on ice cloud formation. However, 3–4 K above the homogeneous freezing point, immersion mode IN number densities a few days down wind of the eruption were sufficiently high to have a moderate influence on ice cloud formation. The efficiency of IN in the deposition mode was found to be poor except at very cold conditions ( 〈 238 K), when they reach an efficiency similar to that of mineral dust with the onset of freezing at 10 % supersaturation with respect to ice, and with the frozen fraction nearing its maximum value at a supersaturation 20 %. In summary, these investigations suggest volcanic ash particles to have only moderate effects on atmospheric ice formation.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2011-06-22
    Description: Novel application of satellite and in-situ measurements to map surface-level NO 2 in the Great Lakes region Atmospheric Chemistry and Physics Discussions, 11, 17245-17287, 2011 Author(s): C. J. Lee, J. R. Brook, G. J. Evans, R. V. Martin, and C. Mihele Ozone Monitoring Instrument (OMI) tropospheric NO 2 vertical column density data were used in conjunction with in-situ NO 2 concentrations collected by permanently installed monitoring stations to infer 24 h surface-level NO 2 concentrations at 0.1° (~ 11 km) resolution. The region examined included rural and suburban areas, and the highly industrialised area of Windsor, Ontario, which is situated directly across the US-Canada border from Detroit, MI. Photolytic NO 2 monitors were collocated with standard NO 2 monitors to provide qualitative data regarding NO z interference during the campaign. To test the accuracy of the OMI-inferred concentrations, two-week integrative NO 2 measurements were collected using passive monitors at 18 locations, approximating a 15 km grid across the region, for 7 consecutive two-week periods. When compared with these passive results, satellite-inferred concentrations showed an 18 % positive bias. The correlation of the passive monitor and OMI-inferred concentrations ( R = 0.69, n = 115) was stronger than that for the passive monitor concentrations and OMI column densities ( R = 0.52), indicating that using a sparse network of monitoring sites to estimate concentrations improves the direct utility of the OMI observations. OMI-inferred concentrations were then calculated for four years to show an overall declining trend in surface NO 2 concentrations in the region. Additionally, by separating OMI-inferred surface concentrations by wind direction, clear patterns in emissions and affected down-wind regions, in particular around the US-Canada border, were revealed.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2011-06-24
    Description: Variable lifetimes and loss mechanisms for NO 3 and N 2 O 5 during the DOMINO campaign: contrasts between marine, urban and continental air Atmospheric Chemistry and Physics Discussions, 11, 17825-17877, 2011 Author(s): J. N. Crowley, J. Thieser, M. Tang, G. Schuster, H. Bozem, Z. Hosaynali Beygi, H. Fischer, J. Diesch, F. Drewnick, S. Borrmann, W. Song, N. Yassaa, J. Williams, D. Pöhler, U. Platt, and J. Lelieveld Nighttime mixing ratios of boundary layer N 2 O 5 were determined using cavity-ring-down spectroscopy during the DOMINO campaign. Observation of N 2 O 5 was intermittent, with mixing ratios ranging from below the detection limit (~5 ppt) to ~500 ppt. A steady-state analysis constrained by measured mixing ratios of NO 2 and O 3 was used to derive NO 3 lifetimes and compare them to calculated rates of loss via gas-phase and heterogeneous reactions of both NO 3 and N 2 O 5 . Three distinct types of air masses were encountered, which were largely marine (Atlantic), continental or urban-industrial in origin. NO 3 lifetimes were longest in the Atlantic sector (up to ~30 min) but were very short (a few seconds) in polluted, air masses from the local city and petroleum-related industrial complex of Huelva. Air from the continental sector was an intermediate case. The high reactivity to NO 3 of the urban air mass was not accounted for by gas-phase and heterogeneous reactions, rates of which were constrained by measurements of NO, volatile organic species and aerosol surface area. In general, high NO 2 mixing ratios resulted in low NO 3 lifetimes, though heterogeneous processes (e.g. reaction of N 2 O 5 on aerosol) were generally less important than direct gas-phase losses of NO 3 . The presence of SO 2 at levels above ~2 ppb in the urban air sector was always associated with very low N 2 O 5 mixing ratios indicating either very short NO 3 lifetimes in the presence of combustion-related emissions or an important role for reduced sulphur species in urban, nighttime chemistry. High production rates coupled with low lifetimes of NO 3 imply an important contribution of nighttime chemistry to removal of both NO x and VOC.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2011-06-24
    Description: The role of catchment classification in rainfall-runoff modeling Hydrology and Earth System Sciences Discussions, 8, 6113-6153, 2011 Author(s): Y. He, A. Bárdossy, and E. Zehe A sound catchment classification scheme is a fundamental step towards improved catchment hydrology science and prediction in ungauged basins. Two categories of catchment classification methods are presented in the paper. The first one is based directly on physiographic properties and climatic conditions over a catchment and regarded as a Linnaean type or natural classification scheme. The second one is based on numerical clustering and regionalization methods and considered as a statistical or arbitrary classification scheme. This paper reviews each category including what has been done since recognition of the intrinsic value of catchment classification, what is being done in the current research, as well as what is to be done in the future.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2011-06-25
    Description: General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales Atmospheric Chemistry and Physics Discussions, 11, 17941-18160, 2011 Author(s): M. Kulmala, A. Asmi, H. K. Lappalainen, U. Baltensperger, J.-L. Brenguier, M. C. Facchini, H.-C. Hansson, Ø. Hov, C. D. O'Dowd, U. Pöschl, A. Wiedensohler, R. Boers, O. Boucher, G. de Leeuw, H. Denier van den Gon, J. Feichter, R. Krejci, P. Laj, H. Lihavainen, U. Lohmann, G. McFiggans, T. Mentel, C. Pilinis, I. Riipinen, M. Schulz, A. Stohl, E. Swietlicki, E. Vignati, M. Amann, M. Amann, C. Alves, S. Arabas, P. Artaxo, D. C. S. Beddows, R. Bergström, J. P. Beukes, M. Bilde, J. F. Burkhart, F. Canonaco, S. Clegg, H. Coe, S. Crumeyrolle, B. D'Anna, S. Decesari, S. Gilardoni, M. Fischer, A. M. Fjæraa, C. Fountoukis, C. George, L. Gomes, P. Halloran, T. Hamburger, R. M. Harrison, H. Herrmann, T. Hoffmann, C. Hoose, M. Hu, U. Hõrrak, Y. Iinuma, T. Iversen, M. Josipovic, M. Kanakidou, A. Kiendler-Scharr, A. Kirkevåg, G. Kiss, Z. Klimont, P. Kolmonen, M. Komppula, J.-E. Kristjánsson, L. Laakso, A. Laaksonen, L. Labonnote, V. A. Lanz, K. E. J. Lehtinen, R. Makkonen, G. McMeeking, J. Merikanto, A. Minikin, S. Mirme, W. T. Morgan, E. Nemitz, D. O'Donnell, T. S. Panwar, H. Pawlowska, A. Petzold, J. J. Pienaar, C. Pio, C. Plass-Duelmer, A. S. H. Prévôt, S. Pryor, C. L. Reddington, G. Roberts, D. Rosenfeld, J. Schwarz, Ø. Seland, K. Sellegri, X. J. Shen, M. Shiraiwa, H. Siebert, B. Sierau, D. Simpson, J. Y. Sun, D. Topping, P. Tunved, P. Vaattovaara, V. Vakkari, J. P. Veefkind, A. Visschedijk, H. Vuollekoski, R. Vuolo, B. Wehner, J. Wildt, S. Woodward, D. R. Worsnop, G.-J. van Zadelhoff, A. A. Zardini, K. Zhang, P. G. van Zyl, V.-M. Kerminen, K. S. Carslaw, and S. N. Pandis In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) the first comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan-European aerosol emissions inventory was developed and evaluated, a new cluster spectrometer was built and tested in the field and several new aerosol parameterizations and computations modules for chemical transport and global climate models were developed and evaluated. This work enabled EUCAARI to improve our understanding of aerosol radiative forcing and air quality-climate interactions. The EUCAARI results can be utilized in European and global environmental policy to assess the aerosol impacts and the corresponding abatement strategies.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2011-06-25
    Description: A global climatology of tropospheric and stratospheric ozone derived from Aura OMI and MLS measurements Atmospheric Chemistry and Physics Discussions, 11, 17879-17911, 2011 Author(s): J. R. Ziemke, S. Chandra, G. Labow, P. K. Bhartia, L. Froidevaux, and J. C. Witte A global climatology of tropospheric and stratospheric column ozone is derived by combining six years of Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) ozone measurements for the period October 2004 through December 2010. The OMI/MLS tropospheric ozone climatology exhibits large temporal and spatial variability which includes ozone accumulation zones in the tropical south Atlantic year-round and in the subtropical Mediterranean/Asia region in summer months. High levels of tropospheric ozone in the Northern Hemisphere also persist in mid-latitudes over the Eastern North American and Asian continents extending eastward over the Pacific Ocean. For stratospheric ozone climatology from MLS, largest ozone abundance lies in the Northern Hemisphere in the latitude range 70° N–80° N in February–April and in the Southern Hemisphere around 40° S–50° S during months August–October. The largest stratospheric ozone abundances in the Northern Hemisphere lie over North America and Eastern Asia extending eastward across the Pacific Ocean and in the Southern Hemisphere south of Australia extending eastward across the dateline. With the advent of many newly developing 3-D chemistry and transport models it is advantageous to have such a dataset for evaluating the performance of the models in relation to dynamical and photochemical processes controlling the ozone distributions in the troposphere and stratosphere. The OMI/MLS ozone gridded climatology data, both calculated mean values and RMS uncertainties are made available to the science community via the NASA total ozone mapping spectrometer (TOMS) website http://toms.gsfc.nasa.gov .
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2011-06-28
    Description: Infiltration-soil moisture redistribution under natural conditions: experimental evidence as a guideline for realizing simulation models Hydrology and Earth System Sciences Discussions, 8, 6199-6225, 2011 Author(s): R. Morbidelli, C. Corradini, C. Saltalippi, A. Flammini, and E. Rossi The evolution in time, t , of the experimental soil moisture vertical profile under natural conditions is investigated in order to address the corresponding simulation modelling. The measurements were conducted in a plot with a bare silty loam soil. The soil water content, θ, was continuously monitored at different depths, z , using a Time Domain Reflectometry (TDR) system. For each profile four buriable three-rod waveguides were inserted horizontally at different depths (5, 15, 25 and 35 cm). In addition, we used sensors of air temperature and relative humidity, wind speed, solar radiation, evaporation and rain as supports for the application of selected simulation models, as well as for the detection of elements leading to their improvement. The results indicate that, under natural conditions, very different trends of the θ( z , t ) function can be observed in the given fine-textured soil, where the formation of a sealing layer over the parent soil requires an adjustment of the simulation modelling commonly used for hydrological applications. In particular, because of the considerable variations in the shape of the moisture content vertical profile as a function of time, a generalization of the existing models should incorporate a representation of the variability in time of the saturated hydraulic conductivity of the uppermost soil. This conclusion is supported by the fact that the observed shape of θ( z ) can be appropriately reproduced by adopting this approach, however the observed rainfall rate and the occurrence of freeze-thaw cycles with high soil moisture contents have to be explicitly incorporated.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2011-06-30
    Description: Scattering and absorption by aerosols during EUCAARI-LONGREX: can airborne measurements and models agree? Atmospheric Chemistry and Physics Discussions, 11, 18487-18525, 2011 Author(s): E. J. Highwood, M. J. Northway, G. R. McMeeking, W. T. Morgan, D. Liu, S. Osborne, K. Bower, H. Coe, C. Ryder, and P. Williams Scattering and absorption by aerosol in anthropogenically perturbed air masses over Europe has been measured using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM) on 14 flights during the EUCAARI-LONGREX campaign in May 2008. The geographical and temporal variations of the derived shortwave optical properties of aerosol are presented. Values of single scattering albedo of dry aerosol at 550 nm varied considerably over the data set from 0.86 to near unity. Dry aerosol optical depths ranged from 0.03 to 0.24. An optical properties closure study comparing calculations from composition data and Mie scattering code with the measured properties is presented. Very good agreement (to within 30 %) can be achieved for scattering, but the modelling of absorption is shown to be sensitive to the refractive indices chosen for organic aerosols, and to a lesser extent black carbon. Agreement with the measured absorption can only be achieved if organic carbon is assumed to be only weakly absorbing. Hygroscopic growth curves derived from the wet nephelometer indicate moderate water uptake by the aerosol with a campaign mean f (RH) value (change in scattering) of 1.3 at 80 % relative humidity. This value is consistent with the major chemical components of the aerosol measured by the aerosol mass spectrometer (AMS), which are primarily mixed organics and nitrate and some sulphate. As expected the effect of humidity is to raise the single scattering albedo, and to increase the aerosol optical depth. This study represents an important new body of data regarding European aerosol amounts, composition and optical properties and additionally demonstrates the importance of airborne measurements of black carbon mass and aerosol hygroscopicity.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2011-06-10
    Description: Sensitivity studies for a space-based methane lidar mission Atmospheric Measurement Techniques Discussions, 4, 3545-3592, 2011 Author(s): C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth Methane is the third most important greenhouse gas in the atmosphere after water vapour and carbon dioxide. A major handicap to quantify the emissions at the Earth's surface in order to better understand biosphere-atmosphere exchange processes and potential climate feedbacks is the lack of accurate and global observations of methane. Space-based integrated path differential absorption (IPDA) lidar has potential to fill this gap, and a Methane Remote Lidar Mission (MERLIN) on a small satellite in Polar orbit was proposed by DLR and CNES in the frame of a German-French climate monitoring initiative. System simulations are used to identify key performance parameters and to find an advantageous instrument configuration, given the environmental, technological, and budget constraints. The sensitivity studies use representative averages of the atmospheric and surface state to estimate the measurement precision, i.e. the random uncertainty due to instrument noise. Key performance parameters for MERLIN are average laser power, telescope size, orbit height, surface reflectance, and detector noise. A modest-size lidar instrument with 0.45 W average laser power and 0.55 m telescope diameter on a 506 km orbit could provide 50-km averaged methane column measurement along the sub-satellite track with a precision of about 1 % over vegetation. The use of a methane absorption trough at 1.65 μm improves the near-surface measurement sensitivity and vastly relaxes the wavelength stability requirement that was identified as one of the major technological risks in the pre-phase A studies for A-SCOPE, a space-based IPDA lidar for carbon dioxide at the European Space Agency. Minimal humidity and temperature sensitivity at this wavelength position will enable accurate measurements in tropical wetlands, key regions with largely uncertain methane emissions. In contrast to actual passive remote sensors, measurements in Polar Regions will be possible and biases due to aerosol layers and thin ice clouds will be minimised.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2011-06-11
    Description: Biological residues define the ice nucleation properties of soil dust Atmospheric Chemistry and Physics Discussions, 11, 16585-16598, 2011 Author(s): F. Conen, C. E. Morris, J. Leifeld, M. V. Yakutin, and C. Alewell Soil dust is a major driver of ice nucleation in clouds leading to precipitation. It consists largely of mineral particles with a small fraction of organic matter constituted mainly of remains of micro-organisms that participated in degrading plant debris before their own decay. Some micro-organisms have been shown to be much better ice nuclei than the most efficient soil mineral. Yet, current aerosol schemes in global climate models do not consider a difference between soil dust and mineral dust in terms of ice nucleation activity. Here, we show that particles from the clay and silt size fraction of four different soils naturally associated with 0.7 to 11.8 % organic carbon (w/w) can have up to four orders of magnitude more ice nuclei per unit mass active in the immersion freezing mode at −12 °C than montmorillonite, the most efficient pure clay mineral. Most of this activity was lost after heat treatment. Removal of biological residues reduced ice nucleation activity to, or below that of montmorillonite. Desert soils, inherently low in organic content, are a large natural source of dust in the atmosphere. In contrast, agricultural land use is concentrated on fertile soils with much larger organic matter contents than found in deserts. It is currently estimated that the contribution of agricultural soils to the global dust burden is less than 20 %. Yet, these disturbed soils can contribute ice nuclei to the atmosphere of a very different and much more potent kind than mineral dusts.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2011-06-11
    Description: ACE-FTS measurements of trace species in the characterization of biomass burning plumes Atmospheric Chemistry and Physics Discussions, 11, 16611-16637, 2011 Author(s): K. A. Tereszchuk, G. González Abad, C. Clerbaux, D. Hurtmans, P.-F. Coheur, and P. F. Bernath To further our understanding of the effects of biomass burning emission on atmospheric composition, we report measurements of trace species from biomass burning plumes made by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) instrument on the SCISAT-1 satellite. An extensive set of 15 molecules, C 2 H 2 , C 2 H 6 , CH 3 OH, CH 4 , CO, H 2 CO, HCN, HCOOH, HNO 3 , NO, NO 2 , N 2 O 5 , O 3 , OCS and SF 6 are used in our analysis. Even though most biomass burning smoke is typically confined to the boundary layer, much of these emissions are injected directly into the free troposphere via fire-related convective processes and transported away from the emission region. Further knowledge of the aging of biomass burning emission in the free troposphere is needed. Tracer-tracer correlations are made between known pyrogenic species in these plumes in an effort to classify them and follow their chemical evolution. Criteria such as age and type of biomass material burned are considered. Emission factors are derived and compared to airborne measurements of biomass burning from numerous ecosystems to validate the ACE-FTS data.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2011-06-15
    Description: Emission controls versus meteorological conditions in determining aerosol concentrations in Beijing during the 2008 Olympic Games Atmospheric Chemistry and Physics Discussions, 11, 16655-16691, 2011 Author(s): Y. Gao, X. Liu, C. Zhao, M. Zhang, and Y. Wang A series of emission control measures were undertaken in Beijing and the adjacent provinces in China during the 2008 Beijing Olympic Games on 8–24 August 2008. This provides a unique opportunity for investigating the effectiveness of emission controls on air pollution in Beijing. We conducted a series of numerical experiments over East Asia for the period of July to September 2008 using a coupled meteorology-chemistry model (WRF-Chem). Model can generally reproduce the observed variation of aerosol concentrations. Consistent with observations, modeled concentrations of aerosol species (sulfate, nitrate, ammonium, black carbon, organic carbon, total particulate matter) in Beijing were decreased by 30–50 % during the Olympic period compared to the other periods in July and August in 2008 and the same period in 2007. Model results indicate that emission controls were effective in reducing the aerosol concentrations by comparing simulations with and without emission controls. However, our analysis suggests that meteorological conditions (e.g., wind direction and precipitation) are at least as important as emission controls in producing the low aerosol concentrations appearing during the Olympic period. Transport from the regions surrounding Beijing determines the temporal variation of aerosol concentrations in Beijing. Based on the budget analysis, we suggest that to improve the air quality over Beijing, emission control strategy should focus on the regional scale instead of the local scale.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2011-06-15
    Description: Information operator approach applied to the retrieval of the vertical distribution of atmospheric constituents from ground-based high-resolution FTIR measurements Atmospheric Measurement Techniques Discussions, 4, 3739-3785, 2011 Author(s): C. Senten, M. De Mazière, G. Vanhaelewyn, and C. Vigouroux The analysis of high spectral resolution Fourier Transform infrared (FTIR) solar absorption spectra is an important issue in remote sensing. If this is done carefully, one can obtain information, not only about the total column abundances, but also about the vertical distribution of various constituents in the atmosphere. This work introduces the application of the information operator approach for extracting vertical profile information from ground-based FTIR measurements. The algorithm is implemented and tested within the well-known retrieval code SFIT2, adapting the optimal estimation method such as to take into account only the significant contributions to the solution. In particular, we demonstrate the feasibility of the method in an application to ground-based FTIR spectra taken in the frame of the Network for the Detection of Atmospheric Composition Change (NDACC) at Ile de La Réunion (21° S, 55° E). A thorough comparison is made between the original optimal estimation method and this alternative retrieval algorithm, regarding information content, retrieval robustness and corresponding full error budget evaluation for the target species ozone (O 3 ), nitrous oxide (N 2 O), methane (CH 4 ), and carbon monoxide (CO). For O 3 and CH 4 , a comparison with the Tikhonov regularization method has also been made. It is shown that the information operator approach performs well and in most cases yields both a better accuracy and stability than the optimal estimation method. Additionally, the information operator approach has the advantage of being less sensitive to the choice of a priori information. The Tikhonov regularization results seem to be situated between both methods' results, as to profile retrievals, error budgets and column stability.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2011-06-18
    Description: Opportunistic validation of sulfur dioxide in the Sarychev Peak volcanic eruption cloud Atmospheric Measurement Techniques Discussions, 4, 3861-3875, 2011 Author(s): S. A. Carn and T. M. Lopez We report attempted validation of Ozone Monitoring Instrument (OMI) sulfur dioxide (SO 2 ) retrievals in the stratospheric volcanic cloud from Sarychev Peak (Kurile Islands) in June 2009, through opportunistic deployment of a ground-based ultraviolet (UV) spectrometer (FLYSPEC) as the volcanic cloud drifted over Central Alaska. The volcanic cloud altitude (~12–14 km) was constrained using coincident CALIPSO lidar observations. By invoking some assumptions about the spatial distribution of SO 2 , we derive averages of FLYSPEC vertical SO 2 columns for comparison with OMI SO 2 measurements. Despite limited data, we find minimum OMI-FLYSPEC differences of ~5–6 % which support the validity of the operational OMI SO 2 algorithm. These measurements represent the first attempt to validate SO 2 in a stratospheric volcanic cloud using a mobile ground-based instrument, and demonstrate the need for a network of rapidly deployable instruments for validation of space-based volcanic SO 2 measurements.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2011-06-22
    Description: Validity of satellite measurements used for the monitoring of UV radiation risk on health Atmospheric Chemistry and Physics Discussions, 11, 17375-17421, 2011 Author(s): F. Jégou, S. Godin-Beekman, M. P. Corrêa, C. Brogniez, F. Auriol, V. H. Peuch, M. Haeffelin, A. Pazmino, P. Saiag, F. Goutail, and E. Mahé In order to test the validity of ultraviolet index (UVI) satellite products and UVI model simulations for general public information, intercomparison involving three satellite instruments (SCIAMACHY, OMI and GOME-2), the Chemistry and Transport Model, Modélisation de la Chimie Atmosphérique Grande Echelle (MOCAGE), and ground-based instruments was performed in 2008 and 2009. The intercomparison highlighted a systematic high bias of ~1 UVI in the OMI clear-sky products compared to the SCIAMACHY and TUV model clear-sky products. The OMI and GOME-2 all-sky products are close to the ground-based observations with a low 6 % positive bias, comparable to the results found during the satellite validation campaigns. This result shows that OMI and GOME-2 all-sky products are well appropriate to evaluate the UV-risk on health. The study has pointed out the difficulty to take into account either in the retrieval algorithms or in the models, the large spatial and temporal cloud modification effect on UV radiation. This factor is crucial to provide good quality UV information. OMI and GOME-2 show a realistic UV variability as a function of the cloud cover. Nevertheless these satellite products do not sufficiently take into account the radiation reflected by clouds. MOCAGE numerical forecasts show good results during periods with low cloud covers, but are actually not adequate for overcast conditions; this is why Météo-France currently uses human-expertised cloudiness (rather than direct outputs from Numerical Prediction Models) together with MOCAGE clear-sky UV indices for its operational forecasts. From now on, the UV monitoring could be done using free satellite products (OMI, GOME-2) and operational forecast for general public by using modelling, as long as cloud forecasts and the parametrisation of the impact of cloudiness on UV radiation are adequate.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2011-06-22
    Description: Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx Atmospheric Chemistry and Physics Discussions, 11, 17289-17336, 2011 Author(s): L. I. Kleinman, P. H. Daum, Y.-N. Lee, E. R. Lewis, A. J. Sedlacek III, G. I. Senum, S. R. Springston, J. Wang, J. Hubbe, J. Jayne, Q. Min, S. S. Yum, and G. Allen During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O 3 and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate in agreement with the dominant pollution source being SO 2 from Cu smelters and power plants. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 °C with dry air descending from the upper atmospheric and moist air having a BL contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol ( D p 〉 100 nm) gives a linear relation up to a number concentration of ~150 cm −3 , followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that ~25 % of aerosol in the PCASP size range are interstitial (not activated). One hundred and two constant altitude cloud transects were identified and used to determine properties of interstitial aerosol. One transect is examined in detail as a case study. Approximately 25 to 50 % of aerosol with D p 〉 110 nm were not activated, the difference between the two approaches possibly representing shattered cloud droplets or unknown artifact. CDNC and interstitial aerosol were anti-correlated in all cloud transects, consistent with the occurrence of dry in-cloud areas due to entrainment or circulation mixing.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2011-06-23
    Description: Interannual variability of ozone and carbon monoxide at the Whistler high elevation site: 2002–2006 Atmospheric Chemistry and Physics Discussions, 11, 17621-17664, 2011 Author(s): A. M. Macdonald, K. G. Anlauf, W. R. Leaitch, and E. Chan In spring 2002, an atmospheric measurement site was established at the peak of Whistler Mountain in British Columbia, Canada to measure trace gases, particle chemistry and physics, and meteorology. This paper uses continuous measurements from March 2002 to December 2006 to investigate the influence of trans-Pacific transport and North American forest fires on both O 3 and CO at Whistler. Annual mean mixing ratios of O 3 and CO were 41 ppbv (monthly means of 35–48 ppbv) and 145 ppbv (monthly means of 113–177 ppbv) respectively with both species exhibiting an annual cycle of late-winter to early-spring maxima and summer minima. The absence of a broad summer O 3 peak differs from previously-reported high altitude sites in the western US. The highest monthly-averaged O 3 and CO mixing ratios relative to the 5-year monthly means were seen in fall 2002 and spring 2003 with increased O 3 and CO of 10 % and 25 % respectively. These increases correspond to anomalously-high values reported at other Northern Hemisphere sites and are attributed to fires in the Russian Federation. Air mass back trajectory analysis is used to associate the mean enhancements of O 3 and CO with trans-Pacific transported or North American air masses relative to the Pacific background. Mean values of the enhancements for March to June were 6 ppbv and 16 ppbv for O 3 and CO respectively. In summers 2002–2006, higher CO and O 3 mixing ratios were always observed in North American air masses and this relative enhancement co-varied for each year with the western US and Canada total wildfire area. The greatest enhancements in O 3 and CO were seen in 2004, a record year for forest fires in Alaska and the Yukon Territory. In August 2004, average O 3 and CO mixing ratios were 13 and 44 ppbv above background values.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2011-06-23
    Description: Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model – Part 1: Model description, annual simulations and evaluation Atmospheric Chemistry and Physics Discussions, 11, 17551-17620, 2011 Author(s): C. Pérez, K. Haustein, Z. Janjic, O. Jorba, N. Huneeus, J. M. Baldasano, T. Black, S. Basart, S. Nickovic, R. L. Miller, J. P. Perlwitz, M. Schulz, and M. Thomson We describe and evaluate the NMMB/BSC-Dust, a new dust aerosol cycle model embedded online within the NCEP Non-hydrostatic Multiscale Model (NMMB). NMMB is a further evolution of the operational Non-hydrostatic Mesoscale Model (WRF-NMM), which together with other upgrades has been extended from meso to global scales. Its unified non-hydrostatic dynamical core is prepared for regional and global simulation domains. The new NMMB/BSC-Dust is intended to provide short to medium-range weather and dust forecasts from regional to global scales and represents a first step towards the development of a unified chemical-weather model. This paper describes the parameterizations used in the model to simulate the dust cycle including sources, transport, deposition and interaction with radiation. We evaluate monthly and annual means of the global configuration of the model against the AEROCOM dust benchmark dataset for year 2000 including surface concentration, deposition and aerosol optical depth (AOD), and we evaluate the daily AOD variability in a regional domain at high resolution covering Northern Africa, Middle East and Europe against AERONET AOD for year 2006. The NMMB/BSC-Dust provides a good description of the horizontal distribution and temporal variability of the dust. Daily AOD correlations at the regional scale are around 0.6–0.7 on average without dust data assimilation. At the global scale the model lies within the top range of AEROCOM dust models in terms of performance statistics for surface concentration, deposition and AOD. This paper discusses the current strengths and limitations of the modeling system and points towards future improvements.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2011-06-23
    Description: Sources and seasonality of atmospheric methanol based on tall tower measurements in the US Upper Midwest Atmospheric Chemistry and Physics Discussions, 11, 17473-17505, 2011 Author(s): L. Hu, M. J. Mohr, K. C. Wells, T. J. Griffis, D. Helmig, and D. B. Millet We present over one year of continuous atmospheric methanol measurements from the University of Minnesota tall tower Trace Gas Observatory (KCMP tall tower; 244 m a.g.l.), and interpret the dataset in terms of constraints on regional methanol sources and seasonality. The seasonal cycle of methanol concentrations observed at the KCMP tall tower is generally similar to that simulated by a global 3-D chemical transport model (GEOS-Chem, driven with MEGANv2.0 biogenic emissions) except the seasonal peak occurs ~1 month earlier in the observations, apparently reflecting a model underestimate of emission rates for younger versus older leaves. Based on a source tracer approach, which we evaluate using GEOS-Chem and with multiple tracers, we estimate that anthropogenic emissions account for approximately 40 % of ambient methanol abundance during winter and 10 % during summer. During daytime in summer, methanol concentrations increase exponentially with temperature, reflecting the temperature sensitivity of the biogenic source, and the observed temperature dependence is statistically consistent with that in the model. Nevertheless, summertime concentrations are underestimated by on average 35 % in the model for this region. The seasonal importance of methanol as a source of formaldehyde (HCHO) and carbon monoxide (CO) is highest in spring through early summer, when biogenic methanol emissions are high but isoprene emissions are still relatively low. During that time observed methanol concentrations account for on average 20 % of the total CO and HCHO production rates as simulated by GEOS-Chem, compared to 12 % later in the summer and 12 % on an annual average basis. The biased seasonality in the model means that the photochemical role for methanol early in the growing season is presently underestimated.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2011-06-23
    Description: Inversion of tropospheric profiles of aerosol extinction and HCHO and NO 2 mixing ratios from MAX-DOAS observations in Milano during the summer of 2003 and comparison with independent data sets Atmospheric Measurement Techniques Discussions, 4, 3891-3964, 2011 Author(s): T. Wagner, S. Beirle, T. Brauers, T. Deutschmann, U. Frieß, C. Hak, J. D. Halla, K. P. Heue, W. Junkermann, X. Li, U. Platt, and I. Pundt-Gruber We present aerosol and trace gas profiles derived from MAX-DOAS observations. Our inversion scheme is based on simple profile parameterisations used as input for an atmospheric radiative transfer model (forward model). From a least squares fit of the forward model to the MAX-DOAS measurements, two profile parameters are retrieved including integrated quantities (aerosol optical depth or trace gas vertical column density), and parameters describing the height and shape of the respective profiles. From these results, the aerosol extinction and trace gas mixing ratios can also be calculated. We apply the profile inversion to MAX-DOAS observations during a measurement campaign in Milano, Italy, September 2003, which allowed simultaneous observations from three telescopes (directed to north, west, south). Profile inversions for aerosols and trace gases were possible on 23 days. Especially in the middle of the campaign (17–20 September 2003), enhanced values of aerosol optical depth and NO 2 and HCHO mixing ratios were found. The retrieved layer heights were typically similar for HCHO and aerosols. For NO 2 , lower layer heights were found, which increased during the day. The MAX-DOAS inversion results are compared to independent measurements: (1) aerosol optical depth measured at an AERONET station at Ispra; (2) near-surface NO 2 and HCHO (formaldehyde) mixing ratios measured by long path DOAS and Hantzsch instruments at Bresso; (3) vertical profiles of HCHO and aerosols measured by an ultra light aircraft. Depending on the viewing direction, the aerosol optical depths from MAX-DOAS are either smaller or larger than those from AERONET observations. Similar comparison results are found for the MAX-DOAS NO 2 mixing ratios versus long path DOAS measurements. In contrast, the MAX-DOAS HCHO mixing ratios are generally higher than those from long path DOAS or Hantzsch instruments. The comparison of the HCHO and aerosol profiles from the aircraft showed reasonable agreement with the respective MAX-DOAS layer heights. From the comparison of the results for the different telescopes, it was possible to investigate the internal consistency of the MAX-DOAS observations. As part of our study, a cloud classification algorithm was developed (based on the MAX-DOAS zenith viewing directions), and the effects of clouds on the profile inversion were investigated. Different effects of clouds on aerosols and trace gas retrievals were found: while the aerosol optical depth is systematically underestimated and the HCHO mixing ratio is systematically overestimated under cloudy conditions, the NO 2 mixing ratios are only slightly affected. These findings are in basic agreement with radiative transfer simulations.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2011-06-24
    Description: Modeling the ascent of sounding balloons: derivation of the vertical air motion Atmospheric Measurement Techniques Discussions, 4, 3965-4012, 2011 Author(s): A. Gallice, F. G. Wienhold, C. R. Hoyle, F. Immler, and T. Peter A new model to describe the ascent of sounding balloons in the troposphere and lower stratosphere (up to ~30–35 km altitude) is presented. Contrary to previous models, detailed account is taken of both the variation of the drag coefficient with altitude and the heat imbalance between the balloon and the atmosphere. To compensate for the lack of data on the drag coefficient of sounding balloons, a reference curve for the relationship between drag coefficient and Reynolds number is derived from a dataset of flights launched during the Lindenberg Upper Air Methods Intercomparisons (LUAMI) campaign. The transfer of heat from the surrounding air into the balloon is accounted for by solving the radial heat diffusion equation inside the balloon. The potential applications of the model include the forecast of the trajectory of sounding balloons, which can be used to increase the accuracy of the match technique, and the derivation of the air vertical velocity. The latter is obtained by subtracting the ascent rate of the balloon in still air calculated by the model from the actual ascent rate. This technique is shown to provide an approximation for the vertical air motion with an uncertainty error of 0.5 m s −1 in the troposphere and 0.2 m s −1 in the stratosphere. An example of extraction of the air vertical velocity is provided in this paper. We show that the air vertical velocities derived from the balloon soundings in this paper are in general agreement with small-scale atmospheric velocity fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions measured during the SUCCESS campaign (Subsonic Aircraft: Contrail and Cloud Effects Special Study) in the orographically unperturbed mid-latitude middle troposphere.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2011-06-24
    Description: Impact of lightning-NO on Eastern United States photochemistry during the summer of 2006 as determined using the CMAQ model Atmospheric Chemistry and Physics Discussions, 11, 17699-17757, 2011 Author(s): D. J. Allen, K. E. Pickering, R. W. Pinder, B. H. Henderson, K. W. Appel, and A. Prados A lightning-nitrogen oxide (NO) algorithm is developed for the regional Community Multiscale Air Quality Model (CMAQ) and used to evaluate the impact of lightning-NO emissions (LNO x ) on tropospheric photochemistry over the Eastern United States during the summer of 2006. The scheme assumes flash rates are proportional to the model convective precipitation rate but then adjusts the flash rates locally to match monthly average observations. Over the Eastern United States, LNO x is responsible for 20–25 % of the tropospheric nitrogen dioxide (NO 2 ) column. This additional NO 2 reduces the low-bias of simulated NO 2 columns with respect to satellite-retrieved Dutch Ozone Monitoring Instrument NO 2 (DOMINO) columns from 41 to 14 %. It also adds 10–20 ppbv to upper tropospheric ozone and 1.5–4.5 ppbv to 8-h maximum surface layer ozone, although, on average, the contribution of LNO x to surface ozone is 1–2 ppbv less on poor air quality days. Biases between modeled and satellite-retrieved tropospheric NO 2 columns vary greatly between urban and rural locations. In general, CMAQ overestimates columns at urban locations and underestimates columns at rural locations. These biases are consistent with in situ measurements that also indicate that CMAQ has too much NO 2 in urban regions and not enough in rural regions. However, closer analysis suggests that most of the differences between modeled and satellite-retrieved urban to rural ratios are likely a consequence of the horizontal and vertical smoothing inherent in columns retrieved by the Ozone Monitoring Instrument (OMI). Within CMAQ, LNO x increases wet deposition of nitrate by 50 % and total deposition of nitrogen by 11 %. This additional deposition reduces the magnitude of the CMAQ low-bias in nitrate wet deposition with respect to National Atmospheric Deposition monitors to near zero. In order to obtain an upper bound on the contribution of uncertainties in chemistry to upper tropospheric NO x low biases, sensitivity calculations with updated chemistry were run for the time period of the Intercontinental Chemical Transport Experiment (INTEX-A) field campaign (summer 2004). After adjusting for possible interferences in NO 2 measurements and averaging over the entire campaign, these updates reduced 7–9 km biases from 32 to 17 % and 9–12 km biases from 57 to 46 %. While these changes lead to better agreement, a considerable NO 2 low-bias remains in the uppermost troposphere.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2011-06-25
    Description: Interpreting elevated space-borne HCHO columns over the Mediterranean Sea using the OMI and SCIAMACHY sensors Atmospheric Chemistry and Physics Discussions, 11, 17913-17940, 2011 Author(s): A. Sabolis, N. Meskhidze, G. Curci, P. I. Palmer, and B. Gantt Formaldehyde (HCHO) is an oxidation product of a wide range of volatile organic compounds (VOCs) and important atmospheric constituent found in both the polluted urban atmosphere and remote background sites. In this study, remotely sensed data of HCHO vertical column densities are analyzed over the Mediterranean Sea using the Ozone Monitoring Instrument (OMI). Data analysis indicates a marked seasonal cycle with a summer maximum and winter minimum confined to the marine environment during a three year period (2005–2007) examined. A possible retrieval artifact associated with Saharan dust transport over the region is explored by changing intensity of Saharan dust sources in GEOS-Chem following the recommendation of Generoso et al. (2008). Recalculated air mass factors (AMF), based on the new values of aerosol loadings, lead to a reduction of the summertime "hot spot" in OMI retrieval of HCHO columns over the Mediterranean Sea; however, even after the correction, enhanced values are still present in this region. To explain these values, marine biogenic sources of VOCs are examined. Calculations indicate that emissions of phytoplankton-produced isoprene and monoterpenes are not likely to explain the enhanced HCHO columns over the Mediterranean Sea. To further understand spatial and seasonal variation of HCHO over the Mediterranean Sea, OMI HCHO columns are compared to those of the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) sensor. Unlike OMI retrievals, over the Mediterranean Sea SCIAMACHY HCHO columns did not reveal clear seasonality during the three years and the two sensors did not agree within their retrieval uncertainty. Overall, comparison of OMI and SCIAMACHY HCHO columns were inconclusive. Moreover, retrievals of HCHO columns over other water bodies showed that the two sensors agree reasonably well over the Equatorial Pacific region, Gulf of Mexico, and the North Sea, but do not show similar magnitudes or seasonal variations over oligotrophic water bodies such as Mediterranean Sea, Northwestern and Southern Pacific Oceans. Model simulations in conjunction with measurements studies may be required to fully explore the complex mechanism of HCHO formation over the Mediterranean and its implications for the air quality in the region.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2011-06-25
    Description: Sand box experiments to evaluate the influence of subsurface temperature probe design on temperature based water flux calculation Hydrology and Earth System Sciences Discussions, 8, 6155-6197, 2011 Author(s): M. Munz, S. E. Oswald, and C. Schmidt Quantification of subsurface water fluxes based on the one dimensional solution to the heat transport equation depends on the accuracy of measured subsurface temperatures. The influence of temperature probe setup on the accuracy of vertical water flux calculation was systematically evaluated in this experimental study. Four temperature probe setups were installed into a sand box experiment to measure temporal highly resolved vertical temperature profiles under controlled water fluxes in the range of ±1.3 m d −1 . Pass band filtered time series provided amplitude and phase of the diurnal temperature signal varying with depth depending on water flux. Amplitude ratios of setups directly installed into the saturated sediment significantly varied with sand box hydraulic gradients. Amplitude ratios provided an accurate basis for the analytical calculation of water flow velocities, which matched measured flow velocities. Calculated flow velocities were sensitive to thermal properties of saturated sediment and to probe distance, but insensitive to thermal dispersivity equal to solute dispersivity. Amplitude ratios of temperature probe setups indirectly installed into piezometer pipes were influenced by thermal exchange processes within the pipes and significantly varied with water flux direction only. Temperature time lags of small probe distances of all setups were found to be insensitive to vertical water flux.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2011-06-28
    Description: Rate coefficients for the reaction of methylglyoxal (CH 3 COCHO) with OH and NO 2 and glyoxal (HCO) 2 with NO 3 Atmospheric Chemistry and Physics Discussions, 11, 18211-18248, 2011 Author(s): R. K. Talukdar, L. Zhu, K. J. Feierabend, and J. B. Burkholder Rate coefficients, k , for the gas-phase reaction of CH 3 COCHO (methylglyoxal) with the OH and NO 3 radicals and (CHO) 2 (glyoxal) with the NO 3 radical are reported. Rate coefficients for the OH + CH 3 COCHO ( k 1 ) reaction were measured under pseudo-first-order conditions in OH as a function of temperature (211–373 K) and pressure (100–220 Torr, He and N 2 bath gases) using pulsed laser photolysis to produce OH radicals and laser induced fluorescence to measure its temporal profile. k 1 was found to be independent of the bath gas pressure with k 1 (295 K) = (1.29 ± 0.13) × 10 −11 cm 3 molecule −1 s −1 and a temperature dependence that is well represented by the Arrhenius expression k 1 (T) = (1.74 ± 0.20) × 10 −12 exp[(590 ± 40)/T] cm 3 molecule −1 s −1 where the uncertainties are 2σ and include estimated systematic errors. Rate coefficients for the NO 3 + (CHO) 2 ( k 3 ) and NO 3 + CH 3 COCHO ( k 4 ) reactions were measured using a relative rate technique to be k 3 (296 K) = (3.7 ± 1.0) × 10 −16 cm 3 molecule −1 s −1 and k 4 (296 K) = (4.1 ± 1.2) × 10 −16 cm 3 molecule −1 s −1 . k 3 (T) was also measured using an absolute rate coefficient method under pseudo-first-order conditions at 296 and 353 K to be (4.2 ± 0.8) × 10 −16 and (7.9 ± 3.6) × 10 −16 cm 3 molecule −1 s −1 , respectively, in agreement with the relative rate result obtained at room temperature. The atmospheric implications of the OH and NO 3 reaction rate coefficients measured in this work are discussed.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2011-06-11
    Description: The use of LIDAR as a data source for digital elevation models – a study of the relationship between the accuracy of digital elevation models and topographical attributes in northern peatlands Hydrology and Earth System Sciences Discussions, 8, 5497-5522, 2011 Author(s): A. Hasan, P. Pilesjö, and A. Persson It is important to study the factors affecting estimates of wetness since wetness is crucial in climate change studies. The availability of digital elevation models (DEMs) generated with high resolution data is increasing, and their use is expanding. LIDAR earth elevation data have been used to create several DEMs with different resolutions, using various interpolation parameters, in order to compare the models with collected surface data. The aim is to study the accuracy of DEMs in relation to topographical attributes such as slope and drainage area, which are normally used to estimate the wetness in terms of topographic wetness indices. Evaluation points were chosen from the high-resolution LIDAR dataset at a maximum distance of 10 mm from the cell center for each DEM resolution studied, 0.5, 1, 5, 10, 30 and 90 m. The interpolation method used was inverse distance weighting method with four search radii: 1, 2, 5 and 10 m. The DEM was evaluated using a quantile-quantile test and the normalized median absolute deviation. The accuracy of the estimated elevation for different slopes was tested using the DEM with 0.5 m resolution. Drainage areas were investigated at three resolutions, with coinciding evaluation points. The ability of the model to generate the drainage area at each resolution was obtained by pairwise comparison of three data subsets. The results show that the accuracy of the elevations obtained with the DEM model are the same for different resolutions, but vary with search radius. The accuracy of the values (NMAD of errors) varies from 29.7 mm to 88.9 mm, being higher for flatter areas. It was also found that the accuracy of the drainage area is highly dependent on DEM resolution. Coarse resolution yielded larger estimates of the drainage area but lower slope values. This may lead to overestimation of wetness values when using a coarse resolution DEM.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2011-06-11
    Description: Multivariate design via Copulas Hydrology and Earth System Sciences Discussions, 8, 5523-5558, 2011 Author(s): G. Salvadori, C. De Michele, and F. Durante Calculating return periods and design quantiles in a multivariate framework is a difficult problem: essentially, this is due to the lack of a natural total order in multi-dimensional Euclidean spaces. This paper tries to make the issue clear. First, we outline a possible way to introduce a coherent notion of multivariate total order, and discuss its consequences on the calculation of multivariate return period: in particular, the latter is based on Copulas and the Kendall's measure, which provides a consistent notion of multivariate quantile. Secondly, we introduce several approaches for the identification of critical design events: these latter quantities are of utmost importance in practical applications, but their calculation is yet limited, due to the lack of a suitable theoretical setting where to embed the problem. Throughout the paper, a case study involving the behavior of a dam is used to illustrate the new concepts outlined in this work.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2011-06-11
    Description: Photochemical production of ozone in Beijing during the 2008 Olympic Games Atmospheric Chemistry and Physics Discussions, 11, 16553-16584, 2011 Author(s): C. C.-K. Chou, C.-Y. Tsai, C.-C. Chang, P.-H. Lin, S. C. Liu, and T. Zhu As a part of the CAREBeijing-2008 campaign, observations of O 3 , oxides of nitrogen (NO x and NO y ), CO, and hydrocarbons (NMHCs) were carried out at the air quality observatory of the Peking University in Beijing, China during August 2008, including the period of the 29th Summer Olympic Games. The measurements were compared to those of the CAREBeijing-2006 campaign to evaluate the effectiveness of the air pollution control measures, which were conducted for improving the air quality in Beijing during the Olympics. The results indicate that significant reduction in the emissions of primary air pollutants had been achieved; the monthly averages of NO x , NO y , CO, and NMHCs reduced by 42.2, 56.5, 27.8, and 49.7 %, respectively. In contrast to the primary pollutants, the averaged mixing ratio of O 3 increased by 42.2 %. Nevertheless, it was revealed that the ambient levels of total oxidants (O x =O 3 +NO 2 +1.5NO z ) and NO z reduced by 21.3 and 77.4 %, respectively. The contradictions between O 3 and O x were further examined in two case studies. Ozone production rates of 30–70 ppbv hr −1 and OPEx of ~8 mole mole −1 were observed on a clear-sky day in spite of the reduced levels of precursors. In that case, it was found that the concentrations of O 3 increased with the increasing NO 2 /NO ratio, whereas the NO z concentrations leveled off when NO 2 /NO〉8. Consequently, the ratio of O 3 to NO z increased to above 10, indicating the shift from VOC-sensitive regime to NO x -sensitive regime. However, in the other case, it was found that the O 3 production was inhibited significantly due to substantial reduction in the ambient levels of NMHCs. According to the observations, it was suggested that the O 3 /O x production rates in Beijing should have been reduced for the reduction in the emissions of precursors during the Olympic period; however, the nighttime O 3 levels were increased for decline in the NO-O 3 titration, and the midday O 3 peak levels were elevated for the shift in the photochemical regime and the inhibition of NO z formation.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2011-06-11
    Description: ARCTAS-A ground-based observational campaign and meteorological context, interior Alaska, April 2008 Atmospheric Chemistry and Physics Discussions, 11, 16499-16552, 2011 Author(s): D. E. Atkinson, K. Sassen, M. Hayashi, C. F. Cahill, G. Shaw, D. Harrigan, and H. Fuelberg Arctic aerosol loading in interior Alaska displays a strong seasonality, with pristine conditions generally prevailing during winter months and increasing frequency of midlatitude air intrusions occurring in spring. By summer, local aerosol sources, like boreal forest fire smoke, may come into prominence. Long term aerosol research from the University of Alaska Fairbanks indicates that the period around April typically marks the beginning of the retreat of the Polar Front, opening the free exchange of midlatitude air. In April 2008 the NASA ARCTAS field campaign was conducted, supported in Fairbanks by comprehensive polarization (0.693 μm) lidar, surface and balloon-borne aerosol measurements, and synoptic weather analyzes. The data provided information on the vertical distribution and type of aerosol, the size distributions and chemical nature of the surface aerosol, as well as the large scale view of aerosol transport conditions to Alaska. We found evidence to suggest four major aerosol loading events in the 25 March–30 April 2008 timeframe: a typical Arctic haze event, several days of extremely clear conditions, rapid onset of a period dominated by Asian dust with some smoke, and a period dominated by Asian smoke. A focused case study analysis conducted on 19 April 2008 using a balloon-borne optical particle counter suggested that, on this day, the majority of the suspended particulate matter consisted of Asian dust although a contribution from Asian smoke cannot be ruled out on the basis of backtrack analysis. In the last week of April concentrations gradually decreased as synoptic conditions shifted away from favoring transport to Alaska.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2011-06-15
    Description: Influence of initial heterogeneities and recharge limitations on the evolution of aperture distributions in carbonate aquifers Hydrology and Earth System Sciences Discussions, 8, 5631-5666, 2011 Author(s): B. Hubinger and S. Birk Karst aquifers evolve where the dissolution of soluble rocks causes the enlargement of discrete pathways along fractures or bedding planes, thus creating highly conductive solution conduits. To identify general interrelations between hydrogeological conditions and the properties of the evolving conduit systems the aperture-size frequency distributions resulting from generic models of conduit evolution are analysed. For this purpose, a process-based numerical model coupling flow and rock dissolution is employed. Initial protoconduits are represented by tubes with log-normally distributed aperture sizes with a mean of 0.5 mm. Apertures are spatially uncorrelated and widen up to the metre range due to dissolution by chemically aggressive waters. Several examples of conduit development are examined focussing on influences of the initial heterogeneity and the available amount of recharge. If the available recharge is sufficiently high the evolving conduits compete for flow and those with large apertures and high hydraulic gradients attract more and more water. As a consequence, the positive feedback between increasing flow and dissolution causes the breakthrough of a conduit pathway connecting the recharge and discharge sides of the modelling domain. Under these competitive flow conditions dynamically stable bimodal aperture distributions are found to evolve, i.e. a certain percentage of tubes continues to be enlarged while the remaining tubes stay small-sized. The percentage of strongly widened tubes is found to be independent of the breakthrough time and decreases with increasing heterogeneity of the initial apertures and decreasing amount of available water. If the competition for flow is suppressed because the availability of water is strongly limited breakthrough of a conduit pathway is inhibited and the conduit pathways widen very slowly. The resulting aperture distributions are found to be unimodal covering some orders of magnitudes in size. Under these suppressed flow conditions the entire range of apertures continues to be enlarged. Hence, the number of tubes reaching aperture sizes in the order of centimetres or decimetres continues to increase with time and in the long term may exceed the number of large-sized tubes evolving under competitive flow conditions. This suggests that conduit development under suppressed flow conditions may significantly enhance the permeability of the formation e.g. in deep-seated carbonate settings.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2011-06-15
    Description: Skewness as measure of the invariance of instantaneous renormalized drop diameter distributions – Part 1: Convective vs. stratiform precipitation Hydrology and Earth System Sciences Discussions, 8, 5605-5629, 2011 Author(s): M. Ignaccolo and C. De Michele We investigate the variability of the instantaneous distribution shape of the renormalized drop diameter making use of the third order central moment: the skewness . Disdrometer data, collected at Darwin Australia, are considered either as whole or as divided in convective and stratiform precipitation intervals. We show that in all cases the distribution of the skewness is strongly peaked around 0.64. This allows to identify a most common distribution of renormalized drop diameters and two main variations, one with larger and one with smaller skewness. The distributions' shapes are independent from the stratiform vs. convective classification.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2011-06-15
    Description: The sensitivity of land emissivity estimates from AMSR-E at C and X bands to surface properties Hydrology and Earth System Sciences Discussions, 8, 5667-5699, 2011 Author(s): H. Norouzi, M. Temimi, W. B. Rossow, C. Pearl, M. Azarderakhsh, and R. Khanbilvardi Microwave observations at low frequencies exhibit more sensitivity to surface and subsurface properties with little interference from the atmosphere. The objective of this study is to develop a global land emissivity product using passive microwave observations from the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and to investigate its sensitivity to land surface properties. The developed product complements existing land emissivity products from SSM/I and AMSU by adding land emissivity estimates at two lower frequencies, 6.9 and 10.65 GHz (C- and X-band, respectively). Observations at these low frequencies penetrate deeper into the soil layer. Ancillary data used in the analysis, such as surface skin temperature and cloud mask, are obtained from International Satellite Cloud Climatology Project (ISCCP). Atmospheric properties are obtained from the TIROS Operational Vertical Sounder (TOVS) observations to determine the small upwelling and downwelling atmospheric emissions as well as the atmospheric transmission. A sensitivity test confirms the small effect of the atmosphere but shows that skin temperature accuracy can significantly affect emissivity estimates. Retrieved emissivities at C- and X-bands and their polarization differences exhibit similar patterns of variation with changes in land cover type, soil moisture, and vegetation density as seen at SSM/I-like frequencies (Ka and Ku bands). The emissivity maps from AMSR-E at these higher frequencies agree reasonably well with the existing SSM/I-based product. The inherent but small discrepancy introduced by the difference between SSM/I and AMSR-E frequencies and incidence angles has been examined and found to be small. Large differences between emissivity estimates from ascending and descending overpasses were found at the lower frequencies due to the inconsistency between the thermal IR skin temperatures and passive microwave brightness temperatures which can come from below the surface. This issue must be addressed in future studies to improve the accuracy of the emissivity estimates at lower frequencies.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2011-06-15
    Description: Influence of soil parameters on the skewness coefficient of the annual maximum flood peaks Hydrology and Earth System Sciences Discussions, 8, 5559-5604, 2011 Author(s): A. Gioia, V. Iacobellis, S. Manfreda, and M. Fiorentino Understanding the spatial variability of key parameters of flood probability distributions represents a strategy to provide insights on hydrologic similarity and building probabilistic models able to reduce the uncertainty in flood prediction in ungauged basins. In this work, we exploited the theoretically derived distribution of floods TCIF (Gioia et al., 2008), based on two different threshold mechanisms associated respectively to ordinary and extraordinary events. The model is based on the hypotheses that ordinary floods are generally due to rainfall events exceeding a threshold infiltration rate in a small source area, while the so-called outlier events, responsible of the high skewness of flood distributions, are triggered when severe rainfalls exceed a storage threshold over a large portion of the basin. Within this scheme, a sensitivity analysis was performed in order to analyze the effects of climatic and geomorphologic parameters on the skewness coefficient. In particular, the analysis was conducted investigating the influence on flood distribution of physical factors such as rainfall intensity, soil infiltration capacity, and basin area, in order to provide insights in catchment classification and process conceptualization.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2011-06-18
    Description: Technical note: Towards a continuous classification of climate using bivariate colour mapping Hydrology and Earth System Sciences Discussions, 8, 5733-5742, 2011 Author(s): A. J. Teuling Climate is often defined in terms of discrete classes. Here I use bivariate colour mapping to show that the global distribution of Köppen-Geiger climate classes can largely be reproduced by combining the simple means of two key states of the climate system (i.e., air temperature and relative humidity). This allows for a classification that is not only continuous in space, but can be applied at and transferred between timescales ranging from minutes to decades.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2011-06-22
    Description: Theory of isotope fractionation on facetted ice crystals Atmospheric Chemistry and Physics Discussions, 11, 17423-17445, 2011 Author(s): J. Nelson Present models of the differential incorporation of isotopic water molecules into vapor-grown ice omit surface processes that may be important in temperature reconstructions. This article introduces a model that includes such surface processes and shows that differences in deposition coefficients for water isotopes can produce isotope fractionation coefficients that significantly differ from those of existing theory. For example, if the deposition coefficient of H 2 18 O differs by just 5 % from that of ordinary water (H 2 16 O), the resulting fractionation coefficient at 20 % supersaturation may deviate from the kinetic fractionation (KF) prediction by up to about ±17 ‰. Like the KF model, this "surface-kinetic" fractionation model generally predicts greater deviation from the equilibrium prediction at higher supersaturations; indeed, the sensitivity to supersaturation far exceeds that to temperature. Moreover, the model introduces possible new temperature dependencies from the deposition coefficients. These parameters need to be constrained by new laboratory measurements; nevertheless, the theory suggests that observed δ 18 O changes in ice samples are unlikely to be due solely to temperature changes.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...