ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4,844)
  • Other Sources
  • MDPI Publishing  (4,844)
  • American Meteorological Society
  • Kraatz, Berlin
  • 2015-2019  (4,844)
  • Materials  (4,844)
  • 115624
  • 101
    Publication Date: 2018-08-15
    Description: Materials, Vol. 11, Pages 1428: Almond Shell as a Microporous Carbon Source for Sustainable Cathodes in Lithium–Sulfur Batteries Materials doi: 10.3390/ma11081428 Authors: Almudena Benítez Marcos González-Tejero Álvaro Caballero Julián Morales A microporous carbon derived from biomass (almond shells) and activated with phosphoric acid was analysed as a cathodic matrix in Li–S batteries. By studying the parameters of the carbonization process of this biomass residue, certain conditions were determined to obtain a high surface area of carbon (967 m2 g−1) and high porosity (0.49 cm3 g−1). This carbon was capable of accommodating up to 60% by weight of sulfur, infiltrated by the disulphide method. The C–S composite released an initial specific capacity of 915 mAh g−1 in the Li–S cell at a current density of 100 mA g−1 with a high retention capacity of 760 mAh g−1 after 100 cycles and a coulombic efficiency close to 100%. The good performance of the composite was also observed under higher current rates (up to 1000 mA g−1). The overall electrochemical behaviour of this microporous carbon acting as a sulfur host reinforces the possibility of using biomass residues as sustainable sources of materials for energy storage.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2018-08-15
    Description: Materials, Vol. 11, Pages 1427: Design of a Scaffold Parameter Selection System with Additive Manufacturing for a Biomedical Cell Culture Materials doi: 10.3390/ma11081427 Authors: Marc Rabionet Emma Polonio Antonio J. Guerra Jessica Martin Teresa Puig Joaquim Ciurana Open-source 3D printers mean objects can be quickly and efficiently produced. However, design and fabrication parameters need to be optimized to set up the correct printing procedure; a procedure in which the characteristics of the printing materials selected for use can also influence the process. This work focuses on optimizing the printing process of the open-source 3D extruder machine RepRap, which is used to manufacture poly(ε-caprolactone) (PCL) scaffolds for cell culture applications. PCL is a biocompatible polymer that is free of toxic dye and has been used to fabricate scaffolds, i.e., solid structures suitable for 3D cancer cell cultures. Scaffold cell culture has been described as enhancing cancer stem cell (CSC) populations related to tumor chemoresistance and/or their recurrence after chemotherapy. A RepRap BCN3D+ printer and 3 mm PCL wire were used to fabricate circular scaffolds. Design and fabrication parameters were first determined with SolidWorks and Slic3r software and subsequently optimized following a novel sequential flowchart. In the flowchart described here, the parameters were gradually optimized step by step, by taking several measurable variables of the resulting scaffolds into consideration to guarantee high-quality printing. Three deposition angles (45°, 60° and 90°) were fabricated and tested. MCF-7 breast carcinoma cells and NIH/3T3 murine fibroblasts were used to assess scaffold adequacy for 3D cell cultures. The 60° scaffolds were found to be suitable for the purpose. Therefore, PCL scaffolds fabricated via the flowchart optimization with a RepRap 3D printer could be used for 3D cell cultures and may boost CSCs to study new therapeutic treatments for this malignant population. Moreover, the flowchart defined here could represent a standard procedure for non-engineers (i.e., mainly physicians) when manufacturing new culture systems is required.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2018-08-15
    Description: Materials, Vol. 11, Pages 1429: Assessment of the Potential Economic Impact of the Use of AM Technologies in the Cost Levels of Manufacturing and Stocking of Spare Part Products Materials doi: 10.3390/ma11081429 Authors: Joaquim Minguella-Canela Sergio Morales Planas Joan Ramon Gomà Ayats M. Antonia de los Santos López Additive manufacturing (AM) technologies are appropriate manufacturing technologies to produce low rotation products of high added value. Products in the spare parts business usually have discontinuous demand levels of reduced numbers of parts. Indeed, spare parts inventories handle myriad of products that require big immobilized investments while having an intrinsic risk of no-use (for example due to obsolescence or spoilage). Based on these issues, the present work analyses the fundamental cost factors in a real case study of a company dedicated to the supply of spare parts for fluid conduction systems. Real inventory data is assessed to determine the product taxonomy and its associated costs. A representative product of the stock is analyzed in detail on original manufacturing costs, in AM costs and then redesigned with topological optimization to reduce the AM cost levels (via design for additive manufacturing). A general equation for cost assessment is formulated. Given the specific data collected from the company, the parameters in this general equation are calculated. Finally, the general equation and the product cost reduction achieved are used to explore the potential economic impact of the use of AM technologies in the cost levels of manufacturing and stocking of spare part products.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2018-08-15
    Description: Materials, Vol. 11, Pages 1426: Investigations on the Electrochemical Atomic Layer Growth of Bi2Se3 and the Surface Limited Deposition of Bismuth at the Silver Electrode Materials doi: 10.3390/ma11081426 Authors: Walter Giurlani Andrea Giaccherini Nicola Calisi Giovanni Zangari Emanuele Salvietti Maurizio Passaponti Stefano Caporali Massimo Innocenti The Electrochemical Atomic Layer Deposition (E-ALD) technique is used for the deposition of ultrathin films of bismuth (Bi) compounds. Exploiting the E-ALD, it was possible to obtain highly controlled nanostructured depositions as needed, for the application of these materials for novel electronics (topological insulators), thermoelectrics and opto-electronics applications. Electrochemical studies have been conducted to determine the Underpotential Deposition (UPD) of Bi on selenium (Se) to obtain the Bi2Se3 compound on the Ag (111) electrode. Verifying the composition with X-ray Photoelectron Spectroscopy (XPS) showed that, after the first monolayer, the deposition of Se stopped. Thicker deposits were synthesized exploiting a time-controlled deposition of massive Se. We then investigated the optimal conditions to deposit a single monolayer of metallic Bi directly on the Ag.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2018-08-15
    Description: Materials, Vol. 11, Pages 1425: A Class of Rate-Independent Lower-Order Gradient Plasticity Theories: Implementation and Application to Disc Torsion Problem Materials doi: 10.3390/ma11081425 Authors: Emin Semih Perdahcıoğlu Celal Soyarslan Emin Erkan Aşık Ton van den Boogaard Swantje Bargmann As the characteristic scale of products and production processes decreases, the plasticity phenomena observed start to deviate from those evidenced at the macroscale. The current research aims at investigating this gap using a lower-order gradient enhanced approach both using phenomenological continuum level as well as crystal plasticity models. In the phenomenological approach, a physically based hardening model relates the flow stress to the density of dislocations where it is assumed that the sources of immobile dislocations are both statistically stored (SSDs) as well as geometrically necessary dislocations (GNDs). In the crystal plasticity model, the evolution of the critical resolved shear stress is also defined based on the total number of dislocations. The GNDs are similarly incorporated in the hardening based on projecting the plastic strain gradients through the Burgers tensor on slip systems. A rate-independent formulation is considered that eliminates any artificial inhomogeneous hardening behavior due to numerical stabilization. The behavior of both models is compared in simulations focusing on the effect of structurally imposed gradients versus the inherent gradients arising in crystal plasticity simulations.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2018-08-15
    Description: Materials, Vol. 11, Pages 1437: Effect of Electromagnetic Stirring on the Microstructure and Properties of Fe-Cr-Co Steel Materials doi: 10.3390/ma11081437 Authors: Lin Zhang Yuhang Hou Xiao Guo Zhaolong Xiang Engang Wang High chromium steel has been synthesized by an induction furnace adopting electromagnetic stirring (EMS). Varying amounts of cobalt was added to obtain 3, 6, and 12% Co in the steel. The melt was allowed to solidify with or without EMS in a rotary magnetic field. The effects of the varying cobalt content and the stirring have been characterized by the microstructural evolution and the consequent improvement in mechanical properties. The application of a rotary EMS during solidification has shown a significant effect on the grain refining, the reduction of element segregation, the promotion of eutectic volume fraction, and the consequent improvement of mechanical properties, including hardness and high-temperature strength. The formation mechanism of the eutectic structure and the precipitation of M7C3 and M23C6 carbides was discussed according to the calculated phase diagram. The increment of cobalt content improved the eutectic volume fraction. Cobalt addition also enhanced the hardness and the yield tensile strength, provided that the ingot structure was homogenized by the EMS.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2018-08-13
    Description: Materials, Vol. 11, Pages 1414: Numerical-Experimental Study of the Consolidation Phenomenon in the Selective Laser Melting Process with a Thermo-Fluidic Coupled Model Materials doi: 10.3390/ma11081414 Authors: Francisco Cordovilla Ángel García-Beltrán Miguel Garzón Diego A. Muñoz José L. Ocaña One of the main limiting factors for a widespread industrial use of the Selective Laser Melting Process it its lack of productivity, which restricts the use of this technology just for high added-value components. Typically, the thickness of the metallic powder that is used lies on the scale of micrometers. The use of a layer up to one millimeter would be necessarily associated to a dramatic increase of productivity. Nevertheless, when the layer thickness increases, the complexity of consolidation phenomena makes the process difficult to be governed. The present work proposes a 3D finite element thermo-coupled model to study the evolution from the metallic powder to the final consolidated material, analyzing specifically the movements and loads of the melt pool, and defining the behavior of some critical thermophysical properties as a function of temperature and the phase of the material. This model uses advanced numerical tools such as the Arbitrary Lagrangean–Eulerian formulation and the Automatic Remeshing technique. A series of experiments have been carried out, using a high thickness powder layer, allowing for a deeper understanding of the consolidation phenomena and providing a reference to compare the results of the numerical calculations.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2018-08-16
    Description: Materials, Vol. 11, Pages 1442: Replication of Micro- and Nanofeatures in Injection Molding of Two PLA Grades with Rapid Surface-Temperature Modulation Materials doi: 10.3390/ma11081442 Authors: Sara Liparoti Vito Speranza Roberto Pantani The production by injection molding of polymeric components having micro- and nanometrical surfaces is a complex task. Generally, the accurate replication of micro- and nanometrical features on the polymeric surface during the injection-molding process is prevented by of the low mold temperature adopted to reduce cooling time. In this work, we adopt a system that allows fast heating of the cavity surface during the time the melt reaches the cavity, and fast cooling after heater deactivation. A nickel insert with micro- and nanofeatures in relief is located on the cavity surface. Replication accuracy is analyzed by Atomic Force Microscopy under different injection-molding conditions. Two grades of polylactic acid with different viscosity have been adopted. The results indicate that the higher the cavity surface temperature is, the higher the replication accuracy is. The viscosity has a significant effect only in the replication of the microfeatures, whereas its effect results are negligible in the replication of nanofeatures, thus suggesting that the interfacial phenomena are more important for replication at a nanometric scale. The evolution of the crystallinity degree on the surface also results in a key factor on the replication of nanofeatures.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2018-08-18
    Description: Materials, Vol. 11, Pages 1459: CVD Synthesis of Monodisperse Graphene/Cu Microparticles with High Corrosion Resistance in Cu Etchant Materials doi: 10.3390/ma11081459 Authors: Shuangyi Li Baosen Hou Dan Dai Shengcheng Shu Mingliang Wu Ao Li Yu Han Zhi-xiang Zhu Bao-an Chen Yi Ding Qiang Zhang Qiang Wang Nan Jiang Cheng-Te Lin Copper powder has broad applications in the powder metallurgy, heat exchanger, and electronic industries due to its intrinsically high electrical and thermal conductivities. However, the ease of formation of surface oxide or patina layer raises difficulty of storage and handling of copper powder, particularly in the case of Cu microparticles. Here, we developed a thermal chemical vapor deposition chemical vapor deposition (CVD) process for large-scale synthesis of graphene coatings on Cu microparticles, which importantly can remain monodisperse without aggregation after graphene growth at high temperature by using removal spacers. Compared to other protective coating methods, the intrinsic electrical and thermal properties of Cu powder would not be degraded by uniform growth of low defect few-layer graphene on each particle surface. As a result, when the anticorrosion performance test was carried out by immersing the samples in Cu etchant, the corrosion rate of graphene/Cu microparticles was significantly improved (ca three times slower) compared to that of pristine Cu powder, also showing a comparable anticorrosion ability to commercial CuZn30 alloy.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2018-08-18
    Description: Materials, Vol. 11, Pages 1464: Effects of Cr and Zr Addition on Microstructures, Compressive Properties, and Abrasive Wear Behaviors of In Situ TiB2/Cu Cermets Materials doi: 10.3390/ma11081464 Authors: Feng Qiu Xiangzheng Duan Baixin Dong Hongyu Yang Jianbang Lu Xiujuan Li : In situ micro-TiB2/Cu cermets with a different TiB2 content (40, 50, and 60 vol %) were successfully fabricated by combustion synthesis (CS) and hot press consolidation in Cu-Ti-B systems. In addition, different contents of Cr and Zr were added to the Cu-Ti-B systems. The microstructure, mechanical properties, and abrasive wear properties of the TiB2/Cu cermets were investigated. As the ceramic content increased, the yield strength and compressive strength of the cermets were found to increase, while the strain decreased. An increase in load and abrasive particle size caused the wear volume loss of the TiB2/Cu cermets to increase. When the ceramic content was 60 vol %, the wear resistance of the TiB2/Cu cermets was 3.3 times higher than that of pure copper. The addition of the alloying elements Zr and Cr had a significant effect on the mechanical properties of the cermets. When the Cr content was 5 wt %, the yield strength, ultimate compressive strength, and microhardness of the cermets reached a maximum of 997 MPa, 1183 MPa, and 491 Hv, respectively. Correspondingly, when the Zr content was 5 wt %, those three values reached 1764 MPa, 1967 MPa, and 655 Hv, respectively, which are 871 MPa, 919 MPa, and 223 Hv higher than those of the unalloyed cermets. The wear mechanism of the in-situ TiB2/Cu cermets, and the mechanisms by which the strength and wear resistance were enhanced by the addition of Zr, were preliminarily revealed.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2018-08-18
    Description: Materials, Vol. 11, Pages 1457: Sinus Membrane Elevation with Heterologous Cortical Lamina: A Randomized Study of a New Surgical Technique for Maxillary Sinus Floor Augmentation without Bone Graft Materials doi: 10.3390/ma11081457 Authors: Antonio Scarano Pablo Santos de Oliveira Tonino Traini Felice Lorusso Background: The aim of this randomized controlled clinical trial was to compare the efficacy of two different techniques for maxillary sinus augmentation using a lateral window approach: Heterologous cortical lamina without any grafting material versus 100% collagenated granular collagen porcine bone. Methods: Twenty-three healthy patients with not relevant past medical history (14 women and 9 men, non-smokers, mean age 52 years, range 48–65 years) were included. In Group I, the sinus was filled with collagen porcine bone (Geno-os, OsteoBiol, Turin, Italy) and a collagen membrane (Evolution, OsteoBiol, Turin, Italy) was used to close the lateral window of the sinus. In Group II, the sinus was treated with heterologous cortical lamina only (Lamina, OsteoBiol, Turin, Italy). Results: There was a statistically significant difference in the surgical time required to complete the augmentation procedures: 18.3 ± 2.1 min for lamina treated sites versus 12.5 ± 3.1 min for porcine bone treated sites. In Group I, the mean volume of the graft was 3101 ± 321 mm3 in the immediate postoperative examination (5–7 days), while after a six-month healing period it was 2716.7 ± 432 mm3. Conclusion: This study demonstrates that the use of heterologous cortical lamina is a valid technique for the mechanical support of sinus membranes resulting in only bone tissue formation and not mixed with the graft. The graft material was biocompatible and not completely resorbed after six months, although the remains were integrated into the bone.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2018-08-23
    Description: Materials, Vol. 11, Pages 1507: Experimental Investigation on Graphene Oxide/SrCl2·6H2O Modified CaCl2·6H2O and the Resulting Thermal Performances Materials doi: 10.3390/ma11091507 Authors: Zhiyang Jin Yuanyuan Tian Xiaoxiao Xu Hongzhi Cui Waiching Tang Yanchun Yun Guoxing Sun Although the inorganic salt hydrate phase change materials (PCMs) such as CaCl2·6H2O have promising potential for thermal energy storage in building application, the issue of supercooling has restricted their practical application. In this study, graphene oxide (GO) and SrCl2·6H2O as binary nucleation agents were used to modify CaCl2·6H2O and reduce its supercooling degree. Compared with pure CaCl2·6H2O, the incorporation of graphene oxide (GO)/SrCl2·6H2O reduced the supercooling degree to 0.3 °C significantly. In addition, the supercooling degree of modified CaCl2·6H2O after 200 thermal cycles was still much lower than that of non-modified CaCl2·6H2O. From the results of differential scanning calorimetry (DSC), the latent heat value and phase change temperature of the modified CaCl2·6H2O were 207.88 J/g and 27.6 °C, respectively. Aluminum capsules were used to encapsulate the modified PCM and placed inside the composite wallboard. The thermal performances of the composite wallboard with modified PCM were investigated using infrared thermography. Experimental results showed that the average temperature difference between the top and bottom surfaces of modified CaCl2·6H2O/wallboard composite after 1 h heating was kept around 15.8 °C, while it was 4.9 °C for the control wallboard. The above test results proved that the modified CaCl2·6H2O demonstrated good thermal performance and can be used in buildings to maintain thermal comfort.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2018-08-22
    Description: Materials, Vol. 11, Pages 1490: Effect of Zn and Ca Addition on Microstructure and Strength at Room Temperature of As-Cast and As-Extruded Mg-Sn Alloys Materials doi: 10.3390/ma11091490 Authors: Yang Zhang Leipeng Song Xiaoyang Chen Yalin Lu Xiaoping Li In this study, the effect of Zn and Ca addition on microstructure and strength at room temperature of Mg-Sn alloys was investigated by comparison of Mg-6Sn, Mg-6Sn-2Zn, and Mg-6Sn-2Zn-1Ca alloys in as-cast and as-extruded states. In the as-cast samples, α-Mg and Mg2Sn phases were the main phases of Mg-6Sn and Mg-6Sn-2Zn alloys, while the CaMgSn phase was formed in Mg-6Sn-2Zn-1Ca alloy due to the addition of the Ca element. Mg2Sn phase dissolved into the matrix during homogenization while CaMgSn phase remained. Incomplete dynamic recrystallization (DRX) took place in these alloys during hot extrusion. Fine Mg2Sn precipitates were observed in α-Mg matrix of as-extruded samples. Zn showed little influence on microstructure, whereas Ca reduced the volume fraction of un-DRXed grains and increased the size of DRXed grains. As-extruded Mg-Sn alloys exhibited typical fiber texture. The strength at room temperature of Mg-Sn alloys improved significantly after hot extrusion. The addition of Zn element was beneficial to the strength at room temperature of the Mg-6Sn alloy, while the further addition of Ca element was harmful to the strength. Among these alloys, the Mg-6Sn-2Zn alloy exhibited the best strength at room temperature in both as-cast and as-extruded states.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2018-08-22
    Description: Materials, Vol. 11, Pages 1494: Eumelanin Coating of Silica Aerogel by Supercritical Carbon Dioxide Deposition of a 5,6-Dihydroxyindole Thin Film Materials doi: 10.3390/ma11091494 Authors: Giuseppe Caputo Irene Bonadies Ludovico Migliaccio Maria Federica Caso Alessandro Pezzella Eumelanin integration in silica aerogel (SA) was achieved via supercritical adsorption of 5,6-dyhydroxyindole (DHI) from CO2. Notably, after the supercritical treatment, DHI evolved towards spontaneous polymerization, which resulted in uniform pigment development over the SA. The new material was characterized for its morphological and physicochemical properties, disclosing the formation of a eumelanin-like coating, as confirmed by UV–vis and electron paramagnetic resonance (EPR) spectroscopy.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2018-08-22
    Description: Materials, Vol. 11, Pages 1495: Analysis of Forming Limits in Sheet Metal Forming with Pattern Recognition Methods. Part 1: Characterization of Onset of Necking and Expert Evaluation Materials doi: 10.3390/ma11091495 Authors: Emanuela Affronti Christian Jaremenko Marion Merklein Andreas Maier In automotive manufacturing, high strength materials, and aluminum alloys are widely used to address the requirement of ensuring a lightweight car body and correspondingly, reducing pollution. In this context of complexity of materials and structures, an optimized process design with finite element analyses (FEA) is mandatory, as well as a correct definition of the material forming limits. For this purpose, in sheet metal forming, the forming limit curve (FLC) is used. The FLC is defined by the onset of necking. The standard evaluation method according to DIN EN ISO 12004-2 is based on the cross-section method and assumes that the failure occurs due to a clear localized necking. However, this approach has its limitations, specifically in the case of brittle materials that do not exhibit a distinct necking phase. To overcome this challenge, a pattern recognition-based evaluation is proposed. Although pattern recognition and machine learning techniques have been widely employed in the medical field, few studies have investigated them in the context of analyzing metal sheet forming limits. The application of pattern recognition in metal forming is subject to the exact definition of the forming behaviors. Thereby, it is challenging to relate patterns on the strain distribution during Nakajima tests with the onset of necking for the FLC determination. Thus, the first approach was based on the crack evaluation, since this class is well-defined. However, of substantial interest is the evaluation of the general material instabilities that precede failure. Therefore, in the present study, the analysis of the material behavior during stretching is conducted in order to characterize instability classes. The results of Nakajima tests are investigated using an optical measurement system. A conventional pattern recognition approach based on texture features, considering the outcomes of expert interviews for the definition of classes is used for the FLC determination. Moreover, an analysis of the validity of the supervised learning is conducted. The results show a good prediction of the onset of necking, even for high strength materials with a recall of up to 92%. Some deviations are observed in the determination of the diffuse necking. The discrepancies of the different experts’ prognoses highlight the user-dependency of the FLC, suggesting further investigations with an data-driven approach, could be beneficial.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2018-08-22
    Description: Materials, Vol. 11, Pages 1491: A New Prediction Method for the Ultimate Tensile Strength of Steel Alloys with Small Punch Test Materials doi: 10.3390/ma11091491 Authors: Jose Calaf Chica Pedro Miguel Bravo Díez Mónica Preciado Calzada The load–deflection curve acquired from the Small Punch Test (SPT) is used to obtain the mechanical properties of materials using different correlation methods. The scattering level of these regressions tends to be high when a wide set of materials is analyzed. In this study, a correlation method based on a specific slope of the SPT curve was proposed to reduce scattering. Assuming the Ramberg–Osgood hardening law, the dependence of the SPT curve slope on the yield strength and the hardening coefficient is demonstrated by numerical simulations (FEM). Considering that the ultimate tensile strength could be obtained from the hardening coefficient, a response surface of the ultimate tensile strength with the yield strength and SPT curve slope, along with its equation, is presented for steel alloys. A summary of steel mechanical properties, based on the Boiler and Pressure Vessel Code (BPVC) and limited to yield strengths lower than 1300 MPa, is shown to select a set of experimental tests (tensile tests and SPTs) for which the range is completely covered. This experimental analysis validates the previous FEM analyses and the validity of the proposed correlation method, which shows more accurate correlations compared to the current methods.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2018-08-22
    Description: Materials, Vol. 11, Pages 1487: Porous AlGaN-Based Ultraviolet Distributed Bragg Reflectors Materials doi: 10.3390/ma11091487 Authors: Peter Griffin Tongtong Zhu Rachel Oliver Utilising dislocation-related vertical etching channels in gallium nitride, we have previously demonstrated a simple electrochemical etching (ECE) process that can create layered porous GaN structures to form distributed Bragg reflectors for visible light at wafer scale. Here, we apply the same ECE process to realise AlGaN-based ultraviolet distributed Bragg reflectors (DBRs). These are of interest because they could provide a pathway to non-absorbing UV reflectors to enhance the performance of UV LEDs, which currently have extremely low efficiency. We have demonstrated porous AlGaN-based UV DBRs with a peak reflectance of 89% at 324 nm. The uniformity of these devices is currently low, as the as-grown material has a high density of V-pits and these alter the etching process. However, our results indicate that if the material growth is optimised, the ECE process will be useful for the fabrication of UV reflectors.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2018-08-22
    Description: Materials, Vol. 11, Pages 1485: Nanoporous 3D-Printed Scaffolds for Local Doxorubicin Delivery in Bone Metastases Secondary to Prostate Cancer Materials doi: 10.3390/ma11091485 Authors: Pouyan Ahangar Elie Akoury Ana Sofia Ramirez Garcia Luna Antone Nour Michael H. Weber Derek H. Rosenzweig The spine is the most common site of bone metastasis, often originating from prostate, lung, and breast cancers. High systemic doses of chemotherapeutics such as doxorubicin (DOX), cisplatin, or paclitaxel often have severe side effects. Surgical removal of spine metastases also leaves large defects which cannot spontaneously heal and require bone grafting. To circumvent these issues, we designed an approach for local chemotherapeutic delivery within 3D-printed scaffolds which could also potentially serve as a bone substitute. Direct treatment of prostate cancer cell line LAPC4 and patient derived spine metastases cells with 0.01 µM DOX significantly reduced metabolic activity, proliferation, migration, and spheroid growth. We then assessed uptake and release of DOX in a series of porous 3D-printed scaffolds on LAPC4 cells as well as patient-derived spine metastases cells. Over seven days, 60–75% of DOX loaded onto scaffolds could be released, which significantly reduced metabolic activity and proliferation of both LAPC4 and patient derived cells, while unloaded scaffolds had no effect. Porous 3D-printed scaffolds may provide a novel and inexpensive approach to locally deliver chemotherapeutics in a patient-specific manner at tumor resection sites. With a composite design to enhance strength and promote sustained drug release, the scaffolds could reduce systemic negative effects, enhance bone repair, and improve patient outcomes.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2018-08-22
    Description: Materials, Vol. 11, Pages 1488: Study on the Effect of Demulsification Speed of Emulsified Asphalt based on Surface Characteristics of Aggregates Materials doi: 10.3390/ma11091488 Authors: Fanlong Tang Guangji Xu Tao Ma Lingyun Kong Aggregate is an indispensable raw material for emulsified asphalt construction. For the purpose of explaining the influence of aggregate characteristics on the demulsification speed of emulsified asphalt, the surface energy and specific surface area (SSA) characteristics of aggregates were calculated based on the capillary rise method and the BET (Brunauer-Emmett-Teller) adsorption test. Afterwards, the effect of the surface energy and specific surface area of the aggregate on the emulsified asphalt demulsification speed was systematically studied by using ultraviolet spectroscopy as well as the orthogonal test. Experimental results indicate that the specific surface energy parameter of the aggregate is certainly related to the particle size of the aggregate. That is, the surface free energy of the unit system is proportional to the surface area A and the density of the interface unit. The specific surface area parameter of aggregates increases with the decrease of particle size, when the particle size is reduced to 600 mesh, the specific surface area parameters of the three aggregates selected in this paper tend to be consistent. Orthogonal experimental analysis demonstrates that the surface energy and specific surface area have an impact on the emulsion breaking speed and they are proven to be positively correlated. Meanwhile, in the case of small particle sizes, there is no statistically significant correlation between the physical properties of aggregates and the demulsification speed of emulsified asphalt, and the physical property of aggregates is not the main factor that affects the demulsification speed of the emulsified asphalt. On the contrary, the material properties of the aggregate, such as acid-base property and chargeability, are the dominant factors.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2018-08-24
    Description: Materials, Vol. 11, Pages 1509: Stress Corrosion Behaviors of 316LN Stainless Steel in a Simulated PWR Primary Water Environment Materials doi: 10.3390/ma11091509 Authors: Yong Huang Weisong Wu Shuo Cong Guang Ran Danxia Cen Ning Li The effect of the strain rate, experimental temperature, Zn content in the test solution, and prefilming time on the mechanical properties was investigated by a tensile test with a slow strain rate, at a chemical solution of 2.2 ppm Li and 1200 ppm B in a static autoclave with 8.2 MPa. The experimental parameters clearly affected the tensile properties. The surface morphology, fractograph, and cross-sectional microstructure were analyzed by scanning electron microscopy and transmission electron microscopy. The δ (elongation) and UTS (ultimate tensile strength) of the samples tested in chemical solution were obviously lower than those of the samples tested under a nitrogen atmosphere. However, in general, all samples showed a ductile fracture characteristic and an excellent tensile property in all experimental conditions. The δ and UTS were first increased with increasing Zn content, and then decreased at both conditions of 9.26 × 10−7/s and 4.63 × 10−7/s strain rates. The difference values of tensile properties at different strain rates showed fluctuations with increasing Zn content. The δ increased with both increasing experimental temperature and prefilming time. The UTS first decreased with increasing prefilming time and then increased. The Iscc (stress corrosion cracking susceptibility) decreased with an increasing strain rate, experiment temperature, and prefilming time. Many particles with polyhedrons were formed on the sample surfaces, which was attributed to corrosion in a periodical location at the sample surface. The average length of the particles decreased with increasing Zn content, but increased with both increasing experimental temperatures and prefilming time. The corresponding mechanism is also discussed in this work.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2018-08-26
    Description: Materials, Vol. 11, Pages 1533: Study of the Portevin-Le Chatelier (PLC) Characteristics of a 5083 Aluminum Alloy Sheet in Two Heat Treatment States Materials doi: 10.3390/ma11091533 Authors: Ni Tian Guangdong Wang Yiran Zhou Kun Liu Gang Zhao Liang Zuo In the present work, the role of Mg atoms in the form of either Mg clusters or β phase on the moving dislocations in 5083 aluminum alloy sheet were investigated by comparing the plastic flow behavior and Portevin-Le Chatelier (PLC) character in annealed and quenched conditions. It is found that the tensile strength of quenched sheets at different strain rates is slightly higher than those under annealed condition while the yield strength at both conditions is similar. In annealed sheets, the yield plateau was clearly observed at all tested strain rates with a strain less than 0.012, and its width increased with the increasing strain rate. However, no yield plateau was observed in quenched sheets. On the other hand, the characters of PLC are greatly varied with applied conditions and strain rate. Generally, annealed sheets have a higher waiting time, but lower critical strain/stress at lower strain rate (~1 × 10−4 s−1), but they are similar at a higher strain rate (1 × 10−2 s−1). However, the falling time at both annealed and quenched conditions are almost the same at tested strain rates.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2018-08-26
    Description: Materials, Vol. 11, Pages 1532: 3D Printing of Porous Scaffolds with Controlled Porosity and Pore Size Values Materials doi: 10.3390/ma11091532 Authors: Irene Buj-Corral Ali Bagheri Oriol Petit-Rojo 3D printed scaffolds can be used, for example, in medical applications for simulating body tissues or for manufacturing prostheses. However, it is difficult to print porous structures of specific porosity and pore size values with fused deposition modelling (FDM) technology. The present paper provides a methodology to design porous structures to be printed. First, a model is defined with some theoretical parallel planes, which are bounded within a geometrical figure, for example a disk. Each plane has randomly distributed points on it. Then, the points are joined with lines. Finally, the lines are given a certain volume and the structure is obtained. The porosity of the structure depends on three geometrical variables: the distance between parallel layers, the number of columns on each layer and the radius of the columns. In order to obtain mathematical models to relate the variables with three responses, the porosity, the mean of pore diameter and the variance of pore diameter of the structures, design of experiments with three-level factorial analysis was used. Finally, multiobjective optimization was carried out by means of the desirability function method. In order to favour fixation of the structures by osseointegration, porosity range between 0.5 and 0.75, mean of pore size between 0.1 and 0.3 mm, and variance of pore size between 0.000 and 0.010 mm2 were selected. Results showed that the optimal solution consists of a structure with a height between layers of 0.72 mm, 3.65 points per mm2 and a radius of 0.15 mm. It was observed that, given fixed height and radius values, the three responses decrease with the number of points per surface unit. The increase of the radius of the columns implies the decrease of the porosity and of the mean of pore size. The decrease of the height between layers leads to a sharper decrease of both the porosity and the mean of pore size. In order to compare calculated and experimental values, scaffolds were printed in polylactic acid (PLA) with FDM technology. Porosity and pore size were measured with X-ray tomography. Average value of measured porosity was 0.594, while calculated porosity was 0.537. Average value of measured mean of pore size was 0.372 mm, while calculated value was 0.434 mm. Average value of variance of pore size was 0.048 mm2, higher than the calculated one of 0.008 mm2. In addition, both round and elongated pores were observed in the printed structures. The current methodology allows designing structures with different requirements for porosity and pore size. In addition, it can be applied to other responses. It will be very useful in medical applications such as the simulation of body tissues or the manufacture of prostheses.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2018-08-25
    Description: Materials, Vol. 11, Pages 1528: On the Dependence of γ′ Precipitate Size in a Nickel-Based Superalloy on the Cooling Rate from Super-Solvus Temperature Heat Treatment Materials doi: 10.3390/ma11091528 Authors: Chrysanthi Papadaki Wei Li Alexander M. Korsunsky The ability to predict the sizes of secondary and tertiary γ′ precipitate is of particular importance for the development and use of polycrystalline nickel-based superalloys in demanding applications, since the size of the precipitate exerts a strong effect on the mechanical properties. Many studies have been devoted to the development and application of sophisticated numerical models that incorporate the influence of chemical composition, concentration gradients, and interfacial properties on precipitate size and morphology. In the present study, we choose a different approach, concentrating on identifying a correlation between the mean secondary and tertiary γ′ size and the cooling rate from solution treatment temperature. The data are collected using the precipitate size distribution analysis from high-resolution scanning electron microscopy. This correlation is expressed in the form of a power law, established using experimental measurement data and rationalized using a re-derivation of McLean’s theory for precipitate growth, based on well-established thermodynamic principles. Specifically, McLean’s model is recast to consider the effect of cooling rate. The derived model captures the correlation correctly despite its simplicity, and is able to predict the mean secondary and tertiary γ′ precipitate size in a nickel superalloy, without complex modeling.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2018-08-25
    Description: Materials, Vol. 11, Pages 1520: Insertion of Platinum Nanoparticles into MoS2 Nanoflakes for Enhanced Hydrogen Evolution Reaction Materials doi: 10.3390/ma11091520 Authors: Dan Li Yang Li Bowei Zhang Yu Hui Lui Sivaprasad Mooni Rongsheng Chen Shan Hu Hongwei Ni Pt as a chemical inert metal has been widely applied as the counter electrode in various electrochemical measurements. However, it can also be dissolved and redeposit to the working electrode under certain electrochemical circumstances. Herein we demonstrated a cyclic voltammetry (CV) cycling method to synthesize a catalyst comprising inserted Pt nanoparticles into MoS2 nanoflake stack structures on stainless steel mesh (SSM). The binder-free composite structure exhibits significantly enhanced hydrogen evolution reaction (HER) catalytic activity with an overpotentials of 87 mV at 10 mA cm−2. The deposited Pt nanoparticles significantly enhance the catalytic activity through changing the structure of MoS2 and increasing the amount of active sites. This work provides a new way forward for rational design of the nano-electrocatalysts.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2018-08-27
    Description: Materials, Vol. 11, Pages 1536: Synergistic Enhancement of Thermal Conductivity and Dielectric Properties in Al2O3/BaTiO3/PP Composites Materials doi: 10.3390/ma11091536 Authors: Junlong Yao Li Hu Min Zhou Feng You Xueliang Jiang Lin Gao Qing Wang Zhengguang Sun Jun Wang Multifunctional polymer composites with both high dielectric constants and high thermal conductivity are urgently needed by high-temperature electronic devices and modern microelectromechanical systems. However, high heat-conduction capability or dielectric properties of polymer composites all depend on high-content loading of different functional thermal-conductive or high-dielectric ceramic fillers (every filler volume fraction ≥ 50%, i.e., ffiller ≥ 50%), and an overload of various fillers (fthermal-conductive filler + fhigh-dielectric filler > 50%) will decrease the processability and mechanical properties of the composite. Herein, series of alumina/barium titanate/polypropylene (Al2O3/BT/PP) composites with high dielectric- and high thermal-conductivity properties are prepared with no more than 50% volume fraction of total ceramic fillers loading, i.e., ffillers ≤ 50%. Results showed the thermal conductivity of the Al2O3/BT/PP composite is up to 0.90 W/m·K with only 10% thermal-conductive Al2O3 filler, which is 4.5 times higher than the corresponding Al2O3/PP composites. Moreover, higher dielectric strength (Eb) is also found at the same loading, which is 1.6 times higher than PP, and the Al2O3/BT/PP composite also exhibited high dielectric constant ( ε r = 18 at 1000 Hz) and low dielectric loss (tan δ ≤ 0.030). These excellent performances originate from the synergistic mechanism between BaTiO3 macroparticles and Al2O3 nanoparticles.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2018-08-29
    Description: Materials, Vol. 11, Pages 1551: Analysis of Geometrical Characteristics and Properties of Laser Cladding 85 wt.% Ti + 15 wt.% TiBCN Powder on 7075 Aluminum Alloy Substrate Materials doi: 10.3390/ma11091551 Authors: Yu-Xin Li Peng-Fei Zhang Pei-Kang Bai Zhan-Yong Zhao Bin Liu Ti/TiBCN composite coatings were prepared on a 7075 aluminum alloy surface by laser cladding. The relation between the main processing parameters (i.e., laser power, scanning speed, and powder feeding rate) and the geometrical characteristics (i.e., height, width, penetration depth, dilution and wetting angle) of single clad tracks is studied by linear regression analysis. The microstructure, micro-hardness and electrochemical corrosion were investigated by scanning electron microscopy, a Vickers micro-hardness machine, and a standard three-electrode cell, respectively. The results showed that all geometrical track characteristics are observed with high values of the correlation coefficient (R > 0.95). In addition, the average hardness value (750 HV0.2) was obtained of the Ti/TiBCN composite coating, and polarization curves indicated that the composite coatings were harder to corrode than the substrate.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2018-08-28
    Description: Materials, Vol. 11, Pages 1545: Buckling Analysis of Vacancy-Defected Graphene Sheets by the Stochastic Finite Element Method Materials doi: 10.3390/ma11091545 Authors: Liu Chu Jiajia Shi Shujun Ben Vacancy defects are unavoidable in graphene sheets, and the random distribution of vacancy defects has a significant influence on the mechanical properties of graphene. This leads to a crucial issue in the research on nanomaterials. Previous methods, including the molecular dynamics theory and the continuous medium mechanics, have limitations in solving this problem. In this study, the Monte Carlo-based finite element method, one of the stochastic finite element methods, is proposed and simulated to analyze the buckling behavior of vacancy-defected graphene. The critical buckling stress of vacancy-defected graphene sheets deviated within a certain range. The histogram and regression graphs of the probability density distribution are also presented. Strengthening effects on the mechanical properties by vacancy defects were detected. For high-order buckling modes, the regularity and geometrical symmetry in the displacement of graphene were damaged because of a large amount of randomly dispersed vacancy defects.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2018-08-28
    Description: Materials, Vol. 11, Pages 1540: A Facile Flow-Casting Production of Bioactive Glass Coatings on Porous Titanium for Bone Tissue Engineering Materials doi: 10.3390/ma11091540 Authors: Haiou Yang Qijie Zhu Hongfei Qi Xianhu Liu Meixia Ma Qiang Chen Additive manufacturing enabled the fabrication of porous titanium (PT) with customized porosity and mechanical properties. However, functionalization of PT surfaces with bioactive coatings is being challenged due to sophisticated geometry and highly porous structure. In this study, a facile flow-casting technique was developed to produce homogeneous 45S5 bioactive glass (BG) coatings on the entire surface of PT. The coating weight as a function of BG concentration in a BG-PVA slurry was investigated to achieve controllable coating yield without blocking macropore structure. The annealing-treated BG coating not only exhibited compact adhesion confirmed by qualitative sonication treatment, but also enhanced the mechanical properties of PT scaffolds. Moreover, in-vitro assessments of BG-coated PT cultured with MC3T3-E1 cells was carried out having in mind their potential as bioactive bone implants. The experimental results in this study offer a simple and versatile approach for the bio-functionalization of PT and other porous biomedical devices.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2018-08-28
    Description: Materials, Vol. 11, Pages 1542: Application of Fly Ash Derived Zeolites in Warm-Mix Asphalt Technology Materials doi: 10.3390/ma11091542 Authors: Agnieszka Woszuk In recent years, numerous studies have been carried out on new technologies allowing to reduce of mix asphalt production temperatures. One of the possibilities is to foam the asphalt with “water-containing” additives, which include zeolites. So far, mainly synthetic zeolites of the Linde A structure type, obtained from chemical reagents, and natural clinoptilolite have been used in WMA technology. In this studies, the synthetic zeolites produced from fly ashes with 4 different types of crystalline structure were analyzed. Zeolite materials were characterized by textural parameters and thermal analysis. The amount of zeolite added to asphalt was 0, 3, 5, 7 wt % in relation to the weight of asphalt. Determination of dynamic viscosity was performed at two temperatures: 135 and 160 and 4 time intervals. The tests were performed for two asphalt binders: 35/50 and 100/150 penetration grade. As a conclusion, it was found that the viscosity of asphalt pastes with zeolitic materials increases with the increase in the amount of zeolite added. The increase level depends mainly on the textural parameters. The potential usefulness of fly ash derived zeolites in the process of asphalt foaming, which depends mainly on the amount of water contained in the zeolite structure and the method of its release, has been proved.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2018-08-28
    Description: Materials, Vol. 11, Pages 1544: Tuning Nano-Amorphous Calcium Phosphate Content in Novel Rechargeable Antibacterial Dental Sealant Materials doi: 10.3390/ma11091544 Authors: Maria Salem Ibrahim Faisal D. AlQarni Yousif A. Al-Dulaijan Michael D. Weir Thomas W. Oates Hockin H. K. Xu Mary Anne S. Melo Dental sealants with antibacterial and remineralizing properties are promising for caries prevention among children and adolescents. The application of nanotechnology and polymer development have enabled nanoparticles of amorphous calcium phosphate (NACP) and dimethylaminohexadecyl methacrylate (DMAHDM) to emerge as anti-caries strategies via resin-based dental materials. Our objectives in this study were to (1) incorporate different mass fractions of NACP into a parental rechargeable and antibacterial sealant; (2) investigate the effects on mechanical performance, and (3) assess how the variations in NACP concentration would affect the calcium (Ca) and phosphate (PO4) ion release and re-chargeability over time. NACP were synthesized using a spray-drying technique and incorporated at mass fractions of 0, 10, 20 and 30%. Flexural strength, flexural modulus, and flowability were assessed for mechanical and physical performance. Ca and PO4 ion release were measured over 70 days, and three ion recharging cycles were performed for re-chargeability. The impact of the loading percentage of NACP upon the sealant’s performance was evaluated, and the optimized formulation was eventually selected. The experimental sealant at 20% NACP had flexural strength and flexural modulus of 79.5 ± 8.4 MPa and 4.2 ± 0.4 GPa, respectively, while the flexural strength and flexural modulus of a commercial sealant control were 70.7 ± 5.5 MPa (p > 0.05) and 3.3 ± 0.5 GPa (p < 0.05), respectively. A significant reduction in flow was observed in the experimental sealant at 30% NACP (p < 0.05). Increasing the NACP mass fraction increased the ion release. The sealant formulation with NACP at 20% displayed desirable mechanical performance and ideal flow and handling properties, and also showed high levels of long-term Ca and PO4 ion release and excellent recharge capabilities. The findings provide fundamental data for the development of a new generation of antibacterial and rechargeable Ca and PO4 dental sealants to promote remineralization and inhibit caries.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2018-08-28
    Description: Materials, Vol. 11, Pages 1538: Fretting Wear Behavior and Photoelectron Spectroscopy (XPS) Analysis of a Ti/TiN Multilayer Film Deposited on Depleted Uranium Materials doi: 10.3390/ma11091538 Authors: Shengfa Zhu Yanping Wu Zhengyang Li Liping Fang Anyi Yin Jiawei Yan Fan Jiang Xiandong Meng Piheng Chen Zhenbing Cai Depleted uranium has been widely applied in nuclear energy fields. However, its poor corrosion and wear resistance restrict its applications. A titanium/titanium nitride (Ti/TiN) multilayer film was deposited on a uranium surface to improve its fretting wear resistance. Fretting wear tests were carried out using a pin-on-disc configuration. The fretting behaviors of uranium and the Ti/TiN film were investigated under different normal loads. With the normal load increasing, the mode of fretting wear gradually transformed from slip region (SR) to mixed fretting region (MFR) and then to partial slip region (PSR). It is illustrated that the normal load had an obvious effect on the fretting wear behavior. The friction coefficients of both uranium and Ti/TiN multilayer film decreased with the increase of the normal load. In SR, the main wear mechanisms were delamination and abrasion for uncoated uranium, and delamination and oxidation for uranium coated with the Ti/TiN multilayer film. Photoelectron spectroscopy (XPS) analysis also showed that the Ti/TiN coating was oxidized and formed TiO2 during fretting wear. The wear depth of naked uranium was much greater than that of coated uranium, which demonstrated that the Ti/TiN multilayer film could effectively improve the wear properties of uranium.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2018-08-29
    Description: Materials, Vol. 11, Pages 1552: Reliability of Blue-Emitting Eu2+-Doped Phosphors for Laser-Lighting Applications Materials doi: 10.3390/ma11091552 Authors: Matteo Buffolo Carlo De Santi Marco Albertini Donatella Carbonera Gian Andrea Rizzi Gaetano Granozzi Gaudenzio Meneghesso Enrico Zanoni Matteo Meneghini This paper investigates the reliability of blue-emitting phosphors for Near-UV (NUV) laser excitation. By means of a series of thermal stress experiments, and of stress under high levels of optical excitation, we have been able to identify the physical process responsible for the degradation of Eu2+-activated alkaline-earth halophosphate phosphors under typical and extreme operating conditions. In particular, for temperatures equal to or greater than 450 °C the material exhibited a time-dependent drop in the Photo-Luminescence (PL), which was attributed to the thermally induced ionization of the Eu2+ optically active centers. Several analytical techniques, including spatially and spectrally resolved PL, Electron Paramagnetic Resonance (EPR) and X-ray Photo-emission Spectroscopy (XPS) were used to support this hypothesis and to gain insight on the degradation process. By means of further tests, evidence of this degradation process was also found on samples stressed under a relatively low power density of 3 W/mm2 at 405 nm. This indicated that the optically (and thermally) induced ionization of the optically active species is the most critical degradation process for this family of phosphorescent material. The operating limits of a second-generation Eu-doped halophosphate phosphor were also investigated by means of short-term stress under optical excitation. The experimental data showed that a threshold excitation intensity for continuous pumping exists. Above this threshold, decay of the steady-state PL performance and non-recoverable degradation of the material were found to take place. This behavior is a consequence of the extremely harsh excitation regime, mainly due to the thermal management capabilities of the substrate material employed for our experimental purposes rather than from intrinsic properties of the phosphors.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2018-08-31
    Description: Materials, Vol. 11, Pages 1567: Energy Transfer from Photosystem I to Thermally Reduced Graphene Oxide Materials doi: 10.3390/ma11091567 Authors: Karolina Sulowska Kamil Wiwatowski Piotr Szustakiewicz Justyna Grzelak Wiktor Lewandowski Sebastian Mackowski The energy transfer from photosynthetic complex photosystem I to thermally reduced graphene oxide was studied using fluorescence microscopy and spectroscopy, and compared against the structure in which monolayer epitaxial graphene was used as the energy acceptor. We find that the properties of reduced graphene oxide (rGO) as an energy acceptor is qualitatively similar to that of epitaxial graphene. Fluorescence quenching, which in addition to shortening of fluorescence decay, is a signature of energy transfer varies across rGO substrates and correlates with the transmission pattern. We conclude that the efficiency of the energy transfer depends on the number of rGO layers in the flakes and decreases with this number. Furthermore, careful analysis of fluorescence imaging data confirms that the energy transfer efficiency dependence on the excitation wavelength, also varies with the number of rGO flakes.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2018-08-31
    Description: Materials, Vol. 11, Pages 1562: Selective Oxidation of Hydrogen Sulfide to Sulfur Using Vanadium Oxide Supported on Porous Clay Heterostructures (PCHs) Formed by Pillars Silica, Silica-Zirconia or Silica-Titania Materials doi: 10.3390/ma11091562 Authors: Juan Antonio Cecilia M. Dolores Soriano Alejandro Natoli Enrique Rodríguez-Castellón José Manuel López Nieto Vanadium oxide (V2O5) species has been supported on different porous clay heterostructures (with silica pillars, silica-zirconia with a molar ratio Si/Zr = 5 and silica-titania with a molar ratio Si/Ti = 5) by wetness incipient method. All catalysts were characterized by X-ray diffraction (XRD), N2 adsorption-desorption at −196 °C, NH3 thermoprogrammed desorption (NH3-TPD), Raman spectroscopy, diffuse reflectance UV-Vis and X-ray photoelectron spectroscopy (XPS). After that, the catalytic activity of the vanadium-based catalysts was evaluated in the selective oxidation of H2S to elemental sulfur. The catalytic data show that both the activity and the catalytic stability increase with the vanadium content, obtaining the highest conversion values and sulfur yield for the catalysts with vanadium content of 16 wt.%. The comparison among all supports reveals that the incorporation of TiO2 species in the pillars of the PCH improves the resistance to the deactivation, attaining as best results a H2S conversion of 89% for SiTi-PCH-16V catalyst and elemental sulfur is the only compound detected by gas chromatography.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2018-08-31
    Description: Materials, Vol. 11, Pages 1565: Mechanical Behavior of Liquid Nitrile Rubber-Modified Epoxy Resin under Static and Dynamic Loadings: Experimental and Constitutive Analysis Materials doi: 10.3390/ma11091565 Authors: Xiao Xu Shiqiao Gao Zhuocheng Ou Haifu Ye Quasi-static and dynamic compression experiments were performed to study the influence of liquid nitrile rubber (LNBR) on the mechanical properties of epoxy resin. The quasi-static experiments were conducted by an electronic universal machine under strain rates of 0.0001/s and 0.001/s, while a Split Hopkinson Pressure Bar (SHPB) system was adopted to perform the dynamic tests for strain rates up to 5600/s. The standard Zhu-Wang-Tang (ZWT) nonlinear viscoelastic model was chosen to predict the elastic behavior of LNBR/epoxy composites under a wide range of strain rates. After some necessary derivation and data fitting, a set of model parameters for the tested materials were finally obtained. Meanwhile, the incremented form of the ZWT nonlinear viscoelastic model were deduced and implemented into the user material program of LS-DYNA. A simulation-test contrast had been performed to verify the validity and feasibility of the algorithm. The results showed that the viscoelastic behavior of epoxy resin can be effectively simulated.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2018-08-31
    Description: Materials, Vol. 11, Pages 1564: Microstructures, Mechanical Properties, and Corrosion Behavior of As-Cast Mg–2.0Zn–0.5Zr–xGd (wt %) Biodegradable Alloys Materials doi: 10.3390/ma11091564 Authors: Huai Yao Jiuba Wen Yi Xiong Ya Liu Yan Lu Wei Cao The Mg–Zn–Zr–Gd alloys belong to a group of biometallic alloys suitable for bone substitution. While biocompatibility arises from the harmlessness of the metals, the biocorrosion behavior and its origins remain elusive. Here, aiming for the tailored biodegradability, we prepared the Mg–2.0Zn–0.5Zr–xGd (wt %) alloys with different Gd percentages (x = 0, 1, 2, 3, 4, 5), and studied their microstructures and biocorrosion behavior. Results showed that adding a moderate amount of Gd into Mg–2.0Zn–0.5Zr alloys will refine and homogenize α-Mg grains, change the morphology and distribution of (Mg, Zn)3Gd, and lead to enhancement of mechanical properties and anticorrosive performance. At the optimized content of 3.0%, the fishbone-shaped network, ellipsoidal, and rod-like (Mg, Zn)3Gd phase turns up, along with the 14H-type long period stacking ordered (14H-LPSO) structures decorated with nanoscale rod-like (Mg, Zn)3Gd phases. The 14H-LPSO structure only exists when x ≥ 3.0, and its content increases with the Gd content. The Mg–2.0Zn–0.5Zr–3.0Gd alloy possesses a better ultimate tensile strength of 204 ± 3 MPa, yield strength of 155 ± 3 MPa, and elongation of 10.6 ± 0.6%. Corrosion tests verified that the Mg–2.0Zn–0.5Zr–3.0Gd alloy possesses the best corrosion resistance and uniform corrosion mode. The microstructure impacts on the corrosion resistance were also studied.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2018-09-01
    Description: Materials, Vol. 11, Pages 1568: Biobased Functional Carbon Materials: Production, Characterization, and Applications—A Review Materials doi: 10.3390/ma11091568 Authors: Catalina Rodriguez Correa Andrea Kruse Even though research on porous carbon materials from biomass dates back to at least hundred years, it is still an extremely relevant topic. These materials can be found in applications that range from those that are widely known, such as water treatment, to others that are newer and indispensable for the transition towards environmentally friendly technologies, such as lithium- and sodium-ion batteries. This review summarizes some of the most relevant research that has been published concerning production technologies, insights on the chemical reaction mechanisms, characterization techniques, as well as some examples of the applications and the properties that the carbon materials must fulfil to be used in those applications.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2018-09-02
    Description: Materials, Vol. 11, Pages 1584: A Lattice Model for Elastic Particulate Composites Materials doi: 10.3390/ma11091584 Authors: Darius Zabulionis Vytautas Rimša In the present article, a version of the lattice or spring network method is proposed to model the mechanical response of elastic particulate composites with a high volume fraction of spherical particles and with a much weaker matrix compared to the stiffness of the particles. The main subject of the article is the determination of the axial stiffnesses of the springs of the cell. A comparison of the mechanical response of a three-dimensional particulate composite cube obtained using the finite element method and the proposed methodology showed that the efficiency of the proposed methodology increases with an increasing volume fraction of the particles.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2018-09-05
    Description: Materials, Vol. 11, Pages 1615: Electroactive Hydrogels Made with Polyvinyl Alcohol/Cellulose Nanocrystals Materials doi: 10.3390/ma11091615 Authors: Tippabattini Jayaramudu Hyun-U Ko Hyun Chan Kim Jung Woong Kim Ruth M. Muthoka Jaehwan Kim This paper reports a nontoxic, soft and electroactive hydrogel made with polyvinyl alcohol (PVA) and cellulose nanocrystal (CNC). The CNC incorporating PVA-CNC hydrogels were prepared using a freeze–thaw technique with different CNC concentrations. Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction and scanning electron microscopy results proved the good miscibility of CNCs with PVA. The optical transparency, water uptake capacity and mechanical properties of the prepared hydrogels were investigated in this study. The CNC incorporating PVA-CNC hydrogels showed improved displacement output in the presence of an electric field and the displacement increased with an increase in the CNC concentration. The possible actuation mechanism was an electrostatic effect and the displacement improvement of the hydrogel associated with its enhanced dielectric properties and softness. Since the prepared PVA-CNC hydrogel is nontoxic and electroactive, it can be used for biomimetic soft robots, actively reconfigurable lenses and active drug-release applications.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2018-09-05
    Description: Materials, Vol. 11, Pages 1612: Transmission Attenuation Power Ratio Analysis of Flexible Electromagnetic Absorber Sheets Combined with a Metal Layer Materials doi: 10.3390/ma11091612 Authors: Jorge Victoria Adrian Suarez Jose Torres Pedro A. Martinez Antonio Alcarria Julio Martos Raimundo Garcia-Olcina Jesus Soret Steffen Muetsch Alexander Gerfer Electromagnetic noise absorber sheets have become a solution for solving complex electromagnetic interference (EMI) problems due to their high magnetic losses. This contribution is focused on characterizing a novel structure that is based on an absorber film with a metal layer attached on its top side. Two different absorber compositions were combined with Al and Cu metal layers in order to study the improvement on the performance of these structures, depending on the complex permeability, absorber film thickness, and type of metal. The transmission attenuation power ratio of the absorber films is analyzed and compared to the performance of absorber and metal structures. The measurement procedure is carried out attaching the films into a microstrip line that has been designed based on IEC standard (IEC 62333-2). This test fixture is employed as a transmission line to simulate a general noise path. The performance of absorber composites to filter electromagnetic noise is evaluated through analyzing S21 and S11 parameters. This is carried out with the aim of finding out in which conditions the absorption loss is improved when a metal layer is attached. In addition, the possible re-radiation effect, due to the magnetic field that is generated by the eddy currents induced in the metal layer, is examined.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2018-09-05
    Description: Materials, Vol. 11, Pages 1610: Photoluminescent Eu3+-Doped Calcium Phosphate Bone Cement and Its Mechanical Properties Materials doi: 10.3390/ma11091610 Authors: Annemarie Oesterle Anne V. Boehm Frank A. Müller Calcium phosphate cements (CPC) are well-established bone replacement materials that have been used in dentistry and orthopedics for more than 25 years. The monitoring of bone cements and the associated healing processes in the human body is difficult and so far has often been achieved using cytotoxic X-ray contrast agent additives. These additives have a negative effect on the mechanical properties and setting time of the bone cement. In this paper, we present a novel approach to prepare contrastive CPC by the incorporation of luminescent Eu3+-doped hydroxyapatite (Eu:HAp) nanoparticles. Eu-doped CPC (Eu:CPC) exhibited enhanced mechanical properties compared to pure CPC. Furthermore, the red photoluminescence of Eu:CPC may allow the observation of CPC-related healing processes without the use of harmful ionizing radiation.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2018-09-05
    Description: Materials, Vol. 11, Pages 1609: Application of Plasma Treatment in Preparation of Soybean Oil Factory Sludge Catalyst and Its Application in Selective Catalytic Oxidation (SCO) Denitration Materials doi: 10.3390/ma11091609 Authors: Lei Zhang Chao Yang Lei Zhang Huibin He Min Luo Yang Jia Yonghui Li At present, the most commonly used denitration process is the selective catalytic reduction (SCR) method. However, in the SCR method, the service life of the catalyst is short, and the industrial operation cost is high. The selective catalytic oxidation absorption (SCO) method can be used in a low temperature environment, which greatly reduces energy consumption and cost. The C/N ratio of the sludge produced in the wastewater treatment process of the soybean oil plant used in this paper is 9.64, while the C/N ratio of the sludge produced by an urban sewage treatment plant is 10–20. This study shows that the smaller the C/N ratio, the better the denitration efficiency of the catalyst. Therefore, dried oil sludge is used as a catalyst carrier. The influence of different activation times, and LiOH concentrations, on catalyst activity were investigated in this paper. The denitration performance of catalysts prepared by different activation sequences was compared. The catalyst was characterized by Fourier Transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscope (SEM). The experimental results showed that: (1) When the concentration of the LiOH solution used for activation is 15%, and the activation time is four hours, the denitration effect of the catalyst is the best; (2) the catalyst prepared by activation before plasma roasting has the best catalytic activity.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2018-09-05
    Description: Materials, Vol. 11, Pages 1607: Influence of Magnetic Nanoparticles on the Focused Ultrasound Hyperthermia Materials doi: 10.3390/ma11091607 Authors: Katarzyna Kaczmarek Tomasz Hornowski Bernadeta Dobosz Arkadiusz Józefczak Ultrasound hyperthermia is a medical treatment used to increase temperature of tissues. It can be used independently or as a supportive method for an anticancer treatment. The therapeutic efficacy of focused ultrasound hyperthermia can be improved using sonosensitizers, nanoparticles enhancing the attenuation and dissipation of acoustic energy. As sonosensitizers, we propose magnetic nanoparticles owing to their biodegradability, biocompatibility, and simple positioning in tissues using a magnetic field. Focused ultrasound hyperthermia studies were performed using tissue-mimicking phantoms. Temperature changes were measured at various ultrasound powers and distances from the center of the ultrasound focus. Specific absorption rate (SAR) values, describing the power deposition in the tissues during the hyperthermia treatment, were evaluated for the center of the focus point and for various distances from it. The results show that the addition of nanoparticles increases the SAR almost two times compared to that for the pure phantom. The highest SAR is obtained in the ultrasound focus; it decreases with the increase of the distance from the focus.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2018-09-05
    Description: Materials, Vol. 11, Pages 1608: Supramolecular Networks from Block Copolymers Based on Styrene and Isoprene Using Hydrogen Bonding Motifs—Part 1: Synthesis and Characterization Materials doi: 10.3390/ma11091608 Authors: Elaine Rahmstorf Volker Abetz The combination of controlled anionic polymerization and subsequent introduction of hydrogen bonding groups was established to form thermo-reversible, supramolecular networks. Several polyisoprene-block-polystyrene-block-polyisoprene (ISI) copolymers—with polystyrene (PS) as the main block, and consequently giving the decisive material characteristics—were synthesized. The novel modification approach to post-functionalize the polyisoprene (PI) end-blocks and to introduce different motifs, which are able to form self-complementary hydrogen bonds, was attained. In the first step, hydroxylation was accomplished using 9-borabicyclo[3.3.1]nonane. Starting from the hydroxylated polymer, esterification with succinic anhydride was implemented to form an ester group with carboxylic end-group (-O-CO-CH2-CH2-COOH). In a second approach, 1,1’-carbonyldiimidazole was used as coupling agent to introduce various types of diamines (diethylenetriamine, triethylentetramine, and 2,6-diaminopyridine) to prepare urethane groups with amine end-group (-O-CO-NH-R-NH2). 1H NMR spectroscopy was used to confirm the successful synthesis and to calculate the degree of functionalization Df. Differential scanning calorimetry (DSC) showed a difference of the glass transition temperature Tg between unfunctionalized and functionalized block copolymers, but no greater influence between the different types of modification, and thus, on the Tg of the PS block. In temperature dependent FTIR spectroscopy, reversible processes were observed.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2018-09-05
    Description: Materials, Vol. 11, Pages 1606: Giant Zero-Drift Electronic Behaviors in Methylammonium Lead Halide Perovskite Diodes by Doping Iodine Ions Materials doi: 10.3390/ma11091606 Authors: Tiqiang Pang Renxu Jia Yucheng Wang Kai Sun Ziyang Hu Yuejin Zhu Suzhen Luan Yuming Zhang Methylammonium lead halide perovskites have attracted extensive attention for optoelectronic applications. Carrier transport in perovskites is obscured by vacancy-mediated ion migration, resulting in anomalous electronic behavior and deteriorated reliability of the devices. In this communication, we demonstrate that ion migration can be significantly enhanced by doping additional mobile I- ions into the perovskite bulk. Ionic confinement structures of vertical metal oxide semiconductor (MOS) and lateral metal semiconductor metal (MSM) diodes designed to decouple ion-migration/accumulation and electronic transport are fabricated and characterized. Measurement conditions (electric-field history, scan rate and sweep frequency) are shown to affect the electronic transport in perovskite films, through a mechanism involving ion migration and accumulation at the block interfaces. Prominent zero-point drifts of dark current-voltage curves in both vertical and lateral diode are presented, and further varied with the perovskite film containingthe different iodine-lead atomic ratio. The doped perovskite has a large ion current at grain boundaries, offering a large ion hysteresis loopand zero drift value. The results confirmthat the intrinsic behavior of perovskite film is responsible for the hysteresisof the optoelectronic devices, but also paves the way for potential applications in many types of devices including memristors and solid electrolyte batteries by doping the native species (I− ions) in perovskite film.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2018-09-03
    Description: Materials, Vol. 11, Pages 1592: Finite Element Analysis for the Self-Loosening Behavior of the Bolted Joint with a Superelastic Shape Memory Alloy Materials doi: 10.3390/ma11091592 Authors: Xiangjun Jiang Jin Huang Yongkun Wang Baotong Li Jingli Du Peng Hao A macroscopic constitutive model is proposed in this research to reproduce the uniaxial transition ratcheting behaviors of the superelastic shape memory alloy (SMA) undergoing cyclic loading, based on the cosine-type phase transition equation with the initial martensite evolution coefficient that provides the predictive residual martensite accumulation evolution and the nonlinear feature of hysteresis loop. The calculated results are compared with the experimental results to show the validity of the present computational procedure in transition ratcheting. Finite element implementation for the self-loosening behavior of the superelastic SMA bolt is then carried out based on the proposed constitutive model to analyze the curves of stress–strain responses on the bolt bar, clamping force reduction law, dissipation energy change law of the bolted joint for different external loading cases, and preload force of the bolt.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2018-09-03
    Description: Materials, Vol. 11, Pages 1588: Effect of Heat Treatment on the Properties of Wood-Derived Biocarbon Structures Materials doi: 10.3390/ma11091588 Authors: Min Yu Theo Saunders Taicao Su Francesco Gucci Michael John Reece Wood-derived porous graphitic biocarbons with hierarchical structures were obtained by high-temperature (2200–2400 °C) non-catalytic graphitization, and their mechanical, electrical and thermal properties are reported for the first time. Compared to amorphous biocarbon produced at 1000 °C, the graphitized biocarbon-2200 °C and biocarbon-2400 °C exhibited increased compressive strength by ~38% (~36 MPa), increased electrical conductivity by ~8 fold (~29 S/cm), and increased thermal conductivity by ~5 fold (~9.5 W/(m·K) at 25 °C). The increase of duration time at 2200 °C contributed to increased thermal conductivity by ~12%, while the increase of temperature from 2200 to 2400 °C did not change their thermal conductivity, indicating that 2200 °C is sufficient for non-catalytic graphitization of wood-derived biocarbon.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2018-09-03
    Description: Materials, Vol. 11, Pages 1587: The Golden Activity of Lysinibacillus sphaericus: New Insights on Gold Accumulation and Possible Nanoparticles Biosynthesis Materials doi: 10.3390/ma11091587 Authors: María Bustos Humberto Ibarra Jenny Dussán Power struggles surrounding the increasing economic development of gold mining give rise to severe environmental and social problems. Two new strains of Lysinibacillus sphaericus were isolated from an area of active alluvial gold mining exploitation at El Bagre, Antioquia. The absorption capacity of these strains and some of the L. sphaericus Microbiological Research Center (CIMIC) collection (CBAM5, OT4b.31, III(3)7) were evaluated by spectrophotometry according to a calibration gold curve of HAuCl4− with concentrations between 0 µg/mL and 100 µg/mL. Bioassays with living biomass were carried out with an initial gold concentration of 60 µg/mL. Their sorption capacity was evident, reaching percentages of gold removal between 25% and 85% in the first 2 h and 75% to 95% after 48 h. Biosynthesis of possible gold nanoparticles (AuNPs) in assays with living biomass was also observed. Metal sorption was evaluated using scanning electron microscopy and energy-dispersive X-ray spectroscopy (EDS) analysis. The sorption and fabrication capacity exhibited by the evaluated strains of L. sphaericus converts this microorganism into a potential alternative for biomining processes, especially those related to gold extraction.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2018-09-03
    Description: Materials, Vol. 11, Pages 1591: Strain Rate Sensitivity of Tensile Properties in Ti-6.6Al-3.3Mo-1.8Zr-0.29Si Alloy: Experiments and Constitutive Modeling Materials doi: 10.3390/ma11091591 Authors: Jun Zhang Yang Wang Bin Zhang Hanjun Huang Junhong Chen Peng Wang The complex deformation usually involves wide strain-rate change. However, few efforts have been devoted to investigate the effect of strain rate history on the tensile behavior of α + β titanium alloy. In present paper, tensile tests of Ti-6.6Al-3.3Mo-1.8Zr-0.29Si alloy were carried out under both constant and variable strain-rate conditions within the region from 10−3~500 s−1. A single stress pulse experimental technique was utilized to conduct the recovery tests. The strain-rate history effect was examined. It is found that the flow stress is independent on the strain rate history, though the alloy exhibits obvious positive strain rate sensitivity. The Taylor-Quinney coefficient of the plastic work converted to heat is proved as 0.9 at high strain rates. The cavitation fracture mechanism is revealed by microstructural observation over the full range explored. In basis of the experimental results and other pulished literatures, empirical Khan-Huang-Liang constitutive model was suitably modified to account for the strain-rate dependent behavior. Good agreement is achieved between the modeling prediction results and experimental data.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2018-09-06
    Description: Materials, Vol. 11, Pages 1626: Efficiency Enhancement of Perovskite Solar Cells with Plasmonic Nanoparticles: A Simulation Study Materials doi: 10.3390/ma11091626 Authors: Ali Hajjiah Ishac Kandas Nader Shehata Recently, hybrid organic-inorganic perovskites have been extensively studied due to their promising optical properties with relatively low-cost and simple processing. However, the perovskite solar cells have some low optical absorption in the visible spectrum, especially around the red region. In this paper, an improvement of perovskite solar cell efficiency is studied via simulations through adding plasmonic nanoparticles (NPs) at the rear side of the solar cell. The plasmonic resonance wavelength is selected to be very close to the spectrum range of lower absorption of the perovskite: around 600 nm. Both gold and silver nanoparticles (Au and Ag NPs) are selected to introduce the plasmonic effect with diameters above 40 nm, to get an overlap between the plasmonic resonance spectrum and the requested lower absorption spectrum of the perovskite layer. Simulations show the increase in the short circuit current density (Jsc) as a result of adding Au and Ag NPs, respectively. Enhancement in Jsc is observed as the diameter of both Au and Ag NPs is increased beyond 40 nm. Furthermore, there is a slight increase in the reflection loss as the thickness of the plasmonic nanoparticles at the rear side of the solar cell is increased. A significant decrease in the current loss due to transmission is achieved as the size of the nanoparticles increases. As a comparison, slightly higher enhancement in external quantum efficiency (EQE) can be achieved in case of adding Ag NPs rather than Au NPs.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2018-09-06
    Description: Materials, Vol. 11, Pages 1625: Dissolving Microneedle Patches for Transdermal Insulin Delivery in Diabetic Mice: Potential for Clinical Applications Materials doi: 10.3390/ma11091625 Authors: Chih-Hao Chen Victor Bong-Hang Shyu Chien-Tzung Chen In this study, dissolving polymeric microneedle (MN) patches composed of gelatin and sodium carboxymethyl cellulose (CMC) were used to localize insulin. Their in vitro skin insertion capabilities were determined using tissue-marking dye to stain the skin after patches removal. Scanning electron microscopy (SEM) was used to determine changes in the MNs over time, and optical coherence tomography (OCT) was used to monitor their real-time penetration depth. Confocal microscopy images revealed that rhodamine 6G gradually diffuses from the puncture sites to deeper dermal tissue. Using an in vivo imaging system (IVIS), skin areas that received FITC-insulin-loaded MNs were found to present strong fluorescent signals that greatly decreased 1 h after application. Results show that dissolving MNs rapidly release FITC-insulin, and it then gradually diffuses into the skin. This study verifies that using a gelatin/CMC MN patch for insulin delivery achieves satisfactory relative bioavailability compared to a traditional hypodermic injection and can be a promising delivery device for poorly permeable protein drugs such as those used to treat diabetes. Insertion tests on human cadaveric skin demonstrate that dissolving MNs could serve as efficient devices for transdermal drug delivery in clinical practice and that the volar aspect of forearm skin is the ideal location for their applications.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2018-09-06
    Description: Materials, Vol. 11, Pages 1621: Transferred PMN-PT Thick Film on Conductive Silver Epoxy Materials doi: 10.3390/ma11091621 Authors: Tao Zhang Jun Ou-Yang Xiaofei Yang Benpeng Zhu Approximately 25 μm Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN-PT) thick film was synthesized based on a sol-gel/composite route. The obtained PMN-PT thick film was successfully transferred from the Silicon substrate to the conductive silver epoxy using a novel wet chemical method. The mechanism of this damage free transfer was explored and analyzed. Compared with the film on Silicon substrate, the transferred one exhibited superior dielectric, ferroelectric and piezoelectric properties. These promising results indicate that transferred PMN-PT thick film possesses the capability for piezoelectric device application, especially for ultrasound transducer fabrication. Most importantly, this chemical route opens a new path for transfer of thick film.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2018-09-06
    Description: Materials, Vol. 11, Pages 1623: Spectral Analysis and Parameter Identification of Textile-Based Dye-Sensitized Solar Cells Materials doi: 10.3390/ma11091623 Authors: László Juhász Irén Juhász Junger Linearized equivalent electrical-circuit representation of dye-sensitized solar cells is helpful both for the better understanding of the physical processes in the cell as well as for various optimizations of the cells. White-box and grey-box modelling approaches are well-known and they are widely used for standard cell types. However, in the case of new cell types or the lack of deep knowledge of the cell’s physic such approaches may not be applicable immediately. In this article a black-box approach for such cases is presented applied together with spectral analysis. The spectral analysis and the black-box approach were as first validated with a standard glass-based dye-sensitized solar cell and thereafter applied for the characterization of a new type of textile-based dye-sensitized solar cells. Although there are still improvement potentials, the results are encouraging and the authors believe that the black-box method with spectral analysis may be used particularly for new types of dye-sensitized solar cells.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2018-09-06
    Description: Materials, Vol. 11, Pages 1616: A Novel Fluorescent Biosensor for Adenosine Triphosphate Detection Based on a Metal–Organic Framework Coating Polydopamine Layer Materials doi: 10.3390/ma11091616 Authors: Peipei Xu Guangfu Liao In this work, a novel and sensitive fluorescent biosensor based on polydopamine coated Zr-based metal–organic framework (PDA/UiO-66) is presented for adenosine triphosphate (ATP) detection. This PDA/UiO-66 nanoparticle which holds a great potential to be excellent fluorescence quencher can protect the 6-carboxyfluorescein (FAM)-labeled probe from cleaved by DNase I dispersed in solution and the flurescence of labeled FAM is quenched. When ATP molecules exist, aptamers on the PDA/UiO-66 nanoparticles can hybridize with ATP molecule to form complex structure that will be desorbed from the PDA/UiO-66 and digested by DNase I. After that, the released ATP molecule can react with another aptamer on the PDA/UiO-66 complexes, then restarts a new cycle. Herein, the excellent strong fluorescence quenching ability and uploading more amount of aptamer probes of PDA/UiO-66 composites make them efficient biosensors, leading to a high sensitivity with detection limit of 35 nM. Compared with ATP detection directly by UiO-66-based method, the LOD is about 5.7 times higher with PDA/UiO-66 nanoparticle. Moreover, the enhanced biocompatibility and bioactivity with PDA layer of the composites render a proposed strategy for clinical diagnosis field of detecting small biological molecules in vivo in the future.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2018-09-06
    Description: Materials, Vol. 11, Pages 1622: Hygrothermal and Acoustical Performance of Starch-Beet Pulp Composites for Building Thermal Insulation Materials doi: 10.3390/ma11091622 Authors: Hamzé Karaky Chadi Maalouf Christophe Bliard Tala Moussa Nadim El Wakil Mohammed Lachi Guillaume Polidori This article deals with the elaboration and the characterization of an innovative 100% plant-based green composite made solely of beet pulp (BP) and potato starch (S). Using this type of material in insulation applications seems a good solution to reduce the CO2 gas emissions in building. The influence of the starch amount on composite characteristics was studied. Four mixtures were considered with different S/BP mass ratios (0.1, 0.2, 0.3 and 0.4). The physical properties of these materials were studied in terms of porosity, apparent and absolute densities, thermal conductivity, and hygric properties. The influence of humidity content on acoustical properties was studied as a function of frequency. Test results show a real impact of both starch and humidity contents on the hygrothermal and acoustical properties of the studied material due to the porosity. The composite with the lowest amount of starch (S/BP = 0.1) seems to be the optimal composition in terms of the hygrothermal and acoustical behaviors.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2018-09-06
    Description: Materials, Vol. 11, Pages 1620: Push-Out Bond Strength and SEM Evaluation in Roots Filled with Two Different Techniques Using New and Conventional Sealers Materials doi: 10.3390/ma11091620 Authors: Pervin Dabaj Atakan Kalender Ayce Unverdi Eldeniz The aim of this study was to evaluate the influence of calcium-silicate-based sealer (Endosequence-BC-Sealer) in roots, filled with thermo-plasticized injectable technique aided by Calamus-Flow-Delivery-System, on bond strength to radicular dentin, in comparison with conventional epoxy-resin-based sealer (AH-Plus) along with cold-lateral-compaction technique. Root canals of mandibular-premolar teeth (n = 80) were instrumented using Protaper Universal rotary files and were randomly divided into four experimental groups (n = 20) as follows: (1) AH-Plus + cold-lateral-compaction technique; (2) Endosequence-BC-Sealer + cold-lateral-compaction technique; (3) AH-Plus + thermo-plasticized injectable technique; and (4) Endosequence-BC-Sealer + thermo-plasticized injectable technique. Horizontal disc shaped samples from each group (n = 60/group) were obtained and push-out bond strength testing was performed at a cross-head speed of 0.5 mm/min. Data were analyzed statistically using nonparametric Kruskal-Wallis analysis and Mann-Whitney test (p < 0.001). The statistical analysis revealed a significant difference amongst the groups (p < 0.001). The highest bond strength values were found in group 1 compared with all the other experimental groups (p < 0.001), whereas the lowest bond strength values were found in group 4 (p < 0.001). It was concluded that thermo-plasticized injectable technique with Calamus-Flow-Delivery-System lowered the bond strengths of the sealers, especially Endosequence-BC-Sealer. Therefore, this technique is not recommended to calcium-silicate-based sealers. Further studies are needed to confirm the findings of this study.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2018-09-06
    Description: Materials, Vol. 11, Pages 1617: Correction: Control of the Size of Silver Nanoparticles and Release of Silver in Heat Treated SiO2-Ag Composite Powders. Materials 2018, 11, 80 Materials doi: 10.3390/ma11091617 Authors: Henrika Granbohm Juha Larismaa Saima Ali Leena-Sisko Johansson Simo-Pekka Hannula In the published article “Control of the Size of Silver Nanoparticles and Release of Silver in Heat Treated SiO2-Ag Composite Powders” [1] a reference was omitted in the caption of Figure 4b. [...]
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2018-09-06
    Description: Materials, Vol. 11, Pages 1624: ZnO/ZnAl2O4 Nanocomposite with 3D Sphere-Like Hierarchical Structure for Photocatalytic Reduction of Aqueous Cr(VI) Materials doi: 10.3390/ma11091624 Authors: Xiaoya Yuan Xin Cheng Qiuye Jing Jiawei Niu Dong Peng Zijuan Feng Xue Wu Three dimensional (3D) ZnO/ZnAl2O4 nanocomposites (ZnnAl-MMO) were synthesized by a simple urea-assisted hydrothermal process and subsequent high-temperature calcination. The as-prepared samples and their precursors were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (DRS), and Photoluminescence spectra (PL). It was observed that the morphology of ZnnAl-MMO nanocomposites could be tuned from cubic aggregates, hierarchically flower-like spheres to porous microspheres by simply changing the molar ratio of metal cations of the starting reaction mixtures. The photocatalytic performance of ZnO/ZnAl2O4 nanocomposites in the photoreduction of aqueous Cr(VI) indicated that the as-prepared 3D hierarchical sphere-like ZnnAl-MMO nanocomposite showed excellent photocatalytic activity of Cr(VI) reduction under UV light irradiation. The results indicated that the maximum removal percentage of aqueous Cr(VI) was 98% within four hours at 10 mg/L initial concentration of Cr(VI), owing to the effective charge separation and diversion of photogenerated carriers across the heterojunction interface of the composite. Our study put forward a facile method to fabricate hierarchical ZnO/ZnAl2O4 composites with potential applications for wastewater treatment.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2018-09-04
    Description: Materials, Vol. 11, Pages 1595: An Analytical Study of Electromagnetic Deep Penetration Conditions and Implications in Lossy Media through Inhomogeneous Waves Materials doi: 10.3390/ma11091595 Authors: Paolo Baccarelli Fabrizio Frezza Patrizio Simeoni Nicola Tedeschi This paper illustrates how the penetration of electromagnetic waves in lossy media strongly depends on the waveform and not only on the media involved. In particular, the so-called inhomogeneous plane waves are compared against homogeneous plane waves illustrating how the first ones can generate deep penetration effects. Moreover, the paper provides examples showing how such waves may be practically generated. The approach taken here is analytical and it concentrates on the deep penetration conditions obtained by means of incident inhomogeneous plane waves incoming from a lossless medium and impinging on a lossy medium. Both conditions and constraints that the waveforms need to possess to achieve deep penetration are analysed. Some results are finally validated through numerical computations. The theory presented here is of interest in view of a practical implementation of the deep penetration effect.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2018-09-04
    Description: Materials, Vol. 11, Pages 1596: First-Principles Studies on the Structural and Electronic Properties of As Clusters Materials doi: 10.3390/ma11091596 Authors: Jialin Yan Jingjing Xia Qinfang Zhang Binwen Zhang Baolin Wang Based on the genetic algorithm (GA) incorporated with density functional theory (DFT) calculations, the structural and electronic properties of neutral and charged arsenic clusters Asn (n = 2–24) are investigated. The size-dependent physical properties of neutral clusters, such as the binding energy, HOMO-LUMO gap, and second difference of cluster energies, are discussed. The supercluster structures based on the As8 unit and As2 bridge are found to be dominant for the larger cluster Asn (n ≥ 8). Furthermore, the possible geometric structures of As28, As38, and As180 are predicted based on the growth pattern.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2018-09-04
    Description: Materials, Vol. 11, Pages 1593: Study on Formation Process and Models of Linear Fe Cluster Structure on a Si(111)-7 × 7-CH3OH Surface Materials doi: 10.3390/ma11091593 Authors: Wenxin Li Wanyu Ding Dongying Ju Ken-ichi Tanaka Fumio Komori STM results showed that Fe atoms were deposited on a Si(111)-7 × 7 reconstructed surface, which was saturated with CH3OH molecules. Fe atomic linear structure was composed of stable clusters and in-situ observed by the scanning tunneling microscopy (STM). The aim to improve its application of magnetic memory material, both formation process and models, has been explored in this paper. By combining surface images and mass spectrometer data, an intermediate layer model was established. In terms of thermal stability, the most favorable adsorption sites of CH3OH were further explored. After that, Fe atoms were deposited on the Si(111)-7 × 7-CH3OH surface, forming a linear cluster structure. On the one hand, a new Fe cluster model was put forward in this paper, which was established with height measurement and 3D surface display technology. This model is also affected by the evaporation temperature, which can be consistent with the atomic stacking pattern of face centered cubic structures. On the other hand, the slight height change suggested the stability of linear structures. Even in the condition of thin air introduction, Fe cluster showed a good performance, which suggested the possibility of magnetic memory application in the future. These investigations are believed to have, to a certain extent, increased the probability of forming Fe linear clusters on the surface of silicon substrate, especially according to the models and surface technology we adjusted.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2018-09-07
    Description: Materials, Vol. 11, Pages 1633: Effect of Reverse-phase Transformation Annealing Process on Microstructure and Mechanical Properties of Medium Manganese Steel Materials doi: 10.3390/ma11091633 Authors: Yan Zhao Lifeng Fan Bin Lu In order to develop a third-generation automobile steel with powerful strength and elongation, we propose a method through high temperature quenching and two-phase region reverse-phase transformation annealing to develop such steel with 0.13% C and 5.4% Mn. To investigate the microstructure evolution and mechanical properties of manganese steel, SEM, XRD and TEM are employed in our experiments. Experimental results indicate that the microstructure after quenching is mainly lath martensite microstructure with average of lath width at 0.5 μm. The components of the steel after along with reverse-phase transformation annealing are ultra-fine grain ferrite, lath martensite and different forms of austenite microstructure. When the temperature at 625 °C, the components of the steel mainly includes lath martensite microstructure and ultra-fine grain ferrite and the fraction of austenite volume is only 5.09%. When the annealing temperature of reverse-phase transformation increase into 650 °C and 675 °C, the austenite appears in the boundary of the ferritic grain boundary and the boundary of lath martensite as the forms of bulk and lath. The phenomenon appears in the bulk of austenite, and the size of is 0.22 μm, 0.3 μm. The fraction of austenite volume is 22.34% at 675 °C and decreases into 9.32% at 700 °C. The components of austenite mainly includes ultra-fine grained ferrite and lath martensite. Furthermore, the density of decreases significantly, and the width of martensite increases into 0.32 μm. In such experimental settings, quenching at 930 °C with 20 min and at 675 °C with 30 min reverse-phase transformation annealing, the austenite volume fraction raises up to 22.34%.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2018-09-07
    Description: Materials, Vol. 11, Pages 1635: The Coupling Effect of O2 and H2S on the Corrosion of G20 Steel in a Simulating Environment of Flue Gas Injection in the Xinjiang Oil Field Materials doi: 10.3390/ma11091635 Authors: Xiankang Zhong Yanran Wang Jianjun Liang Long Chen Xiaoqin Song Flue gas injection for heavy oil recovery has received a great deal of attention, because it is more cost effective than lots of other injection methods. However, the corrosion could occur easily, because the flue gas usually contains corrosive gases such as CO2, H2S, and O2. In this work, the corrosion behaviors of G20 steel in flue gas injection environment simulating Xinjiang oil field (China) were investigated using weight loss measurement and surface characterization techniques. The effect of environments including the O2-containing environment, the H2S-containing environment, and the O2-H2S-coexisting environment on the corrosion of G20 steel in gas phase and liquid phase was discussed. The results show that the corrosion rate of G20 steel in the O2-H2S-coexisting environment is much higher than the sum of corrosion rates of the O2-containing environment and the H2S-containing environment, regardless of the gas phase and the liquid phase. This indicates that there is a coupling effect between O2 and H2S, which can further accelerate the corrosion of steel in O2-H2S-coexisting environment. The results of surface characterization demonstrate that in a typical flue gas injection environment, the corrosion products are composed of FeCO3, FeS, FeO(OH), and elemental sulfur. Elemental sulfur could obviously accelerate the corrosion of steel. Therefore, it can be considered that the coupling effect of O2 and H2S on corrosion of G20 steel in flue gas injection environment is caused by the formation of elemental sulfur in corrosion products.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2018-09-07
    Description: Materials, Vol. 11, Pages 1632: Research Status and Prospect on Vanadium-Based Catalysts for NH3-SCR Denitration Materials doi: 10.3390/ma11091632 Authors: Jie Zhang Xiangcheng Li Pingan Chen Boquan Zhu Selective catalytic reduction of NOx with NH3 is one of the most widely used technologies in denitration. Vanadium-based catalysts have been extensively studied for the deNOx process. V2O5/WO3(MoO3)TiO2 as a commercial catalyst has excellent catalytic activity in the medium temperature range. However, it has usually faced several problems in practical industrial applications, including narrow windows of operation temperatures, and the deactivation of catalysts. The modification of vanadium-based catalysts will be the focus in future research. In this paper, the chemical composition of vanadium-based catalysts, catalytic mechanism, the broadening of the temperature range, and the improvement of erosion resistance are reviewed. Furthermore, the effects of four major systems of copper, iron, cerium and manganese on the modification of vanadium-based catalysts are introduced and analyzed. It is worth noting that the addition of modified elements as promoters has greatly improved the catalytic performance. They can enhance the surface acidity, which leads to the increasing adsorption capacity of NH3. Surface defects and oxygen vacancies have also been increased, resulting in more active sites. Finally, the future development of vanadium-based catalysts for denitration is prospected. It is indicated that the main purpose for the research of vanadium-based modification will help to obtain safe, environmentally friendly, efficient, and economical catalysts.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2018-09-07
    Description: Materials, Vol. 11, Pages 1631: Mechanistic Insight into Etching Chemistry and HF-Assisted Etching of MgO-Al2O3-SiO2 Glass-Ceramic Materials doi: 10.3390/ma11091631 Authors: Yanxin Ji Shun Yang Zhulian Li Junjie Duan Meng Xu Hong Jiang Changjiu Li Yongjun Chen The present study focuses on the etching conditions and mechanism of MgO-Al2O3-SiO2 glass-ceramic (MAS) in hydrofluoric acid (HF). The results show that the amorphous phase has 218 times higher etching rate than pure cordierite crystal at room temperature. In addition, the activation energies of cordierite and amorphous phases in the HF solution are 52.5 and 30.6 kJ/mol, respectively. The time (tad) taken for complete dissolution of the amorphous phase depends on the HF concentration (CHF). Based on the etching experiments, a new model is established and refined to assess the tad evolution. In addition, a highly crystalline cordierite phase, with the high specific surface area (59.4 m2·g−1) and mesoporous structure, has been obtained by HF etching. This paper presents novel insights into the etching chemistry and opens up avenues for further research in the area of cordierite-based catalytic ceramics.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2018-09-08
    Description: Materials, Vol. 11, Pages 1657: Electromagnetic Shielding Effectiveness of Woven Fabrics with High Electrical Conductivity: Complete Derivation and Verification of Analytical Model Materials doi: 10.3390/ma11091657 Authors: Marek Neruda Lukas Vojtech In this paper, electromagnetic shielding effectiveness of woven fabrics with high electrical conductivity is investigated. Electromagnetic interference-shielding woven-textile composite materials were developed from a highly electrically conductive blend of polyester and the coated yarns of Au on a polyamide base. A complete analytical model of the electromagnetic shielding effectiveness of the materials with apertures is derived in detail, including foil, material with one aperture, and material with multiple apertures (fabrics). The derived analytical model is compared for fabrics with measurement of real samples. The key finding of the research is that the presented analytical model expands the shielding theory and is valid for woven fabrics manufactured from mixed and coated yarns with a value of electrical conductivity equal to and/or higher than σ = 244 S/m and an excellent electromagnetic shielding effectiveness value of 25–50 dB at 0.03–1.5 GHz, which makes it a promising candidate for application in electromagnetic interference (EMI) shielding.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2018-09-09
    Description: Materials, Vol. 11, Pages 1662: Bearings Downsizing by Strength Enhancement and Service Life Extension Materials doi: 10.3390/ma11091662 Authors: Auezhan Amanov Shirmendagva Darisuren Young-Sik Pyun Slim bearings are used widely in aircrafts, robots, wind turbines, and industrial machineries, where their size and weight are very important for the performance of a system. The common materials of slim bearings for robots and industrial machineries are based on SAE52110 bearing steel, and special heat treatment and a super polishing process are used and adapted to improve the rolling contact fatigue (RCF) strength of bearings. The improvement in RCF strength, depending on contact stress, surface hardness, and the friction behavior before and after ultrasonic nanocrystalline surface modification (UNSM) treatment was validated. Simple analysis shows that these improvements can reduce the size and weight of slim bearings down to about 3.40–21.25% and 14.3–26.05%, respectively. Hence, this UNSM technology is an opportunity to implement cost-saving and energy consuming super-polishing, a heat treatment process, and to reduce the size and weight of slim bearings.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2018-09-12
    Description: Materials, Vol. 11, Pages 1686: Heat-Induced Discoloration of Chromophore Structures in Eucalyptus Lignin Materials doi: 10.3390/ma11091686 Authors: Peng Zhang Yanxia Wei Yang Liu Jianmin Gao Yao Chen Yongming Fan The color changes corresponding to chromophore structures in lignin caused by exposure of Eucalyptus (Eucalyptus grandis and E. urophylla) to heat were investigated. Eucalyptus wood powders were heat treated under saturated steam atmospheres for 10 h at 110 °C, 130 °C and 150 °C. The lignin was isolated before and after heat treatment. The physicochemical properties of the lignin and changes in chromophore structures during heat treatment was evaluated through wet chemical analysis, Fourier transform infrared spectroscopy (FTIR), diffuse reflectance ultraviolet-visible spectroscopy (DRUV-Vis), gel permeation chromatography (GPC), X-ray photoelectron spectroscopy (XPS) and 13C Cross polarization magic angle spinning nuclear magnetic resonance (13C CPMAS NMR). Wood color darkened and reddened with the increase in pressure and temperature. Depolymerization and dehydration reactions occurred via demethoxylation with heat treatment in saturated steam at 110 °C or 130 °C. Lignin condensed to form insoluble compounds after heat treatment in saturated steam at 150 °C. G units increased and S units decreased through demethylation during heat treatment, as revealed by FTIR and 13C-NMR analysis.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2018-09-12
    Description: Materials, Vol. 11, Pages 1685: Sintering Pmperature-Dependence on Radiopacity of Bi(2−x) ZrxO(3+x/2) Powders Prepared by Sol-Gel Process Materials doi: 10.3390/ma11091685 Authors: May-Show Chen Shih-Hsun Chen Fu-Chih Lai Chin-Yi Chen Ming-Yuan Hsieh Wei-Jen Chang Jen-Chang Yang Chung-Kwei Lin Bismuth oxide (Bi2O3) is an effective additive used to enhance radiography resolution for dental materials. However, there are potential concerns regarding its biocompatibility and connection to tissue discoloration. In the present study, we modified the radiopacity properties of Bi2O3 with zirconium oxide (ZrO2) using a sol-gel process and investigated the composition, as well as the effects of heat treatment temperature using Thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The harvested Bi2−xZrxO3+x/2 particles showed that the dominant phase transferred from α-Bi2O3 to β-Bi7.38Zr0.62O12.31 after a heat treatment of over 750 °C for 2 h. As the x values of Bi2−xZrxO3+x/2 increased from 0.2 to 1.0, more zirconium oxide precipitated onto the particle surface, thus enhancing the surface roughness of particles. For sol-gel Bi1.8Zr0.2O3.1 powders (x = 0.2), the radiopacity values became 4.90 ± 0.23 and 5.83 ± 0.22 mmAl after a heat treatment of 500 °C and 750 °C, respectively.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2018-09-12
    Description: Materials, Vol. 11, Pages 1681: A Comparative Study on the Mechanical Properties of a Polymer-Infiltrated Ceramic-Network Material Used for the Fabrication of Hybrid Abutment Materials doi: 10.3390/ma11091681 Authors: Salim Ongun Sevcan Kurtulmus-Yilmaz Gökçe Meriç Mutahhar Ulusoy Polymer-infiltrated ceramic-network (PICN) material is a new type of material used for the hybrid abutments of dental implants. This study aimed to compare flexural strength, bond strengths, and fracture-resistance values of PICN with lithium disilicate ceramic (LDS) and to evaluate the effect of thermocycling on the tested parameters. Twenty specimens were fabricated using computer-aided design and manufacturing (CAD-CAM) technology for each material according to three-point bending (n = 10), microshear bond strength (µSBS), and a fracture-resistance test (hybrid abutment, n = 10). All specimens of each test group were divided into two subgroups, thermocycled or nonthermocycled. Hybrid abutments were cemented on titanium insert bases and then fixed on implants to compare fracture resistance. Failure loads were recorded for each test and data were statistically analyzed. Thermocycling decreased bond strength to the resin luting agent and the fracture-resistance values of both materials (p < 0.001), whereas flexural-strength values were not affected. LDS ceramic showed significantly higher flexural strength, bond strength, and fracture-resistance values than PICN material (p < 0.001). Within the limitations of this study, LDS may be a preferable hybrid-abutment material to PICN in terms of mechanical and bonding properties.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2018-09-12
    Description: Materials, Vol. 11, Pages 1684: Interlaminar Shear Behavior of Laminated Carbon Fiber Reinforced Plastic from Microscale Strain Distributions Measured by Sampling Moiré Technique Materials doi: 10.3390/ma11091684 Authors: Qinghua Wang Shien Ri Hiroshi Tsuda Yosuke Takashita Ryuta Kitamura Shinji Ogihara In this article, the interlaminar shear behavior of a [±45°]4s laminated carbon fiber reinforced plastic (CFRP) specimen is investigated, by utilizing microscale strain mapping in a wide field of view. A three-point bending device is developed under a laser scanning microscope, and the full-field strain distributions, including normal, shear and principal strains on the cross section of CFRP, in a three-point bending test, are measured using a developed sampling Moiré technique. The microscale shear strain concentrations at interfaces between each two adjacent layers were successfully detected and found to be positive-negative alternately distributed before damage occurrence. The 45° layers slipped to the right relative to the −45° layers, visualized from the revised Moiré phases, and shear strain distributions of the angle-ply CFRP under different loads. The absolute values of the shear strain at interfaces gradually rose with the increase of the bending load, and the sudden decrease of the shear strain peak value implied the occurrence of interlaminar damage. The evolution of the shear strain concentrations is useful in the quantitative evaluation of the potential interlaminar shear failure.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2018-09-12
    Description: Materials, Vol. 11, Pages 1678: Microstructure and Properties of Mg-Zn-Y Alloy Powder Compacted by Equal Channel Angular Pressing Materials doi: 10.3390/ma11091678 Authors: Chun Chiu Hong-Min Huang Mg97Zn1Y2 (at %) alloy with a long period stacking ordered (LPSO) phase has attracted a great deal of attention due to its excellent mechanical properties. It has been reported that this alloy could be fabricated by warm extrusion of rapid solidified alloy powders. In this study, an alternative route combining mechanical milling and equal channel angular pressing (ECAP) was selected to produce the bulk Mg97Zn1Y2 alloy. Microstructural characterization, mechanical properties and corrosion behavior of the ECAP-compacted alloys were studied. The as-cast alloy contained α-Mg and LPSO-Mg12Zn1Y1 phase. In the as-milled powder, the LPSO phase decomposed and formed Mg24Y5 phase. The ECAP-compacted alloy had identical phases to those of the as-milled sample. The compacted alloy exhibited a hardness of 120 HV and a compressive yield strength of 308 MPa, which were higher than those of the as-cast counterpart. The compacted alloy had better corrosion resistance, which was attributed to the reduced volume fraction of the secondary phase resulting in lower microgalvanic corrosion in the compacted alloy. The increase in Y content in the α-Mg matrix also contributed to the improvement of corrosion resistance.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2018-09-12
    Description: Materials, Vol. 11, Pages 1680: Novel Porous Phosphorus–Calcium–Magnesium Coatings on Titanium with Copper or Zinc Obtained by DC Plasma Electrolytic Oxidation: Fabrication and Characterization Materials doi: 10.3390/ma11091680 Authors: Krzysztof Rokosz Tadeusz Hryniewicz Sofia Gaiaschi Patrick Chapon Steinar Raaen Dalibor Matýsek Łukasz Dudek Kornel Pietrzak In this paper, the characteristics of new porous coatings fabricated at three voltages in electrolytes based on H3PO4 with calcium nitrate tetrahydrate, magnesium nitrate hexahydrate, and copper(II) nitrate trihydrate are presented. The SEM, energy dispersive spectroscopy (EDS), glow discharge optical emission spectroscopy (GDOES), X-ray photoelectron spectroscopy (XPS), and XRD techniques for coating identification were used. It was found that the higher the plasma electrolytic oxidation (PEO) (micro arc oxidation (MAO)) voltage, the thicker the porous coating with higher amounts of built-in elements coming from the electrolyte and more amorphous phase with signals from crystalline Ca(H2PO4)2∙H2O and/or Ti(HPO4)2∙H2O. Additionally, the external parts of the obtained porous coatings formed on titanium consisted mainly of Ti4+, Ca2+, Mg2+ and PO43−, HPO42−, H2PO4−, P2O74− as well as Zn2+ or copper Cu+/Cu2+. The surface should be characterized by high biocompatibility, due to the presence of structures based on calcium and phosphates, and have bactericidal properties, due to the presence of zinc and copper ions. Furthermore, the addition of magnesium ions should accelerate the healing of postoperative wounds, which could lead to faster patient recovery.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2018-09-12
    Description: Materials, Vol. 11, Pages 1683: A Short Review on the Microstructure, Transformation Behavior and Functional Properties of NiTi Shape Memory Alloys Fabricated by Selective Laser Melting Materials doi: 10.3390/ma11091683 Authors: Xiebin Wang Sergey Kustov Jan Van Humbeeck Due to unique functional and mechanical properties, NiTi shape memory alloys are one of the most promising metallic functional materials. However, the poor workability limits the extensive utilization of NiTi alloys as components of complex shapes. The emerging additive manufacturing techniques provide high degrees of freedom to fabricate complex structures. A freeform fabrication of complex structures by additive manufacturing combined with the unique functional properties (e.g., shape memory effect and superelasticity) provide great potential for material and structure design, and thus should lead to numerous applications. In this review, the unique microstructure that is generated by selective laser melting (SLM) is discussed first. Afterwards, the previously reported transformation behavior and mechanical properties of NiTi alloys produced under various SLM conditions are summarized.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2018-09-10
    Description: Materials, Vol. 11, Pages 1663: Mechanical Properties and In Situ Deformation Imaging of Microlattices Manufactured by Laser Based Powder Bed Fusion Materials doi: 10.3390/ma11091663 Authors: Anton Du Plessis Dean-Paul Kouprianoff Ina Yadroitsava Igor Yadroitsev This paper reports on the production and mechanical properties of Ti6Al4V microlattice structures with strut thickness nearing the single-track width of the laser-based powder bed fusion (LPBF) system used. Besides providing new information on the mechanical properties and manufacturability of such thin-strut lattices, this paper also reports on the in situ deformation imaging of microlattice structures with six unit cells in every direction. LPBF lattices are of interest for medical implants due to the possibility of creating structures with an elastic modulus close to that of the bones and small pore sizes that allow effective osseointegration. In this work, four different cubes were produced using laser powder bed fusion and subsequently analyzed using microCT, compression testing, and one selected lattice was subjected to in situ microCT imaging during compression. The in situ imaging was performed at four steps during yielding. The results indicate that mechanical performance (elastic modulus and strength) correlate well with actual density and that this performance is remarkably good despite the high roughness and irregularity of the struts at this scale. In situ yielding is visually illustrated.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2018-09-13
    Description: Materials, Vol. 11, Pages 1693: Synthesis and Irreversible Thermochromic Sensor Applications of Manganese Violet Materials doi: 10.3390/ma11091693 Authors: Duy Khiem Nguyen Quang-Vu Bach Jong-Han Lee In-Tae Kim An irreversible thermochromic material based on manganese violet (MnNH4P2O7) is synthesized. The crystal phase, chemical composition, and morphology of the synthesized material are analyzed using X-ray diffraction, scanning electron microscopy coupled with energy-dispersive X-ray spectrometry, and Fourier-transform infrared spectroscopy. The absorption spectra of the synthesized material are obtained using a UV-Vis spectrometer, and the thermochromism exhibited by the powdered samples at high temperatures is also investigated. The as-synthesized manganese violet pigment consists of pure α-MnNH4P2O7 phase. In addition, the synthesized pigment largely consists of hexagonal crystals with a diameter of hundreds of nanometers. On heating, the pigment simultaneously loses H2O and NH3 in two successive steps at approximately 330–434.4 °C and 434.4–527 °C, which correspond to the formation of an intermediate phase and of Mn2P4O12, respectively. An overall mass loss of 14.22% is observed, which is consistent with the expected 13.79%. An irreversible color change from violet to white is observed after exposure of the synthesized manganese violet pigment at 400 °C for 30 min. This is attributed to the oxidation of ammonia to hydroxylamine, which then decomposes to nitrogen and water, or alternatively to the direct oxidation of ammonia to nitrogen. Furthermore, we demonstrate the potential application of synthesized manganese violet in the production of irreversible thermochromic paint by mixing with potassium silicate solution as a binder and deionized water as a solvent at a specific ratio. The thermochromic paint is then applied in fabrication of irreversible thermochromic sensors by coating it onto a steel plate surface. Finally, we show that manganese violet-based irreversible thermochromic sensors are able to detect temperatures around 400 °C by changing color from violet to white/milky.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2018-09-13
    Description: Materials, Vol. 11, Pages 1694: Hydrogen Peroxide Diffusion through Enamel and Dentin Materials doi: 10.3390/ma11091694 Authors: Carmen Llena Oreto Martínez-Galdón Leopoldo Forner Lucía Gimeno-Mallench Francisco J. Rodríguez-Lozano Juan Gambini The purpose of this study was to evaluate the in vitro diffusion of commercial bleaching products (hydrogen peroxide (HP) or carbamide peroxide (CP) based) with different application protocols. Human enamel-dentin discs were obtained and divided into 20 groups. Four commercial products based on HP (Pola Office+(PO), Perfect Bleach (PB), Norblanc Office-automix (NO), and Boost (BT)), and one based on CP (PolaDay CP (PD)), were evaluated with different application protocols (3 applications × 10 min or 1 application × 30 min, with or without light activation). Artificial pulp chambers with 100 µL of a buffer solution were prepared. After each application, the buffer was removed and diffused HP was quantified by fluorimetry. Data were analyzed with two-way analysis of variance (ANOVA) and Tukey’s test. In groups where 3 × 10 min applications were done, after the first 10 min, PB, NO, and PD showed similar diffusion (p < 0.05). After the second and third applications, diffusion proved similar for PO and PD, while PB exhibited the greatest diffusion. In the 30 min application groups, PO and BT showed no significant differences (p > 0.05), with similar results for NO and PD. Comparing products with or without light activation, PO, BT, and PB showed significantly greater diffusion with light activation (p < 0.05). Reapplication, and light activation, increased HP diffusion independently of the concentration of the product.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2018-09-13
    Description: Materials, Vol. 11, Pages 1689: Passive Q-Switching by Cr4+:YAG Saturable Absorber of Buried Depressed-Cladding Waveguides Obtained in Nd-Doped Media by Femtosecond Laser Beam Writing Materials doi: 10.3390/ma11091689 Authors: Gabriela Croitoru (Salamu) Nicolaie Pavel We report on laser performances obtained in Q-switch mode operation from buried depressed-cladding waveguides of circular shape (100 μm diameter) that were inscribed in Nd:YAG and Nd:YVO4 media by direct writing with a femtosecond laser beam. The Q-switch operation was realized with a Cr4+:YAG saturable absorber, aiming to obtain laser pulses of moderate (few μJ) energy at high (tens to hundreds kHz) repetition rate. An average power of 0.52 W at 1.06 μm consisting of a train of pulses of 7.79 μJ energy at 67 kHz repetition rate, was obtained from a waveguide realized in a 4.8 mm long, 1.1-at % Nd:YAG ceramics; the pulse peak power reached 1.95 kW. A similar waveguide that was inscribed in a 3.4 mm long, 1.0-at % Nd:YVO4 crystal yielded laser pulses with 9.4 μJ energy at 83 kHz repetition rate (at 0.77 W average power) and 1.36 kW peak power. The laser performances obtained in continuous-wave operation were discussed for each waveguide used in the experiments. Thus, a continuous-wave output power of 1.45 W was obtained from the circular buried depressed-cladding waveguide inscribed in the 1.1-at %, 4.8 mm long Nd:YAG; the overall optical-to-optical efficiency, with respect to the absorbed pump power, was 0.21. The waveguide inscribed in the 1.0-at %, 3.4 mm long Nd:YVO4 crystal yielded 1.85 W power at 0.26 overall optical efficiency. This work shows the possibility to build compact laser systems with average-to-high peak power pulses based on waveguides realized by a femtosecond (fs) laser beam direct writing technique and that are pumped by a fiber-coupled diode laser.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2018-09-15
    Description: Materials, Vol. 11, Pages 1734: Mineral Trioxide Aggregate Mixed with 5-Aminolevulinic Acid for the Photodynamic Antimicrobial Strategy in Hard Tissue Regeneration Materials doi: 10.3390/ma11091734 Authors: Yu-Fang Shen Tsui-Hsien Huang Hooi-Yee Ng Hsin-Yuan Fang Tuan-Ti Hsu Aminolevulinic acid (ALA) based photodynamic antimicrobial strategy can provide good antimicrobial effects and be used for medical applications. The aim of this study was to apply this strategy to Mineral Trioxide Aggregate (MTA), which is commonly used as a filling material for root endings and by doing so, to increase the bactericidal capability of MTA, as well as to investigate its characterization, cytocompatibility, and odontogenic differentiation potential. MTA is known to be a derivative of calcium silicate (CS). In this study, MTA specimens with or without ALA and light treatment were prepared. Diametral tensile strength values (DTS), setting durations, X-ray diffraction (XRD) spectra, apatite-mineralization, and antimicrobial abilities of the MTA, were also analyzed. Human dental pulp cells (hDPCs) can proliferate into the newly formed matrix and differentiate into odontoblasts to reinforce and strengthen the root. Levels of hDPCs proliferation and its odontogenic capabilities when cultured on MTA with ALA and light treatment, and the percentages of cells existing in the various cell cycle stages, were further evaluated in this study. The results indicated that MTA added ALA with light treatment had greater antibacterial ability and cytocompatibility, compared to MTA alone. A higher percentage S phase of the cells cultured on MTA added ALA with light treatment was observed. Furthermore, hDPCs cultured on MTA added ALA with light treatment had the highest expression levels of the odontoblastic differentiation markers. ALA has great antimicrobial efficiency and is a potential material for future medical applications. ALA-based photodynamic antibacterial strategy applied in the MTA has great antibacterial ability, cytocompatibility, and odontoblastic differentiation potential, and can facilitate the development of root canal treatment.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2018-09-15
    Description: Materials, Vol. 11, Pages 1730: Advanced Radar Absorbing Ceramic-Based Materials for Multifunctional Applications in Space Environment Materials doi: 10.3390/ma11091730 Authors: Andrea Delfini Marta Albano Antonio Vricella Fabio Santoni Giulio Rubini Roberto Pastore Mario Marchetti In this review, some results of the experimental activity carried out by the authors on advanced composite materials for space applications are reported. Composites are widely employed in the aerospace industry thanks to their lightweight and advanced thermo-mechanical and electrical properties. A critical issue to tackle using engineered materials for space activities is providing two or more specific functionalities by means of single items/components. In this scenario, carbon-based composites are believed to be ideal candidates for the forthcoming development of aerospace research and space missions, since a widespread variety of multi-functional structures are allowed by employing these materials. The research results described here suggest that hybrid ceramic/polymeric structures could be employed as spacecraft-specific subsystems in order to ensure extreme temperature withstanding and electromagnetic shielding behavior simultaneously. The morphological and thermo-mechanical analysis of carbon/carbon (C/C) three-dimensional (3D) shell prototypes is reported; then, the microwave characterization of multilayered carbon-filled micro-/nano-composite panels is described. Finally, the possibility of combining the C/C bulk with a carbon-reinforced skin in a synergic arrangement is discussed, with the aid of numerical and experimental analyses.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2018-09-15
    Description: Materials, Vol. 11, Pages 1727: Thin Electric Heating Membrane Constructed with a Three-Dimensional Nanofibrillated Cellulose–Graphene–Graphene Oxide System Materials doi: 10.3390/ma11091727 Authors: Chuang Shao Zhenyu Zhu Chuwang Su Sheng Yang Quanping Yuan Nanofibrillated cellulose (NFC) and graphene oxide (GO) with reinforcing and film-forming properties were employed with graphene to develop a novel and thin electric heating membrane with heat dissipation controllability. A negative charge was found on the surface of GO and NFC in aqueous dispersions, which contributed to the homogeneous distribution of the graphene sheets. The membrane had a good laminated structure with three-dimensional interaction between GO and NFC, with embedded graphene sheets. Conductivity was characterized as a function of the amount of graphene, thus giving control over to the heating power by adjusting the ratio of graphene. Subsequent electric heating tests can remove irregularities on the GO and graphene sheet, improving the laminated structure further. The temperature on the surface of the membrane presented an exponential increasing regularity with time. Under the same power density and time, the stabilized temperature rise of membranes was higher when grammage was higher, which was characterized by the linear function of the power density. Low-grammage membranes (1 and 4 g·m−2) also exhibited regular and even stabilized temperature rises. The indicated structure and heating performance of the membrane, as well as the variation induced by Joule heating, would drive its applications.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2018-09-15
    Description: Materials, Vol. 11, Pages 1733: Biomimetic Mineralizing Agents Recover the Micro Tensile Bond Strength of Demineralized Dentin Materials doi: 10.3390/ma11091733 Authors: Luiz Filipe Barbosa-Martins Jossaria Pereira de Sousa Lívia Araújo Alves Robert Philip Wynn Davies Regina Maria Puppin-Rontanti Biomimetic remineralization is an approach that mimics natural biomineralization, and improves adhesive procedures. The aim of this paper was to investigate the influence of Dentin Caries-like Lesions (DCLL)-Producing Model on microtensile bond strength (μTBS) of etch and rinse adhesive systems and investigate the effect of remineralizing agents such as Sodium Fluoride (NaF), MI Paste™ (MP) and Curodont™ Repair (CR) on caries-affected dentin (n = 6). Nine groups were established: (1) Sound dentin; (2) Demineralized dentin/Chemical DCLL: (3) Demineralized dentin/Biological DCLL; (4) Chemical/DCLL + NaF; (5) Chemical/DCLL + MP; (6) Chemical/DCLL + CR; (7) Biological/DCLL + NaF; (8) Biological/DCLL + MP; (9) Biological/DCLL + CR. Then all dentin blocks were subjected to a bonding procedure with Adper™ Single Bond 2 adhesive system/Filtek Z350XT 4 mm high block, following this they were immersed in deionized water/24 h and then sectioned with ≅1 mm2 beams. The μTBS test was conducted at 1 mm/min/500 N loading. Failure sites were evaluated by SEM (scanning electron microscopy (150×). μTBS data were submitted to factorial ANOVA and Tukey’s test (p < 0.05). The highest values were found when demineralized dentin was treated with MP and CR, regardless caries lesion depth (p < 0.05). There was a predominance of adhesive/mixed in the present study. It was concluded that the use of the artificial dentin caries production models produces differences in the μTBS. Additionally MP and CR remineralizing agents could enhance adhesive procedures even at different models of caries lesion.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2018-09-15
    Description: Materials, Vol. 11, Pages 1732: Origin of the Low Magnetic Moment in Fe2AlTi: An Ab Initio Study Materials doi: 10.3390/ma11091732 Authors: Martin Friák Anton Slávik Ivana Miháliková David Holec Monika Všianská Mojmír Šob Martin Palm Jörg Neugebauer The intermetallic compound Fe 2 AlTi (alternatively Fe 2 TiAl) is an important phase in the ternary Fe-Al-Ti phase diagram. Previous theoretical studies showed a large discrepancy of approximately an order of magnitude between the ab initio computed magnetic moments and the experimentally measured ones. To unravel the source of this discrepancy, we analyze how various mechanisms present in realistic materials such as residual strain effects or deviations from stoichiometry affect magnetism. Since in spin-unconstrained calculations the system always evolves to the spin configuration which represents a local or global minimum in the total energy surface, finite temperature spin effects are not well described. We therefore turn the investigation around and use constrained spin calculations, fixing the global magnetic moment. This approach provides direct insight into local and global energy minima (reflecting metastable and stable spin phases) as well as the curvature of the energy surface, which correlates with the magnetic entropy and thus the magnetic configuration space accessible at finite temperatures. Based on this approach, we show that deviations from stoichiometry have a huge impact on the local magnetic moment and can explain the experimentally observed low magnetic moments.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2018-09-15
    Description: Materials, Vol. 11, Pages 1723: Ion Transport Properties and Ionicity of 1,3-Dimethyl-1,2,3-Triazolium Salts with Fluorinated Anions Materials doi: 10.3390/ma11091723 Authors: Martin Pulst Yury Golitsyn Detlef Reichert Jörg Kressler 1,2,3-Triazolium salts are an important class of materials with a plethora of sophisticated applications. A series of three novel 1,3-dimethyl-1,2,3-triazolium salts with fluorine, containing anions of various size, is synthesized by methylation of 1,2,3-triazole. Their ion conductivity is measured by impedance spectroscopy, and the corresponding ionicities are determined by diffusion coefficients obtained from 1H and 19F pulsed field gradient nuclear magnetic resonance (PFG NMR) spectroscopy data, revealing that the anion strongly influences their ion conductive properties. Since the molar ion conductivities and ionicities of the 1,3-dimethyl-1,2,3-triazolium salts are enhanced in comparison to other 1,2,3-triazolium salts with longer alkyl substituents, they are promising candidates for applications as electrolytes in electrochemical devices.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2018-09-15
    Description: Materials, Vol. 11, Pages 1722: Microstructure and Tribological Properties of Laser Forming Repaired 34CrNiMo6 Steel Materials doi: 10.3390/ma11091722 Authors: Chunping Huang Xin Lin Haiou Yang Fencheng Liu Weidong Huang Laser forming repair (LFR) technology has considerable potential in high strength steel structure repair. 34CrNiMo6 steel has been widely used in high-value components, and it is imperative to repair these damaged components. In this study, two different thicknesses of repaired layers are deposited on the 34CrNiMo6 wrought substrate with five layers and 20 layers via LFR technology. The microstructure, phases, microhardness, and tribological properties are analyzed using optical microscopy, scanning electron microscopy, X-ray diffraction, Vickers hardness testing, and dry sliding wear testing. These results show that the 34CrNiMo6 repaired layers were successfully deposited on the substrate. The microstructure of the laser-repaired layers in the five-layer sample included bainite and retained austenite. For the 20-layer sample, the microstructure in the top of the repaired layers was still bainite and retained austenite, whereas that in the bottom of the repaired layers was transformed into ferrite and cementite. The average coefficients of friction of repaired layers is not significantly different from the substrate. The wear rate of the five LFR layers, 20-layer LFR, and substrate samples were 12.89 × 10−6, 15 × 10−6, and 23.87 × 10−6 mm3/N·m, respectively. The laser forming repaired samples had better wear resistance compared to the substrate. The wear mechanism of laser forming repaired samples is abrasive wear; whereas that of the substrate is abrasive wear and fatigue wear.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2018-09-15
    Description: Materials, Vol. 11, Pages 1721: Freeze–Thaw Durability of Strain-Hardening Cement-Based Composites under Combined Flexural Load and Chloride Environment Materials doi: 10.3390/ma11091721 Authors: Liqiang Yin Changwang Yan Shuguang Liu Cement-based materials are usually not exposed to an independent deterioration process but are exposed to a combination of mechanical load and environmental effects. This paper reports the frost resistance durability of strain-hardening cement-based composites (SHCC) under combined flexural loading at different levels and under chloride attack. The loss of mass, dynamic elastic modulus, and microstructure characteristics of SHCC specimens were determined, and the influence of loading level on frost resistance was analyzed. In addition, the effect of freeze–thaw action on the flexural performance and diffusion properties of chloride in SHCC under the combined loads was investigated. The results show that the process of degradation was accelerated due to the simultaneous action of flexural loading and freeze–thaw cycles in the chloride environment, and SHCC suffered more serious damage at a higher loading level. However, flexural strength decreased by only 13.87% after 300 freeze–thaw cycles at load level S = 0.36. The diffusion properties of chloride in SHCC under constant flexural loading were affected by the freezing and thawing cycle. The free chloride concentration Cf increased with the development of freezing and thawing at the same diffusion depth, and a bilinear relationship was found between the chloride diffusion coefficient Dc and the number of freeze–thaw cycles.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2018-09-16
    Description: Materials, Vol. 11, Pages 1737: Electrospinning of Ethylene Vinyl Acetate/Poly(Lactic Acid) Blends on a Water Surface Materials doi: 10.3390/ma11091737 Authors: Eliška Číková Jaroslav Kuliček Ivica Janigová Mária Omastová The electrospinning of an ethylene vinyl acetate (EVA) copolymer with a vinyl acetate content of 28 wt.% is limited due to the solubility of the copolymer in standard laboratory conditions. Poly(lactic acid) (PLA) is a biodegradable polymer that can be electrospun easily. However, PLA has limited applicability because it is brittle. Blends of these polymers are of interest in order to obtain new types of materials with counterbalanced properties originating from both polymeric compounds. The fibers were electrospun on a water surface from a solution mixture containing various weight ratios of both polymers using a dichloromethane and acetone (70:30 v/v) mixture as solvent. The morphologies of the prepared non-woven mats were examined by scanning electron microscopy (SEM), and the chemical composition was investigated by X-ray photoelectron spectroscopy (XPS) and by Fourier Transform Infrared Spectroscopy (FTIR). The fibers’ thermal properties and stability were examined, and the mechanical properties were tested. The results showed that the strength and flexibility of the blend samples were enhanced by the presence of PLA.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2018-09-16
    Description: Materials, Vol. 11, Pages 1738: Laboratory and Field Investigation of the Feasibility of Crumb Rubber Waste Application to Improve the Flexibility of Anti-Rutting Performance of Asphalt Pavement Materials doi: 10.3390/ma11091738 Authors: Hongyin Li Hailong Jiang Wenwu Zhang Peng Liu Shanshan Wang Fei Wang Jizhe Zhang Zhanyong Yao Resistance of asphalt mix to low-temperature cracking and rutting at high temperature is very important to ensure the service performance of asphalt pavement under seasonal changes in temperature and loading. However, it is challenging to balance the improvement of such resistance by using additives, e.g., anti-rutting agent (ARA). This study focuses on improving the flexibility of anti-rutting asphalt mix by incorporating crumb rubber (CR) and ARA. The properties of the prepared modified asphalt mix were evaluated in the laboratory by performing wheel tracking, three-point bending, indirect tensile, and uniaxial compression tests. The experimental results showed that the dynamic stability of modified asphalt mix was significantly increased due to the addition of ARA and further improved by incorporating CR. The maximum bending strain at −10 °C was increased due to the contribution of CR. The results of indirect tensile strength and resilient modulus further indicated that the CR-modified anti-rutting mixture was more flexible. Moreover, the field observation and evaluation indicated that the CR-modified anti-rutting asphalt pavement met the standard requirements, better than normal asphalt mixture in many parameters. A conclusion can be made that incorporating CR in asphalt mixture prepared with ARA can improve pavement performance at both high and low in-service temperatures.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2018-09-16
    Description: Materials, Vol. 11, Pages 1736: Effects of a Si-doped InGaN Underlayer on the Optical Properties of InGaN/GaN Quantum Well Structures with Different Numbers of Quantum Wells Materials doi: 10.3390/ma11091736 Authors: George Christian Menno Kappers Fabien Massabuau Colin Humphreys Rachel Oliver Philip Dawson In this paper we report on the optical properties of a series of InGaN polar quantum well structures where the number of wells was 1, 3, 5, 7, 10 and 15 and which were grown with the inclusion of an InGaN Si-doped underlayer. When the number of quantum wells is low then the room temperature internal quantum efficiency can be dominated by thermionic emission from the wells. This can occur because the radiative recombination rate in InGaN polar quantum wells can be low due to the built-in electric field across the quantum well which allows the thermionic emission process to compete effectively at room temperature limiting the internal quantum efficiency. In the structures that we discuss here, the radiative recombination rate is increased due to the effects of the Si-doped underlayer which reduces the electric field across the quantum wells. This results in the effect of thermionic emission being largely eliminated to such an extent that the internal quantum efficiency at room temperature is independent of the number of quantum wells.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2018-09-19
    Description: Materials, Vol. 11, Pages 1764: Natural and Modified Montmorillonite Clays as Catalysts for Synthesis of Biolubricants Materials doi: 10.3390/ma11091764 Authors: Francisco Murilo Tavares Luna Juan Antonio Cecilia Rosana Maria Alves Saboya Deicy Barrera Karim Sapag Enrique Rodríguez-Castellón Célio Loureiro Cavalcante In this study, natural and modified clays were evaluated as catalysts in an esterification reaction to obtain bio-based lubricants. The biolubricants are environmentally preferred to petroleum-based lubricants because they are biodegradable and non-toxic. Other advantages include very low volatility due to the high molecular weight and excellent viscosity properties with temperature variations. Modifications in natural clay were performed intending to obtain materials with different textural properties that could improve the reaction under study. The modified clays were obtained in two ways: by pillarization using Al13 Keggin polyoxocations or by acid treatments with H2SO4, HCl and HNO3. All samples were evaluated for the esterification reaction of fatty acids from castor oil (FACO) using 2-ethyl-hexanol. During the reaction step, a zeolite-based adsorbent was used for water removal to increase the reaction equilibrium conversion. Gas chromatography and nuclear magnetic resonance were performed to ensure the formation of the products. The highest conversion of fatty acids to esters was obtained using pillared clays. Adding adsorbent in the reaction medium (10 g of 3A zeolite to 100 g of FACO), the conversion improved from 74–88 wt % after 6 h at 50 °C.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2018-09-19
    Description: Materials, Vol. 11, Pages 1756: Preparing the Degradable, Flame-Retardant and Low Dielectric Constant Nanocomposites for Flexible and Miniaturized Electronics with Poly(lactic acid), Nano ZIF-8@GO and Resorcinol Di(phenyl phosphate) Materials doi: 10.3390/ma11091756 Authors: Mi Zhang Yu Gao Yixing Zhan Xiaoqing Ding Ming Wang Xinlong Wang Degradable, flame retardant, and flexible nanocomposite films with low dielectric constant were prepared with poly (lactic acid) (PLA), nano ZIF-8@GO, and degradable flame-retardant resorcinol di(phenyl phosphate) (RDP). The SEM results of the fractured surfaces indicated that ZIF-8@GO and RDP were dispersed uniformly in the PLA matrix. The prepared films had good mechanical properties and the tensile strength of the film with 1.5 wt% of ZIF-8@GO was increased to 48.2 MPa, compared with 38.5 MPa of pure PLA. Meanwhile, the nanocomposite films were flexible due to the toughing effect of RDP. Moreover, above 27.0% of limited oxygen index (LOI) and a VTM-0 rating were achieved for the nanocomposite films. The effects of nano ZIF-8@GO hybrids and RDP on the dielectric properties were investigated, and the results showed that ZIF-8@GO and RDP were beneficial in reducing the dielectric constant and dielectric loss of the nanocomposites.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2018-09-19
    Description: Materials, Vol. 11, Pages 1755: A Facile Synthesis Procedure for Sulfonated Aniline Oligomers with Distinct Microstructures Materials doi: 10.3390/ma11091755 Authors: Ramesh Karunagaran Campbell Coghlan Diana Tran Tran Thanh Tung Alexandre Burgun Christian Doonan Dusan Losic Well-defined sulfonated aniline oligomer (SAO) microstructures with rod and flake morphologies were successfully synthesized using an aniline and oxidant with a molar ratio of 10:1 in ethanol and acidic conditions (pH 4.8). The synthesized oligomers showed excellent dispersibility and assembled as well-defined structures in contrast to the shapeless aggregated material produced in a water medium. The synergistic effects among the monomer concentration, oxidant concentration, pH, and reaction medium are shown to be controlling parameters to generate SAO microstructures with distinct morphologies, whether micro sheets or micro rods.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2018-09-19
    Description: Materials, Vol. 11, Pages 1757: Thermoelectric Nanocomposite Foams Using Non-Conducting Polymers with Hybrid 1D and 2D Nanofillers Materials doi: 10.3390/ma11091757 Authors: Mohammadmehdi Aghelinejad Siu Ning Leung A facile processing strategy to fabricate thermoelectric (TE) polymer nanocomposite foams with non-conducting polymers is reported in this study. Multilayered networks of graphene nanoplatelets (GnPs) and multi-walled carbon nanotubes (MWCNTs) are deposited on macroporous polyvinylidene fluoride (PVDF) foam templates using a layer-by-layer (LBL) assembly technique. The open cellular structures of foam templates provide a platform to form segregated 3D networks consisting of one-dimensional (1D) and/or two-dimensional (2D) carbon nanoparticles. Hybrid nanostructures of GnP and MWCNT networks synergistically enhance the material system’s electrical conductivity. Furthermore, the polymer foam substrates possess high porosity to provide ultra-low thermal conductivity without compromising the electrical conductivity of the TE nanocomposites. With an extremely low GnP loading (i.e., ~1.5 vol.%), the macroporous PVDF nanocomposites exhibit a thermoelectric figure-of-merit of ~10−3. To the best of our knowledge, this ZT value is the highest value reported for organic TE materials using non-conducting polymers and MWCNT/GnP nanofillers. The proposed technique represents an industrially viable approach to fabricate organic TE materials with enhanced energy conversion efficiencies. The current study demonstrates the potential to develop light-weight, low-cost, and flexible TE materials for green energy generation.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2018-09-22
    Description: Materials, Vol. 11, Pages 1797: Grain-Boundary Interaction between Inconel 625 and WC during Laser Metal Deposition Materials doi: 10.3390/ma11101797 Authors: Jan Huebner Dariusz Kata Paweł Rutkowski Paweł Petrzak Jan Kusiński In this study, the laser metal deposition (LMD) of the Inconel 625–tungsten carbide (WC) metal matrix composite was investigated. The composite coating was deposited on Inconel 625 substrate by powder method. A powder mixture containing 10 wt% of WC (5 µm) was prepared by wet mixing with dextrin binder. Coating samples obtained by low-power LMD were pore- and crack-free. Ceramic reinforcement was distributed homogenously in the whole volume of the material. Topologically close-packed (TCP) phases were formed at grain boundaries between WC and Inconel 625 matrix as a result of partial dissolution of WC in a nickel-based alloy. Line analysis of the elements revealed very small interference of the coating in the substrate material when compared to conventional coating methods. The average Vickers hardness of the coating was about 25% higher than the hardness of pure Inconel 625 reference samples.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2018-09-22
    Description: Materials, Vol. 11, Pages 1792: Chromaticity-Tunable and Thermal Stable Phosphor-in-Glass Inorganic Color Converter for High Power Warm w-LEDs Materials doi: 10.3390/ma11101792 Authors: Zikun Chen Bo Wang Xiaoshuang Li Dayu Huang Hongyang Sun Qingguang Zeng In this work, an aluminate silicate garnet phosphor, Y2Mg2Al2Si2O12:Ce3+ (YMASG:Ce3+), exhibiting strong and broad yellow-orange emission, was successfully synthesized. Attributed to the double cation substitution of YAG:Ce3+, which led to a compression effect, a redshift was observed with respect to YAG:Ce3+. More importantly, a transparent phosphor-in-glass (PiG) sample was obtained by incorporating the phosphor YMASG:Ce3+ into a special low-melting precursor glass. The energy dispersive spectrometer (EDS) mapping analysis of the as-prepared PiG sample indicates that YMASG:Ce3+ was successfully incorporated into the glass host, and its powders were uniformly distributed in glass. The photoluminescence intensity of the PiG sample was higher than that of the powder due to its relatively high thermal conductivity. Additionally, the combination of the PiG sample and a blue high-power chip generated a modular white LED with a luminous efficacy of 54.5 lm/W, a correlated color temperature (CCT) of 5274 K, and a color rendering index (CRI) of 79.5 at 350 mA.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2018-09-22
    Description: Materials, Vol. 11, Pages 1793: An Innovative Method for Forming Balls by Cross Rolling Materials doi: 10.3390/ma11101793 Authors: Zbigniew Pater Janusz Tomczak Tomasz Bulzak The paper describes an innovative cross rolling method that enables the production of six balls at the same time, each ball with a diameter of 100 mm. The principle of the proposed rolling technique is discussed and the tools used in this forming process are described. Two variations of the proposed method for producing balls were investigated, one performed with the use of flat tools and the other with the use of two rolls. Results of the numerical modelling are discussed. They clearly demonstrate that the proposed method can be used to produce balls with large diameters. Rolling experiments were performed under laboratory conditions to produce 40 mm diameter balls, i.e., in the 1:2.5 scale. The experimental findings show a good qualitative agreement with the numerical results.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2018-09-22
    Description: Materials, Vol. 11, Pages 1795: Correlation of Materials Property and Performance with Internal Structures Evolvement Revealed by Laboratory X-ray Tomography Materials doi: 10.3390/ma11101795 Authors: Lei Zhang Shaogang Wang Although X-rays generated from a laboratory-based tube cannot be compared with synchrotron radiation in brilliance and monochromaticity, they are still viable and accessible in-house for ex situ or interrupted in situ X-ray tomography. This review mainly demonstrates recent works using laboratory X-ray tomography coupled with the measurements of properties or performance testing under various conditions, such as thermal, stress, or electric fields. Evolvements of correlated internal structures for some typical materials were uncovered. The damage features in a graded metallic 3D mesh and a metallic glass under mechanical loading were revealed and investigated. Micro-voids with thermal treatment and void healing phenomenon with electropulsing were clearly demonstrated and quantitatively analyzed. The substance transfer around an electrode of a Li-S battery and the protective performance of a Fe-based metallic glass coating on stainless steel were monitored through electrochemical processes. It was shown that in situ studies of the laboratory X-ray tomography were suitable for the investigation of structure change under controlled conditions and environments. An extension of the research for in situ laboratory X-ray tomography can be expected with supplementary novel techniques for internal strain, global 3D grain orientation, and a fast tomography strategy.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2018-09-22
    Description: Materials, Vol. 11, Pages 1794: Characterisation of InGaN by Photoconductive Atomic Force Microscopy Materials doi: 10.3390/ma11101794 Authors: Thomas F. K. Weatherley Fabien C.-P. Massabuau Menno J. Kappers Rachel A. Oliver Nanoscale structure has a large effect on the optoelectronic properties of InGaN, a material vital for energy saving technologies such as light emitting diodes. Photoconductive atomic force microscopy (PC-AFM) provides a new way to investigate this effect. In this study, PC-AFM was used to characterise four thick (∼130 nm) In x Ga 1 − x N films with x = 5%, 9%, 12%, and 15%. Lower photocurrent was observed on elevated ridges around defects (such as V-pits) in the films with x ≤ 12 %. Current-voltage curve analysis using the PC-AFM setup showed that this was due to a higher turn-on voltage on these ridges compared to surrounding material. To further understand this phenomenon, V-pit cross sections from the 9% and 15% films were characterised using transmission electron microscopy in combination with energy dispersive X-ray spectroscopy. This identified a subsurface indium-deficient region surrounding the V-pit in the lower indium content film, which was not present in the 15% sample. Although this cannot directly explain the impact of ridges on turn-on voltage, it is likely to be related. Overall, the data presented here demonstrate the potential of PC-AFM in the field of III-nitride semiconductors.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2018-09-23
    Description: Materials, Vol. 11, Pages 1801: Comparative Analysis of Mechanical Properties and Metal-Ceramic Bond Strength of Co-Cr Dental Alloy Fabricated by Different Manufacturing Processes Materials doi: 10.3390/ma11101801 Authors: Xingting Han Tomofumi Sawada Christine Schille Ernst Schweizer Lutz Scheideler Jürgen Geis-Gerstorfer Frank Rupp Sebastian Spintzyk Cobalt-chromium (Co-Cr) alloy is a widely used base material for dental fixed prostheses. These restorations can be produced through casting technique, subtractive or additive manufacturing technologies. However, limited information is available regarding the influence of manufacturing techniques on the properties of Co-Cr alloy since most studies used different chemical compositions of Co-Cr alloy for different manufacturing methods. This study compares the mechanical properties, metal-ceramic bond strength, and microstructures of specimens produced by casting, milling, and selective laser melting (SLM) from one single Co-Cr alloy composition. The mechanical properties of the alloy were investigated by tensile and Vickers hardness tests, and metal-ceramic bond strength was determined by three-point bending. Scanning electron microscopy (SEM) with backscattered electron (BSE) images and optical microphotographs were used to analyze the surface microstructures. Compared with the casting and milling techniques, SLM Co-Cr alloy specimens indicated enhanced mechanical properties and comparable metal-ceramic bond strength. Besides, the microstructures of the SLM specimens showed finer grains with more second phase particles than the casting and milling specimens. The results of our study indicate that SLM might be superior to traditional techniques for the manufacturing of fixed dental restorations.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2018-09-23
    Description: Materials, Vol. 11, Pages 1802: Oral Microbes, Biofilms and Their Role in Periodontal and Peri-Implant Diseases Materials doi: 10.3390/ma11101802 Authors: Lasserre Jérôme Frédéric Brecx Michel Toma Selena Despite many discoveries over the past 20 years regarding the etio-pathogenesis of periodontal and peri-implant diseases, as well as significant advances in our understanding of microbial biofilms, the incidence of these pathologies still continues to rise. This review presents a general overview of the main protagonists and phenomena involved in oral health and disease. A special emphasis on the role of certain keystone pathogens in periodontitis and peri-implantitis is underlined. Their capacity to bring a dysregulation of the homeostasis with their host and the microbial biofilm lifestyle are also discussed. Finally, the current treatment principles of periodontitis and peri-implantitis are presented and their limits exposed. This leads to realize that new strategies must be developed and studied to overcome the shortcomings of existing approaches.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...