ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (31,205)
  • Materials  (10,644)
  • 115624
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (31,205)
  • Economics
  • Chemistry and Pharmacology
Collection
  • Journals
  • Articles  (31,205)
Years
Topic
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (31,205)
  • Economics
  • Chemistry and Pharmacology
  • 1
    Publication Date: 2021-10-28
    Description: In the past few decades, ZrN thin films have been identified as wear resistant coatings for tribological applications. The mechanical and tribological properties of ZrN thin layers depend on internal stress induced by the adopted deposition techniques and deposition parameters such as pressure, temperature, and growth rate. In sputtering deposition processes, the selected target voltage waveform and the plasma characteristics also play a crucial influence on physical properties of produced coatings. In present work, ZrN thin films, obtained setting different values of duty cycle in a reactive bipolar pulsed dual magnetron sputtering plant, were investigated to evaluate their residual stress through the substrate curvature method. A considerable progressive increase of residual stress values was measured at decreasing duty cycle, attesting the significant role of voltage waveform in stress development. An evident correlation was also highlighted between the values of the duty cycle and those of wear factor. The performed analysis attested an advantageous effect of internal stress, having the samples with high compressive stress, higher wear resistance. A downward trend for wear rate with the increase of internal residual stress was observed. The choice of suitable values of duty cycle allowed to produce ceramic coatings with improved tribological performance.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-28
    Description: Monitoring gait patterns in daily life will provide a lot of biological information related to human health. At present, common gait pressure analysis systems, such as pressure platforms and in-shoe systems, adopt rigid sensors and are wired and uncomfortable. In this paper, a biomimetic porous graphene–SBR (styrene-butadiene rubber) pressure sensor (PGSPS) with high flexibility, sensitivity (1.05 kPa−1), and a wide measuring range (0–150 kPa) is designed and integrated into an insole system to collect, process, transmit, and display plantar pressure data for gait analysis in real-time via a smartphone. The system consists of 16 PGSPSs that were used to analyze different gait signals, including walking, running, and jumping, to verify its daily application range. After comparing the test results with a high-precision digital multimeter, the system is proven to be more portable and suitable for daily use, and the accuracy of the waveform meets the judgment requirements. The system can play an important role in monitoring the safety of the elderly, which is very helpful in today’s society with an increasingly aging population. Furthermore, an intelligent gait diagnosis algorithm can be added to realize a smart gait monitoring system.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-28
    Description: Textile-reinforced mortar (TRM) is a strengthening material in which textiles are attached to reinforced concrete (RC) structures using an inorganic matrix. Although many studies on structural behavior, various factors that affect TRM behavior could not be determined clearly. Especially, the uncertainty in bonds due to inorganic materials was not considered. In this study, the flexural behavior of TRM-strengthened beams was determined considering intermediate crack debonding occurred. The TRM beam strengthening limit and TRM coefficients were defined considering the possibility of premature failure and experimental results of four other research on 22 specimens. Therefore, it is expected that a conservative design would be possible when the suggested strengthening limit coefficient is applied.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-28
    Description: To explore the effects of thermal actions on the pore structural features of granite, scanning electron microscope (SEM) and mercury injection experiments were carried out on granite after thermal treatment (25 °C to 400 °C). The pore structure was investigated from various perspectives, including the capillary pressure curve, the pore–throat ratio, the median saturation pressure, the median pore–throat radius, the porosity, the pore volume, and the pore size distribution. Based on mercury intrusion test data, the Winland model of permeability prediction was modified for a high-temperature tight granite reservoir. The results showed that: (1) As the temperature rose, the mercury injection curve was gradually flattened, and the mercury ejection efficiency gradually increased. Meanwhile, the pore–throat ratio and the median saturation pressure decreased exponentially, and the pore connectivity was enhanced. (2) The median pore–throat radius and the porosity of granite increased exponentially as the temperature increased. Above 200 °C, the median pore–throat radius and the porosity increased substantially. (3) The pore volumes of the transitional pores, mesopores and macropores, and the total pore volume inside the granite, increased as the temperature rose. Especially above 200 °C, the transitional pores and the mesopores were prominently developed, and the pore volumes of the transitional pores and the mesopores took up a significantly greater proportion of the total pore volume. (4) As the temperature rose, the pore size distribution of granite became more extensive, the pore–throat structure was obviously developed, and the pore–throat connectivity was enhanced. (5) The relationship between the micropores’ characteristic parameters and the macro-permeability in engineering was established though a modified Winland model, and the modified Winland model had a better prediction effect. The findings provide a solid basis for rock geothermal mining projects and related geotechnical engineering.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-28
    Description: The reaction mechanism of ZrB2-ZrC formation in a 30% Ni-Zr-B4C system under argon was revealed by using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicated that the reaction mechanism in the Ni-Zr-B4C system was complex. Initially, NixZry and NixBy intermetallics were formed via solid-state diffusion reactions between Ni, B4C and Zr. Then, the eutectic reaction between Ni2B and Ni4B3 lead to the formation of Ni-B liquid. The free C atoms dissolved into the Ni-B liquid to form a Ni-B-C ternary liquid, and then part of the Zr powder dissolved into the surrounding Ni-B-C ternary liquid to form Ni-Zr-B-C quaternary liquid. Finally, ZrB2 and ZrC formed and precipitated out of the saturated liquid. The eutectic liquid plays an important role during the formation of ZrB2-ZrC.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-28
    Description: In this study, assessment of the antimicrobial activity of a novel, plasma-cured 2.5% (w/v) Cu(NO3)2-containing sol–gel surface was performed. In contrast to state-of-the-art sol–gel coatings, the plasma curing led to a gradient in cross-linking with the highest values at the top of the coating. As a result, the coating behaved simultaneously hard, scratch-resistant, and tough, the latter due to the more flexible bulk of the coating toward the substrate. Further, the diffusion and permeation through the coating also increased toward the substrate. In our study, tests according to ISO 22196 showed antibacterial activity of the 2.5% (w/v) Cu(NO3)2-containing sol–gel surface against all bacterial strains tested, and we expanded the testing further using a “dry” evaluation without an aqueous contact phase, which confirmed the antimicrobial efficacy of the 2.5% (w/v) Cu(NO3)2-containing sol–gel surface. However, further investigation under exposure to soiling with the addition of 0.3% albumin, used to simulate organic load, led to a significant impairment in the antibacterial effect under both tested conditions. Furthermore, re-testing of the surface after disinfection with 70% ethanol led to a total loss of antibacterial activity. Our results showed that besides the mere application of an antimicrobial agent to a surface coating, it is also necessary to consider the future use of these surfaces in the experimental phase combining industry and science. Therefore, a number of tests corresponding to the utilization of the surface should be obligative on the basis of this assessment.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-10-28
    Description: In this article, results are presented of experiments on depositing charged particles, which imitate the levitating dust on the Moon, on stainless steel. Ensembles of particles are created above the surface of laboratory regolith whose composition and particle size distribution imitate the dust that covers the Moon’s surface. Under the action of the gyrotron radiation on regolith, non-linear physical-chemical processes develop (breakdown, chain plasmachemical reactions, and particle scattering by the Coulomb mechanism), which lead to the appearance of a levitating cloud of particles. The simulation experiment is based on the similarity between the processes that develop in the laboratory experiments with regolith and the processes that occur on the Moon during its bombardment by micrometeorites. The effect of the levitating cloud on stainless steel plates is studied and it is shown that regolith particles in the shape of spheroids of different sizes are deposited on the surface of the plates. The dimensions of the deposited particles and the density of their placement depend on the quality of treatment of the plate surface. It is shown that the laboratory-produced dusty plasma can be used in simulation experiments to study the modification of surfaces of different materials for space technology.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-10-28
    Description: A few-layer graphene (FLG) composite material was synthesized using a rich reservoir and low-cost coal under the microwave-assisted catalytic graphitization process. X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy were used to evaluate the properties of the FLG sample. A well-developed microstructure and higher graphitization degree were achieved under microwave heating at 1300 °C using the S5% dual (Fe-Ni) catalyst for 20 min. In addition, the synthesized FLG sample encompassed the Raman spectrum 2D band at 2700 cm−1, which showed the existence of a few-layer graphene structure. The high-resolution TEM (transmission electron microscopy) image investigation of the S5% Fe-Ni sample confirmed that the fabricated FLG material consisted of two to seven graphitic layers, promoting the fast lithium-ion diffusion into the inner surface. The S5% Fe-Ni composite material delivered a high reversible capacity of 287.91 mAhg−1 at 0.1 C with a higher Coulombic efficiency of 99.9%. In contrast, the single catalyst of S10% Fe contained a reversible capacity of 260.13 mAhg−1 at 0.1 C with 97.96% Coulombic efficiency. Furthermore, the dual catalyst-loaded FLG sample demonstrated a high capacity—up to 95% of the initial reversible capacity retention—after 100 cycles. This study revealed the potential feasibility of producing FLG materials from bituminous coal used in a broad range as anode materials for lithium-ion batteries (LIBs).
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-10-28
    Description: Metallic three-dimensional lattice structures exhibit many favorable mechanical properties including high specific strength, high mechanical efficiency and superior energy absorption capability, being prospective in a variety of engineering fields such as light aerospace and transportation structures as well as impact protection apparatus. In order to further compare the mechanical properties and better understand the energy absorption characteristics of metal lattice structures, enhanced pyramidal lattice structures of three strut materials was prepared by 3D printing combined with investment casting and direct metal additive manufacturing. The compressive behavior and energy absorption property are theoretically analyzed by finite element simulation and verified by experiments. It is shown that the manufacturing method of 3D printing combined with investment casting eliminates stress fluctuations in plateau stages. The relatively ideal structure is given by examination of stress–strain behavior of lattice structures with varied parameters. Moreover, the theoretical equation of compressive strength is established that can predicts equivalent modulus and absorbed energy of lattice structures.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-10-28
    Description: The failures of soil slopes during the construction of high-speed railway caused by the soil after the freeze–thaw (F–T) cycle and the subsequent threat to construction safety are critical issues. An appropriate constitutive model for soils accurately describing the deformation characteristics of soil slopes after the F–T cycle is very important. Few constitutive models of soils incorporate the F–T cycle, and the associated flow rule has always been employed in previous models, which results in an overestimation of the deformation of soil exposed to the F–T cycle. Generalized plasticity theory is widely used to predict the performance of geotechnical materials and is especially well adapted to deal with this type of generalized cyclic loading (such as a freeze–thaw cycle), and it overcomes the shortcomings of the associated flow rule that causes larger shear deformation. To this end, an elastoplastic model framework based on generalized plasticity theory with double yield surfaces for saturated soils subjected to F–T cycles was developed. Two types of plastic deformation mechanisms, i.e., plastic volumetric compression and plastic shear, were considered in this elastoplastic model. It was found that this model can accurately predict the mechanical behavior and deformation characteristics of saturated soils after F–T cycles.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...