ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (9,058)
  • 2010-2014  (9,058)
  • Environmental Earth Sciences  (2,269)
  • Hydrology and Earth System Sciences Discussions  (1,487)
  • 115599
  • 54330
  • Geosciences  (9,058)
  • Architecture, Civil Engineering, Surveying
  • 1
    Publication Date: 2013-09-06
    Description: Imperfect scaling in distributions of radar-derived rainfall fields Hydrology and Earth System Sciences Discussions, 10, 11385-11422, 2013 Author(s): M. J. van den Berg, L. Delobbe, and N. E. C. Verhoest Fine scale rainfall observations for modeling exercises are often not available, but rather coarser data derived from a variety of sources are used. Effectively using these data sources in models often requires the probability distribution of the data at the applicable scale. Although numerous models for scaling distributions exist, these are often based on theoretical developments, rather than on data. In this study, we develop a model based on the α-stable distribution of rainfall fields, and tested on 5 min radar data from a Belgian weather radar. We use these data to estimate functions that describe parameters of the distribution over various scales. Moreover, we study how the mean of the distribution and the intermittency change with scale, and validate and design functions to describe the shape parameter of the distribution. This information was combined into an effective model of the distribution. Finally, the model was fitted to data from numerous storms, and the resulting parameters were compared to investigate the change in scaling behavior through time.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-06
    Description: Spatially resolved information on karst conduit flow from in-cave dye-tracing Hydrology and Earth System Sciences Discussions, 10, 11311-11335, 2013 Author(s): U. Lauber, W. Ufrecht, and N. Goldscheider Artificial tracers are powerful tools to investigate karst systems. Tracers are commonly injected into sinking streams or dolines, while springs serve as monitoring sites. The obtained flow and transport parameters represent mixed information from the vadose, epiphreatic and phreatic zones, i.e., the aquifer remains a black box. Accessible active caves constitute valuable but underexploited natural laboratories to gain detailed insights into the hydrologic functioning of the aquifer. Two multi-tracer tests in the catchment of a major karst spring (Blautopf, Germany) with injections and monitoring in two associated water caves aimed at obtaining spatially and temporally resolved information on groundwater flow in different compartments of the system. Two tracers were injected in the caves to characterize the hydraulic connections between them and with the spring. Two injections at the land surface, far from the spring, aimed at resolving the aquifer's internal drainage structure. Tracer breakthrough curves were monitored by field fluorimeters in caves and at the spring. Results demonstrate the dendritic drainage structure of the aquifer. It was possible to obtain relevant flow and transport parameters for different sections of this system. The highest mean flow velocities (275 m h −1 ) were observed in the near-spring epiphreatic section (open-channel flow), while velocities in the phreatic zone (pressurized flow) were one order of magnitude lower. Determined conduit water volumes confirm results of water balances and hydrograph analyses. In conclusion, experiments and monitoring in caves can deliver spatially resolved information on karst aquifer heterogeneity and dynamics that cannot be obtained by traditional investigative methods.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-06
    Description: On the lack of robustness of hydrologic models regarding water balance simulation – a diagnostic approach on 20 mountainous catchments using three models of increasing complexity Hydrology and Earth System Sciences Discussions, 10, 11337-11383, 2013 Author(s): L. Coron, V. Andréassian, C. Perrin, M. Bourqui, and F. Hendrickx This paper investigates the robustness of rainfall–runoff models when their parameters are transferred in time. More specifically, we studied their ability to simulate water balance on periods with different hydroclimatic characteristics. The testing procedure consisted in a series of parameter transfers between 10-yr periods and the systematic analysis of mean-volume errors. This procedure was applied to three conceptual models of different structural complexity over 20 mountainous catchments in southern France. The results showed that robustness problems are common. Errors on 10-yr-mean flows were significant for all three models and calibration periods, even when the entire record was used for calibration. Various graphical and numerical tools were used to show strong similarities between the shapes of mean flow biases calculated on a 10-yr-long sliding window when various parameter sets are used. Unexpected behavioural similarities were observed between the three models tested, considering their large differences in structural complexity. While the actual causes for robustness problems in these models remain unclear, this work stresses the limited transferability in time of the water balance adjustments made through parameter optimization. Although absolute differences between simulations obtained with different calibrated parameter sets were sometimes substantial, relative differences in simulated mean flows between time periods remained similar regardless of the calibrated parameter sets.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-09
    Description: The fluorescent properties of dissolved organic matter (DOM) have been used as natural tracers in various water systems. However, only few studies have focused on groundwater systems, specifically, on karst systems. The aim of this study was to develop the use of the DOM fluorescence signal as a natural tracer, considering the multiple compartments of a karst system. This method was applied to the Lez hydrosystem, which supplies the city of Montpellier with drinking water. The hydrodynamics and hydrochemistry of the spring were monitored beginning March 2006. The DOM fluorescence was measured by the excitation–emission matrix spectroscopy technique. The analysis of the total fluorescence signal confirms the efficiency of this tool to trace rapid infiltration flows. Moreover, the decomposition of the signal into different fluorophores complements the information provided by the total signal. Indeed, the fluorescence emitted by the humic compounds seems to be the ideal tool for identifying rapid infiltration flows. Nevertheless, the fluorescence of protein-like compounds is better correlated with the inflow of faecal bacteria at the outlet. This decomposition of the fluorescence signal is an interesting way to provide information on both the rapid infiltration flow as well as the vulnerability of the karst aquifers.
    Print ISSN: 1866-6280
    Electronic ISSN: 1866-6299
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-09-09
    Description: Manned lunar exploration has recently attracted renewed interest. This includes the NASA Constellation program to return humans to the Moon by 2020, the ESA Aurora program which may use the Moon as a way station to prepare for major interplanetary exploration by 2025, and the PRC program to send a human to the Moon by 2030 and build a temporary manned lunar base by 2040. One of the problems demanding a solution is the stresses on the mechanical characteristics of the lunar regolith under the microgravity environment. The gravity on the Moon is about 1/6 that on Earth. The regolith is subject to very low confining stresses under a microgravity environment and the mechanical properties can change correspondingly. Because of the limited amount of lunar regolith brought back to Earth by the Apollo missions, a lunar regolith simulant was developed using silicon carbide to investigate the properties of the lunar regolith. Based on triaxial tests, this study analyzed the mechanical properties of the lunar regolith simulant at low stresses including the shear strength, peak strength and dilatation angle. The research results provide useful information on lunar regolith characteristics for astronauts returning to the Moon and for building a temporary manned lunar base.
    Print ISSN: 1866-6280
    Electronic ISSN: 1866-6299
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-09-09
    Description: The vegetation community succession influences soil nutrient cycling, and this process is mediated by soil microorganisms in the forest ecosystem. A degraded succession series of karst forests were chosen in which vegetation community changed from deciduous broadleaved trees (FO) toward shrubs (SH), and shrubs–grasses (SHG) in the southwest China. Soil organic carbon (SOC), total nitrogen (TN), labile organic carbon (LOC), water extractable organic matter (WEOM), microbial biomass carbon and nitrogen (MBC and MBN), bacterial and fungal diversity, as well as soil enzyme activities were tested. The results showed that SOC, LOC, MBC, MBN, and enzyme activities declined with vegetation succession, with the relatively stronger decrease of microbial biomass and functions, whereas WEOM was higher in SHG than in other systems. In addition, soil bacterial and fungal composition in FO was different from both SH and SHG. Despite positive relationship with SOC, LOC, and TN ( p  〈 0.01), MBC, MBN appeared to be more significantly correlated to LOC than to SOC. It suggested that vegetation conversion resulted in significant changes in carbon fractions and bioavailability, furthermore, caused the change in soil microbial community and function in the forest ecosystem.
    Print ISSN: 1866-6280
    Electronic ISSN: 1866-6299
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-09-09
    Description: The sinuosity factor (SF) is a critical value in karst systems in terms of estimating their hydrodynamic parameters including groundwater velocity, coefficient of dispersion, etc., through dye tracer experiments. SF has been used in a number of different dye tracer experiments in karstic systems to estimate a representative flow path. While knowing SF is crucially important in the estimation of hydrodynamic parameters, its calculation is associated with significant uncertainty due to the complexity of subsurface karstic features. And yet, only a few studies have discussed its uncertainties, which might lead some errors in estimation of hydrodynamic parameters from dye tracer experiment. In this study, dye tracer experiments were conducted in two consecutive years (2003 and 2004) representing low and high flow conditions in the Beyyayla sinkhole (Eskişehir, Turkey) where the flow path is well known. Uranine was used in experiments as a tracer and QTRACER computer program was used to determine the hydrodynamic properties of the Beyyayla karst system as well as to gain insights into the effects of SF from dye tracer experiments on estimated parameters. The results showed that the breakthrough curve follows a unimodal and a bimodal distribution in low and high flow conditions, respectively. These different distributions stem from the water transport mechanisms, where velocities were calculated as 58.2 and 93.6 m h −1 during low and high flow conditions observed in a spring emerging from the south side of the studied system. The results also show that the coefficient of dispersion, Reynolds number, and Peclet number increased and longitudinal dispersivity decreased with the higher flow rate. Furthermore, the estimated parameters did not vary with either the flow conditions or the tracer transit time, but they have shown some variations with SF. When SF was increased by 50 %, a change in these parameters was obtained in the range of 50–125 %.
    Print ISSN: 1866-6280
    Electronic ISSN: 1866-6299
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-09-09
    Description: Arid regions in Asia are commonly characterized by rapidly growing populations with limited land resources and varying rainfall frequencies under climatic change. Despite being one of the most important environmental challenges in Asia, the changing aridity in this region, particularly due to large-scale land cover change, has not been well documented. In this study, we used rainfall data and a new land heterogeneity index to identify recent trend in land cover changes in the Asian arid regions. The result indicates a significant decreasing trend of barren lands and an increasing trend of vegetated lands. Although the potential land cover change is commonly believed to be strongly sensitive to rainfall change, such sensitivity has not been observed during the nine-year period (2001–2009) analyzed. Through the analyses of two separate periods (2001–2005 and 2005–2009), the sensitivity of rainfall to land cover change in arid regions is found to be dependent on the initial spatial heterogeneity of vegetated land cover. The approach used and the findings in this study represent an important step toward better understanding of large-scale land cover change in the Asian arid regions, and have the potential to predict future land cover change under various climate change scenarios.
    Print ISSN: 1866-6280
    Electronic ISSN: 1866-6299
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-09-09
    Description: During 2003–2006, a pilot project of alternating water and CO 2 injection was performed on a limited part of the Upper Miocene sandstone oil reservoir of the Ivanić Field. During the test period oil and gas recovery was significantly increased. Additionally 4,440 m 3 of oil and 2.26 × 10 6  m 3 of gas were produced. It has initiated further modelling of sandstone reservoirs in the Ivanić Field in order to calculate volumes available for CO 2 injection for the purpose of increasing hydrocarbon production from depleted sandstone reservoirs in the entire Croatian part of the Pannonian Basin System. In the first phase, modelling was based on results of laboratory testing on the core samples. It considered applying analogies with world-known projects of CO 2 subsurface storage and its usage to enhance hydrocarbon production. In the second phase, reservoir variables were analysed by variograms and subsequently mapped in order to reach lithological heterogeneities and to determine reliable average values of reservoir volumes. Data on porosity, depth and reservoir thickness for the “Gamma 3” and the “Gamma 4” reservoirs, are mapped by the ordinary kriging technique. Calculated volume of CO 2 expressed at standard condition which can be injected in the main reservoirs of the Ivanić Field at near miscible conditions is above 15.5 billion m 3 .
    Print ISSN: 1866-6280
    Electronic ISSN: 1866-6299
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-09-09
    Description: With this paper, we assess the present-day conductive thermal field of the Glueckstadt Graben in NW Germany that is characterized by large salt walls and diapirs structuring the graben fill. We use a finite element method to calculate the 3D steady-state conductive thermal field based on a lithosphere-scale 3D structural model that resolves the first-order structural characteristics of the graben and its underlying lithosphere. Model predictions are validated against measured temperatures in six deep wells. Our investigations show that the interaction of thickness distributions and thermal rock properties of the different geological layers is of major importance for the distribution of temperatures in the deep subsurface of the Glueckstadt Graben. However, the local temperatures may result from the superposed effects of different controlling factors. Especially, the upper sedimentary part of the model exhibits huge lateral temperature variations, which correlate spatially with the shape of the thermally highly conductive Permian salt layer. Variations in thickness and geometry of the salt cause two major effects, which provoke considerable lateral temperature variations for a given depth. (1) The “chimney effect” causes more efficient heat transport within salt diapirs. As a consequence positive thermal anomalies develop in the upper part and above salt structures, where the latter are covered by much less conductive sediments. In contrast, negative thermal anomalies are noticeable underneath salt structures. (2) The “thermal blanketing effect” is caused by thermally low conductive sediments that provoke the local storage of heat where these insulating sediments are present. The latter effect leads to both local and regional thermal anomalies. Locally, this translates to higher temperatures where salt margin synclines are filled with thick insulating clastic sediments. For the regional anomalies the cumulative insulating effects of the entire sediment fill results in a long-wavelength variation of temperatures in response to heat refraction effects caused by the contrast between insulating sediments and highly conductive crystalline crust. Finally, the longest wavelength of temperature variations is caused by the depth position of the isothermal lithosphere–asthenosphere boundary defining the regional variations of the overall geothermal gradient. We find that a conductive thermal model predicts observed temperatures reasonably well for five of the six available wells, whereas the steady-state conductive approach appears not to be valid for the sixth well.
    Print ISSN: 1866-6280
    Electronic ISSN: 1866-6299
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...