ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (347)
  • Hindawi  (347)
  • Annual Reviews
  • Beilstein-Institut
  • Blackwell Publishing Ltd
  • Gazi University, Faculty of Technology
  • The Royal Society
  • Wiley
  • 2015-2019  (347)
  • 2005-2009
  • 1990-1994
  • 1980-1984
  • 1970-1974
  • 1950-1954
  • 1940-1944
  • 2016  (347)
  • 1990
  • 1983
  • 1982
  • 1980
  • 1974
  • 1970
  • 1940
  • Advances in Meteorology  (123)
  • 115640
  • Geosciences  (347)
  • Information Science and Librarianship
  • Sociology
  • Natural Sciences in General
  • Technology
Collection
  • Articles  (347)
Publisher
  • Hindawi  (347)
  • Annual Reviews
  • Beilstein-Institut
  • Blackwell Publishing Ltd
  • Gazi University, Faculty of Technology
  • +
Years
  • 2015-2019  (347)
  • 2005-2009
  • 1990-1994
  • 1980-1984
  • 1970-1974
  • +
Year
Topic
  • Geosciences  (347)
  • Information Science and Librarianship
  • Sociology
  • Natural Sciences in General
  • Technology
  • +
  • 1
    Publication Date: 2016-08-01
    Description: This study demonstrates successful variational retrieval of land surface states by assimilating screen level atmospheric measurements of specific humidity and air temperature. To this end, the land surface scheme is first validated against the Oklahoma Atmospheric Surface Layer Instrumentation System measurements with necessary refinements to the forward model implemented. The retrieval scheme involves a 1D land surface-atmosphere model, the corresponding adjoint codes, and a cost function that measures residuals between observed and modeled screen level atmospheric temperature and specific humidity. The retrieval scheme is robust when subjected to observational errors with magnitudes comparable to instrument accuracy and for initial guess errors larger than typical model forecast errors. Using varying assimilation window lengths centered on different periods of a day, the sampling strategy is assessed. The daytime observations are more informative compared to nocturnal observations. An assimilation window as narrow as four hours, if centered on local noon, contains comparable information to an expanded window covering the whole day. There exists an optimal assimilation window length resulting from the contest between degrading forecast accuracy and increasing information content. For an assimilation window less than two days, the “optimal” assimilation window length is inversely proportional to the data ingesting frequency.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-08-01
    Description: An urban landslide vulnerability assessment methodology is proposed with major focus on considering urban social and economic aspects. The proposed methodology was developed based on the landslide susceptibility maps that Korean Forest Service utilizes to identify landslide source areas. Frist, debris flows are propagated to urban areas from such source areas by Flow-R (flow path assessment of gravitational hazards at a regional scale), and then urban vulnerability is assessed by two categories: physical and socioeconomic aspect. The physical vulnerability is related to buildings that can be impacted by a landslide event. This study considered two popular building structure types, reinforced-concrete frame and nonreinforced-concrete frame, to assess the physical vulnerability. The socioeconomic vulnerability is considered a function of the resistant levels of the vulnerable people, trigger factor of secondary damage, and preparedness level of the local government. An index-based model is developed to evaluate the life and indirect damage under landslide as well as the resilience ability against disasters. To illustrate the validity of the proposed methodology, physical and socioeconomic vulnerability levels are analyzed for Seoul, Korea, using the suggested approach. The general trend found in this study indicates that the higher population density areas under a weaker fiscal condition that are located at the downstream of mountainous areas are more vulnerable than the areas in opposite conditions.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-15
    Description: The Community Multiscale Air Quality Model (CMAQ) v5.0.2 was applied to PM2.5 simulation in Japan, which is strongly affected by long-range transport (LRT) from anthropogenic sources in the Asian Continent, for one year from April 2010 to March 2011. The model performance for LRT and local pollution (LP) of PM2.5 was evaluated to identify the model processes that need to be improved. CMAQ well simulated temporal and spatial variation patterns of PM2.5 but underestimated the concentration level by 15% on average. The contribution of LRT was estimated from the difference between the baseline simulation case and a zero-emission case for anthropogenic emissions in the continent. The estimated LRT contribution to PM2.5 was 50% on average and generally higher in the western areas of Japan (closer to the continent). Days that were dominantly affected by LRT or LP were determined based on the contribution of LRT to sulfate, which was fairly well simulated and strongly affected by LRT among major PM2.5 components. The underestimation of PM2.5 was larger in LP days (by 26% on average) than LRT days (by 10% on average). Therefore, it is essential to improve local emissions, formation, and loss processes of precursors and PM2.5 in Japan.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-07-27
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-08-01
    Description: Based on daily precipitation from the Global Precipitation Climatology Project (GPCP) data during April–October of the 1997–2014 period, the daily extreme rainfall trends and variability over West Africa are characterized using 90th-percentile threshold at each grid point. The contribution of the extreme rainfall amount reaches ~50–90% in the northern region while it is ~30–50% in the south. The yearly cumulated extreme rainfall amount indicates significant and negative trends in the 6°N–12°N; 6°N–12°N; 17°W–10°W and 4°N–7°N; 4°N–7°N; 6°E–10°E 4°N–7°N; 6°E–10°E 4°N–7°N; 6°E–10°E domains, while the number of days exhibits nonsignificant trends over West Africa. The empirical orthogonal functions performed on the standardized anomalies show four variability modes that include all West Africa with a focus on the Sahelian region, the eastern region including the south of Nigeria, the western part including Guinea, Sierra Leone, Liberia, and Guinea-Bissau, and finally a small region at the coast of Ghana and Togo. These four modes are influenced differently by the large-scale ocean surface and atmospheric conditions in the tropical Atlantic. The results are applicable in planning the risks associated with these climate hazards, particularly on water resource management and civil defense.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-06-23
    Description: The present paper describes and characterizes the air mass circulation during the heat-wave events registered during the period 2005–2014 over Spain, paying special attention to the role of the Saharan circulations. Backward trajectories at 500, 1500, and 3000 m in Seville (south), Madrid (centre), and Bilbao (north) during the thirteen heat-wave events identified are analysed. Finally, the impact of the heat-wave events and of each advection pattern on 7Be activity concentrations is also analysed. The heat-wave events are characterized roughly by western, southern, and nearby advections, with a higher frequency of the first two types. The analysis shows an increase of African air masses with height, presenting a different spatial impact over Spain, with a decreasing occurrence and a decrease in the simultaneous occurrence percentage from south to north. On average, the 7Be activity concentrations during these events show an increase of concentrations in central (21%) and southern (18%) areas and a decrease in northern (13%) Spain. This increase is not associated with Saharan air masses but instead with the arrival of distant westerly air masses.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-06-20
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-06-21
    Description: The effects of attenuation correction in rainfall estimation with X-band dual-polarization radar were investigated with a dense rain gauge network. The calibration bias in reflectivity () was corrected using a self-consistency principle. The attenuation correction of and the differential reflectivity () were performed by a path integration method. After attenuation correction, and were significantly improved, and their scatter plots matched well with the theoretical relationship between and . The comparisons between the radar rainfall estimation and the rain gauge rainfall were investigated using the bulk statistics with different temporal accumulations and spatial averages. The bias significantly improves from 70% to 0% with . However, the improvement with was relatively small, from 3% to 1%. This indicated that rainfall estimation using a polarimetric variable was more robust at attenuation than was a single polarimetric variable method. The bias did not show improvement in comparisons between the temporal accumulations or the spatial averages in either rainfall estimation method. However, the random error improved from 68% to 25% with different temporal accumulations or spatial averages. This result indicates that temporal accumulation or spatial average (aggregation) is important to reduce random error.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-06-28
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-06-30
    Description: There have been few studies conducted on the changes in actual ET over the Loess Plateau, due to the lack of reliable ET data. Based on ET data simulated by the Community Land Model, the present study analyzed the changes in ET over the Loess Plateau. The results showed the domain-average ET to have decreased in the past 31 years, at a rate of 0.78 mm year−1. ET fluctuated much more strongly in the 1990s than in the 1980s and 2000s, and, apart from in autumn, ET decreased in all seasons. In particular, ET in summer comprised about half of the annual ET trend and had the sharpest trend, dominating the interannual decline. ET also decreased more sharply in the semiarid than semihumid regions. The declining trend of ET was attributed to declining precipitation and air humidity. Locally, the ET trend was closely related to local mean annual precipitation: in areas with precipitation less than 400 mm, ET showed a decreasing trend; in areas with precipitation larger than 600 mm, ET showed an increasing trend; and in areas with precipitation in the range of 400–600 mm could be classified as a transitional zone.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-06-30
    Description: To estimate the surface air temperature by remote sensing, the advection-energy balance for the surface air temperature (ADEBAT) model is developed which assumes the surface air temperature is driven by the local driving force and the advective driving force. The local driving force produces a local surface air temperature whereas the advective driving force changes it by adding an exotic air temperature. An advection factor is defined to measure the quantity of the exotic air brought by the advection. Since the is determined by the advection, this paper improves it to a regional scale by using the Inverse Distance Weighting (IDW) method whereas the original ADEBAT model uses a constant of for a block of area. Results retrieved by the improved ADEBAT (IADEBAT) model are evaluated and comparison was made with the in situ measurements, with an (correlation coefficient) of 0.77, an RMSE (Root Mean Square Error) of 0.31 K, and a MAE (Mean Absolute Error) of 0.24 K. The evaluation shows that the IADEBAT model has higher accuracy than the original ADEBAT model. Evaluations together with a -test of the MAD (Mean Absolute Deviation) reveal that the IADEBAT model has a significant improvement.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-07-01
    Description: Extracting multiple-scale observational information is critical for accurately reconstructing the structure of mesoscale circulation systems such as typhoon. The Space and Time Mesoscale Analysis System (STMAS) with multigrid data assimilation developed in Earth System Research Laboratory (ESRL) in National Oceanic and Atmospheric Administration (NOAA) has addressed this issue. Previous studies have shown the capability of STMAS to retrieve multiscale information in 2-dimensional Doppler radar radial velocity observations. This study explores the application of 3-dimensional (3D) Doppler radar radial velocities with STMAS for reconstructing a 3D typhoon structure. As for the first step, here, we use an idealized simulation framework. A two-scale simulated “typhoon” field is constructed and referred to as “truth,” from which randomly distributed conventional wind data and 3D Doppler radar radial wind data are generated. These data are used to reconstruct the synthetic 3D “typhoon” structure by the STMAS and the traditional 3D variational (3D-Var) analysis. The degree by which the “truth” 3D typhoon structure is recovered is an assessment of the impact of the data type or analysis scheme being evaluated. We also examine the effects of weak constraint and strong constraint on STMAS analyses. Results show that while the STMAS is superior to the traditional 3D-Var for reconstructing the 3D typhoon structure, the strong constraint STMAS can produce better analyses on both horizontal and vertical velocities.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-06-20
    Description: Many studies have highlighted the need for a higher accuracy global digital elevation model (DEM), mainly in river floodplains and deltas and along coastlines. In this paper, we present a method to infer the impact of a better DEM on applications and science using the Lower Zambezi basin as a use case. We propose an analysis based on a targeted observation algorithm to evaluate potential data acquisition subregions in terms of their impact on the prediction of flood risk over the entire study area. Consequently, it becomes trivial to rank these subregions in terms of their contribution to the overall accuracy of flood prediction. The improvement from better topography data may be expressed in terms of economic output and population affected, providing a multifaceted assessment of the value of acquiring better elevation data. Our results highlight the notion that having higher resolution measurements would improve our current large-scale flood inundation prediction capabilities in the Lower Zambezi by at least 30% and significantly reduce the number of people affected as well as the economic loss associated with high magnitude flooding. We believe this procedure to be simple enough to be applied to other regions where high quality topographic and hydrodynamic data are currently unavailable.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-06-24
    Description: This study analyzes the variation trends of temperature and precipitation in the Dadu River Basin of China based on observed records from fourteen meteorological stations. The magnitude of trends was estimated using Sen’s linear method while its statistical significance was evaluated using Mann-Kendall’s test. The results of analysis depict increase change from northwest to southeast of annual temperature and precipitation in space. In temporal scale, the annual temperature showed significant increase trend and the annual precipitation showed increase trend. For extreme indices, the trends for temperature are more consistent in the region compared to precipitation. This paper has practical meanings for an effective management of climate risk and provides a foundation for further study of hydrological situation in this river basin.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-05-11
    Description: Precipitation variability and land surface changes are the two primary factors that affect basin hydrology, and thus estimation of their impact is of great importance for sustainable development at a catchment scale. In this study, we investigated the long-term changes in precipitation and runoff, from 1961 to 2011, in the Yihe River basin by Mann-Kendall test. A new method of trend pattern was put forward and used to identify the trends of precipitation and runoff, which indicated that the basin had a decreasing trend in annual runoff. The change point occurred in the year 1985 dividing the long-term series into two periods. Precipitation elasticity and linear regression methods were used to quantify the impact of precipitation and land surface change on runoff and provided consistent results of the percentage change in an annual runoff for the postchange period. Use of these methods reveals that the reduction in annual runoff is mainly due to precipitation variability of 56.38–67.68% and land surface change of 43.62–32.32%, as estimated by precipitation elasticity and linear regression methods, respectively. Due to the rapid growth of urbanization, the land surface change increased from 1990 to 2010. The result of this study can provide a reference for the management of regional water resources.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2016-05-13
    Description: A method to explicitly calculate the effective radius of hydrometeors in the Weather Research Forecasting (WRF) double-moment 6-class (WDM6) microphysics scheme is designed to tackle the physical inconsistency in cloud properties between the microphysics and radiation processes. At each model time step, the calculated effective radii of hydrometeors from the WDM6 scheme are linked to the Rapid Radiative Transfer Model for GCMs (RRTMG) scheme to consider the cloud effects in radiative flux calculation. This coupling effect of cloud properties between the WDM6 and RRTMG algorithms is examined for a heavy rainfall event in Korea during 25–27 July 2011, and it is compared to the results from the control simulation in which the effective radius is prescribed as a constant value. It is found that the derived radii of hydrometeors in the WDM6 scheme are generally larger than the prescribed values in the RRTMG scheme. Consequently, shortwave fluxes reaching the ground (SWDOWN) are increased over less cloudy regions, showing a better agreement with a satellite image. The overall distribution of the 24-hour accumulated rainfall is not affected but its amount is changed. A spurious rainfall peak over the Yellow Sea is alleviated, whereas the local maximum in the central part of the peninsula is increased.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2016-05-13
    Description: Surface evapotranspiration (ET) is one of the key surface processes. Reliable estimation of regional ET solely from satellite data remains a challenge. This study applies recently proposed nonparametric (NP) approach to retrieve surface ET, in terms of latent heat flux (LE), over a semiarid region. The involved input parameters are surface net radiation, land surface temperature, near-surface air temperature, and soil heat flux, all of which are retrievals or products of the Moderate-Resolution Imaging Spectroradiometer (MODIS). Field observations are used as ground references, which were obtained from six eddy covariance (EC) sites with different land covers including desert, Gobi, village, orchard, vegetable field, and wetland. Our results show that the accuracy of LE retrievals varies with EC sites with a determination of coefficient from 0.02 to 0.76, a bias from −221.56 W/m2 to 143.77 W/m2, a relative error from 8.82% to 48.35%, and a root mean square error from 67.97 W/m2 to 239.55 W/m2. The error mainly resulted from the uncertainties from MODIS products or the retrieval of net radiation and soil heat flux in nonvegetated region. It highlights the importance of accurate retrieval of the input parameters from satellite data, which are the ongoing tasks of remote sensing community.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-05-01
    Description: The monthly precipitation data from 29 stations in Serbia during the period of 1946–2012 were considered. Precipitation trends were calculated using linear regression method. Three CLINO periods (1961–1990, 1971–2000, and 1981–2010) in three subregions were analysed. The CLINO 1981–2010 period had a significant increasing trend. Spatial pattern of the precipitation concentration index (PCI) was presented. For the purpose of PCI prediction, three Support Vector Machine (SVM) models, namely, SVM coupled with the discrete wavelet transform (SVM-Wavelet), the firefly algorithm (SVM-FFA), and using the radial basis function (SVM-RBF), were developed and used. The estimation and prediction results of these models were compared with each other using three statistical indicators, that is, root mean square error, coefficient of determination, and coefficient of efficiency. The experimental results showed that an improvement in predictive accuracy and capability of generalization can be achieved by the SVM-Wavelet approach. Moreover, the results indicated the proposed SVM-Wavelet model can adequately predict the PCI.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-07-11
    Description: With growing flood risk due to increased urbanization, flood damage assessment and flood risk management must be reconsidered. To demonstrate and assess the new features and trends of flood risk in urbanized areas, a novel S-shaped function of return period and damage is proposed. The function contains three parameters, which are defined as the maximum flood damage , critical return period , and integrated loss coefficient . A basic framework for flood damage assessment was established to evaluate flood damage in the Taihu Basin under various scenarios. The simulation results were used to construct the flood functions. The study results show that the flood model based on the Gompertz function agrees well with the mutability of flood damage in the highly urbanized basin when the flood scale exceeds the defense capability. The function can be utilized for timely and effective flood damage assessment and prediction. It can describe the impacts of socioeconomic development, urbanization degree, and flood control capability improvements well. The turning points of the function curve can be used as gradation criteria for rational strategy development associated with flood hazards.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2016-07-11
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2016-07-12
    Description: The intensity of precipitation extremes is expected to increase as the climate warms and it may cause floods and increase erosion. From the Clausius-Clapeyron relation (CC) it follows that the maximum moisture content of the atmosphere increases by approximately 7% per degree as temperature rises. However, the increases in observed hourly precipitation extremes of approximately two times the CC relation were described recently. This super CC scaling is attributed to the increased prevalence of convective rainfall and decreased prevalence of stratiform rainfall as temperatures increase. We carried out the disaggregation of precipitation into prevailing stratiform and convective component on the observational data from the Czech Republic for 1966–2006. Then, we analyzed trends in characteristics of disaggregated events and assessed correlation of precipitation intensities with daily mean temperature. The results suggest the increasing trend of convective precipitation in summer. The scaling for total rain events is steeper than for the events with prevailing convective component and for the events with prevailing stratiform component. It is a result of mixing of the two storm types. At higher temperature the events with prevailing convective component prevail and vice versa.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2016-07-20
    Description: Strong, local convective weather events are capable of causing extensive damage, but weather observation systems with limited resolution and radar monitoring can typically provide only a few minutes to hours of prior warning time. This paper presents a comprehensive case study of the cumulative evolution of several characteristic quantities during one extremely severe convective weather process. The research results indicate that the main feature of strong convective weather is the uneven distribution of thermal energy in the atmosphere, and the structure of this heat distribution determines the level of instability in the atmosphere. A vertical “clockwise rolling current” occurs in the wind field structure at the beginning of the process, and this is accompanied by a rapid drop in temperature at the top of the troposphere. When these signs occurred in the case study, radar technology was used to refine the precipitation region and spatial characteristics of the approaching storm. The height and vertical evolution of radar echoes were indicative of the characteristics of the system’s movement through space. Such findings may be useful for improving the forecasting times for strong convective weather.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2016-03-25
    Description: The spatial mapping of losses attributable to such disasters is now well established as a means of describing the spatial patterns of disaster risk, and it has been shown to be suitable for many types of major meteorological disasters. However, few studies have been carried out by developing a regression model to estimate the effects of the spatial distribution of meteorological factors on losses associated with meteorological disasters. In this study, the proposed approach is capable of the following: (a) estimating the spatial distributions of seven meteorological factors using Bayesian maximum entropy, (b) identifying the four mapping methods used in this research with the best performance based on the cross validation, and (c) establishing a fitted model between the PLS components and disaster losses information using partial least squares regression within a specific research area. The results showed the following: (a) best mapping results were produced by multivariate Bayesian maximum entropy with probabilistic soft data; (b) the regression model using three PLS components, extracted from seven meteorological factors by PLS method, was the most predictive by means of PRESS/SS test; (c) northern Hunan Province sustains the most damage, and southeastern Gansu Province and western Guizhou Province sustained the least.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-04-04
    Description: To provide context for observed trends in terrestrial water storage (TWS) during GRACE (2003–2014), trends and variability in the CESM1-CAM5 Large Ensemble (LE) are examined. Motivated in part by the anomalous nature of climate variability during GRACE, the characteristics of both forced change and internal modes are quantified and their influences on observations are estimated. Trends during the GRACE era in the LE are dominated by internal variability rather than by the forced response, with TWS anomalies in much of the Americas, eastern Australia, Africa, and southwestern Eurasia largely attributable to the negative phases of the Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO). While similarities between observed trends and the model-inferred forced response also exist, it is inappropriate to attribute such trends mainly to anthropogenic forcing. For several key river basins, trends in the mean state and interannual variability and the time at which the forced response exceeds background variability are also estimated while aspects of global mean TWS, including changes in its annual amplitude and decadal trends, are quantified. The findings highlight the challenge of detecting anthropogenic climate change in temporally finite satellite datasets and underscore the benefit of utilizing models in the interpretation of the observed record.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2016-04-12
    Description: In order to understand the formation and evolution of recurrent severe haze pollution episodes in Yangtze River Delta, China, a short comparative sampling campaign was conducted at the Lin’an background monitoring station from 25 November 2013 to 14 December 2013. The characteristic concentrations of PM2.5, black carbon, CO2, CO, and CH4 have been systematically recorded at the abovementioned site. Coupled with detailed analysis of air backward trajectories, fire spot distribution surrounding the studied site and meteorological impacts, temporal trend, diurnal variation, and intercorrelation of the aforementioned species have also been comprehensively investigated throughout prehaze, haze, and posthaze periods.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2016-04-12
    Description: A dust incursion occurred in Istanbul on 1 February 2015 from the Saharan Desert. During this episode, 938 μg·m−3 of TSP concentration was observed. TSP concentration was 64 μg·m−3 and 78 μg·m−3 on the following two days. Particles of 3 μm were dominant during the episode; however, particles 〈 0.49 μm were dominant after the episode. The averages of total (gas + particle) PCB, PAH, and OCP concentrations were 279 pg·m−3, 175 ng·m−3, and 589 pg·m−3, respectively. Tri-CBs were dominant in most of the samples. Flt and Phe had the highest contribution to PAH species. β-HCH and heptachlor had the highest share in terms of OCPs. Particle phase PCBs exhibited monomodal size distribution, whereas OCPs had bimodal size distribution. PAHs exhibited either monomodal or bimodal size distribution on different days. The mass median diameter of PAHs did not change significantly during different atmospheric conditions due to their local sources. Gas/particle partitioning of each pollutant was evaluated by plotting their subcooled vapor pressure against the partitioning coefficient. From 1 to 3 February, the slope of the regression line shifted close to −1, indicating that the least favorable conditions were present during dust incursion for an equilibrium state.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2016-01-01
    Description: Analysis of small catchment area in Croatian lowland with its hydrological characteristics in the period between 1981 and 2014 was carried out in order to define significance of change in hydrological and meteorological parameters (precipitation, air temperatures, and discharges) and water balance components (deep percolation and potential evapotranspiration). There was no significant land use change in the observed period, so all changes in hydrological processes can be considered to be without human impact in the last 35 years. Application of RAPS (Rescaled Adjusted Partial Sums) on all data series distinguished two subperiods with different length but the same behaviour. The first subperiod was a period characterised by the decrease, starting in 1980 and finishing between 1991 and 1995, while the second one was a period characterised by the increase of parameters in all analyses, starting between 1991 and 1995 and finishing in 2001. In comparison to the analysis of climate change impacts per decade, this approach is much more appropriate and gives insight into variations throughout the entire observed period. The most variable but not significant parameters are precipitation and discharges, especially in the second subperiod which has a major impact on occurrence of hydrological hazards such as droughts and floods and makes great pressure and responsibility on water management system.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2016-01-01
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2016-01-04
    Description: Observed turbulent fluxes, wind, and temperature profiles at Tazhong station over the hinterland of the Taklimakan Desert in China have been analyzed to evaluate empirical parameters used in the profile functions of desert surface layer. The von Kármán constant derived from our observations is about 0.396 in near-neutral stratification, which is in good agreement with many other studies for different underlying surface. In our analysis, the turbulent Prandtl number is about 0.75 in near-neutral conditions. For unstable range, the nondimensional wind and temperature profile functions are best fitted by the exponents of −1/4 and −1/2, respectively. The linear relations still hold for stable stratification in this extremely arid desert. However, the parameters used in their profile functions need to be revised to be applicable for desert surfaces.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2016-01-04
    Description: Changes in the spatial and temporal patterns of extreme rainfall may have important effects on the magnitude and timing of rainfall erosivity, which in turn lead to even severe soil degradation phenomena. The Mediterranean belt is characterized by strong climatic variability and specific seasonal features, where dry periods are often interrupted by pulsing storms. Identifying the thresholds associated with extreme rainfall events is among the most important challenges for this region. To discern the spatial patterns of rainfall erosivity hazard in the Rhone region (eastern France), this study establishes thresholds in the power of rainstorms. An indicator Kriging approach was employed for computing probability maps of the annual rainfall erosivity exceeding the threshold of 1800 MJ mm ha−1 h−1, the latter being twice greater than the standard deviation. The interdecadal spatial patterns of hazard were assessed for recent decades (1991–2010) and the precedents ones (1961–1990). Climate fluctuations of rainfall erosivity revealed possible signals of increased storminess hazard across the region in recent times. We also discussed changes in the rainfall erosivity hazard forcing as related to climatic changes in daily rain rate, especially in autumn when the erosivity is likely affected by more intense storminess occurring across the southern part of the Rhone region.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2016-01-12
    Description: The study presents a combination of techniques for integrated analysis of reference crop evapotranspiration () in GIS environment. The analysis is performed for Greece and includes the use of (a) ASCE-standardized Penman-Monteith method for the estimation of 50-year mean monthly , (b) cross-correlation and principal components analysis for the analysis of the spatiotemporal variability of , (c) -means clustering for terrain segmentation to regions with similar temporal variability of , and (d) general linear models for the description of based on clusters attributes. Cross-correlation revealed a negative correlation of with both elevation and latitude and a week positive correlation with longitude. The correlation between and elevation was maximized during the warm season, while the correlation with latitude was maximized during winter. The first two principal components accounted for the 97.9% of total variance of mean monthly . -means segmented Greece to 11 regions/clusters. The categorical factor of cluster number together with the parameters of elevation, latitude, and longitude described satisfactorily the through general linear models verifying the robustness of the cluster analysis. This research effort can contribute to hydroclimatic studies and to environmental decision support in relation to water resources management in agriculture.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2016-01-13
    Description: This paper investigates the use of the Site-Optimized Semiempirical (SOSE) air pollution model to identify the surface wind measurement site characteristics that yield the best air pollution predictions for urban locations. It compares the modelling results from twelve meteorological sites with varying anemometer heights, located at different distances from the air pollution measurements and exhibiting different land use characteristics. The results show that the index of agreement (IA) between observed and predicted concentrations can be improved from 0.4 to 0.8 by using the most compared to the least representative wind data as input to the air pollution model. Although improvements can be achieved using wind data from a site closer to the air quality monitoring site, choosing the closest wind site does not necessarily yield the best results, especially if the meteorological station is located in a region of complex land use. In addition, both the height of the anemometer and the openness of the terrain surrounding the anemometer were found to be equally important in obtaining good model predictions. The simple SOSE model can therefore be used to complement regulatory meteorological guidelines by providing a quantitative assessment of wind site representativeness for air quality applications in complex urban environments.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2016-01-13
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2016-01-13
    Description: This paper analyzed the surface conditions and boundary-layer climate of regional haze events and heavy haze in southern Jiangsu Province in China. There are 5 types with the surface conditions which are equalized pressure (EQP), the advancing edge of a cold front (ACF), the base of high pressure (BOH), the backside of high pressure (BAH), the inverted trough of low pressure (INT), and saddle pressure (SAP) with the haze days. At that time, 4 types are divided with the regional haze events and each of which has a different boundary-layer structure. During heavy haze, the surface mainly experiences EQP, ACF, BOH, BAH, and INT which also have different boundary-layer structures.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2016-01-14
    Description: This study analyzed the top 1% 24-hour rainfall events from 1994 to 2013 at eight climatological sites that represent the east to west precipitation gradient across the Arkansas-Red River Basin in North America. A total of 131 cases were identified and subsequently classified on the synoptic-scale, mesoscale, and local-scale to compile a climatological analysis of these extreme, heavy rainfall events based on atmospheric forcings. For each location, the prominent midtropospheric pattern, mesoscale feature, and predetermined thermodynamic variables were used to classify each 1% rainfall event. Individual events were then compared with other cases throughout the basin. The most profound results were that the magnitudes of the thermodynamic variables such as convective available potential energy and precipitable water values were poor predictors of the amount of rainfall produced in these extreme events. Further, the mesoscale forcings had more of an impact during the warm season and for the westernmost locations, whereas synoptic forcings were extremely prevalent during the cold season at the easternmost locations in the basin. The implications of this research are aimed at improving the forecasting of heavy precipitation at individual weather forecasts offices within the basin through the identified patterns at various scales.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2016-03-08
    Description: The air-sea impact of a warm cored eddy ejected from the Agulhas Retroflection region south of Africa was assessed through both ocean and atmospheric profiling measurements during the austral summer. The presence of the eddy causes dramatic atmospheric boundary layer deepening, exceeding what was measured previously over such a feature in the region. This deepening seems mainly due to the turbulent heat flux anomaly above the warm eddy inducing extensive deep and persistent changes in the atmospheric boundary layer thermodynamics. The loss of heat by turbulent processes suggests that this kind of oceanic feature is an important and persistent source of heat for the atmosphere.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2016-01-01
    Description: A wavelet transform technique was used to analyze the precipitation data for nearly 60 years (1954–2012) in Yunnan Province of China. The wavelet coefficients and the variance yield of wavelet were calculated. The results showed that, in nearly 60 years, the spring precipitation increased slightly; however, the linear trend of other seasonal and annual precipitations showed a reducing trend. Seasonal and annual precipitation had the characteristics of multiple time scales. Different time scales showed the different cyclic alternating patterns. Overall, in the next period of time, different seasons and the annual precipitation will be in the periods of precipitation-reduced oscillation; high drought disaster risks may occur in Yunnan province. Particularly, by analyzing large area of severe drought of Yunnan province in 2009–2012, the predicted results of wavelet were verified. The results may provide a scientific basis for guiding agricultural production and the drought prevention work for Yunnan Province and other places of China.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2016-01-01
    Description: The continuous expansion of impervious artificial surfaces in cities has significantly influenced the urban thermal environment. This paper examines the spatiotemporal variation of the diurnal surface urban heat island (SUHI) in Shanghai from 1989 to 2013, a period during which the city has experienced drastic development changes. A remote sensing approach was taken to derive the spatial patterns of Shanghai’s land surface temperature (LST) from Landsat Thematic Mapper (TM) images and Operational Land Imager (OLI) data. The LST pattern was further classified into five LST classes to look at the relative SUHI intensity level across the whole city. Spatial analyses, namely, spatial association and centroid movement analysis, were conducted to reveal the trends of LST changes at both local and holistic scales. To understand the potential drivers for the present spatiotemporal variation of SUHI, different indicators including land use change, population density, night light data, and vegetation were analyzed and compared with LST changes. Based on the quantitative analysis and the socioeconomic context of Shanghai, “heating up” regions were identified, possible reasons for such SUHI variation were summarized, and districts that are most vulnerable to extreme heat conditions were projected. In terms of implication for urban development, planning and design recommendations were suggested to improve the urban thermal environment in Shanghai.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2016-01-01
    Description: Two versions of Global Satellite Mapping of Precipitation (GSMaP) products (GSMaP-V4 and GSMaP-V5) are validated both in a single grid scale and in contiguous China by comparing to gauge-based rainfall analysis dataset. GSMaP products can capture spatial patterns and magnitude of rainfall in daily mean precipitation. They perform better in summer than in winter over the Chinese Mainland. They also have better estimation over the southeast than over the northwest of the Chinese Mainland. An apparent system underestimate is detected in both GSMaP products. The underestimation existing in the GSMaP-V4 has been largely improved in GSMaP-V5. The impacts of snow cover and vegetation fraction are also investigated. The result indicates that snow cover deeply impacts the POD and FAR of GSMaP products. NDVI may result in overestimated precipitation in sparse vegetation regions. These results implicate that it is useful to use some auxiliary data from other sensors (e.g., MODIS) to improve the quality of precipitation product.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2016-01-01
    Description: The purpose of this study is to investigate hydrometeorology changing patterns impacts on erosive landforms evolution in Loess Plateau in the past 60 years (1950–2010). We firstly describe hydrometeorology changing patterns (rainfall-runoff-soil erosion response) at different time scales (daily, monthly, and yearly) in perspective of river basins and then further investigate hydrometeorology impacts on erosive landform through combined analysis of statistical quantification and proposed conceptual model of rainfall-runoff-soil erosion landform. Through the above investigations, the following findings are achieved. Firstly, it shows that annual runoff and sediment discharges decreased obviously although precipitation remained at the same level in the past 50 years (1960–2010). Discharges of annual runoff and sediment decreased by 30%–80% and 60%–90%, respectively. Secondly, contributors of soil erosion are determined by integrated factors such as precipitation, river network, and topography characteristics of river basins. The strong soil erosion area existed in the middle hilly-gully region, while the high precipitation was in southern mountains. Thirdly, erosion landform development was largely shaped by hydrometeorology characteristics in comparison with other contributors. It shows that there is strong positive relationship between precipitation and erosion.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2016-01-05
    Description: Adjusting of wind input source term in numerical model WAVEWATCH III for the middle-sized water body is reported. For this purpose, the field experiment on Gorky Reservoir is carried out. Surface waves are measured along with the parameters of the airflow. The measurement of wind speed in close proximity to the water surface is performed. On the basis of the experimental results, the parameterization of the drag coefficient depending on the 10 m wind speed is proposed. This parameterization is used in WAVEWATCH III for the adjusting of the wind input source term within WAM 3 and Tolman and Chalikov parameterizations. The simulation of the surface wind waves within tuned to the conditions of the middle-sized water body WAVEWATCH III is performed using three built-in parameterizations (WAM 3, Tolman and Chalikov, and WAM 4) and adjusted wind input source term parameterizations. Verification of the applicability of the model to the middle-sized reservoir is performed by comparing the simulated data with the results of the field experiment. It is shown that the use of the proposed parameterization improves the agreement in the significant wave height from the field experiment and from the numerical simulation.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2016-01-06
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2016-01-06
    Description: The common approach to quantifying the precipitation forecast uncertainty is ensemble simulations where a numerical weather prediction (NWP) model is run for a number of cases with slightly different initial conditions. In practice, the spread of ensemble members in terms of flood discharge is used as a measure of forecast uncertainty due to uncertain precipitation forecasts. This study presents the uncertainty propagation of rainfall forecast into hydrological response with catchment scale through distributed rainfall-runoff modeling based on the forecasted ensemble rainfall of NWP model. At first, forecast rainfall error based on the BIAS is compared with flood forecast error to assess the error propagation. Second, the variability of flood forecast uncertainty according to catchment scale is discussed using ensemble spread. Then we also assess the flood forecast uncertainty with catchment scale using an estimation regression equation between ensemble rainfall BIAS and discharge BIAS. Finally, the flood forecast uncertainty with RMSE using specific discharge in catchment scale is discussed. Our study is carried out and verified using the largest flood event by typhoon “Talas” of 2011 over the 33 subcatchments of Shingu river basin (2,360 km2), which is located in the Kii Peninsula, Japan.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2016-01-07
    Description: It has been previously established that photochemical smog occurring in the Pearl River Delta Region (PRD) was associated with stagnant meteorological conditions. However, the photochemical smog (17 July to 20 July 2005) induced by typhoon Haitang was associated with moderate wind speed and nonstagnant meteorological conditions. The dynamic process of this ozone episode was studied using an integrated numerical model, that is, a mesoscale meteorological model and Community Multiscale Air Quality (CMAQ) model. Model performance has been evaluated using both ground-based meteorological and air quality observations. Analysis of simulated wind fields and ozone budget has been performed. This dynamic process is summarized into three physical factors. First, the westerly wind placed Hong Kong directly downwind of the PRD emissions. Second, the convergence of wind flow stimulated a vertical local circulation near the surface layer. This recirculation allowed primary and secondary pollutants to accumulate. Third, the conditions of high air temperature and low humidity resulted in active photochemical reactions. These combined effects resulted in the formation of high ozone in this episode.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2016-01-07
    Description: The wind stress is a measure of momentum transfer due to the relative motion between the atmosphere and the ocean. This study aims to investigate the anomalous pattern of atmospheric and oceanic circulations due to 50% increase in the wind stress over the equatorial region and the Southern Ocean. In this paper we use a coupled climate model of intermediate complexity (SPEEDO). The results show that the intensification of equatorial wind stress causes a decrease in sea surface temperature in the tropical region due to increased upwelling and evaporative cooling. On the other hand, the intensification of wind stress over the Southern Ocean induces a regional increase in the air and sea surface temperatures which in turn leads to a reduction in Antarctic sea ice thickness. This occurs in association with changes in the global thermohaline circulation strengthening the rate of Antarctic Bottom Water formation and a weakening of the North Atlantic Deep Water. Moreover, changes in the Southern Hemisphere thermal gradient lead to modified atmospheric and oceanic heat transports reducing the storm tracks and baroclinic activity.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2016-01-11
    Description: This paper aims to analyze the effects of precipitation and anthropogenic activity on hydrologic features in Yanhe River so as to provide support for regional water management and evaluation of water and soil conservation measures. Thiessen Polygon was created to calculate mean values of watershed, and Mann-Kendall statistic test and Sen’s slop estimator test were adapted to analyze variation trend and interaction between precipitation, runoff, and sediment discharge. When 1961~1970 was set as reference period (ignoring human effects), the double mass curve quantified the effects of precipitation and anthropogenic activity on runoff and sediment discharge in Yanhe River during 1961~2008. The result showed that the monthly distribution of precipitation, runoff, and sediment discharge was extremely uneven. 78.1% of precipitation, 64.1% of runoff, and 98.6% of sediment discharge occurred in the flood season. Precipitation, runoff, and sediment discharge performed significant downward trends during 1961–2008. Therein, anthropogenic factors contributed 66.7% and 51.1% to sediment discharge reduction during 1971–1994 and 1995–2008, respectively. They contributed 103.8% and 82.9% to runoff reduction during these two periods, respectively.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2016-01-15
    Description: In this study, the Standardized Precipitation Index (SPI) is used to ascertain the added value of dynamical downscaling over the contiguous United States. WRF is used as a regional climate model (RCM) to dynamically downscale reanalysis fields to compare values of SPI over drought timescales that have implications for agriculture and water resources planning. The regional climate generated by WRF has the largest improvement over reanalysis for SPI correlation with observations as the drought timescale increases. This suggests that dynamically downscaled fields may be more reliable than larger-scale fields for water resource applications (e.g., water storage within reservoirs). WRF improves the timing and intensity of moderate to extreme wet and dry periods, even in regions with homogenous terrain. This study also examines changes in SPI from the extreme drought of 1988 and three “drought busting” tropical storms. Each of those events illustrates the importance of using downscaling to resolve the spatial extent of droughts. The analysis of the “drought busting” tropical storms demonstrates that while the impact of these storms on ending prolonged droughts is improved by the RCM relative to the reanalysis, it remains underestimated. These results illustrate the importance and some limitations of using RCMs to project drought.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2016-01-15
    Description: The Australian Community Climate and Earth-System Simulator (ACCESS) is used to test the sensitivity of heavy precipitation to various model configurations: horizontal resolution, domain size, rain rate assimilation, perturbed physics, and initial condition uncertainties, through a series of convection-permitting simulations of three heavy precipitation (greater than 200 mm day−1) cases in different synoptic backgrounds. The larger disparity of intensity histograms and rainfall fluctuation caused by different model configurations from their mean and/or control run indicates that heavier precipitation forecasts have larger uncertainty. A cross-verification exercise is used to quantify the impacts of different model parameters on heavy precipitation. The dispersion of skill scores with control run used as “truth” shows that the impacts of the model resolution and domain size on the quantitative precipitation forecast are not less than those of perturbed physics and initial field uncertainties in these not intentionally selected heavy precipitation cases. The result indicates that model resolution and domain size should be considered as part of probabilistic precipitation forecasts and ensemble prediction system design besides the model initial field uncertainty.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2016-03-24
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2016-04-07
    Description: The famous global optimization SCE-UA method, which has been widely used in the field of environmental model parameter calibration, is an effective and robust method. However, the SCE-UA method has a high computational load which prohibits the application of SCE-UA to high dimensional and complex problems. In recent years, the hardware of computer, such as multi-core CPUs and many-core GPUs, improves significantly. These much more powerful new hardware and their software ecosystems provide an opportunity to accelerate the SCE-UA method. In this paper, we proposed two parallel SCE-UA methods and implemented them on Intel multi-core CPU and NVIDIA many-core GPU by OpenMP and CUDA Fortran, respectively. The Griewank benchmark function was adopted in this paper to test and compare the performances of the serial and parallel SCE-UA methods. According to the results of the comparison, some useful advises were given to direct how to properly use the parallel SCE-UA methods.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2016-08-16
    Description: The short-term forecasting of wave energy is important to provide guidance for the electric power operation and power transmission system and to enhance the efficiency of energy capture and conversion. This study produced a numerical forecasting experiment of the China Sea wave energy using WAVEWATCH-III (WW3, the latest version 4.18) wave model driven by T213 (WW3-T213) and T639 (WW3-T639) wind data separately. Then the WW3-T213 and WW3-T639 were verified and compared to build a short-term wave energy forecasting structure suited for the China Sea. Considering the value of wave power density (WPD), “wave energy rose,” daily and weekly total storage and effective storage of wave energy, this study also designed a series of short-term wave energy forecasting productions. Results show that both the WW3-T213 and WW3-T639 exhibit a good skill on the numerical forecasting of the China Sea WPD, while the result of WW3-T639 is much better. Judging from WPD and daily and weekly total storage and effective storage of wave energy, great wave energy caused by cold airs was found. As there are relatively frequent cold airs in winter, early spring, and later autumn in the China Sea and the surrounding waters, abundant wave energy ensues.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2016-08-17
    Description: Assessment of urban water logging risk depth is mainly based on extreme value of rainstorm and its occurrence frequency as disaster causing factor. Regional waterlogging disaster risk assessment can be determined through regional geographic spatial information coupling calculation; the fundamental reason lies in the lack of an effective method for numerical simulation of waterlogging risk depth. Based on the hydrodynamic principle, FloodArea model realizes the numerical simulation of regional waterlogging depth by hydrologic calculating of runoff generation and runoff concentration of waterlogging. Taking risk assessment in Nanchang city as an example, spatial distribution of urban waterlogging depth was simulated by using FloodArea model in return period of 5 years, 10 years, 50 years, and 100 years. Research results show that FloodArea model can simulate urban waterlogging forming process and spatial distribution qualitatively.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2016-08-24
    Description: Based on the phenological data from China Phenological Observation Network, we compiled the phenological calendars of 3 phenological observation stations (Shanghai, Nanjing, and Hefei) in East China for 1987–1996 and 2003–2012 according to the sequences of mean phenophases. We calculated the correlated coefficient and the root mean square error (RMSE) between phenophases and the beginning of meteorological seasons to determine the beginning date of phenological season. By comparing new phenological calendars with the old ones, we discussed the variation of phenophases and their responses to temperature. The conclusions are as follows. (1) The beginning dates of spring and summer advanced, while those of autumn and winter delayed. Thus, summers got longer and winters got shorter. (2) The beginning time of the four phenological seasons was advancing during 1987–1996, while it was delaying during 2003–2012. (3) Most spring and summer phenophases occur earlier and most autumn and winter phenophases occur later in 2003–2012 than in 1987–1996. (4) The beginning time of phenological seasons was significantly correlated with temperature. The phenological sensitivities to temperature ranged from −6.49 to −6.55 days/°C in spring, −3.65 to −5.02 days/°C in summer, 8.13 to 10.27 days/°C in autumn, and 4.76 to 10.00 days/°C in winter.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2016-08-29
    Description: Concentrations of particulate matter (PM) in Dhaka, Bangladesh, during November 2013 to April 2014 were found 7-8 times higher than the World Health Organization (WHO) guideline value. Probability of contribution of transboundary sources to this PM pollution was investigated through different approaches. Ninety-six-hour backward trajectories with every 3-hour interval were computed and clustered into 06 groups based on angle distance matrix. Probabilities of individual cluster to be associated with different ranges of coarse and fine particles were studied. Gazipur station near Dhaka city was found to have 68% probability of receiving PM10 concentration higher than 150 μg/m3 when air masses followed the route of Middle East through the Himalayan valley to the station. This channel was identified as the main route of PM transport to Bangladesh during dry season. Transboundary source-regions were spotted by concentration weighted trajectory (CWT) method and also by the monthly average aerosol optical depths (AOD) over South Asia. North-western Indian regions, Nepal and its neighboring areas, and Indian state of West Bengal were identified as the most probable zones that might have contributed to PM pollution in Gazipur, Dhaka. November to January was the high time the station had experienced fine particles from those transboundary regions.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2016-06-29
    Description: The physical-based drought indices such as the self-calibrated Palmer Drought Severity Index (sc-PDSI) with the fixed time scale is inadequate for the multiscalar drought assessment, and the multiscalar drought indices including Standardized Precipitation Index (SPI), Reconnaissance Drought Index (RDI), and Standardized Precipitation Evapotranspiration Index (SPEI) based on the meteorological factors are lack of physical mechanism and cannot depict the actual water budget. To fill this gap, the Standardized Water Budget Index (SWBI) is constructed based on the difference between areal precipitation and actual evapotranspiration (AET), which can describe the actual water budget but also assess the drought at multiple time scales. Then, sc-PDSI was taken as the reference drought index to compare with multiscalar drought indices at different time scale in Haihe River basin. The result shows that SWBI correlates better with sc-PDSI and the RMSE of SWBI is less than other multiscalar drought indices. In addition, all of drought indices show a decreasing trend in Haihe River Basin, possibly due to the decreasing precipitation from 1961 to 2010. The decreasing trends of SWBI were significant and consistent at all the time scales, while the decreasing trends of other multiscalar drought indices are insignificant at time scale less than 3 months.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2016-07-05
    Description: This paper studies the stochastic dynamic variability of precipitation, for the upper, middle, and lower reaches of the Heihe River basin in Northwest China, by employing Mann-Kendall statistic, Pettitt test, and wavelet transform methods. The possible associations with three prominent climatic patterns, El Niño-Southern Oscillation (ENSO), Artic Oscillation (AO), and Indian Ocean Dipole (IOD), are examined by using multiscale wavelet coherence method. No significant trend is identified for the interannual precipitation variability. However, about 2-year significant variability is detected for the lower reach of the Heihe River basin, and this dominating precipitation variability is essentially depicted by AO. The possible influences of ENSO are exerted on long-term timescale, 8–16 years. The obtained knowledge is helpful for the predications of extreme hydroclimatological events and better reservoir operations for regional water resources.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2016-08-10
    Description: China is a nation that is affected by a multitude of natural disasters, including droughts and floods. In this paper, the variations of extreme drought and pluvial patterns and their relations to the large-scale atmospheric circulation have been analyzed based on monthly precipitation data from 483 stations during the period 1958–2010 in China. The results show the following: the extreme drought and pluvial events in China increase significantly during that period. During 1959–1966 timeframe, more droughts occur in South China and more pluvial events are found in North China (DSC-PNC pattern); as for the period 1997–2003 (PSC-DNC pattern), the situation is the opposite. There are good relationships among the extreme drought and pluvial events and the Western Pacific Subtropical High, meridional atmospheric moisture flux, atmospheric moisture content, and summer precipitation. A cyclone atmospheric circulation anomaly occurs in North China, followed by an obvious negative height anomaly and a southern wind anomaly at 850 hPa and 500 hPa for the DSC-PNC pattern during the summer, and a massive ascending airflow from South China extends to North China at ~50∘N. As for the PSC-DNC pattern, the situation contrasts sharply with the DSC-PNC pattern.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2016-08-12
    Description: This study attempts to analyze several drought features in South Korea from various perspectives using a three-month standard precipitation index. In particular, this study aims to evaluate changes in spatial distribution in terms of frequency and severity of droughts in the future due to climate change, using IPCC (intergovernmental panel on climate change) GCM (general circulation model) simulations. First, the Mann-Kendall method was adopted to identify drought trends at the five major watersheds. The simulated temporal evolution of SPI (standardized precipitation index) during the winter showed significant drying trends in most parts of the watersheds, while the simulated SPI during the spring showed a somewhat different feature in the GCMs. Second, this study explored the low-frequency patterns associated with drought by comparing global wavelet power, with significance test. Future spectra decreased in the fractional variance attributed to a reduction in the interannual band from 2 to 8 years. Finally, the changes in the frequency and the severity under climate change were evaluated through the drought spell analyses. Overall features of drought conditions in the future showed a tendency to increase (about 6%) in frequency and severity of droughts during the dry season (i.e., from October to May) under climate change.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2016-08-12
    Description: With the development of high-performance computer systems and data assimilation techniques, storm-scale numerical weather prediction (NWP) models are gradually used for short-term deterministic forecasts. The primary objective of this study is to evaluate and correct precipitation forecasts of a storm-scale NWP model called the advanced regional prediction system (ARPS). The evaluation and correction consider five heavy precipitation events that occurred in the summer of 2015 in Jiangsu, China. The performances of the original and corrected ARPS precipitation forecasts are evaluated as a function of lead time using standard measurements and a spatial verification method called Structure-Amplitude-Location (SAL). In general, the ARPS could not produce optimal forecasts for very short lead times, and the forecast accuracy improves with increasing lead time. The ARPS overestimates precipitation for all lead times, which is confirmed by large bias in many forecasts in the first and second quadrant of the diagram of SAL, especially at the 1 h lead time. The amplitude correction is performed by matching percentile values of the ARPS precipitation forecasts and observations for each lead time. Amplitude correction significantly improved the ARPS precipitation forecasts in terms of the considered performance indices of standard measures and A-component and S-component of SAL.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2016-08-26
    Description: This paper aims to detect climate change points and compare the extreme temperature changes with the average-value changes in the Amur River basin. The daily air temperatures of 44 stations in the Amur River basin were collected from April 1, 1954, to March 31, 2013. The change points for annual mean and extreme temperature in 44 individual stations and their average were detected by the Mann-Kendall test, respectively. The annual mean temperature changed during 1980s in terms of increased mean value and relative stable standard deviation. The annual maximum temperature from 31 stations mostly located in the central and northwest basin changed significantly, and their change points occurred mainly in 1990s. For the annual minimum temperature, 32 stations mainly located in the central basin had significant changes. The generalized extreme value distribution was fitted to the postchange point subseries of annual extreme temperature and the parameters were estimated by the maximum likelihood method. The 10/50/100-year return levels were estimated by the method of profile likelihood. For the areas in the central and Northwestern basin, the probability of occurrence of hot extremes increased, while the occurrence probability of cold extremes was decreased in the central basin under climate change.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2016-06-16
    Description: Spatial mean value evolution, long-term mean pattern, and seasonal as well as interannual variability of sea surface temperature (SST) in Eastern Marginal Seas of China (EMSC) are reanalyzed based on thirty years’ NOAA optimum interpolation (OI) 1/4 degrees’ daily SST data. Temporal evolution of the spatial mean value shows a very marked annual cycle and a weak warming tendency (0.03437°C/year). Spatial distribution of the long-term mean value shows some more fine spatial structure of SST compared to previous studies. Over 90% of the temporal variability can be explained by the annual harmonic whose amplitude is one order larger than that of the semiannual harmonic. In addition, the annual harmonic amplitude distribution is consistent with that of the value of standard deviation. In order to investigate the interannual variation of SST, the EMSC SST interannual index was constructed. Based on wavelet analysis, a significant peak around 3.3 years was found in the EMSC SST interannual index. Further analysis demonstrated that the interannual variability of SST is linked with El Niño-Southern Oscillation (ENSO) teleconnection, through which anomalous surface heat flux warms or cools the EMSC during El Niño or La Niña events.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2016-06-17
    Description: This study investigates the capability of improving the distributed hydrological model performance by assimilating the streamflow observations. Incorrectly estimated model states will lead to discrepancies between the observed and estimated streamflow. Consequently, streamflow observations can be used to update the model states, and the improved model states will eventually benefit the streamflow predictions. This study tests this concept in upper Huai River basin. We assimilate the streamflow observations sequentially into the Soil and Water Assessment Tool (SWAT) using the ensemble Kalman filter (EnKF) to update the model states. Both synthetic experiments and real data application are used to demonstrate the benefit of this data assimilation scheme. The experiment shows that assimilating the streamflow observations at interior sites significantly improves the streamflow predictions for the whole basin. Assimilating the catchment outlet streamflow improves the streamflow predictions near the catchment outlet. In real data case, the estimated streamflow at the catchment outlet is significantly improved by assimilating the in situ streamflow measurements at interior gauges. Assimilating the in situ catchment outlet streamflow also improves the streamflow prediction of one interior location on the main reach. This may demonstrate that updating model states using streamflow observations can constrain the flux estimates in distributed hydrological modeling.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2016-06-08
    Description: In this study, three schemes [Yonsei University (YSU), Mellor-Yamada-Janjic (MYJ), and Bougeault-Lacarrère (Boulac)] were employed in the Weather Research and Forecasting/Chemistry (WRF-Chem) model to simulate the severe haze that occurred in February 2014 in the Jing-Jin-Ji region and its surroundings. The PM2.5 concentration simulated using the three schemes, together with the meteorological factors closely related to PM2.5 (wind speed, local vertical diffusivity, and PBL height), was evaluated through comparison with observations. The results indicated that the eastern plain cities produced better simulation results than the western cities, and the cities under the eastern root of Taihang Mountain produced the worst results in simulating high PM2.5 concentration in haze. All three schemes simulated very similar variation trends of the surface PM2.5 concentration compared with observations. The diurnal variations of simulated surface PM2.5 were not as reasonable as their reflection of daily averaged variation. The simulated concentrations of surface PM2.5 using the YSU, MYJ, and Boulac schemes all showed large negative errors during daytime in polluted days due to their inefficient descriptions of local atmospheric stability or diffusion processes in haze. The lower ability of PBL schemes in distinguishing the diffusion between haze and clean days in the complex topography areas in China is an important problem for PM2.5 forecasting, which is worthy of being studied in detail.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2016-06-17
    Description: Patterns of dust aerosol variation over China are analyzed using A-Train CALIOP and precipitation, soil moisture, and vegetation coverage datasets during the period of 2007 and 2014. Spatially, dust is mostly prominent over northwestern China, with the highest and most widespread dust activities being in Taklimakan Desert. Dust is generally distributed across the atmosphere up to 5 km altitude, with a peak of DAFOD around 3 km. The dust layer has a significant geographical and seasonal drifting, with higher altitude in spring and summer and dust source regions (between 3 km and 5 km). Additionally, single dust layer is more often observed in a vertical column. Temporally, high amounts of dust aerosol (C-DAFOD as high as 0.08) experienced in spring subsequently continuous decrease until the spring of next year. The correlation coefficients between the latitude averaged column integrated dust aerosol feature optical depth (C-DAFOD) and precipitation, soil moisture, and vegetation coverage are −0.65, −0.81, and −0.77, respectively. The correlation coefficients of seasonal mean C-DAFOD with the three factors are −0.15, −0.67, and −0.35, respectively. The analysis showed dust and the other three factors are negatively correlated. Overall, dust over China shows considerable spatial, temporal, and vertical variations.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2016-06-17
    Description: We investigated flooding patterns in the urbanised city-state of Singapore through a multimethod approach combining station precipitation data with archival newspaper and governmental records; changes in flash floods frequencies or reported impacts of floods towards Singapore society were documented. We subsequently discussed potential flooding impacts in the context of urban vulnerability, based on future urbanisation and forecasted precipitation projections for Singapore. We find that, despite effective flood management, (i) significant increases in reported flash flood frequency occurred in contemporary (post-2000) relative to preceding (1984–1999) periods, (ii) these flash floods coincide with more localised, “patchy” storm events, (iii) storms in recent years are also more intense and frequent, and (iv) floods result in low human casualties but have high economic costs via insurance damage claims. We assess that Singapore presently has low vulnerability to floods vis-à-vis other regional cities largely due to holistic flood management via consistent and successful infrastructural development, widespread flood monitoring, and effective advisory platforms. We conclude, however, that future vulnerabilities may increase from stresses arising from physical exposure to climate change and from demographic sensitivity via rapid population growth. Anticipating these changes is potentially useful in maintaining the high resilience of Singapore towards this hydrometeorological hazard.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2016-05-30
    Description: To reveal the revolution law of hydrologic extremes in the next 50 years and analyze the impact of climate change on hydrologic extremes, the following main works were carried on: firstly, the long duration (15 d, 30 d, and 60 d) rainfall extremes according to observed time-series and forecast time-series by dynamical climate model product (BCC-CSM-1.1) were deduced, respectively, on the basis that the quantitative estimation of the impact of climate change on rainfall extremes was conducted; secondly, the SWAT model was used to deduce design flood with the input of design rainfall for the next 50 years. On this basis, quantitative estimation of the impact of climate change on long duration flood volume extremes was conducted. It indicates that (1) the value of long duration rainfall extremes for given probabilities (1%, 2%, 5%, and 10%) of the Tangnaihai basin will rise with slight increasing rate from 1% to 6% in the next 50 years and (2) long duration flood volume extremes of given probabilities of the Tangnaihai basin will rise with slight increasing rate from 1% to 6% in the next 50 years. The conclusions may provide technical supports for basin level planning of flood control and hydropower production.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2016-05-31
    Description: Providing a reliable, accurate, and fully informative storm surge forecast is of paramount importance for managing the hazards threatening coastal environments. Specifically, a reliable probabilistic forecast is crucial for the management of the movable barriers that are planned to become operational in 2018 for the protection of Venice and its lagoon. However, a probabilistic forecast requires multiple simulations and a considerable computational time, which makes it expensive in real-time applications. This paper describes the ensemble dressing method, a cheap operational flood prediction system that includes information about the uncertainty of the ensemble members by computing it directly from the meteorological input and the local spread distribution, without requiring multiple forecasts. Here, a sophisticated error distribution form is developed, which includes the superposition of the uncertainty caused by inaccuracies of the ensemble prediction system, which depends on surge level and lead time, and the uncertainty of the meteorological forcing, which is described using a combination of cross-basin pressure gradients. The ensemble dressing is validated over a 3-month-long period in the year 2010, during which an exceptional sequence of storm surges occurred. Results demonstrate that this computationally cheap method can provide an acceptably realistic estimate of the uncertainty.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2016-06-01
    Description: This study analyzed the spatial variability of the linear trend of the precipitation mean, variance, lag-1 autocorrelation coefficient, and probability of dryness (PD) based on the precipitation data between 1981 and 2015 observed at 65 rain gages located across Korean Peninsula. While the result of the Mann-Kendall test based on the yearly statistics showed no temporal trend at most of the gage locations, the same test based on the 20-yearly statistics showed that statistically significant temporal trend exists at 54% (mean), 60% (variance), 61% (autocorrelation), and 61% (PD) among the total 65 rain gages. In addition, this study produced the map of the linear trend of the precipitation statistics. The map showed a clear regional and seasonal tendency implying that the impact of the climate change varies significantly within Korea. The variogram analysis revealed that the approximate characteristic scale of linear trend of hourly and daily precipitation statistics ranges between 50 km and 200 km and between 100 km and 250 km, respectively. This characteristic scale is significantly smaller than the spatial scale of atmospheric circulation, which suggests that future water resources management plans of Korea should consider this mesoscale variability that otherwise can be missed if it is based only on the GCM simulation results.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2016-05-30
    Description: Identifying the dominant meteorological factors affecting aridity variability can improve our understanding of climate change and its future trend in arid and semiarid regions. This study investigated the spatiotemporal aridity variability in North Xinjiang, China, from 1961 to 2013, based on the UNESCO aridity index (precipitation/potential evapotranspiration), and analyzed its association with meteorological factors. The results suggest that North Xinjiang is becoming more humid with an increasing trend in aridity index. Precipitation, temperature, and relative humidity have positive correlation with aridity, and evapotranspiration, sunshine hours, and wind speed have negative correlation with aridity. Wind speed and sunshine hours have a higher sensitivity and more contribution to aridity. This study provides an understanding of the effect of recent climate change on drought in northwest China.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2016-06-01
    Description: Five hydrological models were applied based on data from the Blue Nile Basin. Optimal parameters of each model were obtained by automatic calibration. Model performance was tested under both moderate and extreme flow conditions. Extreme events for the model performance evaluation were extracted based on seven criteria. Apart from graphical techniques, there were nine statistical “goodness-of-fit” metrics used to judge the model performance. It was found that whereas the influence of model selection may be minimal in the simulation of normal flow events, it can lead to large under- and/or overestimations of extreme events. Besides, the selection of the best model for extreme events may be influenced by the choice of the statistical “goodness-of-fit” measures as well as the criteria for extraction of high and low flows. It was noted that the use of overall water-balance-based objective function not only is suitable for moderate flow conditions but also influences the models to perform better for high flows than low flows. Thus, the choice of a particular model is recommended to be made on a case by case basis with respect to the objectives of the modeling as well as the results from evaluation of the intermodel differences.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2016-06-01
    Description: The national numerical weather prediction system of Vietnam is presented and evaluated. The system is based on three main models, namely, the Japanese Global Spectral Model, the US Global Forecast System, and the US Weather Research and Forecasting (WRF) model. The global forecast products have been received at 0.25- and 0.5-degree horizontal resolution, respectively, and the WRF model has been run locally with 16 km horizontal resolution at the National Center for Hydro-Meteorological Forecasting using lateral conditions from GSM and GFS. The model performance is evaluated by comparing model output against observations of precipitation, wind speed, and temperature at 168 weather stations, with daily data from 2010 to 2014. In general, the global models provide more accurate forecasts than the regional models, probably due to the low horizontal resolution in the regional model. Also, the model performance is poorer for stations with altitudes greater than 500 meters above sea level (masl). For tropical cyclone performance validations, the maximum wind surface forecast from global and regional models is also verified against the best track of Joint Typhoon Warning Center. Finally, the model forecast skill during a recent extreme rain event in northeast Vietnam is evaluated.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2016-08-19
    Description: Assimilating observations to a land surface model can further improve soil moisture estimation accuracy. However, assimilation results largely rely on forecast error and generally cannot maintain a water budget balance. In this study, shallow soil moisture observations are assimilated into Common Land Model (CoLM) to estimate the soil moisture in different layers. A proposed forecast error inflation and water balance constraint are adopted in the Ensemble Transform Kalman Filter to reduce the analysis error and water budget residuals. The assimilation results indicate that the analysis error is reduced and the water imbalance is mitigated with this approach.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2016-08-25
    Description: In recent years, with the increasing need for improving the accuracy of hydrometeorological data, interests in rain-radar are also increasing. Accordingly, with high spatiotemporal resolution of rain-radar rainfall data and increasing accumulated data, the application scope of rain-radar rainfall data into hydrological fields is expanding. To evaluate the hydrological applicability of rain-radar rainfall data depending on the characteristics of hydrological model, this study applied and to a SWAT model in the Gamcheon stream basin of the Nakdong River and analyzed the effect of rainfall data on daily streamflow simulation. The daily rainfall data for , , and were utilized as input data for the SWAT model. As a result of the daily runoff simulation for analysis periods using and , the simulation which utilized reflected the rainfall-runoff characteristics better than the simulations which applied or . However, in the rainy or wet season, the simulations which utilized or were similar to or better than the simulation that applied . This study reveals that analysis results and degree of accuracy depend significantly on rainfall characteristics (rainy season and dry season) and QPE algorithms when conducting a runoff simulation with radar.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2016-01-21
    Description: This paper details work in assessing the capability of a hydrodynamic model to forecast surface currents and in applying data assimilation techniques to improve model forecasts. A three-dimensional model Environment Fluid Dynamics Code (EFDC) was forced with tidal boundary data and onshore wind data, and so forth. Surface current data from a high-frequency (HF) radar system in Galway Bay were used for model intercomparisons and as a source for data assimilation. The impact of bottom roughness was also investigated. Having developed a “good” water circulation model the authors sought to improve its forecasting ability through correcting wind shear stress boundary conditions. The differences in surface velocity components between HF radar measurements and model output were calculated and used to correct surface shear stresses. Moreover, data assimilation cycle lengths were examined to extend the improvements of surface current’s patterns during forecasting period, especially for north-south velocity component. The influence of data assimilation in model forecasting was assessed using a Data Assimilation Skill Score (DASS). Positive magnitude of DASS indicated that both velocity components were considerably improved during forecasting period. Additionally, the improvements of RMSE for vector direction over domain were significant compared with the “free run.”
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2016-01-21
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2016-02-01
    Description: Remote control boats equipped with an Acoustic Doppler Current Profiler (ADCP) are widely accepted and have been welcomed by many hydrologists for water discharge, velocity profile, and bathymetry measurements. The advantages of this technique include high productivity, fast measurements, operator safety, and high accuracy. However, there are concerns about controlling and operating a remote boat to achieve measurement goals, especially during extreme events such as floods. When performing river discharge measurements, the main error source stems from the boat path. Due to the rapid flow in a flood condition, the boat path is not regular and this can cause errors in discharge measurements. Therefore, improvement of discharge measurements requires modification of boat path. As a result, the measurement errors in flood flow conditions are 12.3–21.8% before the modification of boat path, but 1.2–3.7% after the DMG modification of boat path. And it is considered that the modified discharges are very close to the observed discharge in the flood flow conditions. In this study, through the distance made good (DMG) modification of the boat path, a comprehensive discharge measurement with high accuracy can be achieved.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2016-02-01
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2016-02-01
    Description: Downscaling improves considerably the results of General Circulation Models (GCMs). However, little information is available on the performance of downscaling methods in the Andean mountain region. The paper presents the downscaling of monthly precipitation estimates of the NCEP/NCAR reanalysis 1 applying the statistical downscaling model (SDSM), artificial neural networks (ANNs), and the least squares support vector machines (LS-SVM) approach. Downscaled monthly precipitation estimates after bias and variance correction were compared to the median and variance of the 30-year observations of 5 climate stations in the Paute River basin in southern Ecuador, one of Ecuador’s main river basins. A preliminary comparison revealed that both artificial intelligence methods, ANN and LS-SVM, performed equally. Results disclosed that ANN and LS-SVM methods depict, in general, better skills in comparison to SDSM. However, in some months, SDSM estimates matched the median and variance of the observed monthly precipitation depths better. Since synoptic variables do not always present local conditions, particularly in the period going from September to December, it is recommended for future studies to refine estimates of downscaling, for example, by combining dynamic and statistical methods, or to select sets of synoptic predictors for specific months or seasons.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2016-02-04
    Description: Precipitable water vapor (PWV) is one of the most variable components of the atmosphere in both space and time. In this study, a passive microwave-based retrieval algorithm for PWV over land without land surface temperature (LST) data was developed. To build the algorithm, two assumptions exist: (1) land surface emissivities (LSE) at two adjacent frequencies are equal and (2) there are simple parameterizations that relate transmittance, atmospheric effective radiating temperature, and PWV. Error analyses were performed using radiosonde sounding observations from Zhangye, China, and CE318 measurements of Dalanzadgad (43°34′37′′N, 104°25′8′′E) and Singapore (1°17′52′′N, 103°46′48′′E) sites from Aerosol Robotic Network (AERONET), respectively. In Zhangye, the algorithm had a Root Mean Square Error (RMSE) of 4.39 mm and a bias of 0.36 mm on cloud-free days, while on cloudy days there was an RMSE of 4.84 mm and a bias of 0.52 mm because of the effect of liquid water in clouds. The validations in Dalanzadgad and Singapore sites showed that the retrieval algorithm had an RMSE of 4.73 mm and a bias of 0.84 mm and the bigger errors appeared when the water vapor was very dry or very moist.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2016-02-04
    Description: In this study, flood hazard maps were prepared for the Mert River Basin, Samsun, Turkey, by using GIS and Hydrologic Engineering Centers River Analysis System (HEC-RAS). In this river basin, human life losses and a significant amount of property damages were experienced in 2012 flood. The preparation of flood risk maps employed in the study includes the following steps: (1) digitization of topographical data and preparation of digital elevation model using ArcGIS, (2) simulation of flood lows of different return periods using a hydraulic model (HEC-RAS), and (3) preparation of flood risk maps by integrating the results of (1) and (2).
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2016-02-04
    Description: There exist two types of direct runoff generation mechanisms in semihumid watersheds: saturation-excess mechanism and infiltration-excess mechanism. It has always been a difficult problem for event hydrological simulation to distinguish the two types of runoff processes. Based on the concept of dominant runoff processes, combined with GIS and RS techniques, this paper proposed an event-based spatial combination modeling framework and built two spatial combination models (SCMs) accordingly. The CN parameter and topographic index, both of which are widely used in hydrological researches, are adopted by the SCM to divide the entire watershed into infiltration-excess dominated (IED) areas and saturation-excess dominated (SED) areas. Dongwan watershed was taken as an example to test the performances of infiltration-excess model, saturation-excess model, and SCM, respectively. The results of parameter optimization showed that the parameter values and state variables of SCM are much more realistic than those of infiltration-excess model and saturation-excess model. The more accurate the divisions of infiltration-excess and saturation-excess dominated areas, the more realistic the SCM parameter values. The simulation results showed that the performance of SCM was improved in both calibration and validation periods. The framework is useful for flood forecasting in semihumid watersheds.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2016-02-04
    Description: The Standardized Precipitation Evapotranspiration Index (SPEI) analysis was conducted using monthly precipitation data and temperature data on a 12.5 km × 12.5 km resolution based on a Representative Concentration Pathways (RCP) 8.5 climate change scenario, and the characteristics of drought were identified by the threshold. In addition, the changes in drought severity and intensity were projected using the threshold based on the run-length concept and frequency analysis. As a result of the analysis, the probability density function of the total drought and maximum drought intensity moved the upper tail for the upcoming years, and the average drought intensity was also projected to become stronger in the future than in the present to the right side. Through this, it could be projected that the drought scale and frequency and the drought intensity will become severer over South Korea because of future climate change.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2016-02-05
    Description: Based on observed data and data simulated by climate models, temporal variation and spatial distribution of precipitation in China from 1961 to 2050 were investigated. The slope of annual precipitation and Mann-Kendall statistical test were applied to quantify the trend magnitude and detect the significant trend, respectively. Besides, decadal and interannual variations of different rain belts were analyzed to reveal the spatial changing pattern of precipitation. Results indicated the following. (1) During 1961–2011, annual precipitation in Haihe River Basin decreased significantly while the annual precipitation in river basins in the northwest increased significantly. Although the annual precipitation of Yangtze River Basin has an indistinctive decreasing trend, that in the middle and lower reaches has increased and that in the upper reaches has decreased. Arid zone and humid zone are shrinking while semiarid and semihumid zone are expanding. Transformation between semiarid and arid zones, humid and semihumid zones is frequent. During 2011–2050, annual precipitation will not change much (−6~12%) except river basins in the southwest (more than 40%) compared with the baseline. Besides, the area of arid zone will decrease and humid zone area will increase. Transformation area between semiarid and arid zone and humid and semihumid zone is small.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2016-02-29
    Description: Extreme rainfall variability has been one of the major factors to famine and environmental degradation in Ethiopia. The potential for water harvesting in the Upper Blue Nile Basin was assessed using two GIS-based Multicriteria Evaluation methods: (1) a Boolean approach to locate suitable areas for in situ and ex situ systems and (2) a weighted overlay analysis to classify suitable areas into different water harvesting suitability levels. The sensitivity of the results was analyzed to the influence given to different constraining factors. A large part of the basin was suitable for water harvesting: the Boolean analysis showed that 36% of the basin was suitable for in situ and ex situ systems, while the weighted overlay analysis showed that 6–24% of the basin was highly suitable. Rainfall has the highest influence on suitability for water harvesting. Implementing water harvesting in nonagricultural land use types may further increase the benefit. Assessing water harvesting suitability at the larger catchment scale lays the foundation for modeling of water harvesting at mesoscale, which enables analysis of the potential and implications of upscaling of water harvesting practices for building resilience against climatic shocks. A complete water harvesting suitability study requires socioeconomic analysis and stakeholder consultation.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2016-02-29
    Description: Establishing Base Flood Elevation for a stream network corresponding to a big catchment is feasible by interdisciplinary approach, involving stochastic hydrology, river hydraulics, and computer aided simulations. A numerical model calibrated by historical floods has been exploited in this study. The short presentation of the catchment of the Tisza River in this paper is followed by the overview of historical floods which hit the region in the documented period of 130 years. Several well documented historical floods provided opportunity for the calibration of the chosen numerical model. Once established, the model could be used for investigation of different extreme flood scenarios and to establish the Base Flood Elevation. The calibration has shown that the coefficient of friction in case of the Tisza River is dependent both on the actual water level and on the preceding flood events. The effect of flood plain maintenance as well as the activation of six potential detention ponds on flood mitigation has been examined. Furthermore, the expected maximum water levels have also been determined for the case if the ever observed biggest 1888 flood hit the region again. The investigated cases of flood superposition highlighted the impact of tributary Maros on flood mitigation along the Tisza River.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2016-02-26
    Description: Terrain-induced windshear at Hong Kong International Airport (HKIA) could be hazardous to the landing and departing aircraft. Such windshear occurring in a planetary boundary layer without temperature inversions is studied in this paper by using the data from the Terminal Doppler Weather Radar and Light Detection and Ranging systems. A high resolution numerical model, called aviation model (AVM), is also employed to find out its capability to forecast the occurrence of such windshear. The model is found to have skills in capturing the terrain-induced windshear, including the terrain-induced microburst due to the mountains of Lantau Island. Moreover, the windshear detection algorithm as applied to the AVM output, called AVM-GLYGA, is able to give advance alert for the occurrence of low-level windshear. The model also offers new dataset, such as vertical velocity and vertical cross sections across the windshear feature, to study the terrain-induced windshear phenomena with new insights. The AVM is found to have good skills in depicting the terrain-disrupted airflow at the airport area, and more comprehensive study would be conducted to study the skills of AVM-GLYGA as compared with pilot windshear report as sky truth.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2016-02-29
    Description: A nonhydrostatic atmospheric model was tested with the mountain waves over various bell-shaped mountains. The model is recently proposed by using the MCV (multimoment constrained finite volume) schemes with the height-based terrain following coordinate representing the topography. As discussed in our previous work, the model has some appealing features for atmospheric modeling and can be expected as a practical framework of the dynamic cores, which well balances the numerical accuracy and algorithmic complexity. The flows over the mountains of various half widths and heights were simulated with the model. The semianalytic solutions to the mountain waves through the linear theory are used to check the performance of the MCV model. It is revealed that the present model can accurately reproduce various mountain waves including those generated by the mountains with very steep inclination and is very promising for numerically simulating atmospheric flows over complex terrains.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2016-02-22
    Description: Catchment hydrologic cycle takes on different patterns across temporal scales. The interim between event-scale hydrologic process and mean annual water-energy correlation pattern requires further examination to justify self-consistent understanding. In this paper, the temporal scale transition revealed by observation and simulation was evaluated in an information theoretical framework named Aleatory Epistemic Uncertainty Estimation. The Aleatory Uncertainty refers to posterior uncertainty of runoff given the input variables’ observations. The Epistemic Uncertainty refers to the posterior uncertainty increase due to the imperfect observation decoding in models. Daily hydrometeorological observations in 24 catchments were aggregated from 10 days to 1 year before implementing the information analysis. Estimations of information contents and flows of hydrologic terms across temporal scales were related with the catchments’ seasonality type. It also showed that information distilled by the monthly and annual water balance models applied here did not correspond to that provided by observations around temporal scale from two months to half a year. This calls for a better understanding of seasonal hydrologic mechanism.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2016-02-24
    Description: Groundwater has always been a valuable resource in Beijing, facing a great decline of groundwater level during the past decades. However, few previous researches have revealed the spatial variation of groundwater level within Beijing Plain. In this study, spatiotemporal variation of groundwater level from 2001 to 2010 in Beijing Plain has been investigated. Factor analysis has been conducted to identify the primary influencing factor. Results showed that the groundwater level decreased by 8.41 m from 2001 to 2010, with a linear decreasing rate of 0.954 m per year averagely. Significant spatial variation characteristics have been detected. The north area suffered more groundwater depletion than the south part in general. The lowest groundwater level has been identified downstream Miyun Reservoir, central part of the Plain. Nevertheless, the most of the south part witnessed a slight revival between 2001 and 2010. This may be due to the differences of socioeconomic circumstances in the Plain. Three influencing factors, that is, “demand factor,” “supply factor,” and “loss factor,” have been identified in the water balance model. Eigenvalues of these factors are 3.563, 2.910, and 1.632, respectively, indicating that these factors influenced the groundwater system to various extents, with the demand factor being the primary one.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2016-01-27
    Description: Mountain regions worldwide present a pronounced spatiotemporal precipitation variability, which added to scarce monitoring networks limits our understanding of the generation processes involved. To improve our understanding of clouds and precipitation dynamics and cross-scale generation processes in mountain regions, we analyzed spatiotemporal rainfall patterns using satellite cloud products (SCP) in the Paute basin (900–4200 m a.s.l. and 6481 km2) in the Andes of Ecuador. Precipitation models, using SCP and GIS data, reveal the spatial extension of three regimes: a three-modal (TM) regime present across the basin, a bimodal (BM) regime, along sheltered valleys, and a unimodal (UM) regime at windward slopes of the eastern cordillera. Subsequently, the spatiotemporal analysis using synoptic information shows that the dry season of the BM regime during boreal summer is caused by strong subsidence inhibiting convective clouds formation. Meanwhile, in UM regions, low advective shallow cap clouds mainly cause precipitation, influenced by water vapor from the Amazon and enhanced easterlies during boreal summer. TM regions are transition zones from UM to BM and zones on the windward slopes of the western cordillera. These results highlight the suitability of satellite and GIS data-driven statistical models to study spatiotemporal rainfall seasonality and generation processes in complex terrain, as the Andes.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2016-02-08
    Description: A number of technologically advanced devices, such as radars and satellites, are used in an actual weather forecasting process. Among these devices, the radar is essential equipment in this process because it has a wide observation area and fine resolution in both the time and the space domains. However, the radar can also observe unwanted nonweather phenomena. Anomalous propagation echo is one of the representative nonprecipitation echoes generated by an abnormal refraction phenomenon of a radar beam. Abnormal refraction occurs when the temperature and the humidity change dramatically. In such a case, the radar recognizes either the ground or the sea surface as an atmospheric object. This false observation decreases the accuracy of both quantitative precipitation estimation and weather forecasting. Therefore, a system that can automatically recognize an anomalous propagation echo from the radar data needs to be developed. In this paper, we propose a classification method for separating anomalous propagation echoes from the rest of the weather data by using a combination of a support vector machine classifier and the synthetic minority oversampling technique, to solve the problem of imbalanced data. By using actual cases of anomalous propagation we have confirmed that the proposed method provides good classification results.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2016-04-28
    Description: This paper shows the results of the implementation of two widely used bulk microphysics parameterizations (BMP) into the Regional Atmospheric Modeling System to improve the Quantitative Precipitation Forecast (QPF). The schemes are the WSM5 and WSM6 (WRF-single-moment-microphysics classes 5 and 6). The RAMS is run at high horizontal resolution (4 km) over the whole Italian territory and, to mimic the operational context, it is initialized by the analysis/forecast cycle issued at 12 UTC by the European Centre for Medium Weather Range Forecast (ECMWF). The performance of the BMP is analysed for the period of September 11 to October 31, 2012, which span most of the Special Observing Period 1 (SOP1) of the hydrological cycle in the Mediterranean experiment (HyMeX). For this period a database of daily precipitation of thousands of rain gauges over the Italian territory is available. In SOP1 few hazardous events occurred over Italy and, for one of them, the model performance is shown in detail. The potential improvement gained by combining the model outputs with different BMP in a single forecast is finally explored.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2016-03-11
    Description: Reliable drought forecasting is necessary to develop mitigation plans to cope with severe drought. This study developed a probabilistic scheme for drought forecasting and outlook combined with quantification of the prediction uncertainties. The Bayesian network was mainly employed as a statistical scheme for probabilistic forecasting that can represent the cause-effect relationships between the variables. The structure of the Bayesian network-based drought forecasting (BNDF) model was designed using the past, current, and forecasted drought condition. In this study, the drought conditions were represented by the standardized precipitation index (SPI). The accuracy of forecasted SPIs was assessed by comparing the observed SPIs and confidence intervals (CIs), exhibiting the associated uncertainty. Then, this study suggested the drought outlook framework based on probabilistic drought forecasting results. The overall results provided sufficient agreement between the observed and forecasted drought conditions in the outlook framework.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2016-03-16
    Description: Observational records in recent decades show a large-scale decrease in the cold-season temperature variance in the Northern Hemisphere midlatitudes under continuous global warming. However, severe low temperature events in winter frequently occurred in midlatitude Eurasia (MEA) in the last decade. Here, we define a new coldness intensity (CI) index for the near-surface based on the amplitude of daily anomalously cold temperatures in winter to demonstrate the CI of the variability of low temperature extremes. The results show that a sign-consistent mode dominates the CI variation in MEA, with a marked intensification during the last decade via empirical orthogonal function (EOF) analysis. This leading mode is significantly related to the frequency of winter extreme events. The associated circulations are characterized by a remarkable anomalous anticyclone in Northwest Eurasia, which induced substantial cold advection in MEA. The widespread intensified CI in MEA is closely linked with strong surface anticyclones and synoptic blocking in the mid-high latitudes (25°E–85°E). Coincidently, positive phase shifts of the first two leading modes of the extratropical circulation, which feature similar blocking-like anomalies in the northwestern Eurasian subarctic, jointly play an important role in the recent frequency of severe winters.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2016-03-16
    Description: Satellite-based real-time and post-real-time precipitation estimates of Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA-3B42) were evaluated during an extreme heavy precipitation event (on 28–30 July 2010) over Swat River Basin and adjacent areas in Hindukush Region. Observations of 15 rain gauging stations were used for the evaluation of TMPA products. Results showed that the spatial pattern of precipitation in the event was generally captured by post-real-time product (3B42V7) but misplaced by real-time product (3B42RT), witnessed by a high spatial correlation coefficient for 3B42V7 (CC = 0.87) and low spatial correlation coefficient for 3B42RT (CC = 0.20). The temporal variation of the storm precipitation was not well captured by both TMPA products. 3B42V7 product underestimated the storm accumulated precipitation by 32.15%, while underestimation by 3B42RT was 66.73%. Based on the findings of this study, we suggest that the latest TMPA-based precipitation products, 3B42RT and 3B42V7, might not be able to perform well during extreme precipitation events, particularly in complex terrain regions like Hindukush Mountains. Therefore, cautions should be considered while using 3B42RT and 3B42V7 as input data source for the modelling, forecasting, and monitoring of floods and potential landslides in Hindukush Region.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2016-03-16
    Description: Based on the surface meteorological data of Jiangsu Province during 1980–2012, the climatic characteristics and the trends of haze were analyzed. The results indicated that during 1980–2012 haze days increased; in particular, severe and moderate haze days significantly increased. In the northern and coastal cities of Jiangsu Province China, haze days showed a significant increase. Haze often appeared in fall and winter and rarely in summer in the study area. It also occurred more often inland, and less along the coast. Haze occurred more often in June due to straw burning in the harvest time. The haze day increased during the 1990s over southern and southwestern Jiangsu Province; in central and northern Jiangsu, haze day increased after 2000. The continuous, regional, and regional continuous haze days all showed increasing trends. As the urban area expanded each year, industrial emissions, coal consumption, and car ownership increased accordingly, resulting in regional temperature increase and relative humidity decrease, which formed the urban heat island and dry island effects. Hence, haze formation and maintenance conditions became more favorable for more haze days, which led to the increase of haze days, and the significant increases of continuous, regional, and regional continuous haze days.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2016-03-17
    Description: The regional climate model, RegCM3, is used to simulate the 2004 summer surface air temperature (SAT) and precipitation at different horizontal (i.e., 30, 60, and 90 km) and vertical resolutions (i.e., 14, 18, and 23 layers). Results showed that increasing resolution evidently changes simulated SATs with regional characteristics. For example, simulated SATs are apparently better produced when horizontal resolution increases from 60 to 30 km under the 23 layers. Meanwhile, the SATs over the entire area are more sensitive to vertical resolution than horizontal resolution. The subareas present higher sensitivities than the total area, with larger horizontal resolution effects than those of vertical resolution. For precipitation, increasing resolution shows higher impact compared to SAT, with higher sensitivity induced by vertical resolution than by horizontal resolution, especially in rainy South China. The best SAT/precipitation can be produced only when the horizontal and vertical resolutions are reasonably configured. This indicates that different resolutions lead to different atmospheric thermodynamic states. Because of the dry climate and low soil heat capacity in Northern China, resolution changes easily modify surface energy fluxes, hence the SAT; due to the rainy and humid climate in South China, resolution changes likely strongly influence grid-scale structure of clouds and therefore precipitation.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2016-03-17
    Description: Downscaling of seasonal hindcasts over East Africa with the regional climate model (RCM) COSMO-CLM (CCLM), forced by the global climate model (GCM) and MPI-ESM, is evaluated. The simulations are done for five months (May to September) for a ten-year period (2000–2009), with the evaluation performed only for June to September. The dry years, 2002 and 2009, and the wet years, 2006 and 2007, are well captured by the models. By using ground based and satellite gridded observation data for evaluation it is found that both COSMO-CLM and MPI-ESM overestimate June to September precipitation over the Ethiopian highlands and in parts of the lowland with respect to all reference datasets. In addition we investigated the potential and real added value for both the RCM and the GCM hindcasts by upscaling (arithmetic mean) the precipitation resolution both in temporal and in spatial scales, over North Ethiopia (EN), South Ethiopia (ES), South Sudan (SS), and Sudan (S). Results inferred that using the RCM for seasonal forecast adds value in capturing extreme precipitation years, especially in the Ethiopian highlands. It is also found that the potential and relative potential added value decrease with decreasing the temporal resolution.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2016-05-05
    Description: The frequent occurrence of geophysical disasters under climate change has drawn Chinese scholars to pay their attention to disaster relations. If the occurrence sequence of disasters could be identified, long-term disaster forecast could be realized. Based on the Earth Degassing Effect (EDE) which is valid, this paper took the magnitude, epicenter, and occurrence time of the earthquake, as well as the epicenter and occurrence time of the rainstorm floods as basic factors to establish an integrated model to study the correlation between rainstorm floods and earthquakes. 2461 severe earthquakes occurred in China or within 3000 km from China and the 169 heavy rainstorm floods occurred in China over the past 200+ years as the input data of the model. The computational results showed that although most of the rainstorm floods have nothing to do with the severe earthquakes from a statistical perspective, some floods might relate to earthquakes. This is especially true when the earthquakes happen in the vapor transmission zone where rainstorms lead to abundant water vapors. In this regard, earthquakes are more likely to cause big rainstorm floods. However, many cases of rainstorm floods could be found after severe earthquakes with a large extent of uncertainty.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2016-05-05
    Description: This study evaluates the effect of climate change on daily rainfall, especially on the mean number of wet days and the mean rainfall intensity. Assuming that the mechanism of daily rainfall occurrences follows the first-order Markov chain model, the possible changes in the transition probabilities are estimated by considering the climate change scenarios. Also, the change of the stationary probabilities of wet and dry day occurrences and finally the change in the number of wet days are derived for the comparison of current (1x CO2) and 2x CO2 conditions. As a result of this study, the increase or decrease in the mean number of wet days was found to be not enough to explain all of the change in monthly rainfall amounts, so rainfall intensity should also be modified. The application to the Seoul weather station in Korea shows that about 30% of the total change in monthly rainfall amount can be explained by the change in the number of wet days and the remaining 70% by the change in the rainfall intensity. That is, as an effect of climate change, the increase in the rainfall intensity could be more significant than the increase in the wet days and, thus, the risk of flood will be much highly increased.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...