ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,760)
  • Wiley  (1,168)
  • MDPI Publishing  (592)
  • American Chemical Society (ACS)
  • 2015-2019  (1,760)
  • 2015  (1,760)
  • Materials  (592)
  • 115624
  • 6716
  • 1
    Publication Date: 2015-08-11
    Description: New, commensurate members of the fluorite-related Bi 3 Nb 1− x Ta x O 7 family were synthesized and their crystal structures, microstructures, and microwave (MW) dielectric properties were characterized. The incorporation of Ta into the tetragonal Bi 3 Nb 1− x Ta x O 7 solid solution was found to gradually affect the density and the MW dielectric properties. The materials sintered at 870°C exhibited relative permittivities in the range k ′ = 86–72, Q  ×  f values from 793 to 1189 GHz and a positive temperature coefficient of resonant frequency from 88 to 12 ppm/K. The formation of the members of the fluorite-related solid solution along the Bi 3 Nb 1− x Ta x O 7 composition depends on a phase transition, and thus their properties are compared within the compositional range. The correlations between their MW dielectric properties, compositions, crystal structures, and processing parameters were discussed in detail. Optimization of MW properties can be achieved by utilizing the ability of the Bi 3 Nb 1− x Ta x O 7 solid solution that it undergoes a phase transformation from cubic to tetragonal structure which are both characterized by unique properties, under certain synthesis conditions.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-11
    Description: Transparent novel glass-ceramics containing Sr 2 YbF 7 :Er 3+ nanocrystals were successfully fabricated by melt-quenching technique. Their structural and up-conversion luminescent properties were systemically investigated by XRD, HRTEM, and a series of spectroscopy methods. The temperature-dependent up-conversion spectra prove that 2 H 11/2 and 4 S 3/2 levels of Er 3+ are thermally coupled energy levels (TCEL). Consequently, the 2 H 11/2 4 I 15/2 and 4 S 3/2 4 I 15/2 emissions of Er 3+ in Sr 2 YbF 7 :Er 3+ glass-ceramics can be used as optical thermometry based on fluorescence intensity ratio (FIR) technique. Combined with low phonon energy and high thermal stability, Er 3+ ions in Sr 2 YbF 7 glass-ceramics present broad operating temperature range (300–500 K), large energy gap of TCEL (786 cm −1 ) and high theoretical maximum value of relative sensitivity (62.14 × 10 −4  K −1 at 560 K), which suggests that Sr 2 YbF 7 :Er 3+ glass-ceramics may be excellent candidates for optical temperature sensors.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-11
    Description: Lightweighting in the transportation industry is today recognized as one of the most important strategies to improve fuel efficiency and reduce anthropogenic climate-changing, environment-damaging, and human death-causing emissions. However, the structural applications of lightweight alloys are often limited by some inherent deficiencies such as low stiffness, high wear rate and inferior strength. These properties could be effectively enhanced by the addition of stronger and stiffer reinforcements, especially nano-sized particles, into metal matrix to form composites. In most cases three common strengthening mechanisms (load-bearing effect, mismatch of coefficients of thermal expansion, and Orowan strengthening) have been considered to predict the yield strength of metal matrix nanocomposites (MMNCs). This study was aimed at developing a unified model by taking into account the matrix grain size and porosity (which is unavoidable in the materials processing such as casting and powder metallurgy) in the prediction of the yield strength of MMNCs. The Zener pinning effect of grain boundaries by the nano-sized particles has also been integrated. The model was validated using the experimental data of magnesium- and titanium-based nanocomposites containing different types of nano-sized particles (namely, Al2O3, Y2O3, and carbon nanotubes). The predicted results were observed to be in good agreement with the experimental data reported in the literature.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-12
    Description: A fast and effective wound healing process would substantially decrease medical costs, wound care supplies, and hospitalization significantly improving the patients’ quality of life. The search for effective therapeutic approaches seems to be imperative in order to avoid the aggravation of chronic wounds. In spite of all the efforts that have been made during the recent years towards the development of artificial wound dressings, none of the currently available options combine all the requirements necessary for quick and optimal cutaneous regeneration. Therefore, technological advances in the area of temporary and permanent smart dressings for wound care are required. The development of nanoscience and nanotechnology can improve the materials and designs used in topical wound care in order to efficiently release antimicrobial, anti-inflammatory and regenerative compounds speeding up the endogenous healing process. Nanostructured dressings can overcome the limitations of the current coverings and, separately, natural origin components can also overcome the drawbacks of current antibiotics and antiseptics (mainly cytotoxicity, antibiotic resistance, and allergies). The combination of natural origin components with demonstrated antibiotic, regenerative, or anti-inflammatory properties together with nanostructured materials is a promising approach to fulfil all the requirements needed for the next generation of bioactive wound dressings. Microbially compromised wounds have been treated with different essential oils, honey, cationic peptides, aloe vera, plant extracts, and other natural origin occurring antimicrobial, anti-inflammatory, and regenerative components but the available evidence is limited and insufficient to be able to draw reliable conclusions and to extrapolate those findings to the clinical practice. The evidence and some promising preliminary results indicate that future comparative studies are justified but instead of talking about the beneficial or inert effects of those natural origin occurring materials, the scientific community leads towards the identification of the main active components involved and their mechanism of action during the corresponding healing, antimicrobial, or regenerative processes and in carrying out systematic and comparative controlled tests. Once those natural origin components have been identified and their efficacy validated through solid clinical trials, their combination within nanostructured dressings can open up new avenues in the fabrication of bioactive dressings with outstanding characteristics for wound care. The motivation of this work is to analyze the state of the art in the use of different essential oils, honey, cationic peptides, aloe vera, plant extracts, and other natural origin occurring materials as antimicrobial, anti-inflammatory and regenerative components with the aim of clarifying their potential clinical use in bioactive dressings. We conclude that, for those natural occurring materials, more clinical trials are needed to reach a sufficient level of evidence as therapeutic agents for wound healing management.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-14
    Description: In this work, the plastic deformation mechanisms responsible for mechanical properties and fracture toughness in  nanotwinned (NT) magnesium is studied by molecular dynamics (MD) simulation. The influence of twin boundary (TBs) spacing and crack position on deformation behaviors are investigated. The microstructure evolution at the crack tip are not exactly the same for the left edge crack (LEC) and the right edge crack (REC) models according to calculations of the energy release rate for dislocation nucleation at the crack tip. The LEC growth initiates in a ductile pattern and then turns into a brittle cleavage. In the REC model, the atomic decohesion occurs at the crack tip to create a new free surface which directly induces a brittle cleavage. A ductile to brittle transition is observed which mainly depends on the competition between dislocation motion and crack growth. This competition mechanism is found to be correlated with the TB spacing. The critical values are 10 nm and 13.5 nm for this transition in LEC and REC models, respectively. Essentially, the dislocation densities affected by the TB spacing play a crucial role in the ductile to brittle transition.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-08-14
    Description: Plant factories have attracted increasing attention because they can produce fresh fruits and vegetables free from pesticides in all weather. However, the emission spectra from current light sources significantly mismatch the spectra absorbed by plants. We demonstrate a concept of using multiple broad-band as well as narrow-band solid-state lighting technologies to design plant-growth light sources. Take an organic light-emitting diode (OLED), for example; the resulting light source shows an 84% resemblance with the photosynthetic action spectrum as a twin-peak blue dye and a diffused mono-peak red dye are employed. This OLED can also show a greater than 90% resemblance as an additional deeper red emitter is added. For a typical LED, the resemblance can be improved to 91% if two additional blue and red LEDs are incorporated. The approach may facilitate either an ideal use of the energy applied for plant growth and/or the design of better light sources for growing different plants.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-08-04
    Description: Bone substitute materials have witnessed tremendous development over the past decades and autogenous bone may still be considered the gold standard for many clinicians and clinical approaches in order to rebuild and restore bone defects. However, a plethora of novel xenogenic and synthetic bone substitute materials have been introduced in recent years in the field of bone regeneration. As the development of bone is actually a calcification process within a collagen fiber arrangement, the use of scaffolds in the formation of fibers may offer some advantages, along with additional handling characteristics. This review focuses on material characteristics and degradation behavior of electrospun biodegradable polyester scaffolds. Furthermore, we concentrated on the preclinical in vivo performance with regard to bone regeneration in preclinical studies. The major findings are as follows: Scaffold composition and architecture determine its biological behavior and degradation characteristics; The incorporation of inorganic substances and/or organic substances within composite scaffolds enhances new bone formation; L-poly(lactic acid) and poly(lactic-co-glycolic acid) composite scaffolds, especially when combined with basic substances like hydroxyapatite, tricalcium phosphate or demineralized bone powder, seem not to induce inflammatory tissue reactions in vivo.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-04
    Description: Semi-conducting poly(n-methylaniline) (PNMA)-coated poly(methyl methacrylate) (PMMA) composite nanoparticles were synthesized using cross-linked and grafted PMMA particles as a core, and then, the PNMA shell was coated via chemical oxidative polymerization on the surface of modified PMMA nanoparticles. Their electroresponsive electrorheological characteristics when dispersed in silicone were confirmed under applied electric fields using a rotational rheometer, focusing on their viscoelastic response. Using a frequency sweep test, the frequency dependence of both the storage and loss moduli was confirmed to increase upon increasing the electric field, with a stable plateau regime over the entire angular frequency range.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-08
    Description: Accurate information on the interactions between water and silica is critical to the understanding of its properties including mechanical strength under stress and long-term chemical durability of silica and silicate glasses. In this study, interactions between water and nanoporous amorphous silica models were investigated using density functional theory (DFT) based ab initio molecular dynamics (AIMD) simulations which accurately describe bond breakage and formation as well as chemical reactions. AIMD simulations up to 30 ps were performed for systems containing water and nanoporous silica with a wide range of porosities (31%–67%). Partial removal of defects, such as two-membered rings, was observed during the AIMD runs whereas more reactive coordination defects were removed during the initial geometry optimization. The limited two-membered ring removal can be attributed to restricted water-defect movement or the increased stability of rings located on concave surfaces. Two-membered ring removal mechanisms included the formation of an overcoordinated silicon (Si 5 ) intermediate defect from the dynamic simulations. Si 5 defects continued to develop throughout the simulations, indicating a thermodynamic drive for two-membered ring removal which is kinetically limited. Changes in the electronic structures, such as atomic charges, and bond length-bond angle correlation functions were monitored during the hydroxylation process.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-08-08
    Description: Amorphous calcium polyphosphate (ACPP), an inorganic polymer ceramic, has shown promise as a drug delivery matrix following a repeat gelling protocol. This study described a simple method of preparing ACPP hydrogel in the presence of an excess volume of water. The increased water availability accelerates water molecule ingress and microstructural transformation of ACPP hydrogels. The impact of some experimental settings (soaking time, temperature, stirring, and ACPP particle size) on the physiochemical and rheological natures of ACPP hydrogel were investigated and from which possible hydrogel formation mechanisms were inferred. We believe that the formation of ACPP hydrogel is through the mechanisms of intermolecular ionic interaction and entanglement of polyphosphate chains. The potential application of ACPP hydrogel as a ceramic matrix for sustained drug release warrants further investigation.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2015-08-08
    Description: Melting gels are hybrid gels that have the ability to soften and flow at around 100°C for some combinations of mono- and di-substituted alkoxysiloxanes, where substitutions are either all aromatic or all aliphatic. In this study, melting gels were prepared using phenyltriethoxysilane (PhTES) and dimethyldiethoxysilane (DMDES), meaning both an aromatic and aliphatic substitution. Differential scanning calorimetry was performed to identify glass-transition temperatures, and thermal gravimetric analysis coupled with differential thermal analysis (TGA-DTA) was performed to measure weight loss. The glass-transition temperatures ( T g ) ranged from −61°C to +5.6°C, which are between the values in the methyl only system, where all T g values are less than 0°C, and those values in the phenyl only system, where T g values are greater than 0°C. The T g decreased with an increase in the DMDES fraction. Below 450°C, the gels lost little weight, but around 600°C there was a drop in weight. This temperature is lower than the temperature for gels prepared with only aromatic substitutions, but higher than that for gels prepared with only aliphatic substitutions. Final heat treatment was carried out at 150°C for the gel with 80%PhTES-20%DMDES (in mol%), and the consolidation temperature increased with increasing DMDES content to 205°C for the gel with 50%PhTES-50%DMDES. After this heat treatment, the melting gels no longer soften.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-08-08
    Description: Direct integration of nanostructures into macroscopic substrates is very important for their practical applications. In this work, we report a simple method that can be introduced for the Sn-catalyzed growth of alumina nanowires on ceramic substrates such as porous disk, monolith, and foam. Our study focuses on the role of the Sn catalysts in the formation mechanisms governing nanowire growth. Using the proposed approach, hair- or grass-like tufts of 20 nm diameter nanowires grow on the surface of the ~3 μm diameter Sn particles, in a tip growth mechanism. The nanowires of α-phased polycrystalline structure grow and are packed via a complex process involving batch-by-batch, branching, and amalgamation growth. The detailed observations reveal that the Sn catalyst is key to tailoring the growth patterns of the nanowires. In addition, cathodoluminescence studies highlight the potential optical applications of the alumina nanowires.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2015-08-08
    Description: Flash sintering is a nonlinear phenomenon characterized by a sharp increase in the conductivity of the sample and concomitant rapid densification under an electric field in low temperatures in a matter of seconds. Since it is a transient phenomenon, the power dissipation on the sample is not uniform during the process. Thus, a transient analysis is needed to estimate the temperature of the sample during flash sintering due to Joule heating. In this work, the Finite Element Method on a coupled electrothermal nonlinear analysis was used in order to obtain the specimen temperature of 8YSZ after 5 s of flashing. The results agree with the experimental data obtained by the flashing of dense samples and with previous literature.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2015-08-08
    Description: Temperature-dependent in-situ Raman spectroscopy is used to investigate the phase transformation of zinc metastannate (ZnSnO 3 ) to zinc orthostannate (Zn 2 SnO 4 ) induced upon annealing in the ambient. ZnSnO 3 microcubes (MCs) were synthesized at room temperature using a simple aqueous synthesis process, followed by characterization using electron microscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA). Annealing of the ZnSnO 3 MCs was carried out up to 1000°C, while recording the Raman spectra in-situ at regular intervals. Phase transformation from metastannate to orthostannate was found to begin around 500°C with an activation energy of ~0.965 eV followed by the recrystallization into the inverse spinel orthostannate phase at ~750°C. Results from this study provide detailed understanding of the phase transformation behavior of perovskite ZnSnO 3 to inverse spinel Zn 2 SnO 4 upon thermal annealing.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-08-08
    Description: three-dimensional integrated circuit (3D-IC) structure with a significant scale mismatch causes difficulty in analytic model construction. This paper proposes a simulation technique to introduce an equivalent material composed of microbumps and their surrounding wafer level underfill (WLUF). The mechanical properties of this equivalent material, including Young’s modulus (E), Poisson’s ratio, shear modulus, and coefficient of thermal expansion (CTE), are directly obtained by applying either a tensile load or a constant displacement, and by increasing the temperature during simulations, respectively. Analytic results indicate that at least eight microbumps at the outermost region of the chip stacking structure need to be considered as an accurate stress/strain contour in the concerned region. In addition, a factorial experimental design with analysis of variance is proposed to optimize chip stacking structure reliability with four factors: chip thickness, substrate thickness, CTE, and E-value. Analytic results show that the most significant factor is CTE of WLUF. This factor affects microbump reliability and structural warpage under a temperature cycling load and high-temperature bonding process. WLUF with low CTE and high E-value are recommended to enhance the assembly reliability of the 3D-IC architecture.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-08-08
    Description: Nanoporous metals (NPMs) have proven to be all-round candidates in versatile and diverse applications. In this decade, interest has grown in the fabrication, characterization and applications of these intriguing materials. Most existing reviews focus on the experimental and theoretical works rather than the numerical simulation. Actually, with numerous experiments and theory analysis, studies based on computer simulation, which may model complex microstructure in more realistic ways, play a key role in understanding and predicting the behaviors of NPMs. In this review, we present a comprehensive overview of the computer simulations of NPMs, which are prepared through chemical dealloying. Firstly, we summarize the various simulation approaches to preparation, processing, and the basic physical and chemical properties of NPMs. In this part, the emphasis is attached to works involving dealloying, coarsening and mechanical properties. Then, we conclude with the latest progress as well as the future challenges in simulation studies. We believe that highlighting the importance of simulations will help to better understand the properties of novel materials and help with new scientific research on these materials.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-08-19
    Description: Here, we demonstrate the relationship between glass network topological structure and the chemical state of embedded lanthanide ions. It is revealed that a more dispersed state of lanthanide ions is shown in more constrained 3D rigid network, which delivers valuable information toward homogeneous doping in glasses from the perspective of glass topological structure. The results are believed to be of great significances in the development of advanced optoelectronic devices like high-power laser, efficient fiber amplifier, smaller integrated photonic circuit, etc.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-08-19
    Description: The mechanofusion process, a dry particle coating route, has been successfully applied to coat micrometric SiC particles with submicrometric Ni filaments. In a first step, the mechanofusion parameters were optimized to form a continuous Ni coating onto SiC particles. In a second step, the Ni-coated SiC particles were sintered by hot isostatic pressing. The temperature and pressure cycles were determined to ensure a good densification of the material. Such a densification process leads to the formation of a δ-Ni 2 Si bilayer at the SiC/Ni interface; the inner δ-Ni 2 Si layer in contact with SiC being more rich in carbon than the one in contact with the matrix. From X-ray diffraction, wavelength-dispersive X-ray spectrometry and scanning electron microscopy characterizations, a mechanism is proposed to explain the microstructure of the end-product.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-08-20
    Description: Three isostructural metal-organic frameworks, (MOFs), [Fe(OH)(1,4-NDC)] (1), [Al(OH)(1,4-NDC)] (2), and [In(OH)(1,4-NDC)] (3) have been synthesized hydrothermally by using 1,4-naphthalene dicarboxylate (1,4-NDC) as a linker. The MOFs were characterized using various techniques and further used as precursor materials for the synthesis of metal/metal oxide nanoparticles inserted in a carbon matrix through a simple thermal conversion method. The newly synthesized carbon materials were characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy analysis, powder X-ray diffraction and BET analysis. The results showed that the MOF-derived carbon composite materials maintained the morphology of the original MOF upon carbonization, and confirmed the insertion of metal/metal oxide particles in the carbon matrix.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-08-20
    Description: In this research, monocrystalline gallium oxide (Ga2O3) nanobelts were synthesized through oxidation of metal gallium at high temperature. An electronic device, based on an individual Ga2O3 nanobelt on Pt interdigital electrodes (IDEs), was fabricated to investigate the electrical characteristics of the Ga2O3 nanobelt in a dry atmosphere at room temperature. The current-voltage (I-V) and I/V-t characteristics show the capacitive behavior of the Ga2O3 nanobelt, indicating the existence of capacitive elements in the Pt/Ga2O3/Pt structure.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-08-20
    Description: The synthesis of pure and well dispersed lutetium aluminum garnet (LuAG) powder is crucial and important for the preparation of LuAG transparent ceramics. In this paper, high purity and well dispersed LuAG powders have been synthesized via co-precipitation method with lutetium nitrate and aluminum nitrate as raw materials. Ammonium hydrogen carbonate (AHC) was used as the precipitant. The influence of aging time, pH value, and dripping speed on the prepared LuAG powders were investigated. It showed that long aging duration (>15 h) with high terminal pH value (>7.80) resulted in segregation of rhombus Lu precipitate and Al precipitate. By decreasing the initial pH value or accelerating the dripping speed, rhombus Lu precipitate was eliminated and pure LuAG nano powders were synthesized. High quality LuAG transparent ceramics with transmission >75% at 1064 nm were fabricated using these well dispersed nano LuAG powders.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-08-20
    Description: The objective of this study is to numerically investigate the convective heat transfer of water-based Al2O3 nanofluids flowing through a square cross-section duct with a constant heat flux under laminar flow conditions. The effects of nanoparticle concentration and Peclet number on the heat transfer characteristics of Al2O3-water nanofluids are investigated. The nanoparticle diameter is 25 nm and six particle concentrations (0.2, 0.5, 1, 1.5, 2, and 2.5 vol.%) are considered. The numerical results show that the heat transfer coefficients and Nusselt numbers of Al2O3-water nanofluids increase with increases in the Peclet number as well as particle volume concentration. The heat transfer coefficient of nanofluids is increased by 25.5% at a particle volume concentration of 2.5% and a Peclet number of 7500 as compared with that of the base fluid (pure water). It is noteworthy that at the same particle volume concentration of 2.5%, the enhancement of the convective heat transfer coefficient of Al2O3-water nanofluid (25.5%) is much higher than that of the effective thermal conductivity (9.98%). Thus, the enhancement of the convective heat transfer cannot be solely attributed to the enhancement of the effective thermal conductivity. Additionally, the numerical results coincide well with the published experimental data.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-08-20
    Description: Damping characterizes the energy dissipation capacity of materials and structures, and it is affected by several external factors such as vibrating frequency, stress history, temperature, and stress amplitude. This study investigates the relationship between the damping and the stress amplitude of environment-friendly recycled aggregate concrete (RAC). First, a function model of a member’s loss factor and stress amplitude was derived based on Lazan’s damping-stress function. Then, the influence of stress amplitude on the loss tangent of RAC was experimentally investigated. Finally, parameters used to determine the newly derived function were obtained by numerical fitting. It is shown that the member’s loss factor is affected not only by the stress amplitude but also by factors such as the cross section shapes, boundary conditions, load types, and loading positions. The loss tangent of RAC increases with the stress amplitude, even at low stress amplitude. The damping energy exponent of RAC is not identically equal to 2.0, indicating that the damping is nonlinear. It is also found that the energy dissipation capacity of RAC is superior to that of natural aggregate concrete (NAC), and the energy dissipation capacity can be further improved by adding modified admixtures.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-08-20
    Description: Corrugated steel web with inherent high out-of-plane stiffness has a promising application in configuring large span highway bridge girders. Due to the irregularity of the configuration details, the local stress concentration poses a major fatigue problem for the welded flange plates of high strength low alloy structural steels. In this work, the methods of applying CFRP laminate and shot peening onto the surfaces of the tension flanges were employed with the purpose of improving the fatigue strength of such configuration details. The effectiveness of this method in the improvement of fatigue strength has been examined experimentally. Test results show that the shot peening significantly increases hardness and roughness in contrast to these without treatment. Also, it has beneficial effects on the fatigue strength enhancement when compared against the test data of the joints with CFRP strengthening. The stiffness degradation during the loading progress is compared with each treatment. Incorporating the stress acting on the constituent parts of the CFRP laminates, a discussion is made regarding the mechanism of the retrofit and related influencing factors such as corrosion and economic cost. This work could enhance the understanding of the CFRP and shot peening in repairing such welded details and shed light on the reinforcement design of welded joints between corrugated steel webs and flange plates.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-08-22
    Description: Recyclable concrete pavement was made from fly ash and crushed limestone sand and gravel as aggregates so that the concrete pavement could be recycled to raw materials for cement production. With the aim to use as much fly ash as possible for the sustainable development of society, while achieving adequate strength development, pavement concrete having a cement-replacement ratio of 40% by mass was experimentally investigated, focusing on the strength development at an early age. Limestone powder was added to improve the early strength; flexural strength at two days reached 3.5 MPa, the minimum strength for traffic service in Japan. The matured fly ash concrete made with a cement content of 200 kg/m3 achieved a flexural strength almost equal to that of the control concrete without fly ash. Additionally, Portland cement made from the tested fly ash concrete was tested to confirm recyclability, with the cement quality meeting the Japanese classification of ordinary Portland cement. Limestone-based recyclable fly ash concrete pavement is, thus, a preferred material in terms of sustainability.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-08-22
    Description: In our study, one-dimensional PbI2/polyvinylpyrrolidone (PVP) composition fibers have been prepared by using PbI2 and PVP as precursors dissolved in N,N-dimethylformamide via a electrospinning process. Dipping the fibers into CH3NH3I solution changed its color, indicating the formation of CH3NH3PbI3, to obtain CH3NH3PbI3/PVP composite fibers. The structure, morphology and composition of the all as-prepared fibers were characterized by using X-ray diffraction and scanning electron microscopy.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-08-22
    Description: Novel, low density structures which combine biologically-based fibers with clay aerogels are produced in an environmentally benign manner using water as solvent, and no additional processing chemicals. Three different reinforcing fibers, silk, soy silk, and hemp, are evaluated in combination with poly(vinyl alcohol) matrix polymer combined with montmorillonite clay. The mechanical properties of the aerogels are demonstrated to increase with reinforcing fiber length, in each case limited by a critical fiber length, beyond which mechanical properties decline due to maldistribution of filler, and disruption of the aerogel structure. Rather than the classical model for reinforced composite properties, the chemical compatibility of reinforcing fibers with the polymer/clay matrix dominated mechanical performance, along with the tendencies of the fibers to kink under compression.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2015-08-22
    Description: Epitaxial ultra-thin oxide films can support large percent level strains well beyond their bulk counterparts, thereby enabling strain-engineering in oxides that can tailor various phenomena. At these reduced dimensions (typically 〈 10 nm), contributions from the substrate can dwarf the signal from the epilayer, making it difficult to distinguish the properties of the epilayer from the bulk. This is especially true for oxide on oxide systems. Here, we have employed a combination of hard X-ray photoelectron spectroscopy (HAXPES) and angular soft X-ray absorption spectroscopy (XAS) to study epitaxial VO2/TiO2 (100) films ranging from 7.5 to 1 nm. We observe a low-temperature (300 K) insulating phase with evidence of vanadium-vanadium (V-V) dimers and a high-temperature (400 K) metallic phase absent of V-V dimers irrespective of film thickness. Our results confirm that the metal insulator transition can exist at atomic dimensions and that biaxial strain can still be used to control the temperature of its transition when the interfaces are atomically sharp. More generally, our case study highlights the benefits of using non-destructive XAS and HAXPES to extract out information regarding the interfacial quality of the epilayers and spectroscopic signatures associated with exotic phenomena at these dimensions.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2015-08-25
    Description: Alkaline-earth metallic dopant can improve the performance of anatase TiO2 in photocatalysis and solar cells. Aiming to understand doping mechanisms, the dopant formation energies, electronic structures, and optical properties for Be, Mg, Ca, Sr, and Ba doped anatase TiO2 are investigated by using density functional theory calculations with the HSE06 and PBE functionals. By combining our results with those of previous studies, the HSE06 functional provides a better description of electronic structures. The calculated formation energies indicate that the substitution of a lattice Ti with an AEM atom is energetically favorable under O-rich growth conditions. The electronic structures suggest that, AEM dopants shift the valence bands (VBs) to higher energy, and the dopant-state energies for the cases of Ca, Sr, and Ba are quite higher than Fermi levels, while the Be and Mg dopants result into the spin polarized gap states near the top of VBs. The components of VBs and dopant-states support that the AEM dopants are active in inter-band transitions with lower energy excitations. As to optical properties, Ca/Sr/Ba are more effective than Be/Mg to enhance absorbance in visible region, but the Be/Mg are superior to Ca/Sr/Ba for the absorbance improvement in near-IR region.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-08-12
    Description: The growth morphology and structure of ceria nano-islands on a stepped Au(788) surface has been investigated by scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED). Within the concept of physical vapor deposition, different kinetic routes have been employed to design ceria-Au inverse model catalysts with different ceria nanoparticle shapes and arrangements. A two-dimensional superlattice of ceria nano-islands with a relatively narrow size distribution (5 ± 2 nm2) has been generated on the Au(788) surface by the postoxidation method. This reflects the periodic anisotropy of the template surface and has been ascribed to the pinning of ceria clusters and thus nucleation on the fcc domains of the herringbone reconstruction on the Au terraces. In contrast, the reactive evaporation method yields ceria islands elongated in [01-1] direction, i.e., parallel to the step edges, with high aspect ratios (~6). Diffusion along the Au step edges of ceria clusters and their limited step crossing in conjunction with a growth front perpendicular to the step edges is tentatively proposed to control the ceria growth under reactive evaporation conditions. Both deposition recipes generate two-dimensional islands of CeO2(111)-type O–Ce–O single and double trilayer structures for submonolayer coverages.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2015-08-14
    Description: Multiple doping is widely used to improve the performance of a material, including its electrical transport, mechanical, and photovoltaic properties. In this paper, Sn–Se dual-doped Li 10 GeP 2 S 12 (LGPS, thio-LISICON II analogue) electrolytes were synthesized via ball milling and sintering and compared with those Sn or Se single-doped. Successful Sn and/or Se substitution expanded the unit cell and formed units, which were verified by X-ray powder diffraction, energy-dispersive X-ray spectroscopy, and Raman spectroscopy. In contrast to the limited benefits of Se single doping and the negative effects of Sn single doping, Sn–Se dual doping demonstrated up to 53% enhancement in ionic conductivity. More importantly, Sn–Se dual-doped LGPS showed an extremely low activation energy of 16 kJ/mol, which is one of the lowest known values for lithium ion conductors; as well as one of the widest electrochemical windows of 8 V. Sn–Se dual-doped LGPS is a promising electrolyte for advanced all-solid-state batteries.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2015-07-30
    Description: The paper reveals the design of a unit cell of a metamaterial that shows more than 2 GHz wideband near zero refractive index (NZRI) property in the C-band region of microwave spectra. The two arms of the unit cell were splitted in such a way that forms a near-pi-shape structure on epoxy resin fiber (FR-4) substrate material. The reflection and transmission characteristics of the unit cell were achieved by utilizing finite integration technique based simulation software. Measured results were presented, which complied well with simulated results. The unit cell was then applied to build a single layer rectangular-shaped cloak that operates in the C-band region where a metal cylinder was perfectly hidden electromagnetically by reducing the scattering width below zero. Moreover, the unit cell shows NZRI property there. The experimental result for the cloak operation was presented in terms of S-parameters as well. In addition, the same metamaterial shell was also adopted for designing an eye-shaped and triangular-shaped cloak structure to cloak the same object, and cloaking operation is achieved in the C-band, as well with slightly better cloaking performance. The novel design, NZRI property, and single layer C-band cloaking operation has made the design a promising one in the electromagnetic paradigm.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2015-07-30
    Description: Acoustically modulated methane jet diffusion flames were used to enhance carbon nanostructure synthesis. A catalytic nickel substrate was employed to collect the deposit materials at sampling position z = 10 mm above the burner exit. The fabrication of carbon nano-onions (CNOs) and carbon nanotubes (CNTs) was significantly enhanced by acoustic excitation at frequencies near the natural flickering frequency (ƒ = 20 Hz) and near the acoustically resonant frequency (ƒ = 90 Hz), respectively. At these characteristic frequencies, flow mixing was markedly enhanced by acoustic excitation, and a flame structure with a bright slender core flame was generated, which provided a favorable flame environment for the growth of carbon nanomaterials. The production rate of CNOs was high at 20 Hz (near the natural flickering frequency), at which the gas temperature was about 680 °C. Additionally, a quantity of CNTs was obtained at 70–95 Hz, near the acoustically resonant frequency, at which the gas temperature was between 665 and 830 °C. However, no carbon nanomaterials were synthesized at other frequencies. The enhanced synthesis of CNOs and CNTs is attributed to the strong mixing of the fuel and oxidizer due to the acoustic excitation at resonant frequencies.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2015-07-30
    Description: A powerful characterization technique, pulse capacitance-voltage (CV) technique, was used to investigate oxide traps before and after annealing for lanthanide zirconium oxide thin films deposited on n-type Si (111) substrates at 300 °C by liquid injection Atomic Layer Deposition (ALD). The results indicated that: (1) more traps were observed compared to the conventional capacitance-voltage characterization method in LaZrOx; (2) the time-dependent trapping/de-trapping was influenced by the edge time, width and peak-to-peak voltage of a gate voltage pulse. Post deposition annealing was performed at 700 °C, 800 °C and 900 °C in N2 ambient for 15 s to the samples with 200 ALD cycles. The effect of the high temperature annealing on oxide traps and leakage current were subsequently explored. It showed that more traps were generated after annealing with the trap density increasing from 1.41 × 1012 cm−2 for as-deposited sample to 4.55 × 1012 cm−2 for the 800 °C annealed one. In addition, the leakage current density increase from about 10−6 A/cm2 at Vg = +0.5 V for the as-deposited sample to 10−3 A/cm2 at Vg = +0.5 V for the 900 °C annealed one.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-08-04
    Description: Polycrystalline Cd 1− x Ba x O (0 ≤  x  ≤ 0.08) ceramics were synthesized via conventional solid-state reaction method, and the effect of Ba 2+ doping on the microstructure as well as the thermoelectric transport properties of the samples were investigated. It was found that doping of Ba 2+ can inhibit the grain growth of CdO, resulting in a considerable reduction in grain size. Moreover, with the increase in Ba 2+ doping content, both the electrical conductivity and the thermal conductivity of Cd 1− x Ba x O decreased, whereas the Seebeck coefficient increased. A high ZT value of 0.47 was achieved for Cd 0.99 Ba 0.01 O at 1000 K, 38% higher than the undoped CdO, mostly due to reduction of the thermal conductivity.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2015-08-06
    Description: In this paper, we report a facile solvothermal method to produce both binary and ternary compounds of bismuth chalcogenides in the form of Bi2TexSe3 − x. The crystal morphology in terms of geometry and thickness as well as the stoichiometric ratio can be well controlled, which offers the opportunities to systematically investigate the relationship between microstructure and phonon scattering by Raman spectroscopy. Raman spectra of four compounds, i.e., Bi2Se3, Bi2Se2Te, Bi2SeTe2 and Bi2Te3, were collected at four different excitation photon energies (2.54, 2.41, 1.96, and 1.58 eV). It is found that the vibrational modes are shifted to higher frequency with more Se incorporation towards the replacement of Te. The dependence of Raman vibrational modes on excitation photon energy was investigated. As the excitation photon energy increases, three Raman vibrational modes (A1g1, Eg2 and A1g2) of the as-produced compounds move to low frequency. Three Infrared-active (IR-active) modes were observed in thin topological insulators (TIs) crystals.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2015-08-06
    Description: A fracture strength model applied at room temperature for embedded elliptical crack in brittle solid was obtained. With further research on the effects of various physical mechanisms on material strength, a thermo-damage strength model for ultra-high-temperature ceramics was applied to each temperature phase. Fracture strength of TiC and the changing trends with elliptical crack shape variations under different temperatures were studied. The study showed that under low temperature, the strength is sensitive to the crack shape variation; as the temperature increases, the sensitivities become smaller. The size of ellipse’s minor axes has great effect on the material strength when the ratio of ellipse’s minor and major axes is lower than 0.5, even under relatively high temperatures. The effect of the minor axes of added particle on material properties thus should be considered under this condition. As the crack area is set, the fracture strength decreases firstly and then increases with the increase of ratio of ellipse’s minor and major axes, and the turning point is 0.5. It suggests that for the added particles the ratio of ellipse’s minor and major axes should not be 0.5. All conclusions significantly coincided with the results obtained by using the finite element software ABAQUS.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2015-08-08
    Description: The use of industrial by-products as admixture to ASTM Type I cement (ordinary Portland cement (OPC)) was investigated with the objective of improving the solidification of organic marine clayey soils. The industrial by-products considered in this paper were oyster-shell powder (OSP), steelmaking slag dust (SMS) and fuel-gas-desulfurized (FGD) gypsum. The industrial by-products were added to OPC at a ratio of 5% based on dry weight to produce a mixture used to solidify organic marine clayey soils. The dosage ratios of mixtures to organic marine clayey soils were 5, 10 and 15% on a dry weight basis. Unconfined compressive strength (UCS) test after 28 days revealed that the highest strength was obtained with the OPC + SMS 15% mixing ratio. The UCS of specimens treated with this mixture was >500 kPa, compared with 300 kPa for specimens treated with a 15% OPC + OSP mixture and 200 kPa when 15% of OPC was used alone. These results were attributed to the more active hydration and pozzolanic reaction of the OPC + SMS mixture. This hypothesis was verified through X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses, and was confirmed by variations in the calcium carbonate (CaCO3) content of the materials during curing.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2015-08-04
    Description: Crystalline argon oxygen decarburization slag, in powdery form, was investigated for its hydration potential by alkali activation and curing at 80°C. Na-silicate and K-silicate of the same modulus were used as activators. Isothermal calorimetry at 80°C indicated exothermic reactions in the slag pastes. When the slag mortars were cured under steam at 80°C appreciable gain in compressive strength was measured. This was attributed to C–S–H which was detected in TG, FTIR, and 29 Si NMR analyses. Upon hydration at 90 d, the amount of crystalline phases decreased, whereas the XRD amorphous content in the slag increased. Electron microscopy showed the formation of different morphologies of reaction products depending on the alkaline activator employed. Presence of reaction rims around the crystalline phases with a major presence of Ca, Si, and O in the reacted matrix was observed in elemental maps.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2015-08-04
    Description: The (1− x )BiFeO 3 - x BaTiO 3 (with x  = 0.1, 0.2, 0.3, and 0.4) ceramics were fabricated successfully by solid-state reaction method. Single-phase perovskite was obtained in all ceramics, as confirmed by XRD technique. It was observed that 0.7BiFeO 3 –0.3BaTiO 3 was the morphotropic phase boundary (MPB) between rhombohedral and cubic phases, as also revealed from ferroelectric and magnetic properties. The simulated and experimental X-Ray Absorption Spectroscopy (XAS) study revealed that BT in 0.75BF-0.25BT is possibly taken a rhombohedral structure. Furthermore, the rounded ferroelectric hysteresis loops observed for 0.9BiFeO 3 –0.1BaTiO 3 and 0.8BiFeO 3 –0.2BaTiO 3 compositions could be attributed to their microstructure and surface charge effects and electron transfer between Fe 3+ and Fe 2+ ions. It was also found that high dielectric constant of 0.9BiFeO 3 –0.1BaTiO 3 composition was a result of grain and grain-boundary effects, as observed in SEM micrographs. In addition, a strong signature of dielectric relaxation behavior was observed in this ceramic system with the activation energy 0.467 eV obtained from the Arrhenius' law. Finally, the local structure investigation with XAS technique provided additional information to better understand the electric and magnetic properties in the BF-BT ceramic system.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2015-08-04
    Description: 1,6- and 1,7-regioisomers of diamino-substituted perylene tetracarboxylic dianhydrides (PTCDs) with different n-alkyl chain lengths (n = 6, 12 or 18) were synthesized and characterized by NMR spectroscopy and high-resolution mass spectrometry. These dyes are highly soluble in most organic solvents and even in nonpolar solvents, such as hexane. To the best of our knowledge, this is the first time the 1,6-diamino-substituted PTCDs (2a–2c) have been obtained in pure form. The regioisomers 1a–1c (1,7-) and 2a–2c (1,6-) exhibit significant differences in their optical characteristics. In addition to the longest wavelength absorption band at around 674 nm, 2a–2c exhibit another shoulder band at ca. 600 nm, and consequently, cover a large part of the visible region relative to those of 1a–1c. Upon excitation, 2a–2c also show larger dipole moment changes than those of 1a–1c; the dipole moments of all compounds have been estimated using Lippert–Mataga equation. Moreover, all the dyes show a unique charge transfer emission in the near-infrared region, of which the peak wavelengths exhibit strong solvatochromism. They all exhibit one irreversible one-electron oxidation and two quasi-reversible one-electron reductions in dichloromethane at modest potentials. Complementary density functional theory calculations performed on these chromophores are reported in order to rationalize their electronic structure and optical properties.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2015-08-05
    Description: Ceramics are very important in the science of dental biomaterials. Among all dental ceramics, zirconia is in evidence as a dental biomaterial and it is the material of choice in contemporary restorative dentistry. Zirconia has been applied as structural material for dental bridges, crowns, inserts, and implants, mostly because of its biocompatibility, high fracture toughness, and radiopacity. However, the clinical success of restorative dentistry has to consider the adhesion to different substrates, which has offered a great challenge to dental zirconia research and development. This study characterizes zirconia as a dental biomaterial, presenting the current consensus and challenges to its dental applications.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2015-08-05
    Description: Polypropylene and PA66 are widely used in our daily life, but they cannot be welded by laser transmission welding (LTW) because of polar differences and poor compatibility. In this paper, grafting modification technology is used to improve the welding performance between polypropylene and PA66. Firstly, the strong reactive and polar maleic-anhydride (MAH) is grafted to polypropylene and infrared spectrometer is used to prove that MAH has been grafted to polypropylene. At the same time, the mechanical and thermal properties of the graft modified polypropylene (TGMPP) are tested. The results prove that the grafting modification has little influence on them. Also, the optical properties of TGMPP are measured. Then, the high welding strength between TGMPP and PA66 is found and the mechanism of the weldability is researched, which shows that there are two reasons for the high welding strength. By observing the micro morphology of the welding zone, one reason found is that the modification of polypropylene can improve the compatibility between polypropylene and PA66 and make them easy to diffuse mutually, which causes many locking structures formed in the welding region. The other reason is that there are chemical reactions between TGMPP and PA66 proved by the X-ray photoelectron spectrometer.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2015-08-06
    Description: A highly-stable and biocompatible nanoporous electrode is demonstrated herein. The electrode is based on a porous anodic alumina which is conformally coated with an ultra-thin layer of diamond-like carbon. The nanocarbon coating plays an essential role for the chemical stability and biocompatibility of the electrodes; thus, the coated electrodes are ideally suited for biomedical applications. The corrosion resistance of the proposed electrodes was tested under extreme chemical conditions, such as in boiling acidic/alkali environments. The nanostructured morphology and the surface chemistry of the electrodes were maintained after wet/dry chemical corrosion tests. The non-cytotoxicity of the electrodes was tested by standard toxicity tests using mouse fibroblasts and cortical neurons. Furthermore, the cell–electrode interaction of cortical neurons with nanocarbon coated nanoporous anodic alumina was studied in vitro. Cortical neurons were found to attach and spread to the nanocarbon coated electrodes without using additional biomolecules, whilst no cell attachment was observed on the surface of the bare anodic alumina. Neurite growth appeared to be sensitive to nanotopographical features of the electrodes. The proposed electrodes show a great promise for practical applications such as retinal prostheses and bionic implants in general.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2015-08-08
    Description: In this study, ZnS powders with homogeneous morphology were synthesized using a colloidal processing method. Vacuum hot pressing was subsequently applied to consolidate the ZnS powders into infrared transparent ceramics (77.3% transmittance at wavelengths of 6.74 and 9.29 μm). The phase composition of the sintered ZnS suggests the presence of wurtzite as a minor phase in addition to the primary sphalerite phase, and microstructural analysis indicates that the ceramics are highly densified. It has been found that the VHP-sintered ZnS ceramics exhibit blue (450 nm) and green (530 nm) luminescence, which is due to the formation of zinc vacancies and sulfur interstitials, respectively, during the sintering process.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2015-08-08
    Description: In this study, tribological investigations were carried out on ZTA ceramics with 17 vol% Y-TZP and different stabilizer contents (1, 1.5, and 2 mol% yttria) to analyze the influence of zirconia transformation on wear properties. Samples were tested in a linearly reciprocating ball on flat setup with different applied loads. Raising the fracture toughness by transformation toughening, microcracking, and residual stresses improves the wear resistance only at transition load but increases the wear at high loads. Higher yttria content of 2 mol% and lower zirconia grain size and thus low transformability, decreases fracture toughness but increases the wear resistance at high loads. Therefore the adjustment of stabilizer content on zirconia volume fraction in ZTA plays a decisive role in tribological applications.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2015-08-08
    Description: Highly (100)-oriented 0.38Bi(Ni 1/2 Hf 1/2 )O 3 -0.62PbTiO 3 relaxor-ferroelectric films were fabricated on Pt(111)/Ti/SiO 2 /Si(111) substrates by introducing a lead oxide seeding layer. A moderate relative permittivity , a low dissipation factor (tan δ 〈 5%), and strong relaxor-like behavior (γ = 0.74) over a broad temperature region were observed. The energy storage density of approximately 45.1 ± 2.3 J/cm 3 was achieved for films with (100) preferential orientation, which is much higher than the value ~33.5 ± 1.7 J/cm 3 obtained from films with random orientation. Furthermore, the PbO-seeded films are more capable of providing larger piezoelectric response (~113 ± 10 pm/V) compared to the films without seeds (~85 ± 8 pm/V). These excellent features indicate that the highly (100)-oriented 0.38Bi(Ni 1/2 Hf 1/2 )O 3 -0.62PbTiO 3 films could be promising candidates for applications in high-energy storage capacitors, high-performance MEMS devices, and particularly for potential applications in the next-generation integrated multifunctional piezoelectric energy harvesting and storage system.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2015-08-08
    Description: We present a proof of concept for tunable plasmon resonance frequencies in a core shell nano-architectured hybrid metal-semiconductor multilayer structure, with Ag as the active shell and ITO as the dielectric modulation media. Our method relies on the collective change in the dielectric function within the metal semiconductor interface to control the surface. Here we report fabrication and optical spectroscopy studies of large-area, nanostructured, hybrid silver and indium tin oxide (ITO) structures, with feature sizes below 100 nm and a controlled surface architecture. The optical and electrical properties of these core shell electrodes, including the surface plasmon frequency, can be tuned by suitably changing the order and thickness of the dielectric layers. By varying the dimensions of the nanopillars, the surface plasmon wavelength of the nanopillar Ag can be tuned from 650 to 690 nm. Adding layers of ITO to the structure further shifts the resonance wavelength toward the IR region and, depending on the sequence and thickness of the layers within the structure, we show that such structures can be applied in sensing devices including enhancing silicon as a photodetection material.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2015-08-08
    Description: Uniformly dispersed TiC nanoparticle strengthened In 4 Se 2.65 composites have been fabricated by a combined process of mechanical alloying (MA) and hot pressing (HP) successfully. Due to the good electrical conductivity and the extra phonon scattering effect of the TiC nanoinclusions, the electrical resistivity and thermal conductivity decrease with the TiC content up to 0.8 wt%, and a maximum ZT of 0.98 at 723 K was achieved in the sample with 0.8 wt% TiC. Taking account of the measurement uncertainly, the enhancement of ZT value by TiC nanoinclusions is less obvious. On the other hand, the mechanical performance of In 4 Se 2.65 can be effectively improved by TiC nanoinclusions due to the dispersive strengthening effect of the nanoinclusions , and the flexural strength of the sample with 0.8 wt% TiC is improved to 73 MPa, which is over 40% higher than that of the pristine sample.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2015-08-08
    Description: The radiation damage response of Ti 3 SiC 2 heated from 120°C to 850°C during 700 keV Si + irradiation has been investigated. The samples were analyzed using glancing incidence X-ray diffraction, Rutherford backscattering spectrometry, Raman spectroscopy, and scanning electron microscopy. For the sample at 120°C, irradiation results in a buildup of a heterogeneous surface and the formation of TiC x . Irradiation at 200°C results in maximum microstrain, a maximum in the c lattice parameter, and the appearance of a β phase in addition to the normal α phase of Ti 3 SiC 2. A minimum in the observed damage level near the surface was seen for irradiation at a sample temperature of 300°C but the damaged phase increases at higher temperatures. Differences between the present work and a previous C irradiation study have been ascribed to the enhanced Si defect transport at low temperatures.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2015-08-12
    Description: Intumescent coatings are commonly used as passive fire protection systems for steel structures. The purpose of this work is to explore whether these can also be used effectively on glass fibre-reinforced epoxy (GRE) composites, considering the flammability of the composites compared to non-flammable steel substrate. The thermal barrier and reaction-to-fire properties of three commercial intumescent coatings on GRE composites have been studied using a cone calorimeter. Their thermophysical properties in terms of heating rate and/or temperature dependent char expansion ratios and thermal conductivities have been measured and correlated. It has been suggested that these two parameters can be used to design coatings to protect composite laminates of defined thicknesses for specified periods of time. The durability of the coatings to water absorption, peeling, impact, and flexural loading were also studied. A strong adhesion between all types of coatings and the substrate was observed. Water soaking had a little effect on the fire performance of epoxy based coatings. All types of 1 mm thick coatings on GRE helped in retaining ~90% of the flexural property after 2 min exposure to 50 kW/m2 heat flux whereas the uncoated laminate underwent severe delamination and loss in structural integrity after 1 min.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2015-08-12
    Description: This paper is focused on the characterisation and demonstration of Newtonian behaviour of salt at both high and low shear rate for sodium and potassium nitrate eutectic mixture (60/40) ranging from 250 °C to 500 °C. Analysis of published and experimental data was carried out to correlate all the numbers into one meaningful 4th order polynomial equation. Addition of a low amount of copper oxide nanoparticles to the mixture increased viscosity of 5.0%–18.0% compared to the latter equation.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2015-08-13
    Description: Layered double hydroxides (LDHs) are an ultravioletlight (UV)-resistant material. In this study, two types of LDHs (Mg-Al-LDHs and Zn-Al-LDHs) were applied to modify bitumen by melt-blending. The effect of ultraviolet aging on the rheology and chemistry of LDH-modified bitumen was studied by means of dynamic shear rheometer (DSR), thin-layer chromatography with flame ionization detection (TLC-FID), Fourier transform infrared spectroscopy (FTIR), and Ultraviolet-Visible (UV-Vis) spectrophotometry to reveal the mechanisms of action for LDHs and bitumen. The results showed that within the UV spectra (220–400 nm), the reflectance of Zn-Al-LDHs was larger than that of Mg-Al-LDHs. These two LDHs have different influences on the performance of bitumen. Mg-Al-LDHs had a more obvious influence on the physical and dynamic rheological properties of bitumen than Zn-Al-LDHs. Zn-Al-LDHs improved the UV-aging resistance of bitumen more. The reason can be that the reflectance of the Zn-Al-LDHs to the UV light is larger than that of the Mg-Al-LDHs. The Zn-Al-LDH-modified bitumen had more potential to improve the UV-aging resistance during the service life of asphalt pavement.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2015-08-14
    Description: Implantable devices may provide a superior means for hormone delivery through maintaining serum levels within target therapeutic windows. Zero-order administration has been shown to reach an equilibrium with metabolic clearance, resulting in a constant serum concentration and bioavailability of released hormones. By exploiting surface-to-molecule interaction within nanochannel membranes, it is possible to achieve a long-term, constant diffusive release of agents from implantable reservoirs. In this study, we sought to demonstrate the controlled release of model hormones from a novel nanochannel system. We investigated the delivery of hormones through our nanochannel membrane over a period of 40 days. Levothyroxine, osteocalcin and testosterone were selected as representative hormones based on their different molecular properties and structures. The release mechanisms and transport behaviors of these hormones within 3, 5 and 40 nm channels were characterized. Results further supported the suitability of the nanochannels for sustained administration from implantable platforms.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2015-09-11
    Description: As scientific literature considers polyhedral oligosilsesquioxanes (POSS) as potential drug delivery systems, it is necessary to check their impact on mammalian cells. Toxicity of octaammonium chloride salt of octaaminopropyl polyhedral oligomeric silsesquioxane (oap-POSS) towards two cell lines: mouse neuroblastoma (N2a) and embryonic mouse hippocampal cells (mHippoE-18) was studied. Experiments consisted of analysis of a cell cycle, cell viability, amount of apoptotic and necrotic cells, and generation of reactive oxygen species (ROS). POSS caused a shift in the cell population from the S and M/G2 phases to the G0/G1 phase. However, the changes affected less than 10% of the cell population and were not accompanied by increased cytotoxicity. POSS did not induce either apoptosis or necrosis and did not generate reactive oxygen species. A cytotoxicity profile of POSS makes it a promising starting material as drug carrier.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2015-09-11
    Description: Commercial zirconium carbide (ZrC) powder is consolidated by Spark Plasma Sintering (SPS). Processing temperatures range from 1650 to 2100 °C. Specimens with various density levels are obtained when performing single-die SPS at different temperatures. Besides the single-die tooling setup, a double-die tooling setup is employed to largely increase the actual applied pressure to achieve higher densification in a shorter processing time. In order to describe the densification mechanism of ZrC powder under SPS conditions, a power-law creep constitutive equation is utilized, whose coefficients are determined by the inverse regression of the obtained experimental data. The densification of the selected ZrC powder is shown to be likely associated with grain boundary sliding and dislocation glide controlled creep. Transverse rupture strength and microhardness of sintered specimens are measured to be up to 380 MPa and 24 GPa, respectively. Mechanical properties are correlated with specimens’ average grain size and relative density to elucidate the co-factor dependencies.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2015-09-11
    Description: It was indicated that tetragonal zirconia polycrystal (TZP) containing yttria (Y2O3) and niobium oxide (Nb2O5) ((Y,Nb)-TZP) could be an adequate dental material to be used at esthetically important sites. The (Y,Nb)-TZP was also proved to possess its osteogenic potential comparable with those conventional dental implant material, titanium (Ti). The objective of the current study was to characterize cellular response of human gingival fibroblasts (HGFs) to smooth and rough surfaces of the (Y,Nb)-TZP disc, which were obtained by polishing and sandblasting, respectively. Various microscopic, biochemical, and molecular techniques were used to investigate the disc surfaces and cellular responses for the experimental (Y,Nb)-TZP and the comparing Ti groups. Sandblasted rough (Y,Nb)-TZP (Zir-R) discs had the highest surface roughness. HGFs cultured on polished (Y,Nb)-TZP (Zir) showed a rounded cell morphology and light spreading at 6 h after seeding and its proliferation rate significantly increased during seven days of culture compared to other surfaces. The mRNA expressions of type I collagen, integrin α2 and β1 were significantly stimulated for the Zir group at 24 h after seeding. The current findings, combined with the previous results, indicate that (Y,Nb)-TZP provides appropriate surface condition for osseointegration at the fixture level and for peri-implant mucosal sealing at the abutment level producing a suitable candidate for dental implantation with an expected favorable clinical outcome.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2015-09-11
    Description: This paper studies the corrosion behavior of B10 copper-nickel alloy in marine environment. Accelerated degradation test under marine environmental conditions was designed and performed based on the accelerated testing principle and the corrosion degradation mechanism. With the prolongation of marine corrosion time, the thickness of Cu2O film increased gradually. Its corrosion product was Cu2(OH)3Cl, which increased in quantity over time. Cl− was the major factor responsible for the marine corrosion of copper and copper alloy. Through the nonlinear fitting of corrosion rate and corrosion quantity (corrosion weight loss), degradation data of different corrosion cycles, the quantitative effects of two major factors, i.e., dissolved oxygen (DO) and corrosion medium temperature, on corrosion behavior of copper alloy were analyzed. The corrosion failure prediction models under different ambient conditions were built. One-day corrosion weight loss under oxygenated stirring conditions was equivalent to 1.31-day weight loss under stationary conditions, and the corrosion rate under oxygenated conditions was 1.31 times higher than that under stationary conditions. In addition, corrosion medium temperature had a significant effect on the corrosion of B10 copper sheet.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2015-09-12
    Description: The temperature distribution in copper and martensitic steel spheres has been investigated for the initial stage of field-activated sintering (FAST)/spark plasma sintering (SPS) using capacitor discharges (CD) with applied voltages from one to 15 V as model experiments. At first, the evolution of the contact resistance between the spheres has been studied. The results show the reduction in the contact resistance after discharge with increasing electrical load, yet no significant dependence on the length or number of the discharge pulses. Thereby the initial resistance is only decreased distinctly if at least a certain minimal voltage was applied. Subsequently, the melting of thin coatings of different metals on copper spheres has been studied and the occurrence of molten phase and its melting point were assigned to the corresponding discharge current. Extrapolation from the currents necessary to melt the coating layers in the CD experiments to lower values typical for FAST was used to estimate the contact overtemperature in the latter case. Resulting values for copper range from 0.05 K for normal heating with 100 K/min to 5 K for maximum current output.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2015-09-12
    Description: In this study, we report on the microstructure of SiO 2 -coated Al-doped ZnO nanoparticles densified by spark plasma sintering(SPS), using a multiscale approach. Our observations show that it is possible to successfully prepare dense pellets while keeping the nanostructure with well-defined Si-rich grain boundaries. Although a very limited partial solubility of Si in the ZnO matrix has been observed, Si is mostly concentrated at the grain boundaries. More surprisingly, we evidenced some areas with nanoscale inhomogeneity of the Al concentration, which can locally strongly exceed the average composition of the matrix. It could explain the apparent discrepancy observed in the literature between the simultaneous presence of ZnAl 2 O 4 in Al-doped ZnO, which should be the signature of the doping level exceeding the solubility limit, and the concentration of carriers that still depends on the nominal Al concentration in ZnO even in the presence of ZnAl 2 O 4 .
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2015-09-12
    Description: Magnesium alloys have considerably lower density than the aluminum alloy matrices that are typically used in syntactic foams, allowing for greater specific energy absorption. Despite the potential advantages, few studies have reported the properties of magnesium alloy matrix syntactic foams. In this work, Al2O3 hollow particles of three different size ranges, 0.106–0.212 mm, 0.212–0.425 mm, and 0.425–0.500 mm were encapsulated in Mg-AZ91D by a sub-atmospheric pressure infiltration technique. It is shown that the peak strength, plateau strength and toughness of the foam increases with increasing hollow sphere wall thickness to diameter (t/D) ratio. Since t/D was found to increase with decreasing hollow sphere diameter, the foams produced with smaller spheres showed improved performance—specifically, higher energy absorption per unit weight. These foams show better performance than other metallic foams on a specific property basis.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2015-09-15
    Description: Three cationic iridium(III) complexes [Ir(ppy)2(phen)][PF6] (C1), [Ir(ppy)2(phen)]2SiF6 (C2) and [Ir(ppy)2(phen)]2TiF6 (C3) (ppy: 2-phenylpyridine, phen: 1, 10-phenanthroline) using different anions were synthesized and characterized by 1H Nuclear magnetic resonance (1HNMR), mass spectra (MS), Fourier transform infrared (FTIR) spectra and element analysis (EA). After the ultraviolet visible (UV-vis) absorption spectra, photoluminescent (PL) properties and thermal properties of the complexes were investigated, complex C1 and C3 with good optical properties and high thermal stability were used in white light-emitting diodes (WLEDs) as luminescence conversion materials by incorporation with 460 nm-emitting blue GaN chips. The integrative performances of the WLEDs fabricated with complex C1 and C3 are better than those fabricated with the widely used yellow phosphor Y3Al5O12:Ce3+ (YAG). The color rendering indexes of the WLEDs with C1 and C3 are 82.0 and 82.6, the color temperatures of them are 5912 K and 3717 K, and the maximum power efficiencies of them are 10.61 Lm·W−1 and 11.41 Lm·W−1, respectively.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2015-09-15
    Description: Comprehensive pyrolysis models that are integral to computational fire codes have improved significantly over the past decade as the demand for improved predictive capabilities has increased. High fidelity pyrolysis models may improve the design of engineered materials for better fire response, the design of the built environment, and may be used in forensic investigations of fire events. A major limitation to widespread use of comprehensive pyrolysis models is the large number of parameters required to fully define a material and the lack of effective methodologies for measurement of these parameters, especially for complex materials. The work presented here details a methodology used to characterize the pyrolysis of a low-pile carpet tile, an engineered composite material that is common in commercial and institutional occupancies. The studied material includes three distinct layers of varying composition and physical structure. The methodology utilized a comprehensive pyrolysis model (ThermaKin) to conduct inverse analyses on data collected through several experimental techniques. Each layer of the composite was individually parameterized to identify its contribution to the overall response of the composite. The set of properties measured to define the carpet composite were validated against mass loss rate curves collected at conditions outside the range of calibration conditions to demonstrate the predictive capabilities of the model. The mean error between the predicted curve and the mean experimental mass loss rate curve was calculated as approximately 20% on average for heat fluxes ranging from 30 to 70 kW·m−2, which is within the mean experimental uncertainty.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2015-09-16
    Description: The three-point bending strength and fracture behavior of single oriented crossed-lamellar structure in Scapharca broughtonii shell were investigated. The samples for bending tests were prepared with two different orientations perpendicular and parallel to the radial ribs of the shell, which corresponds to the tiled and stacked directions of the first-order lamellae, respectively. The bending strength in the tiled direction is approximately 60% higher than that in the stacked direction, primarily because the regularly staggered arrangement of the second-order lamellae in the tiled direction can effectively hinder the crack propagation, whereas the cracks can easily propagate along the interfaces between lamellae in the stacked direction.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2015-09-16
    Description: We performed first-principles calculations to reveal the possibility of applying pristine, defective, and B-doped graphene in feasible negative electrode materials of ion batteries. It is found that the barriers for ions are too high to diffuse through the original graphene, however the reduced barriers are obtained by introducing defects (single vacancy, double vacancy, Stone–Wales defect) in the graphene. Among the three types of defects, the systems with a double vacancy could provide the lowest barriers of 1.49 and 6.08 eV for Li and Na, respectively. Furthermore, for all kinds of B-doped graphene with the vacancy, the systems with a double vacancy could also provide the lowest adsorption energies and diffusion barriers. Therefore, undoped and B-doped graphene with a double vacancy turn out to be the most promising candidates that can replace pristine graphene for anode materials in ion batteries.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2015-09-17
    Description: The study of fatigue behaviors for nickel-base superalloys is very significant because fatigue damage results in serious consequences. In this paper, two kinds of heat treatment procedures (Pro.I and Pro.II) were taken to investigate the effect of heat treatment on microstructures and fatigue behaviors of a nickel-base superalloy. Fatigue behaviors were studied through total strain controlled mode at 650 °C. Manson-Coffin relationship and three-parameter power function were used to predict fatigue life. A good link between the cyclic/fatigue behavior and microscopic studies was established. The cyclic deformation mechanism and fatigue mechanism were discussed. The results show that the fatigue resistance significantly drops with the increase of total strain amplitudes. Manson-Coffin relationship can well predict the fatigue life for total strain amplitude from 0.5% to 0.8%. The fatigue resistance is related with heat treatment procedures. The fatigue resistance performance of Pro.I is better than that of Pro.II. The cyclic stress response behaviors are closely related to the changes of the strain amplitudes. The peak stress of the alloy gradually increases with the increase of total strain amplitudes. The main fracture mechanism is inhomogeneous deformation and the different interactions between dislocations and γ′ precipitates.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2015-09-18
    Description: A complex intraocular lens (IOL) design involving numerous uncertain variables is proposed. We integrated a genetic algorithm (GA) with the commercial optical design software of (CODE V) to design a multifocal IOL for the human eye. We mainly used an aspherical lens in the initial state to the crystalline type; therefore, we used the internal human eye model in the software. The proposed optimized algorithm employs a GA method for optimally simulating the focusing function of the human eye; in this method, the thickness and curvature of the anterior lens and the posterior part of the IOL were varied. A comparison of the proposed GA-designed IOLs and those designed using a CODE V built-in optimal algorithm for 550 degrees myopia and 175 degrees astigmatism conditions of the human eye for pupil size 6 mm showed that the proposed IOL design improved the spot size of root mean square (RMS), tangential coma (TCO) and modulation transfer function (MTF) at a spatial frequency of 30 with a pupil size of 6 mm by approximately 17%, 43% and 35%, respectively. However, the worst performance of spherical aberration (SA) was lower than 46%, because the optical design involves a tradeoff between all aberrations. Compared with the traditional CODE V built-in optimal scheme, the proposed IOL design can efficiently improve the critical parameters, namely TCO, RMS, and MTF.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2015-09-18
    Description: Property closures are envelopes representing the complete set of theoretically feasible macroscopic property combinations for a given material system. In this paper, we present a computational procedure based on fast Fourier transforms (FFTs) to delineation of elastic property closures for hexagonal close packed (HCP) metals. The procedure consists of building a database of non-zero Fourier transforms for each component of the elastic stiffness tensor, calculating the Fourier transforms of orientation distribution functions (ODFs), and calculating the ODF-to-elastic property bounds in the Fourier space. In earlier studies, HCP closures were computed using the generalized spherical harmonics (GSH) representation and an assumption of orthotropic sample symmetry; here, the FFT approach allowed us to successfully calculate the closures for a range of HCP metals without invoking any sample symmetry assumption. The methodology presented here facilitates for the first time computation of property closures involving normal-shear coupling stiffness coefficients. We found that the representation of these property linkages using FFTs need more terms compared to GSH representations. However, the use of FFT representations reduces the computational time involved in producing the property closures due to the use of fast FFT algorithms. Moreover, FFT algorithms are readily available as opposed to GSH codes.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2015-09-18
    Description: Nature has inspired the fabrication of intelligent devices to meet the needs of the advanced community and better understand the imitation of biology. As a biomimetic nanodevice, nanochannels/nanopores aroused increasing interest because of their potential applications in nanofluidic fields. In this review, we have summarized some recent results mainly focused on the design and fabrication of one-dimensional nanochannels, which can be made of many materials, including polymers, inorganics, biotic materials, and composite materials. These nanochannels have some properties similar to biological channels, such as selectivity, voltage-dependent current fluctuations, ionic rectification current and ionic gating, etc. Therefore, they show great potential for the fields of biosensing, filtration, and energy conversions. These advances can not only help people to understand the living processes in nature, but also inspire scientists to develop novel nanodevices with better performance for mankind.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2015-09-18
    Description: In this research, we assessed the influence of an ultrafine 2CaO·SiO2 powder on the hydration properties of a reactive powder concrete system. The ultrafine powder was manufactured through chemical combustion method. The morphology of ultrafine powder and the development of hydration products in the cement paste prepared with ultrafine powder were investigated by scanning electron microscopy (SEM), mineralogical composition were determined by X-ray diffraction, while the heat release characteristics up to the age of 3 days were investigated by calorimetry. Moreover, the properties of cementitious system in fresh and hardened state (setting time, drying shrinkage, and compressive strength) with 5% ordinary Portland cement replaced by ultrafine powder were evaluated. From SEM micrographs, the particle size of ultrafine powder was found to be up to several hundred nanometers. The hydration product started formulating at the age of 3 days due to slow reacting nature of belitic 2CaO·SiO2. The initial and final setting times were prolonged and no significant difference in drying shrinkage was observed when 5% ordinary Portland cement was replaced by ultrafine powder. Moreover, in comparison to control reactive powder concrete, the reactive powder concrete containing ultrafine powder showed improvement in compressive strength at and above 7 days of testing. Based on above, it can be concluded that the manufactured ultrafine 2CaO·SiO2 powder has the potential to improve the performance of a reactive powder cementitious system.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2015-09-18
    Description: We investigated the adsorption and reaction of methanol on continuous and discontinuous films of samarium oxide (SmOx) grown on Pt(111) in ultrahigh vacuum. The methanol decomposition was studied by temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRRAS), while structural changes of the oxide surface were monitored by low-energy electron diffraction (LEED). Methanol dehydrogenates to adsorbed methoxy species on both the continuous and discontinuous SmOx films, eventually leading to the desorption of CO and H2 which desorbs at temperatures in the range 400–600 K. Small quantities of CO2 are also detected mainly on as-prepared Sm2O3 thin films, but the production of CO2 is limited during repeated TPD runs. The discontinuous film exhibits the highest reactivity compared to the continuous film and the Pt(111) substrate. The reactivity of methanol on reduced and reoxidized films was also investigated, revealing how SmOx structures influence the chemical behavior. Over repeated TPD experiments, a SmOx structural/chemical equilibrium condition is found which can be approached either from oxidized or reduced films. We also observed hydrogen absence in TPD which indicates that hydrogen is stored either in SmOx films or as OH groups on the SmOx surfaces.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2015-09-18
    Description: In this study, the amount of cement used in a concrete mix is minimized to reduce the toxic effects on users by adjusting the concrete mixture contents. The reduction of cement is achieved by using various admixtures (ground granulated blast-furnace slag, flyash, ordinary Portland cement, and activated Hwangtoh powder). To apply the mix to construction, material property tests such as compressive strength, slump, and pH are performed. Preliminary experimental results showed that the Hwangtoh concrete could be used as a healthy construction material. Also, the health issues and effects of Hwangtoh mortar are quantitatively evaluated through an animal clinical test. Mice are placed in Hwangtoh mortar and cement mortar cages to record their activity. For the test, five cages are made with Hwangtoh and ordinary Portland cement mortar floors, using Hwangtoh powder replacement ratios of 20%, 40%, 60%, and 80% of the normal cement mortar mixing ratio, and two cages are made with Hwangtoh mortar living quarters. The activity parameter measurements included weight, food intake, water intake, residential space selection, breeding activity, and aggression. The study results can be used to evaluate the benefits of using Hwangtoh as a cement replacing admixture for lifestyle, health and sustainability.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2015-09-18
    Description: The construction and performance of a second generation of super dielectric material based electrostatic capacitors (EC), with energy density greater than 200 J·cm−3, which rival the best reported energy density of electric double layer capacitors (EDLC), also known as supercapacitors, are reported. The first generation super dielectric materials (SDM) are multi-material mixtures with dielectric constants greater than 1.0 × 105, composed of a porous, electrically insulating powder filled with a polarizable, ion-containing liquid. Second-generation SDMs (TSDM), introduced here, are anodic titania nanotube arrays filled with concentrated aqueous salt solutions. Capacitors using TiO2 based TSDM were found to have dielectric constants at ~0 Hz greater than 107 in all cases, a maximum operating voltage of greater than 2 volts and remarkable energy density that surpasses the highest previously reported for EC capacitors by approximately one order of magnitude. A simple model based on the classic ponderable media model was shown to be largely consistent with data from nine EC type capacitors employing TSDM.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2015-09-19
    Description: Chitosan/bacterial cellulose composite films containing diamond nanoparticles (NDs) with potential application as wound dressing are introduced. Microstructural studies show that NDs are uniformly dispersed in the matrix, although slight agglomeration at concentrations above 2 wt % is seen. Fourier transform infrared spectroscopy reveals formation of hydrogen bonds between NDs and the polymer matrix. X-ray diffraction analysis indicates reduced crystallinity of the polymer matrix in the presence of NDs. Approximately 3.5-fold increase in the elastic modulus of the composite film is obtained by the addition of 2 wt % NDs. The results of colorimetric analysis show that the composite films are transparent but turn to gray-like and semitransparent at high ND concentrations. Additionally, a decrease in highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) gap is also seen, which results in a red shift and higher absorption intensity towards the visible region. Mitochondrial activity assay using L929 fibroblast cells shows that the nanocomposite films are biocompatible (>90%) after 24 h incubation. Multiple lamellapodia and cell-cell interaction are shown. The results suggest that the developed films can potentially be used as a flexible platform for wound dressing.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2015-09-19
    Description: BiFeO3 particles (BFO) were prepared by a simple hydrothermal method and characterized. BFO was pure, with a wide particle size distribution, and was visible light responsive. Tetracycline was chosen as the model pollutant in this study. The pH value was an important factor influencing the degradation efficiency. The total organic carbon (TOC) measurement was emphasized as a potential standard to evaluate the visible light photocatalytic degradation efficiency. The photo-Fenton process showed much better degradation efficiency and a wider pH adaptive range than photocatalysis or the Fenton process solely. The optimal residual TOC concentrations of the photocatalysis, Fenton and photo-Fenton processes were 81%, 65% and 21%, while the rate constants of the three processes under the same condition where the best residual TOC was acquired were 9.7 × 10−3, 3.2 × 10−2 and 1.5 × 10−1 min−1, respectively. BFO was demonstrated to have excellent stability and reusability. A comparison among different reported advanced oxidation processes removing tetracycline (TC) was also made. Our findings showed that the photo-Fenton process had good potential for antibiotic-containing waste water treatment. It provides a new method to deal with antibiotic pollution.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2015-09-20
    Description: Pressureless sintering is a well-established powder metallurgical route for processing and consolidation of mixed materials. Especially materials exhibiting a high melting point could be densified without tool abrasion by this sintering technique. As the sintering temperatures are often higher compared to pressure-assisted techniques care must be taken by means of grain growth. In our studies we used a ternary compound mixture to obtain Mo-based alloys. Consolidation applying pressure-assisted methods (hot pressing, spark plasma sintering) and pressureless sintering were used, respectively. The densities reached and the microstructures obtained were compared. These Mo–Si–B alloys were processed using a nitride-powder-based route offering lower impurity contents due to short processing times by avoiding time consuming mixing / milling steps. The sintering conditions depending on the powder particle size as well as the sample shape will be presented in detail. The composition investigated in this article offered a continuous α-Mo matrix with intermetallic islands consisting of Mo 3 Si and Mo 5 SiB 2 (T2) phases. The combination of a ductile α-Mo matrix and intermetallic phases embedded within offered an enhanced mechanical behavior at room temperature compared to MoSi 2 or other intermetallic alloys. Moreover, the intermetallic compounds as well as Mo are candidates for high-temperature applications. As the high-temperature behavior could be strongly influenced by the respective microstructure we present here the processing and the microstructure obtained.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2015-09-22
    Description: Due to its special electronic and ballistic transport properties, graphene has attracted much interest from researchers. In this study, platinum (Pt) nanoparticles were deposited on oxidized graphene sheets (cG). The graphene sheets were applied to overcome the corrosion problems of carbon black at operating conditions of proton exchange membrane fuel cells. To enhance the interfacial interactions between the graphene sheets and the Pt nanoparticles, the oxygen-containing functional groups were introduced onto the surface of graphene sheets. The results showed the Pt nanoparticles were uniformly dispersed on the surface of graphene sheets with a mean Pt particle size of 2.08 nm. The Pt nanoparticles deposited on graphene sheets exhibited better crystallinity and higher oxygen resistance. The metal Pt was the predominant Pt chemical state on Pt/cG (60.4%). The results from the cyclic voltammetry analysis showed the value of the electrochemical surface area (ECSA) was 88 m2/g (Pt/cG), much higher than that of Pt/C (46 m2/g). The long-term test illustrated the degradation in ECSA exhibited the order of Pt/C (33%) > Pt/cG (7%). The values of the utilization efficiency were calculated to be 64% for Pt/cG and 32% for Pt/C.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2015-09-22
    Description: The authors wish to make the following corrections to this paper [1]. [...]
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2015-09-23
    Description: As the most promising candidate of the solid electrolyte materials for future lithium batteries, oxide electrolytes with high–lithium-ion conductivity have experienced a rapid development in the past few decades. Existing oxide electrolytes are divided into two groups, i.e., crystalline group including NASICON, perovskite, garnet, and some newly developing structures, and amorphous/glass group including Li 2 O–MO x (M = Si, B, P, etc.) and LiPON-related materials. After a historical perspective on the general development of oxide electrolytes, we try to give a comprehensive review on the oxide electrolytes with high–lithium-ion conductivity, with special emphasis on the aspect of materials selection and design for applications as solid electrolytes in lithium batteries. Some successful examples and meaningful attempts on the incorporation of oxide electrolytes in lithium batteries are also presented. In the conclusion part, an outlook for the future direction of oxide electrolytes development is given.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2015-09-25
    Description: Dual-phase oxygen transport membranes are fast-growing research interest for application in oxyfuel combustion process. One such potential candidate is CGO-FCO (60 wt% Ce 0.8 Gd 0.2 O 2−δ –40 wt% FeCo 2 O 4 ) identified to provide good oxygen permeation flux with substantial stability in harsh atmosphere. Dense CGO-FCO membranes of 1 mm thickness were fabricated by sintering dry pellets pressed from powders synthesized by one-pot method (modified Pechini process) at 1200°C for 10 h. Microstructure analysis indicates presence of a third orthorhombic perovskite phase in the sintered composite. It was also identified that the spinel phase tends to form an oxygen deficient phase at the grain boundary of spinel and CGO phases. Surface exchange limitation of the membranes was overcome by La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3−δ (LSCF) porous layer coating over the composite. The oxygen permeation flux of the CGO-FCO screen printed with a porous layer of 10 μm thick LSCF is 0.11 mL/cm 2 per minute at 850°C with argon as sweep and air as feed gas at the rates of 50 and 250 mL/min.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2015-09-25
    Description: Two-step sintering (TSS) in a reducing atmosphere has been employed to obtain fine-grain BaTiO 3 ceramics with a core-shell microstructure, a more uniform grain-size distribution, and superior reliability for multilayer ceramic capacitor applications. Compared to ceramics of the same composition conventionally sintered for about the same time, TSS ceramics feature a thinner shell thickness thus a stronger dopant localization, which leads to a lower concentration, higher internal resistance and more dopant- association. Improved reliability is manifest in a 50% higher breakdown strength at ambient temperature and a 400% longer endurance time to withstand DC stress at 185°C, in addition to a less field-and-temperature-dependent capacitance. A scaling analysis of the redistribution and endurance dynamics identifies transmission across the shell-grain-boundary region as the critical element beneficially impacted by core-shell structure and two-step sintering.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2015-09-25
    Description: (Ba, Ca)(Ti, Zr)O 3 ceramics have been considered as a potential lead-free alternative to commonly used lead-based piezoelectric ceramics due to their high piezoelectric performance at room temperature. In this study, the bipolar fatigue behavior of this material is investigated at room temperature. Two compositions were cycled with a bipolar electric field signal at 10 Hz with a maximum of three times the coercive field for up to approximately 10 7 cycles. Both investigated compositions exhibited high bipolar fatigue resistance compared to other ceramics reported in the literatures. The high fatigue resistance originates from the lack of mechanical damage and a weak domain wall pinning effect due to their location in the phase transition region. It was also found that pore morphology affected bipolar fatigue behavior.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2015-09-25
    Description: 0.94(Na 0.5 Bi 0.5+ x )TiO 3 –0.06BaTiO 3 ( x  = −0.04, 0, 0.02; named NB 0.46 T-6BT, NB 0.50 T-6BT, NB 0.52 T-6BT, respectively) lead-free piezoelectric ceramics were prepared via the solid-state reaction method. Effects of Bi 3+ nonstoichiometry on microstructure, dielectric, ferroelectric, and piezoelectric properties were studied. All ceramics show typical X-ray diffraction peaks of ABO 3 perovskite structure. The lattice parameters increase with the increase in the Bi 3+ content. The electron probe microanalysis demonstrates that the excess Bi 2 O 3 in the starting composition can compensate the Bi 2 O 3 loss induced during sample processing. The size and shape of grains are closely related to the Bi 3+ content. For the unpoled NB 0.50 T-6BT and NB 0.52 T-6BT, there are two dielectric anomalies in the dielectric constant–temperature curves. The unpoled NB 0.46 T-6BT shows one dielectric anomaly accompanied by high dielectric constant and dielectric loss at low frequencies. After poling, a new dielectric anomaly appears around depolarization temperature ( T d ) for all ceramics and the T d values increase with the Bi 3+ amount decreasing from excess to deficiency. The diffuse phase transition character was studied via the Curie–Weiss law and modified Curie–Weiss law. The activation energy values obtained via the impedance analysis are 0.69, 1.05, and 1.16 eV for NB 0.46 T-6BT, NB 0.50 T-6BT and NB 0.52 T-6BT, respectively, implying the change in oxygen vacancy concentration in the ceramics. The piezoelectric constant, polarization, and coercive field of the ceramics change with the variation in the Bi 3+ content. The Rayleigh analysis suggests that the change in electrical properties of the ceramics with the variation in the Bi 3+ amount is related to the effect of oxygen vacancies.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2015-09-25
    Description: Despite technological improvements in its production process, the sanitary ware industry inevitably generates a certain volume of discards, products whose quality is not up to standard. The present paper is the first to scientifically explore clay-based sanitary ware waste (SW) with a view to its valorization as an addition in the design of new, more environmentally friendly cements. The focus is on characterization of the waste and its pozzolanicity, as well as the structural and microstructural changes taking place in the pozzolan/Ca(OH) 2 system in the first 90 d of reaction. The findings show that pozzolanicity in clay-based waste is comparable to the activity observed in silica fume (SF) and higher than that found in other clay-based materials and fly ash (FA). The microstructural study of the clay-based waste/Ca(OH) 2 system, in turn, reveals that the proportion of C–S–H gels rises with hydration time. These gels are characterized by long mean chain lengths (MCL) and low Ca/Si ratios. The intrinsic characteristics of this thermally activated clay-based waste qualify it as a type Q pozzolans as defined in the European cement standards, making it apt for use in the manufacture of CEM II, IV, and V cements.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2015-09-25
    Description: High-Energy Ball Milling (HEBM) is proposed as a cost effective and environmental friendly technique to produce Co- and Mn- based oxides suitable for application as protective coating. Mixtures of manganese and cobalt oxides in different molar ratio (Co:Mn = 1:1 and Co:Mn = 2:1) were subjected to mechanochemical treatment up to 100 h and morpho-structural evolution was evaluated. XRD analysis results show that the HEBM treatment promotes the solid-state reaction of the starting compounds, with the formation of different crystalline phases when compared to high-temperature solid-state synthesis. SEM obs erv ations and N 2 adsorption measurements suggest that all processed powders are composed by aggregates of nanometric particles. While long milling time is required to complete the reaction, 10 hours are enough to activate the powders to obtain the desired phases after a mild thermal treatment, as evidenced by in situ thermal XRD analysis. Electrical conductivity measures performed with the Van der Pauw method on sintered pellets evidence a significant difference between the two compositions, related to the dual-phase nature of Co:Mn = 1:1 material at intermediate temperatures (i.e., T  〈 700°C), Co:Mn = 2:1 sample showing higher conductivity values in the whole tested range (500°C–800°C).
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2015-09-25
    Description: The Na–SrSiO 3 as a potential high-conductivity ionic conductor for intermediate temperature solid oxide electrochemical cells (SOECs) has drawn much attention recently. Some of these studies questioned the feasibility of Na doping and therefore the creation of oxygen vacancies, while others suggested an alternative phase responsible for the ionic conduction. In this study, a systematic investigation was carried out to understand the ionic conduction in Na–SrSiO 3 . Through in situ high-temperature X-ray diffraction, thermal analysis, microstructural characterization, and electrical conductivity measurement, Na–SrSiO 3 was shown as a two-phase material, one being slightly Na-doped SrSiO 3 and another being amorphous Na 2 Si 2 O 5 . The former was an electrical insulator whereas the latter was a good ionic conductor. It was also found that the amorphous Na 2 Si 2 O 5 phase was unstable at the temperature ≥500°C, crystallizing into the insulating polycrystalline Na 2 Si 2 O 5 which causes conductivity to “bend-over” at higher temperatures. A preliminary Ab Initio Molecular Dynamics (AIMD) simulation suggested that the amorphous Na 2 Si 2 O 5 be predominantly a Na + conductor.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2015-09-25
    Description: This study investigated the influence of codoping with Ge and GeO 2 on the nonlinear coefficient α and the breakdown voltage E B of TiO 2 –Nb 2 O 5 –SrCO 3 varistor ceramics. Ge–GeO 2 codoping notably changed the microstructure of the TiO 2 –Nb 2 O 5 –SrCO 3 ceramics, increased α, and decreased E B . When the doping contents of Nb 2 O 5 and SrCO 3 were 0.1 and 0.2 mol%, respectively, the optimum doping content of 0.25 mol% Ge and 0.75 mol% GeO 2 exhibited high α (11.6), low E B (13.8 V/mm), and high grain-boundary barrier Φ B (0.96 eV). These results are superior to previous findings. In addition, Ge and GeO 2 , which function as sintering aids, reduced the sintering temperature caused by the low melting point. The optimal sintering temperature was 1260°C for the TiO 2 –Nb 2 O 5 –SrCO 3 ceramics doped with Ge and GeO 2 .
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2015-09-25
    Description: Pure perovskite K 0.5 Na 0.5 NbO 3 – x SrTiO 3 ( x  =   0.16, 0.17, 0.18, and 0.19) ceramics were prepared by using a solid-state reaction process. The ceramics were optically transparent for visible and near-infrared wavelengths. Then, high tunability (24.1%) and low dielectric loss (0.016) for the x  =   0.18 sample indicated the transparent ceramics could be used in tunable devices. The Lorentz-type relation fitting for the temperature dependence of dielectric permittivity showed that these ceramics had a typical relaxor behavior, and the polar nanoregions were related to the tunable dielectric properties. The nonlinear dielectric behavior was further explored by the Johnson model combined with Langevin terms, which revealed that the polar nanoregions contributed to the nonlinear ε( E ) dependencies with contributions of 12.3%, 11.6%, 5.9%, and 3.6% for x  =   0.16, 0.17, 0.18, and 0.19, respectively.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2015-09-25
    Description: The effect of Cr 3+ on the electrical properties of SnO 2 -based films deposited by electrophoresis on Si/Pt substrate was considered. The films were sintered in a microwave oven at 1000°C/40 min and then the surface was modified with deposition of Cr 3+ ions by electrophoresis. The diffusion of Cr 3+ contributes to the modification of the potential barrier formed on the grain boundary improving the electrical properties due to electron acceptor species adsorption on the grain boundary. The influence on the properties of grain boundary was verified by I versus V characterization in as a function of temperature. The films showed nonlinear coefficient over 9, potential barrier height over 0.5 eV and resistivity greater than 10 7  Ω·cm. 4 samples were prepared at same conditions and presented similar electrical behavior, showing the efficiency of technique on reproducibility to varistor properties control. Thereby the nonlinear coefficient increases while decreasing the conductivity of the system is noticed.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2015-09-25
    Description: The plasmonic effects of infiltrated silver (Ag) nanoparticles, with different contents, inside a nanostructured TiO 2 film on the photovoltaic performance of dye-sensitized solar cells (DSSCs) are explored. The synthesized Ag nanoparticles are immobilized onto deposited TiO 2 nanoparticles by a new strategy using 3-mercaptopropionic acid (MPA), a bifunctional linker molecule. Transmission electron microscope (TEM) images show that monodispersed Ag and polydispersed TiO 2 nanoparticles have an average diameter of 12 ± 3 nm and 5 ± 1 nm, respectively. Moreover, Fourier transform infrared spectroscopy (FTIR) analysis reveals that Ag nanoparticles were successfully functionalized and capped with MPA. Optical studies on the MPA-capped Ag nanoparticles inside TiO 2 film show an increase in the total absorbance of the electrode. Moreover, EIS measurements confirm that MPA-capped Ag nanoparticles inhibit the charge recombination and improve the stability of nanoparticles in I 3 − / I − electrolyte. The DSSC assembled with optimal content of MPA-capped Ag nanoparticles demonstrated an enhanced power conversion efficiency (8.82% ± 0.07%) compared with the pure TiO 2 (7.30% ± 0.05%). The increase in cell efficiency was attributed to the enhanced dye light absorption in strength and spectral range due to the surface plasmon resonance of MPA-capped Ag nanoparticles in the photoanode.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2015-09-25
    Description: A large and stable shape memory effect has been observed in 0.6 wt% Mn-doped (Pb 0.99 Nb 0.02 )[(Zr 0.70 Sn 0.30 ) 0.52 Ti 0.48 ] 0.98 O 3 (Mn:PNZST) ceramics after being poled at high temperature. A maximum shape memory of 0.41% was achieved. This effect is related to the preferentially oriented defect dipoles along the poling direction after poling at high temperature and electric field. Furthermore, the shape memory effect is stable after 10 4 electric cycles at 30 kV/cm. The shape memory piezoelectric actuator may be fabricated using this kind of material.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2015-09-25
    Description: Glassmelting efficiency largely depends on heat transfer to reacting glass batch (melter feed), which in turn is influenced by the bulk density (ρ b ) and porosity (ϕ) of the reacting feed as functions of temperature ( T ). Neither ρ b ( T ) nor ϕ( T ) functions are readily accessible from direct measurements. For the determination of ρ b , we monitored the profile area of heated feed pellets and calculated the pellet volume using numerical integration. For the determination of ϕ, we measured the material density of feeds quenched at various stages of conversion via pycnometry and then computed the feed density at heat-treatment temperature using thermal expansion values of basic feed constituents.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2015-09-25
    Description: Spray-drying is an effective method for producing powder aggregates with controlled size and morphology. Here, we report on a systematic study aimed at determining how spray-drying parameters such as nozzle temperature, gas flow, salt concentration and solution feed rate, influence the characteristics of BaCl 2 granules prepared from aqueous solutions. We correlate the granule characteristics to these conditions through the use of processing maps and modeling. It is found that well-dispersed, high density and spherical aggregates, which are favorable for subsequent powder compaction and sintering, can be obtained within a limited range of processing conditions.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2015-09-25
    Description: When the sample temperature is warm enough so that the Joule heating takes over the environment's radiation heating as the dominant heating means, thermal runaway follows and flash sintering is triggered. This condition accurately predicts the reported onset temperature T on of all the constant-field ( E ) experiments on flash sintering, performed under a constant heating rate. The predicted linear ln( E 2 / T on 4 ) versus T on −1 relation determines the activation energy and the relative ranking of the electrical conductivity of the tested materials.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2015-09-25
    Description: In recent years, kaolinite-based wastes are focusing the attention of researchers to obtain recycled metakaolinite, with consequent environmental and socioeconomic benefits. One of these lines of research is based on coal mining waste, which once activated thermally, it becomes a highly pozzolanic product (ACM). This study reports the influence of activated carbon mining waste on the formation and evolution of the mineralogical phases in the ACM/cement system as well as their influence on the microstructure up to 90 d of reaction. Mineralogical analyses clearly show that the addition of ACM modified mineralogical compounds of blended cements. The C 4 AH 13 and C 4 A H 12 were the predominant phases in this type of cements; while in the ordinary portland cement cements, portlandite, ettringite, and carboaluminate were main hydrated phases. Two differential zones in the pore size distribution of the C–S–H gels at 12 and 4.5 nm were observed, predominating the formation of C–S–H gels at 12 nm when 20% of ACM was added to the cement.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2015-09-25
    Description: Ce 3+ , Nd 3+ codoped (Sr 0.6 Ca 0.4 ) 3 (Al 0.6 Si 0.4 )O 4.4 F 0.6 phosphors were synthesized through the high-temperature solid-state reaction method. Luminescence spectra, absorption spectra, and decay lifetimes of these samples have been measured to prove the energy-transfer process from Ce 3+ to Nd 3+ . Under UV and blue light excitation, (Sr 0.6 Ca 0.4 ) 3 (Al 0.6 Si 0.4 )O 4.4 F 0.6 :Ce 3+ ,Nd 3+ phosphors exhibit near-infrared (NIR) emission, mainly peaking at 1093 nm and secondarily at 916 nm. The NIR emission matches well with the band gap of c-Si. Results of this work suggest that the (Sr 0.6 Ca 0.4 ) 3 (Al 0.6 Si 0.4 )O 4.4 F 0.6 :Ce 3+ , Nd 3+ phosphors have potential application as down-shifting luminescent convertor for enhancing the photoelectric conversion efficiency of c-Si solar cell.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2015-09-25
    Description: It was determined that the mean grain boundary radius of curvature in 3 mol% yttria-stabilized zirconia isothermally annealed without and with a DC electric field  = 18 V/cm was uniquely proportional to the mean linear intercept grain size , the proportionality constant α   = 3/2 being in accord with the Rios-Fonseca stereological model.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2015-09-25
    Description: The electric-field-driven phase transition in (K, Na, Li)(Nb, Ta, Sb)O 3 lead-free piezoelectric ceramics was investigated by X-ray diffraction, Raman spectra, and the temperature dependences of permittivity spectra. After poling under different electric fields, phase of the ceramics transformed gradually from orthorhombic–tetragonal coexisting phase to orthorhombic phase, indicating that the crystal structure of ceramics was strongly sensitive to electric field as an external stimulus. A secondary phase K 3 Li 2 Nb 5 O 15 induced by electric field was detected in the ceramics with Li content of 7 mol%, which was close to the solubility limit of lithium. This field-induced secondary phase resulted from the movement of Li ions and the structural deformation induced by electric field. Moreover, piezoelectric constant d 33 increased with the increasing poling field strength and the enhancement can be attributed to the field-triggered domain switching. This study implied that in addition to temperature and composition, which has been reported in previous researches, electric field might be an effective way for inducing phase transition in lead-free piezoelectric ceramics and improving the electrical performances simultaneously.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2015-09-25
    Description: In this study, we introduce a simple and effective seed-mediated growth method (SMGM) for the controlled synthesis of boron suboxide powder. By employing starting powders with different concentrations and adding boron suboxide seeds with a star-like morphology, we demonstrate that B 6 O ceramics that exhibit high-level crystallinity can be synthesized using SMGM at ambient pressure conditions. The formation of multilayered star-shaped B 6 O particles via SMGM is reported for the first time.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2015-09-25
    Description: In this study, thermal radiation was employed for sintering silicon carbide foams that achieved a gradient porous structure. The simultaneous use of graphite and carbon fiber reinforced carbon composite ( C f / C ) radiators resulted in an axial temperature gradient of ~600°C along the cylindrical sample, as confirmed by both numerical simulation and experimental measurement. By sintering the cylinder top at 1600°C for 5 min, the porous SiC body achieved an axial pore size gradient from ~106 ± 36 μm to ~250 ± 84 μm and an open porosity from 41.4 to 79.8 vol%. This work indicates the potential of sintering by intense thermal radiation technique for rapid manufacturing functionally graded materials through asymmetric assembly of thermal radiators.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...