ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (5.418)
  • Wiley  (2.906)
  • American Geophysical Union  (1.431)
  • Taylor & Francis  (1.081)
  • Institute of Physics
  • MDPI Publishing
  • Molecular Diversity Preservation International
  • Reed Business Information
  • 2015-2019  (1.154)
  • 2010-2014  (4.264)
  • 1995-1999
  • 1940-1944
  • 2019  (1.154)
  • 2014  (1.132)
  • 2013  (1.279)
  • 2012  (1.326)
  • 2010  (527)
  • Geochemistry Geophysics Geosystems (G3)  (915)
  • Earth Surface Processes and Landforms  (808)
  • International Journal of Geographical Information Science  (436)
  • 1123
  • 1922
  • 6521
  • Geographie  (2.798)
  • Chemie und Pharmazie  (2.620)
  • Buch- und Bibliothekswesen, Informationswissenschaft
  • Informatik
  • Allgemeine Naturwissenschaft
Sammlung
  • Artikel  (5.418)
Verlag/Herausgeber
  • Wiley  (2.906)
  • American Geophysical Union  (1.431)
  • Taylor & Francis  (1.081)
  • Institute of Physics
  • MDPI Publishing
  • +
Erscheinungszeitraum
  • 2015-2019  (1.154)
  • 2010-2014  (4.264)
  • 1995-1999
  • 1940-1944
Jahr
Thema
  • Geographie  (2.798)
  • Chemie und Pharmazie  (2.620)
  • Buch- und Bibliothekswesen, Informationswissenschaft
  • Informatik
  • Allgemeine Naturwissenschaft
  • +
  • 1
    Publikationsdatum: 2019
    Beschreibung: Abstract Tectonic extension of continental lithosphere creates accommodation space in which sediments are deposited. Climate‐driven processes provide the mechanism by which mass is detached from hillslopes and sediments are transported into this accommodation space. These two forcings, climate and tectonics, act together to create either endorheic (internally drained) or exorheic (externally drained) rift basins. Here we use a large‐scale dynamic landscape evolution‐tectonics model to understand the contribution of tectonic processes in endorheic‐exorheic transitions. In the model, extension results in opening of an asymmetric half‐graben along a listric normal fault. Rift opening occurs in the models in wet, temperate, or semi‐arid climates where runoff and evapotranspiration are varied. Our numerical experiments show that slow rift‐opening rates, a slowing‐down of rift opening, or increase of headwater topography (e.g., upstream epeirogenic uplift), are tectonic situations that can cause a transition from an endorheic to an exorheic drainage state in a rift basin. Our results also show that wet climate conditions lead to a permanent exorheism that persists regardless of rift opening rates. In semi‐arid climates, endorheic conditions are favored, and may last for the duration of rifting except for when rift opening is very slow. These results form an interpretive framework to study endorheic and exorheic drainage systems in natural continental rifts. In the slow‐opening Rio Grande rift, the endorheic‐exorheic transition may have occurred without dramatic climate changes. Lake‐level variations in East African rift basins are predicted by our models to result from variations in climate.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019
    Beschreibung: Abstract The development of glacier karst at the margins of melting ice sheets produces complex glaciofluvial sediment‐landform assemblages that provide information on ice sheet downwasting processes. We present the first combined geomorphological, sedimentological and geophysical investigation of the Brampton Kame Belt, an important glaciofluvial depositional zone at the centre of the last British‐Irish Ice Sheet. Ground‐penetrating radar (GPR) data allow the broad scale internal architecture of ridges (eskers) and flat‐topped hills (ice‐walled lake plains) to be determined at four sites. In combination with sediment exposures, these provide information on lateral and vertical variations in accretion styles, depositional boundaries, and grain size changes. Building on existing work on the subject, we propose a refined model for the formation of ice‐walled lake plains resulting from the evolution and collapse of major drainage axes into lakes as stable glacier karst develops during deglaciation. The internal structure of esker ridges demonstrates variations in sedimentation that can be linked to differences in ridge morphologies across the kame belt. This includes low energy flow conditions and multiple accretion phases identified within large S‐N oriented esker ridges; and fluctuating water pressures, hyperconcentrated flows, and significant deformation within a fragmented SW‐NE oriented esker ridge. In combination with updated geomorphological mapping, this work allows us to identify two main styles of drainage within the kame belt: (1) major drainage axes aligned broadly S‐N that extend through the entire kame belt and collapsed into a chain of ice‐walled lakes; and (2) a series of smaller, fragmented SW‐NE aligned esker ridges that represent ice‐marginal drainage as the ice sheet receded south‐eastwards up the Vale of Eden. Our study demonstrates the importance of integrated geomorphological, sedimentological and geophysical investigations in order to understand complex and polyphase glaciofluvial sediment‐landform assemblages.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019
    Beschreibung: Abstract Crustal extension is commonly thought to be accommodated by faults that strike orthogonal and obliquely to the regional trend of the minimum compressive stress (σ3). Activation of oblique faults can, however, be conceptually problematic as under Andersonian faulting, it requires preexisting crustal weaknesses, high fluid pressures, and/or stress rotations. Furthermore, measurements of incremental fault displacements, which are typically used to identify oblique faulting, do not necessarily reflect regional stresses. Here, we assess oblique faulting by calculating the stress ratio (σ3/σ1, where σ1 is the maximum compressive stress), slip tendency, and effective coefficient of friction (μs′) required to reactivate variably striking normal faults under different trends of σ3. We apply this analysis to NW and NNE striking active faults at the southern end of the Malawi Rift, where NE‐SW, ENE‐WSW, E‐W, and SE‐NW σ3 trends have previously been proposed. A uniform σ3 trend is inferred for this region as recent joints sets do not rotate along the rift. With a NE‐SW trending σ3, NW‐striking faults are well oriented, however, NNE‐striking faults require μs′ 〈 0.6 to reactivate. This is inconsistent with a lack of frictionally weak phyllosilicates detected in the fault zone rocks. With an ENE‐WSW to E‐W trending σ3, all faults can reactivate at μs′ 〉 0.55. These σ3 trends are also comparable to a focal mechanism stress inversion, regional joint orientations, and previously reported geodetically derived extension directions. We therefore conclude that unlike typical models of oblique rifting, the southern Malawi Rift consists of faults that all strike slightly oblique to σ3.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019
    Beschreibung: Abstract Ahyi seamount, a shallow submarine volcano in the Northern Mariana Islands, began erupting on 23 April 2014. Hydroacoustic eruption signals were observed on the regional Mariana seismic network and on distant hydrophones, and National Oceanic and Atmospheric Administration (NOAA) scuba divers working in the area soon after the eruption began heard and felt underwater explosion sounds. The NOAA crew observed yellow‐orange bubble mats along the shore of neighboring Farallon de Pájaros Island, but no other surface manifestations of the eruption were reported by the crew or observed in satellite data. Here, we detail the eruption chronology and its morphologic impacts through analysis of seismic and hydroacoustic recordings and repeat bathymetric mapping. Throughout the 2‐week‐long eruption, Ahyi produced several thousand short, impulsive hydroacoustic signals that we interpret as underwater explosions as well as tremor near the beginning and end of the sequence. The initial tremor, which occurred for 2 hr, is interpreted as small phreatomagmatic explosions. This tremor was followed by a 90‐min pause before the characteristic impulsive signals began. Occasional tremor (lasting up to a few minutes) during the last 1.5 days of the eruption is interpreted as more sustained eruptive activity. Bathymetric changes show that a new crater, about 150 m deep, formed near the former summit and a large landslide chute formed on the southeastern flank. Comparing to other geophysically detected submarine eruptions, we find that the signals from the 2014 Ahyi eruption were more similar to those from other shallow or at‐surface submarine eruptions than those at deep (〉500 m) eruptions.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019
    Beschreibung: Abstract Seismic anisotropy records past and present tectonic deformations and provides important constraints for understanding the structure and dynamics of the Earth's interior. In this work, we use tremendous amounts of high‐quality P wave arrival times from local and regional earthquakes to determine a high‐resolution tomographic model of 3‐D P wave azimuthal anisotropy down to 1,000‐km depth beneath East Asia. Our results show that trench‐parallel fast‐velocity directions (FVDs) are visible in the shallow portion of the subducting Pacific slab (〈80 km), whereas the deeper portion of the Pacific slab mainly exhibits trench‐normal FVDs, except for the stagnant slab in the mantle transition zone (MTZ) where obvious NE‐SW FVDs are revealed. The FVDs in the subslab mantle change from a subduction‐parallel trend at depths of 80–400 km to a subduction‐normal trend in the MTZ. Large‐scale low‐velocity anomalies are revealed beneath the Philippine Sea plate where the FVD is NE‐SW. The FVDs along the Izu‐Bonin arc and in a slab gap exhibit a striking anticlockwise toroidal trend. All these features may reflect complex 3‐D flows in the mantle wedge due to tearing and dehydration processes of the subducting Pacific slab. The subducting Pacific slab is split at ~300‐km depth under the Bonin arc and then penetrates into the lower mantle, whereas under East Asia the Pacific slab becomes stagnant in the MTZ and reaches the North‐South Gravity Lineament in China. The intraplate volcanoes in East Asia are caused by hot and wet upwelling flows in the big mantle wedge above the stagnant Pacific slab.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019
    Beschreibung: Abstract We determine mass transport and structural properties of binary liquid iron alloys over a wide density (5.055–11.735 g·cm−3) and temperature range (2,500–6,500 K) using first‐principles molecular dynamics. Compositions consist of 96 at% Fe and 4 at% ϕ, where ϕ = H, C, N, O, Mg, Si, S, or Ni. Self‐diffusion coefficients (D) of Fe and ϕ range from 3.5·10−9 to 1.9·10−7 m2·s−1. Results show a relation between mean atomic radius and diffusivity ratio for the alloying element and iron: Si and Ni are “iron‐like” with similar atomic radii and D compared with those of Fe; H, C, N, O, and S are “small non‐iron‐like” with smaller atomic radii and larger D; and Mg transitions from “large non‐iron‐like” with a larger atomic radius and smaller D at low density to iron‐like under conditions of the Earth's core. The effect of pressure on D for C, N, and O is negligible for densities below ~8 g·cm−3, accompanied by an increase in average coordination numbers to ~6, and an increase in mean atomic radii. For densities above ~8 g·cm−3, diffusivities and atomic radii of these elements decrease monotonically with pressure, which is typical for the iron‐like alloying elements as well as for H, Mg, and S over the whole compression range. While atomic radius ratios move toward unity with compression, diffusivity ratios for the alloying element relative to iron tend to increase for the “non‐iron‐like” elements with density.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2019
    Beschreibung: Abstract The stable longitudinal dunes in the northern Simpson Desert, Australia, were observed in satellite imagery to become more active after vegetation cover was reduced by fire and drought. Subsequent rainfall events also resulted in significant vegetation regrowth and dune stabilisation. These switches between more active and stable conditions have not been previously described in the largely vegetated dune fields of central Australia. The observations, made on 12 dune sites, relied on high spatial resolution satellite imagery to observe dune crest activity, and seasonal Landsat fractional cover imagery to observe vegetation cover changes. The non‐photosynthetic vegetation (NPV) component of the fractional vegetation cover images revealed significant changes in hummock grass cover on the dunes between 1988‐2018, with a positive relationship with the 3‐year cumulative rainfall, disrupted by two periods of patchy burning. Only those sites that had burnt became active, and only after vegetation cover had remained low (NPV 〈 16%) during the ‘Millennium Drought’. There is no threshold in vegetation cover, below which dune crests become active, but active dune features require 4‐years of low NPV cover (〈16%) to develop. The large rainfall event that ended the drought increased NPV cover, stabilising the dunes. Similar hummock grass covered dunes are present across large areas of the arid zone, and are likely to respond in similar ways, given that fire and drought are common occurrences in Australia.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2019
    Beschreibung: Abstract The role of wave forcing on the main hydro‐morphological dynamics evolving in the shallow waters of the nearshore and at river mouths is analyzed. Focus is mainly on the cross‐shore dynamics that evolve over mildly sloping barred, dissipative sandy beaches from the storm up to the yearly time scale, at most. Local and nonlocal mechanisms as well as connections across three main inter‐related subsystems of the nearshore ‐ the region of generation and evolution of nearshore bars, river mouths and the swash zone ‐ are analyzed. The beach slope is a major controlling parameter for all nearshore dynamics. A local mechanism that must be properly described for a suitable representation of wave‐forced dynamics of all such three subsystems is the proper correlation between orbital velocity and sediment concentration in the bottom boundary layer; while specific dynamics are the wave‐current interaction and bar generation at river mouths and the sediment presuspension at the swash zone. Fundamental nonlocal mechanisms are both Infragravity (IG) waves and large‐scale horizontal vortices (i.e. with vertical axes), both influencing the hydrodynamics, the sediment transport and the seabed morphology across the whole nearshore. Major connections across the three subsystems are the upriver propagation of IG waves generated by breaking sea waves and swash‐swash interactions, the interplay between the swash zone and along‐river‐flank sediment transport and the evolution of nearshore sand bars.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2019
    Beschreibung: Abstract Grain size is one of the most fundamental properties of sediments. It is frequently used in paleoclimate, paleoceanographic and paleoenvironmental research as a proxy for river discharge, current and wind strength, and to identify mass flow deposits. Measuring grain‐size is, however, time‐consuming and destructive. Given the strong influence of grain size on sediment inorganic geochemistry, single element variations measured by e.g., X‐ray fluorescence (XRF) core scanning are increasingly used to estimate grain‐size variations at high resolution in sediment cores. This approach is however limited to a narrow grain‐size range since individual elements only monotonically relate to grain size over a narrow size range. Here, we present a simple, code‐free, multi‐element method based on Partial Least Square regression to predict sediment mean grain size from inorganic geochemical data over the range of sizes commonly encountered in sedimentary basins (clay to sand). The method was first tested using river sediment samples separated in eleven grain‐size fractions and it was later successfully applied to two sediment cores from the Chilean fjords. Our method only requires measuring grain size on a limited number (around ten) of selected training samples, and it allows to predict mean grain size at XRF core scanner resolution. This method has the potential to be applied to any lake or marine sediment core, provided sediment provenance, weathering, and diagenesis remain relatively stable through time, and we anticipate that it will result in a significant increase in the resolution of sediment proxy records of climate and environmental change.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2019
    Beschreibung: Abstract Erosion of volcanic islands ultimately creates shallow banks and guyots, but the ways erosion proceeds to create them over time and how coastline retreat rate relates to wave conditions, rock mass strength and other factors are unclear. The Capelinhos volcano was formed in 1957/58 during a Surtseyan and partly effusive eruption that added a ~2.5 km2 tephra and lava promontory to the western end of Faial Island (Azores, central North Atlantic). Subsequent coastal and submarine erosion has reduced the subaerial area of the promontory and created a submarine platform. This study uses historical information, photos and marine geophysical data collected around the promontory to characterize how the submarine platform developed following the eruption. Historical coastline positions are supplemented with coastlines interpreted from 2004 and 2014 Google Earth images in order to work out the progression of coastline retreat rate and retreat distance for lava‐ and tephra‐dominated cliffs. Data from swath mapping sonars are used to characterise the submarine geometry of the resulting platform (position of the platform edge, gradient and morphology of the platform surface). Photographs collected during SCUBA and ROV dives on the submarine platform reveal a rugged surface now covered with boulders. The results show that coastal retreat rates decreased rapidly with time after the eruption and approximately follow an inverse power law relationship with coastal retreat distance. We develop a finite‐difference model for wave attenuation over dipping surfaces to predict how increasing wave attenuation contributed to this trend. The model is verified by reproducing the wave height variation over dipping rock platforms in the UK (platform gradient 1.2° to 1.8°) and Ireland (1.8°). Applying the model to the dipping platform around Capelinhos, using a diversity of cliffs resistance predicted from known lithologies, we are able to predict erosion rate trends for some sectors of the edifice. We also explore wider implications of these results, such as how erosion creates shallow banks and guyots in reef‐less mid‐oceanic archipelagos like the Azores.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 11
    Publikationsdatum: 2019
    Beschreibung: Abstract Exceptional flood events with a return period of about 50 years can be destructive to step‐pool channel segments. However, field investigations and flume experiments have not examined the hydraulic and morphological feedbacks of step‐pool morphology during unsteady hydrographs of exceptional flood events. We performed a series of flume experiments with a manually constructed step model, perturbed with three hydrographs that varied in the rate of water supply change. The bed texture, topography, flow regimes, surface flow field and water depth were characterized and measured as the flow rate was increased during the experiments. A distinct pool feature emerged downstream of the manually constructed step when the flow rate exceeded the threshold scaled to the peaks of ordinary flood events in well‐graded mountain streams. The pool feature was modified in several different ways with flow rate increase. The bed surface steadily coarsened, micro‐bedforms developed and became more pronounced, the bed topography became more spatially complex based on analysis using the Hurst exponent, and last, pool depth steadily increased. Pool modification was also linked to the flow regime: the impinging jet regime led to grain size segmentation in the pool while the jump regime contributed to decelerating flow velocity. The steeper rising limb of hydrograph led to a less developed pool feature, with smaller sized micro‐bedforms in the pool bottom to outlet, and higher discharge threshold for distinct coarsening and scouring in the pool. The estimated energy dissipation within the step‐pool unit decreased as a power function from low to high flow, quantified as the ratio hc/HS, where hc is the critical water depth and HS is scour depth. Our results highlight the interaction between morphology, hydraulics, and energy dissipation of step‐pool unit and the crucial role of hydrograph shape on the interaction during flow increase.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Publikationsdatum: 2019
    Beschreibung: Abstract Dunite, harzburgite, and clinopyroxenite xenoliths from Kharchinsky volcano, Kamchatka have abundances and ratios of incompatible trace elements similar to those in arc volcanic rocks (elevated Ba/Th, La/Yb, Nd/Hf, Sr/Y). All orthopyroxenes and some clinopyroxenes in the peridotites have U‐shaped rare‐earth element patterns. Negative Ce anomalies are present in orthopyroxenes with Ce/Ce* as low as 0.01 and down to 0.22 in whole‐rock peridotite data. Ce anomaly growth is linked to increasing La/Sm and enrichments in Rb, U, Pb, and Ba over La and Ce. Isotopes (Pb, Sr, Nd, Hf) indicate pelagic sediment and hydrothermal crusts play no role in Ce anomaly development. Instead, Ce anomalies appear to be products of fluid transport and elemental scavenging under oxidizing conditions beneath the deep forearc. Textures and compositions of aluminous green spinels indicate most of the peridotites were partially melted and recrystallized at depth. Veins and pockets of amphibole reflect impregnation late in the petrogenesis of the rocks by melts similar to Kamchatka basalts. Orthopyroxenite xenoliths are fine‐grained with fibrous orthopyroxene that has high‐Mg/Mg+Fe (up to 0.96) and generally lower CaO and Al2O3 compared to peridotite orthopyroxenes, and perhaps formed by reaction of siliceous fluids with olivine. Kharchinsky xenoliths have Pb, Sr and Nd isotopes similar to Kamchatka volcanic rocks, but Hf isotopes in clinopyroxenites and gabbros are more radiogenic by 1‐3 epsilon units. Patterns in isotopic data indicate a compositional change in the source of Kamchatka volcanism within the past 20 million years.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    facet.materialart.
    Unbekannt
    Wiley
    Publikationsdatum: 2019
    Beschreibung: Earth Surface Processes and Landforms, Volume 44, Issue 9, Page 1876-1878, July 2019.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    facet.materialart.
    Unbekannt
    Wiley
    Publikationsdatum: 2019
    Beschreibung: No abstract is available for this article. © 2019 John Wiley & Sons, Ltd.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    Publikationsdatum: 2019
    Beschreibung: Abstract Stream channel morphology forms the template upon which hydraulic aspects of aquatic habitat are created, yet spatial and temporal variability in habitat imposed by changing morphology is not well understood. This paper presents a conceptual model linking sediment supply patterns to spatial and temporal variability in channel form and aquatic habitat. To evaluate this model, change over time in three habitat variables is quantified using a 2D hydrodynamic modeling approach. A 45‐year record of topographic data from Carnation Creek, a catchment in coastal British Columbia, is used for the flow modeling. Using the Nays2DH modeling platform, water depths and velocities are simulated in eight channel segments located at different positions relative to locations of historical colluvial input using seven flow levels ranging from 3% to 400% of mean annual discharge (0.02 to 3.31 m3s‐1). Results indicate that habitat availability changes through time as a result of sediment supply‐driven changes to channel morphology and wood loads, but patterns in habitat vary as a function of dominant channel segment morphology. Spatial and temporal variability in morphology also influences the relationship between habitat availability and river discharge, leading to non‐stationary habitat‐discharge rating curves. When habitat areas are predicted by applying these curves to daily flow series spanning annual dry seasons, over 50% of the variance in cumulative seasonal habitat area can be explained by year‐to‐year changes in channel morphology and wood loading, indicating that changing morphology is an important factor for driving temporal habitat variability. This variance is related to the morphological variability of a channel segment, which in turn is associated with the segment position relative to zones of colluvial input. Collectively, these results suggest that variability in habitat is impacted by channel morphology, and can be evaluated partly on the basis of a channel's sediment supply regime.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    Publikationsdatum: 2019
    Beschreibung: Abstract Secondary circulation in river confluences results in a spatial and temporal variation of fluid motion and a relatively high level of morphodynamic change. Acoustic Doppler current profiler (aDcp) vessel‐mounted flow measurements are now commonly used to quantify such circulation in shallow water fluvial environments. It is well established that such quantification using vessel‐mounted aDcps requires repeated survey of the same cross‐section. However, less attention has been given to how to process these data. Most aDcp data processing techniques make the assumption of homogeneity between the measured radial components of velocity. As acoustic beams diverge with distance from the aDcp probe, the volume of the flow that must be assumed to be homogeneous between the beams increases. In the presence of secondary circulation cells, and where there are strong rates of shear in the flow, the homogeneity assumption may not apply, especially deeper in the water column and close to the bed. To reduce dependence on this assumption, we apply a newly‐established method to aDcp data obtained for two medium‐sized (~60‐80 m wide) gravel‐bed river confluences and compare the results with those from more conventional data processing approaches. The comparsion confirms that in the presence of strong shear our method produces different results to more conventional approaches. In the absence of a third set of fully independent data, we cannot demonstrate conclusively which method is best, but our method involves less averaging and so in the presence of strong shear is likely to be more reliable. We conclude that it is wise to apply both our method and more conventional methods to identify where data analysis might be impacted upon by strong shear and where inferences of secondary circulation may need to be made more cautiously.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    Publikationsdatum: 2019
    Beschreibung: Abstract A major goal in Earth Science has been to understand how geochemical characteristics of lavas at the Earth's surface relate to the location and formation history of specific regions in the Earth's interior. For example, some of the strongest evidence for the preservation of primitive material comes from low 4He/3He ratios in ocean island basalts, but the location of the primitive helium reservoir(s) remains unknown. Here we combine whole‐mantle seismic tomography, simulations of mantle flow, and a global compilation of new and existing measurements of the 4He/3He ratios in ocean island basalts to constrain the source location of primitive 4He/3He material. Our geodynamic simulations predict the present‐day surface expression of plumes to be laterally offset from their lower mantle source locations. When this lateral offset is accounted for, a strong relationship emerges between minimum 4He/3He ratios in oceanic basalts and seismically slow regions, which are generally located within the two large low shear‐wave velocity provinces (LLSVPs). Conversely, no significant relationship is observed between maximum 208Pb*/206Pb* ratios and seismically slow regions in the lowermost mantle. These results indicate that primitive materials are geographically restricted to LLSVPs, while recycled materials are more broadly distributed across the lower mantle. The primitive nature of the LLSVPs indicates these regions are not composed entirely of recycled slabs, while complementary xenon and tungsten isotopic anomalies require the primitive portion of the LLSVPs to have formed during Earth's accretion, survived the Moon‐forming giant impact, and remained relatively unmixed during the subsequent 4.5 billion years of mantle convection.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    Publikationsdatum: 2019
    Beschreibung: Abstract Human activities have increasingly strong impacts on the sediment dynamics of watersheds, directly, for example through water abstraction and sediment extraction, but also indirectly through climate change. This study aims at disentangling these impacts on natural sediment fluxes for the Borgne river, located in the Alps of South‐West Switzerland, using two approaches: First, an assessment of contemporary sediment sources and their relative contribution to the sediment delivered to the catchment outlet is undertaken by geochemical fingerprinting and a mixing model. Second, a spatially distributed conceptual model of suspended sediment production and transfer is used to quantify the contribution of different portions of the catchment to the total sediment yield. The model describes the influence of hydroclimatic variables (rainfall, snowmelt, and ice melt), water diversions and reservoir trapping on the sediment yield accounting for the erodibility of the different land covers present in the catchment. The analysis of different scenarios based on this conceptual model aids the interpretation of the fingerprinting results and the identification of the most important factors controlling sediment fluxes. Although the conceptual model overestimates the contribution of the downstream source area and underestimates the contribution of the upstream source area, the results allow us to qualitatively assess the impacts of different drivers influencing the sediment yield at the catchment scale. The results suggest: (1) high sediment yield from the uppermost part of the catchment due to sediment delivery by glacial ice melt; (2) delayed sediment transfer from areas impacted by water abstraction; and (3) reduced sediment contribution from areas upstream of a major hydropower reservoir that intercepts and traps sediment. Although process (1) and processes (2) and (3) serve to counter one another, our study emphasizes that the relative impacts of Anthropocene climate change and human impacts on sediment delivery may be disentangled through multi‐proxy approaches.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    Publikationsdatum: 2019
    Beschreibung: Abstract A cave monitoring study in Hatchet Bay Cave on the island of Eleuthera, Bahamas, has examined the origins of variations in oxygen and carbon isotopic and minor element composition in cave calcites. Every 3 to 8 months, between 2012 and 2016, temperature, humidity, cave air (δ13CCO2), dripwaters (δ18O and δ2H values, and Ca, Sr, and Mg concentrations), and the chemical composition of precipitating calcite (δ18O and δ13C values, and Ca, Sr, and Mg concentrations) were analyzed in two rooms in the cave. Results from the elemental analyses show that throughout the cave prior calcite precipitation (PCP) was a driver of the elemental chemistry of the precipitated calcites. In addition, cave calcites show that δ13C and δ18O values were positively correlated with Mg/Ca ratios. The Mg/Ca ratios were also positively correlated with lower calcite precipitation rates. Therefore, water/rock interactions may also influence δ13C and δ18O values and Mg/Ca ratios of the calcite. Differences were observed between the two rooms, with the Main Room of the cave exhibiting increased PCP, more ventilation, lower calcite precipitation rates, and δ18O values which were farther from equilibrium when compared to the more isolated portion of the cave. These results also validated previous interpretations from Pleistocene stalagmites collected from a nearby Bahamian cave suggesting that a positive covariation between Mg/Ca and δ13C values reflects water/rock interactions.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    Publikationsdatum: 2019
    Beschreibung: We examine coastal cliff ground motion due to individual wave impacts using a seismometer and video data to directly link the wave forcing and cliff response. The maximum peak ground shaking did not necessarily coincide with periods of maximum significant wave height. Instead, the type of wave impact controlled peak shaking magnitude, with breaking wave impacts generating the highest shaking velocities. Abstract Coastal cliff erosion is caused by a combination of marine forcing and sub‐aerial processes, but linking cliff erosion to the environmental drivers remains challenging. One key component of these drivers is energy transfer from wave–cliff interaction. The aim of this study is to directly observe cliff ground motion in response to wave impacts at an individual wave scale. Measurements are described from two coastal cliff sites: a 45‐minute pilot study in southern California, USA and a 30‐day deployment in Taranaki, New Zealand. Seismometers, pressure sensors and video are used to compare cliff‐top ground motions with water depth, significant wave height (Hs) and wave impact types to examine cliff ground motion response. Analyses of the dataset demonstrate that individual impact events can be discriminated as discrete events in the seismic signal. Hourly mean ground motion increases with incident Hs, but the largest hourly peak ground motions occurred across a broad range of incident Hs (0.9–3.7 m), including during relatively calm conditions. Mean hourly metrics therefore smooth the short‐term dynamics of wave–cliff interaction; hence, to fully assess wave impact energy transfer to cliffs, it is important also to consider peak ground motion. Video analyses showed that the dominant control on peak ground motion magnitude was wave impact type rather than incident Hs. Wave–cliff impacts where breaking occurs directly onto the cliff face consistently produced greater ground motion compared to broken or unbroken wave impacts: breaking, broken and unbroken impacts averaged peak ground motion of 287, 59 and 38 μm s−1, respectively. The results illustrate a novel link between wave impact forcing and cliff ground motion response using individual wave field measurements, and highlight the influence of wave impact type on peak energy transfer to coastal cliffs. © 2019 John Wiley & Sons, Ltd.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 21
    Publikationsdatum: 2019
    Beschreibung: Seasonal variations in u*t and PM10 fluxes for different landform types in northern China. Abstract Representation of dust sources remains a key challenge in quantifying the dust cycle and its environmental and climatic impacts. Direct measurements of dust fluxes from different landform types are useful in understanding the nature of dust emission and characterizing the dynamics of soil erodibility. In this study we used the PI‐SWERL® instrument over a seasonal cycle to quantify the potential for PM10 (particles with diameter ≤10 μm) emission from several typical landform types across the Tengger Desert and Mu Us Sandy Land, northern China. Our results indicate that sparse grasslands and coppice dunes showed relatively high emission potentials, with emitted fluxes ranging from 10−1 to 101 mg m−2 s−1. These values were up to five times those emitted from sand dunes, and one to two orders of magnitude greater than the emissions from dry lake beds, stone pavements and dense grasslands. Generally, PM10 emission fluxes were seen to peak in the spring months, with significant reductions in summer and autumn (by up to 95%), and in winter (by up to 98%). Variations in soil moisture were likely a primary controlling factor responsible for this seasonality in PM10 emission. Our data provide a relative quantification of differences in dust emission potential from several key landform types. Such data allow for the evaluation of current dust source schemes proposed by prior researchers. Moreover, our data will allow improvements in properly characterizing the erodibility of dust source regions and hence refine the parameterization of dust emission in climate models. © 2019 John Wiley & Sons, Ltd.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 22
    Publikationsdatum: 2019
    Beschreibung: Abstract The ferrimagnetic properties of soils are used to quantitatively reconstruct paleomonsoon precipitation from Chinese loess. Numerous magneto‐climofunctions have been established based on the magnetic proxies that are selectively sensitive to neoformation of fine‐grained superparamagnetic (SP) or single‐domain (SD) ferrimagnetic particles. Accumulating evidence has indicated that maghemite is the final product of the ferrimagnetic phases during pedogenesis in loessic soils. Quantitative estimates of abundance of maghemite of both SP and SD grains is therefore still required in developing magneto‐climofunctions. Here, we present detailed measurements on a suite of modern soil samples from the Chinese Loess Plateau to determine pedogenic ferrimagnetic mineralogy and to develop a new magneto‐climofunction based on a new parameter derived from the high‐temperature‐dependent magnetic susceptibility. Particle‐size fractionation processes combined with magnetic measurements indicate that fine‐grained SP and SD maghemite is the dominant pedogenic ferrimagnetic phases. High‐temperature dependent susceptibility measurements show that the thermally‐induced susceptibility drops between ~230°C and ~400°C during heating mainly result from the conversion of maghemite to hematite. We proposed a new parameter quantifying changes in the temperature dependence of magnetic susceptibility between 230‐400°C, "χtd ", that captures the concentration of pedogenically formed maghemite. Results show that χtd has a strong correlation with known quantities of maghemite in synthetic standard samples, and that χtd of modern soils correlates with modern mean annual precipitation (MAP) quite well (R2=0.82, n=24). The established χtd‐MAP climofunction provides a new approach to reconstructing paleorainfall during past warm interglacials from paleosols in Chinese loess.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 23
    Publikationsdatum: 2019
    Beschreibung: Abstract Statistical analysis of geomagnetic paleosecular variation (PSV) and time averaged field (TAF) has been largely based on global compilations of paleomagnetic data from lava flows. These show different trends in the averaged inclination anomaly (ΔI) between the two hemispheres, with small positive (〈2°) anomalies in mid‐southern latitudes and large negative (〉‐5°) anomalies in mid‐northern latitudes. To inspect the large ΔI between 20°N‐40°N we augment the global data with a new paleomagnetic dataset from the Golan‐Heights (GH), a Plio‐Pleistocene volcanic plateau in northeast Israel, located at 32°N‐33°N. The GH dataset consists of 91 lava flows sites: 40 sites obtained in the 1990s and 51 obtained in this study. The chronology of the flows is constrained by 57 40Ar/39Ar ages: 39 from previous studies and 18 from this study, which together cover most of the GH plateau. We show that the 1990s dataset might be affected by block rotations and does not fully sample PSV. The Plio‐Pleistocene pole (86.3°N, 120.8°E, N=44, k=25, α95=4.4°), calculated after applying selection criteria with Fisher precision parameter (k) ≥ 100 and number of specimens per site (n) ≥ 5 is consistent with a geocentric axial dipole field and shows smaller inclination anomaly (ΔI=‐0.4°) than predicted by global compilations and PSV models. Re‐examination of the inclination anomaly in the global compilation using different calculation methods and selection criteria suggests that inclination anomaly values are affected by: (1) inclusion of poor quality data, (2) averaging data by latitude bins and (3) the way the inclination anomaly is calculated.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 24
    facet.materialart.
    Unbekannt
    Wiley
    Publikationsdatum: 2019
    Beschreibung: No abstract is available for this article.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 25
    Publikationsdatum: 2019
    Beschreibung: Abstract We propose an explanation to the enigmatic synrift erosional unconformities reported along the distal domain of several magma‐poor rifted margins. Using thermomechanical numerical modeling, we show that transient emersion of (future) distal domains following a phase of subsidence can be explained by asynchronous necking of first the upper mantle and subsequently the crust, without the need of prominent normal faulting caused by strain softening, mantle phase transitions, or magmatic processes. When the upper crust and upper mantle are mechanically decoupled by a weak lower crust and, in the absence of any prominent rheological heterogeneity, upper mantle, necking starts first because of the higher deviatoric stresses associated with its larger effective viscosity. Consequently, the ductile lower crustal material flows toward the necked mantle domain, delaying thinning of the overlying crust. Once the necked lithospheric mantle has locally lost most of its strength, the overdeepened Moho moves upward toward an isostatically compensated depth. This flexural rebound causes uplift and emersion of distal parts of the rift system that are composed of still relatively thick crust and triggers the necking of the overlying crust. Early necking of the upper mantle causes a transient heating event with temperatures up to 750 °C at the base of the crust in the (future) distal domain. The onset of this thermal event slightly predates emersion of the (future) distal domain. These results are consistent with field observations and thermochronological data from the fossil Alpine Tethys margins, as well as with seismic observations from several present‐day rifted margins.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 26
    Publikationsdatum: 2019
    Beschreibung: Abstract Among the numerous environmental factors affecting plant communities in alpine ecosystems, the influence of geomorphic processes and landforms has been minimally investigated. Subjected to persistent climate warming, it is vital to understand how these factors affect vegetation properties. Here, we studied 72 vegetation plots across three sites located in the Western Swiss Alps, characterized by high geomorphological variability and plant diversity. For each plot, vascular plant species were inventoried and ground surface temperature, soil moisture, topographic variables, earth surface processes (ESPs) and landform morphodynamics were assessed. The relationships between plant communities and environmental variables were analysed using non‐metric multi‐dimensional scaling (NMDS) and multivariate regression techniques (generalized linear model, GLM, and generalized additive model, GAM). Landform morphodynamics, growing degree days (sum of degree days above 5 °C) and mean ground surface temperature were the most important explanatory variables of plant community composition. Furthermore, the regression models for species cover and species richness were significantly improved by adding a morphodynamics variable. This study provides complementary support that landform morphodynamics is a key factor, combined with growing degree days, to explain alpine plant distribution and community composition.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 27
    Publikationsdatum: 2019
    Beschreibung: Abstract Observations of seismic anisotropy can provide direct constraints on the character of mantle flow in subduction zones, critical for our broader understanding of subduction dynamics. Here we present over 750 new SKS splitting measurements in the vicinity of Mount St. Helens in the Cascadia subduction zone using a combination of stations from the iMUSH broadband array and Cascades Volcano Observatory network. This provides the highest density of splitting measurements yet available in Cascadia, acting as a focused “telescope” for seismic anisotropy in the subduction zone. We retrieve spatially consistent splitting parameters (mean fast direction Φ: 74°, mean delay time ∂t: 1.0 s) with the azimuthal occurrence of nulls in agreement with the fast direction of splitting. When averaged across the array, a 90° periodicity in splitting parameters as a function of back azimuth is revealed, which has not been recovered previously with single‐station observations. The periodicity is characterized by a sawtooth pattern in Φ with a clearly defined 45° trend. We present new equations that reproduce this behavior based upon known systematic errors when calculating shear wave splitting from data with realistic seismic noise. The corrected results suggest a single layer of anisotropy with an ENE‐WSW fast axis parallel to the motion of the subducting Juan de Fuca plate; in agreement with predictions for entrained subslab mantle flow. The splitting pattern is consistent with that seen throughout Cascadia, suggesting that entrainment of the underlying asthenosphere with the subducting slab is coherent and widespread.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 28
    facet.materialart.
    Unbekannt
    Wiley
    Publikationsdatum: 2019
    Beschreibung: No abstract is available for this article. © 2019 John Wiley & Sons, Ltd.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 29
    Publikationsdatum: 2019
    Beschreibung: Abstract The study of the coastal landscapes of hotspot oceanic islands through comprehensive structural metrics and ecological estimators represents an opportunity to explore geomorphological transformations and broad spatiotemporal scale features of coastal evolution. As part of this approach, a new metrical comparative analysis is presented in this study, comprising four islands in different evolutionary stages. They belong to the Cape Verde archipelago, which forms a double insular chain in which an east‐west gradient in age and evolution is particularly evident across the southern chain. A space‐for‐time (SFT) substitution approach is applied to the coasts of (1) Fogo, in the shield stage; (2) Santiago, in the early post‐erosional stage; (3) São Vicente, in the advanced post‐erosional stage; and (4) Boa Vista, in the last erosional stage. From the obtained spatial distributions and frequencies of landforms, the coastal landscapes of these islands are compared in relation to their (i) geomorphic composition, using similarity indices (Whittaker, βw, Sorensen, Cs) and nestedness estimators (NOFD, WNODF), (ii) geomorphic abundance, using morpho‐assembling densities (Dgm), and (iii) geomorphic diversity, using six alpha‐diversity indices (Richness, S, Menhinick, DMN, Simpson, D, Shannon, H', Berger‐Parker, d, and Brillouin, HB). An advanced geomorphological taxonomy is implemented for areas with limited open‐access data, including a set of planform features captured through scale‐frequency decomposition. Photographic, cartographic and field work data are used for landform identification at 1,200 random sampling points, empirically determined by a bootstrap method. The results show a chronological ordering of the compared variables and a possible co‐evolution towards an increase in organizational geomorphic complexity of coastal systems at broad space‐time scales. The method proposed in this study can contribute, from a metrical perspective, to finding new long‐term evolutionary features and constitutes an advance in the development of an integrated model of coastal evolution in oceanic islands.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 30
    Publikationsdatum: 2019
    Beschreibung: Abstract In biological evolution, creativity occurs in the appearance of new entities by evolutionary dynamics. This is linked to mutations and genetic drift, which cannot occur in geophysical phenomena. Biota can exhibit evolutionary creativity that influences landforms, but how does creativity (defined here as the capacity for emergence of new entities that increase the adjustedness of the landscape to environmental conditions) occur in landforms and landscapes as entities independent of biota? Creativity in geomorphic evolution does not require any sort of goal functions or purposeful innovation‐‐just that geomorphic development is capable of producing novelties that may be better adapted (more efficient or durable) than predecessors. Independently of biota, evidence exists that landforms may develop to become more or less "fit" in terms of efficiency and/or durability. Thus emergence of novel features may lead to their persistence. Emergence of novel forms is illustrated for the case of karst sinkholes (dolines), which indicates increasing geomorphic diversity over Ma and Ga timescales. A case study of fluviokarst chronosequences in Kentucky demonstrates emergence and elimination of landforms as landscapes evolve. Some of these may represent generally (as opposed to locally) novel landforms. While this paper is more suggestive than demonstrative, results strongly suggest evolutionary creativity in geomorphology both tied to, and independent of, biological evolution. This occurs due to emergence of geomorphic entities that are subject to selection that tends to increase efficiency and durability.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 31
    Publikationsdatum: 2019
    Beschreibung: Abstract Prior numerical modeling work has suggested that incision into sub‐horizontal layered stratigraphy with variable erodibility induces non‐uniform erosion rates even if base‐level fall is steady and sustained. Erosion rates of cliff bands formed in the stronger rocks in a stratigraphic sequence can greatly exceed the rate of base‐level fall. Where quartz in downstream sediment is sourced primarily from the stronger, cliff‐forming units, erosion rates estimated from concentrations of cosmogenic 10Be in detrital sediment will reflect the locally high erosion rates in retreating cliff bands. We derive theoretical relationships for threshold hillslopes and channels described by the stream‐power incision model as a quantitative guide to the potential magnitude of this amplification of 10Be‐derived erosion rates above the rate of base‐level fall. Our analyses predict that the degree of erosion rate amplification is a function of bedding dip and either the ratio of rock erodibility in alternating strong and weak layers in the channel network, or the ratio of cliff to intervening‐slope gradient on threshold hillslopes. We test our predictions in the cliff‐and‐bench landscape of the Grand Staircase in southern Utah, USA. We show that detrital cosmogenic erosion rates in this landscape are significantly higher (median 300 m/Ma) than the base‐level fall rate (~75 m/Ma) determined from the incision rate of a trunk stream into a ~0.6 Ma basalt flow emplaced along a 16 km reach of the channel. We infer a 3‐6 fold range in rock strength from near‐surface P‐wave velocity measurements. The ~4‐fold difference between the median 10Be‐derived erosion rate and the long‐term rate of base‐level fall is consistent with our model and the observation that the stronger, cliff‐forming lithologies in this landscape are the primary source of quartz in detrital sediments.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 32
    Publikationsdatum: 2019
    Beschreibung: ABSTRACT Inducing biological soil crust (biocrust) development is an appealing approach for dust mitigation in drylands due to the resistance biocrusts can provide against erosion. Using a portable device, we evaluated dust emissions from surfaces either inoculated with biocrust, amended with a plant‐based soil stabilizer, or both at varying wind friction velocities. Four months after application, emissions from all treatments were either indistinguishable from or greater than controls, despite evidence of biocrust establishment. All treatments had greater surface roughness and showed more evidence of entrapment of windblown sediment than controls, factors which may have been partially responsible for elevated emissions. There was a synergistic effect of inoculation and stabilizer addition, resulting in a nearly 2‐fold reduction in estimated emissions compared to either treatment alone. Stepwise regression analysis indicated that variables associated with surface crust strength (aggregate stability, penetration resistance) were negatively associated with emissions and variables associated with sediment supply (sand content, loose sediment cover) were positively associated with emissions. With more time to develop, the soil‐trapping activity and surface integrity of biocrust inoculum and soil stabilizer mixtures is expected to increase with the accumulation of surface biomass and enhancement of roughness through freeze‐thaw cycles.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 33
    Publikationsdatum: 2019
    Beschreibung: Abstract Recent seismic studies indicate the presence of seismic anisotropy near subducted slabs in the transition zone and uppermost lower mantle (mid‐mantle). In this study, we investigate the origin of radial anisotropy in the mid‐mantle using 3‐D geodynamic subduction models combined with mantle fabric simulations. These calculations are compared with seismic tomography images to constrain the range of possible causes of the observed anisotropy. We consider three subduction scenarios: (i) slab stagnation at the bottom of the transition zone; (ii) slab trapped in the uppermost lower mantle; and (iii) slab penetration into the deep lower mantle. For each scenario, we consider a range of parameters, including several slip systems of bridgmanite and its grain‐boundary mobility. Modeling of lattice‐preferred orientation shows that the upper transition zone is characterized by fast‐SV radial anisotropy anomalies up to −1.5%. For the stagnating and trapped slab scenarios, the uppermost lower mantle is characterized by two fast‐SH radial anisotropy anomalies of ∼+2% beneath the slab's tip and hinge. On the other hand, the penetrating slab is associated with fast‐SH radial anisotropy anomalies of up to ∼+1.3% down to a depth of 2,000 km. Four possible easy slip systems of bridgmanite lead to a good consistency between the mantle modeling and the seismic tomography images: [100](010), [010](100), [001](100), and . The anisotropy anomalies obtained from shape‐preferred orientation calculations do not fit seismic tomography images in the mid‐mantle as well as lattice‐preferred orientation calculations, especially for slabs penetrating into the deep lower mantle.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 34
    Publikationsdatum: 2019
    Beschreibung: Abstract We present a critical analysis of experimental findings on vegetation‐flow‐sediment interactions obtained through both laboratory and field experiments on tidal and coastal environments. It is well established that aquatic vegetation provides a wide range of ecosystem services (e.g., protecting coastal communities from extreme events, reducing riverbank and coastal erosion, housing diverse ecosystems), and the effort to better understand such services has led to multiple approaches to reproduce the relevant physical processes through detailed laboratory experiments. State‐of‐the‐art measurement techniques allow researchers to measure velocity fields and sediment transport with high spatial and temporal resolution under well‐controlled flow conditions, yielding predictions for hydrodynamic and sediment transport scenarios that depend on simplified or bulk vegetation parameters. However, recent field studies have shown that some simplifications on the experimental setup (e.g., the use of rigid elements, a single diameter, a single element height, regular or staggered layout) can bias the outcome of the study, by either hiding or amplifying some of the relevant physical processes found in natural conditions. We discuss some observed cases of bias, including general practices that can lead to compromises associated with simplified assumptions. The analysis presented will identify potential pathways to move forward with laboratory and field measurements, that could better inform predictors to produce more robust, universal, and accurate predictions on flow‐vegetation‐sediment interactions.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 35
    Publikationsdatum: 2019
    Beschreibung: Abstract The investigation of form and processes in geomorphology and ecology is highly dependent on topographic data: a reliable digital terrain representation is in fact a key issue across environmental and earth sciences. In many cases, the processing of high‐resolution topographic data (e.g., LiDAR, SfM) has to face issues like void filling, vegetation/feature removal and interpolation accuracy that are usually related to (i) intrinsic limitations of the adopted technology, (ii) local conditions affecting the survey, or (iii) specific design scenario. In this paper, we develop a methodology to test the accuracy of an image inpainting algorithm to fill data voids in complex mountain areas. The devised experiment exploits the availability of a high resolution, LiDAR‐derived Digital Terrain Model and the inpainting approach accuracy is checked against some widely used interpolation techniques (Natural neighbor, Spline, IDW, Kriging). In order to better mimic the actual surface texture, a methodology to introduce local topographic variability to the interpolated surface is also presented. The results show a better performance of the inpainting algorithm especially in case of complex and rugged topography. Two examples showing an effective usage and accuracy of the proposed technique are reported, highlighting the drawbacks that a poor surface representation can introduce. The whole procedure is made freely available within a Matlab® script with the addition of sample files.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 36
    Publikationsdatum: 2019
    Beschreibung: Abstract Building on an earlier study that confirmed the stability of the 405‐kyr eccentricity climate cycle and the timing of the Newark‐Hartford astrochronostratigraphic polarity time scale (N‐H APTS) back to 215 Ma, we extend the magnetochronology of the Late Triassic Chinle Formation to its basal unconformity in scientific drill core PFNP‐1A from Petrified Forest National Park (Arizona, USA). The 335‐m‐thick Chinle section is imprinted with paleomagnetic polarity zones PF1r to PF10n, which we correlate to chrons E17r to E9n (~209 to 224 Ma) of the N‐H APTS. A sediment accumulation rate of ~34 m/Myr can be extended down to ~270 meters, close to the base of the Sonsela Member and the base of magnetozone PF5n, which we correlate to chron E14n that onsets at 216.16 Ma. Magnetozones PF5r to PF10n in the underlying 65‐m‐thick section of the mudstone‐dominated Blue Mesa and Mesa Redondo members plausibly correlate to chrons E13r to E9n, indicating a sediment accumulation rate of only ~10 m/Myr. Published high precision U‐Pb detrital zircon dates from the lower Chinle tend to be several million years older than the magnetochronological age model. The source of this discrepancy is unclear but may be due to sporadic introduction of juvenile zircons that get recycled. The new magnetochronological constraint on the base of the Sonsela Member brings the apparent timing of the included Adamanian‐Revueltian land vertebrate faunal zone boundary and the Zone II to Zone III palynofloral transition closer to the temporal range of the ~215 Ma Manicouagan impact structure in Canada.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 37
    Publikationsdatum: 2019
    Beschreibung: Abstract Using 8‐25s period Rayleigh and Love wave phase velocity dispersion data extracted from seismic ambient noise, we (i) model the 3D shear wave velocity structure of the West Antarctic crust and (ii) map variations in crustal radial anisotropy. Enhanced regional resolution is offered by the UK Antarctic Seismic Network. In the West Antarctic Rift System (WARS), a ridge of crust ~26‐30km thick extending south from Marie Byrd Land separates domains of more extended crust (~22km thick) in the Ross and Amundsen Sea Embayments, suggesting along‐strike variability in the Cenozoic evolution of the WARS. The southern margin of the WARS is defined along the southern Transantarctic Mountains (TAM) and Haag Nunataks‐Ellsworth Whitmore Mountains (HEW) block by a sharp crustal thickness gradient. Crust ~35‐40km is modelled beneath the Haag Nunataks‐Ellsworth Mountains, decreasing to ~30‐32km km thick beneath the Whitmore Mountains, reflecting distinct structural domains within the composite HEW block. Our analysis suggests that the lower crust and potentially the mid crust is positively radially anisotropic (VSH 〉 VSV) across West Antarctica. The strongest anisotropic signature is observed in the HEW block, emphasising its unique provenance amongst West Antarctica's crustal units, and conceivably reflects a ~13km thick metasedimentary succession atop Precambrian metamorphic basement. Positive radial anisotropy in the WARS crust is consistent with observations in extensional settings, and likely reflects the lattice‐preferred orientation of minerals such as mica and amphibole by extensional deformation. Our observations support a contention that anisotropy may be ubiquitous in continental crust.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 38
    Publikationsdatum: 2019
    Beschreibung: Abstract Quantitative estimates of natural climate variability are required to detect anthropogenic climate trends in the tropical Pacific, however instrumental records from this region are too short and scarce. Coral oxygen isotopic (δ18O) and strontium to calcium (Sr/Ca) records are often used to extend instrumental observations, however differences in the mean Sr/Ca and δ18O values of Porites spp. colonies from the same reef can introduce large uncertainties in coral‐based climate reconstructions. To quantify intercolony variability at Palmyra Atoll, we generate monthly‐resolved Sr/Ca and δ18O timeseries from five Porites spp. colonies that grew between 1980‐2010. Monthly to interannual variability in Sr/Ca and δ18O is well‐reproduced among different colonies, however we document intercolony offsets in mean Sr/Ca of ±0.09 mmol/mol (1σ) or ~1°C, and in mean δ18O of ±0.12‰ (1σ) or ~0.1°C. The sensitivity of each proxy to climate also varies across colonies, with Sr/Ca‐SST slopes ranging from ranging from ‐0.06 to ‐0.1 mmol mol‐1 °C‐1 and δ18O‐SST slopes ranging from ‐0.25 to ‐0.35 ‰°C‐1. Intercolony variability in both coral Sr/Ca and δ18O reduces the reproducibility of coral‐based δ18Osw reconstructions across overlapping colonies. Accounting for both intercolony variability and slope error suggests that SST reconstructions using Sr/Ca from a single Palmyra coral have an uncertainty of ±1.3°C (1σ), however replicating Sr/Ca records across multiple colonies can greatly reduce this uncertainty. A composite Sr/Ca record built using five modern cores, for example, offers a reduced error of ±0.6°C (1σ) in mean SST reconstructions, ~2.5 times smaller than errors associated with reconstructions from single corals.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 39
    Publikationsdatum: 2019
    Beschreibung: Abstract Hydrocarbon systems with declining or viscous oil production are often stimulated using enhanced oil recovery (EOR) techniques, such as the injection of water, steam and CO2, in order to increase oil and gas production. As EOR and other methods of enhancing production such as hydraulic fracturing have become more prevalent, environmental concerns about the impact of both new and historical hydrocarbon production on overlying shallow aquifers have increased. Noble gas isotopes are powerful tracers of subsurface fluid provenance and can be used to understand the impact of EOR on hydrocarbon systems and potentially overlying aquifers. In oil systems, produced fluids can consist of a mixture of oil, water and gas. Noble gases are typically measured in the gas phase; however, it is not always possible to collect gases and therefore produced fluids (which are water, oil and gas mixtures) must be analyzed. We outline a new technique to separate and analyze noble gases in multi‐phase hydrocarbon‐associated fluid samples. An offline double capillary method has been developed to quantitatively isolate noble gases into a transfer vessel, while effectively removing all water, oil, and less volatile hydrocarbons. The gases are then cleaned and analyzed using standard techniques. Air‐saturated water reference materials (n=24) were analyzed and results show a method reproducibility of 2.9% for 4He, 3.8% for 20Ne, 4.5% for 36Ar, 5.3% for 84Kr and 5.7% for 132Xe. This new technique was used to measure the noble gas isotopic compositions in six produced fluid samples from the Fruitvale Oil Field, Bakersfield, California.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 40
    Publikationsdatum: 2019
    Beschreibung: Abstract Geophysical data acquisition in oceanic domains is challenging, implying measurements with low and/or non‐homogeneous spatial resolution. The evolution of satellite gravimetry and altimetry techniques allows testing 3D density models of the lithosphere, taking advantage of the high spatial resolution and homogeneous coverage of satellites. However, it is not trivial to discretise the source of the gravity field at different depths. Here, we propose a new method for inferring tectonic boundaries at the crustal level. As a novelty, instead of modelling the gravity anomalies and assuming a flat Earth approximation, we model the Vertical Gravity Gradients (VGG) in spherical coordinates, which are especially sensitive to density contrasts in the upper layers of the Earth. To validate the methodology, the complex oceanic domain of the Caribbean region is studied, which includes different crustal domains with a tectonic history since Late Jurassic time. After defining a lithospheric starting model constrained by up‐to‐date geophysical datasets, we tested several a‐priory density distributions and selected the model with the minimum misfits with respect to the VGG calculated from the EIGEN‐6C4 dataset. Additionally, the density of the crystalline crust was inferred by inverting the VGG field. Our methodology enabled us not only to refine, confirm and/or propose tectonic boundaries in the study area, but also to identify a new anomalous buoyant body, located in the South Lesser Antilles subduction zone, and high density bodies along the Greater, Lesser and Leeward Antilles forearcs.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 41
    Publikationsdatum: 2019
    Beschreibung: Abstract Studying spatial and temporal trends in volcanic gas compositions and fluxes is crucial to both volcano monitoring and to constrain the origin and recycling efficiency of volatiles at active convergent margins. New compositions and fluxes are here reported for Nevado del Ruiz, Galeras and Purace, the most persistently degassing volcanoes in the Colombian Arc Segment (CAS) of the Northern Volcanic Zone (NVZ). At Nevado del Ruiz, from 2014 to 2017, plume emissions showed an average molar CO2/ST ratio of 3.9 ± 1.6 (ST is total sulfur, S). Contemporary, fumarolic chemistry at Galeras progressively shifted towards low‐temperature, S‐depleted gas discharges with an average CO2/ST ratio in excess of 10 (6.0 – 46.0, 2014‐2017). This shift in volcanic gas compositions was accompanied by a concurrent decrease in SO2 emissions, confirmed on the 21 March 2017 by high‐resolution UV camera‐based SO2 fluxes of ~2.5 kg s‐1 (~213t d‐1). For comparison, SO2 emissions remained high at Nevado del Ruiz (weighted average of 8 kg s‐1) between 2014 and 2017, while Puracé maintained rather low emission levels (〈1 kg s‐1 of SO2, CO2/SO2 ≈ 14). We here estimate carbon dioxide fluxes for Nevado del Ruiz, Galeras and Puracé of ~23, 30 and 1 kg s‐1, respectively. These, combined with recent CO2 flux estimates for Nevado del Huila of ~10 kg s‐1 (~860 t d‐1), imply that this arc segment contributes about 50% to the total subaerial CO2 budget of the Andean Volcanic Belt. Furthermore, our work highlights the northward increase in carbon‐rich sediment input into the mantle wedge via slab fluids and melts that is reflected in magmatic CO2/ST values far higher than those reported for Southern Volcanic Zone (SVZ) and Central Volcanic Zone (CVZ) volcanoes. We estimate that about 20% (~1.3 Mt C/y) of the C being subducted (~6.19 Mt C/y) gets resurfaced through subaerial volcanic gas emissions in Colombia (Nevado del Ruiz ~0.7 Mt C/y). As global volcanic volatile fluxes continue to be quantified and refined, the contribution from this arc segment should not be underestimated.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 42
    Publikationsdatum: 2019
    Beschreibung: Schematic of the SediNet architecture. An input image is passed to the feature extractor consisting of a series of convolutional blocks. The last set of feature maps is fed into one of three multi‐layer perceptrons; one each for the task of estimating grain size percentiles, sediment population, and grain shape. Abstract I describe a configurable machine‐learning framework to estimate a suite of continuous and categorical sedimentological properties from photographic imagery of sediment, and to exemplify how machine learning can be a powerful and flexible tool for automated quantitative and qualitative measurements from remotely sensed imagery. The model is tested on a dataset consisting of 409 images and associated detailed label data. The data are from a much wider sedimentological spectrum than previous optical granulometry studies, consisting of both well‐ and poorly sorted sediment, terrigenous, carbonate, and volcaniclastic sands and gravels and their mixtures, and grain sizes spanning over two orders of magnitude. I demonstrate the model framework by configuring it in several ways, to estimate two categories (describing grain shape and population, respectively) and nine numeric grain size percentiles in pixels from a single input image. Grain size is then recovered using the physical size of a pixel. Finally, I demonstrate that the model can be configured and trained to estimate equivalent sieve diameters directly from image features, without the need for area‐to‐mass conversion formulas and without even knowing the scale of one pixel. Thus it is the only optical granulometry method proposed to date that does not necessarily require image scaling. The flexibility of the model framework should facilitate numerous application in the spatiotemporal monitoring of the grain size distribution, shape, mineralogy and other quantities of interest of sedimentary deposits as they evolve, as well as other texture‐based proxies extracted from remotely sensed imagery. © 2019 John Wiley & Sons, Ltd.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 43
    facet.materialart.
    Unbekannt
    Wiley
    Publikationsdatum: 2019
    Beschreibung: No abstract is available for this article. © 2019 John Wiley & Sons, Ltd.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 44
    Publikationsdatum: 2019
    Beschreibung: Abstract Five model compounds with representative chemical structures were selected for use in simulation experiments of pyrolytic gas production. The gas production and isotopic fractionation characteristics were observed and analyzed. Then, the factors affecting carbon isotope fractionation during natural gas generation were discussed, and a fractionation model was established and calibrated. We concluded that the final hydrocarbon gas (C1‐5) yield of octadecane, octadecylamine, octadecanoic acid, decahydronaphthalene and 9‐phenylanthracene decreased in turn with the effective hydrogen content. Compared with linear alkanes or alkyl compounds, cycloalkanes have higher thermal stability and generate gas later. The variation in the carbon isotopic composition of natural gas is primarily controlled by the following three factors. a) The thermal evolution of organic matter (OM) results in a gradually heavier isotopic composition for the main gas production stage. b) Gas inherits the isotopic composition of its parent material, and this effect is evident when the chemical structure and gas generation mechanism between parent materials are similar. c) The structure of OM determines the reaction mechanism of gas generation, which has a significant influence on the range and trend of carbon isotope fractionation in the process of methane generation. An improved chemical kinetic model can accurately characterize carbon isotope fractionation during gas generation.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 45
    Publikationsdatum: 2019
    Beschreibung: Abstract Soil‐covered upland landscapes comprise a critical part of the habitable world and our understanding of their evolution as a function of different climatic, tectonic, and geologic regimes is important across a wide range of disciplines. Soil production and transport play essential roles in controlling the spatial variation of soil depth and therefore hillslope hydrological processes, distribution of vegetation, and soil biological activity. Field‐based confirmation of the hypothesized relationship between soil thickness and soil production is relatively recent, however, and here we quantify a direct, material strength‐based influence on variable soil production across landscapes. We report clear empirical linkages between the shear strength of the parent material (its erodibility) and the overlying soil thickness. Specifically, we use a cone penetrometer and a shear vane to determine saprolite resistance to shear. We find that saprolite shear strength increases systematically with overlying soil thickness across three very different field sites where we previously quantified soil production rates. At these sites, soil production rates, determined from in situ produced 10Be and 26Al, decrease with overlying soil thickness and we therefore infer that the efficiency of soil production must decrease with increasing parent material shear strength. We use our field‐based data to help explain the linkages between biogenic processes, chemical weathering, hillslope hydrology, and the evolution of the Earth's surface.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 46
    Publikationsdatum: 2019
    Beschreibung: Abstract Benthic foraminiferal assemblages and geochemical tracers (δ18O, δ13C and 14C) have been analyzed on benthic and planktonic foraminifera from core MD77‐176, located in the northern Bay of Bengal (BoB), in order to reconstruct the evolution of intermediate circulation in the northern Indian Ocean since the last glaciation. Results indicate that during the Last Glacial Maximum (LGM), Southern Sourced Water (SSW) masses were dominant at the core site. A high relative abundance of intermediate and deep infaunal species during the LGM reflects low oxygen concentration and/or meso‐ to eutrophic deep water conditions, associated with depleted benthic δ13C values. During the Holocene, benthic foraminiferal assemblages indicate an oligo– to mesotrophic environment with well‐ventilated bottom water conditions compared with LGM. Higher values for benthic foraminifera δ13C and B‐P 14C age offsets suggest an increased contribution of North Atlantic Deep Water (NADW) to the Northern BoB during the Late Holocene compared to the LGM. Millennial‐scale events punctuated the last deglaciation, with a shift in the δ13C and the ɛNd values coincident with low B‐P 14C age offsets, providing strong evidence for an increased contribution of Antarctic Intermediate Water (AAIW) at the studied site. This was associated with enhanced upwelling in the Southern Ocean, reflecting a strong sea‐atmospheric CO2 exchange through Southern Ocean ventilation during the last deglaciation.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 47
    Publikationsdatum: 2019
    Beschreibung: Abstract The East Taiwan Ophiolite (ETO) occurs as blocks and thrust sheets associated with the Lichi Mélange in the Coastal Range of eastern Taiwan. The blocks consist of serpentinized harzburgite, serpentinite breccia, gabbro, dikes of dolerite and plagiogranite, pillow basalts, and red clay within a mud‐ and serpentinite‐rich mélange matrix. New U‐Pb zircon dating of a pegmatite gabbro yields a weighted mean age of 16.65±0.20 Ma. This age is earlier than the North Luzon Arc, but overlaps with the late–stage spreading of the South China Sea. ETO glassy basalt has low K2O, MgO and high CaO contents, similar to MORB. REE and trace element patterns show both N‐MORB patterns with LREE depletion and E‐MORB patterns with slight LREE enrichment. A few samples show slight depletion in Nb‐Ta, and Ti and enrichment in Rb, Ba, U and Sr, indicating a hint of subduction influence. Most ETO basalt plots within the overlapping fields of N‐MORB and BABB on Ti‐V, Cr‐Y, Nb/Yb‐ Th/Yb and Hf/3‐Th‐Ta discrimination diagrams. These geochemical compositions are emblematic of mid‐ocean ridge or back‐arc lava, like South China Sea basalt. We interpret ETO basalt and gabbro as fragments of the subducted South China Sea basement that were scrapped off and accreted to the Luzon forearc during the process of subduction initiation along the Manila Trench. Blocks of mantle material in the mélange may originate from the upper plate of the arc‐continent collision and were mixed with lower plate crustal material in a subduction channel now represented by the Lichi Mélange.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 48
    Publikationsdatum: 2019
    Beschreibung: Abstract Coastal foredunes provide the first line of defense against rising sea levels and storm surge and for this reason there is increasing interest in understanding and modeling foredune formation and post‐storm recovery. However, there is limited observational data available to provide empirical guidance for the development of model parameterizations. To provide guidance for improved representation of dune grass growth in models, we conducted a two‐year multi‐species transplant experiment on Hog Island, VA, U.S.A. and measured the dependence of plant growth on elevation and distance from the shoreline, as well as the relationship between plant growth and sand accumulation. We tracked total leaf growth (length) and aboveground leaf length and found that Ammophila breviligulata (American beachgrass) and Uniola paniculata (sea oats) grew more than Spartina patens (saltmeadow cordgrass) by a factor of 15% (though not statistically significant) and 45%, respectively. Our results also suggest a range of basal/frontal area ratios (an important model parameter) from 0.5‐1 and a strong correlation between transplant growth and total sand deposition for all species at the scale of two years, but not over shorter temporal scales. Distance from the shoreline and elevation had no effect on transplant growth rate but did have an effect on survival. Based on transplant survival, the seaward limit of vegetation at the end of the experiment was approximately 30 m from the MHWL and at an elevation of 1.43 m, corresponding to inundation less than 7.5% of the time according to total water level calculations. Results from this experiment provide evidence for the dune‐building capacity of all three species, suggesting S. patens is not a maintainer species, as previously thought, but rather a moderate dune builder even though its growth is less stimulated by sand deposition than A. breviligulata and U. paniculata.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 49
    Publikationsdatum: 2019
    Beschreibung: Abstract Magnetic properties from the Reinfjord Ultramafic Complex, in northern Norway, which formed as part of a deep magmatic conduit system, have been investigated to determine the magnetic signature of ultramafic rocks now exposed at the surface and deeper in the lower crust. The dominant carriers in these ultramafic rocks are a chrome spinel with Fe‐rich exsolution blebs, and exsolution lamellae of magnetite in clinopyroxene. Except locally, in a fault zone and in discrete small fractures, these rocks show only minor to no alteration. We infer that the magnetic oxides characterized here are representative of pristine magnetic carriers in similar rocks deeper in the crust. These oxides can be stable in lower crustal, possibly upper mantle, depths when temperatures are below the Curie temperature of magnetite, taking into account pressure effects. These ultramafic rocks are candidates for potential sources of long‐wavelength anomalies.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 50
    Publikationsdatum: 2019
    Beschreibung: Abstract The most recent eruption of Mt. Fuji (Japan), the VEI 5 Hōei plinian eruption (CE 1707) heavily impacted Lake Yamanaka, a shallow lake located at the foot of Mt. Fuji. Here, we discuss the influence of the Hōei eruption on the lacustrine sedimentation of Lake Yamanaka using high resolution geophysical and geochemical measurements on gravity cores. Hōei scoria fall‐out had two major impacts on Lake Yamanaka: (i) reduction of the sedimentation rate (from ~0.16 cm/yr to ~0.09 cm/yr); and (ii) the increase of in‐situ lake productivity. Sedimentation rates after the eruption were relatively low due to the thick scoria layer, trapping underlying sediments in the catchment. The lacustrine system took over more than ~170 years to begin to recover from the Hōei eruption: sedimentation recovery have been accelerated by changes in land use. Since the beginning of the 20th Century, vegetated strips delimited cultivated parcels, trapping sediment and minimizing the anthropogenic impacts on the sedimentation rate. Over the last decade, the decline of agriculture and the increase of other human activities led to an increase in the sedimentation rate (~1 cm/yr). This study highlights the effect of the grainsize of the volcanic ejecta on the sedimentation rate following a volcanic eruption. Coarse‐grained tephra are difficult to erode. Therefore, their erosion and remobilization is largely limited to intense typhoons when porous scoria deposits are saturated by heavy rains. Moreover, this study suggests that recent anthropogenic modifications of the catchment had a greater impact on the sedimentation rate than the Hōei eruption.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 51
    Publikationsdatum: 2019
    Beschreibung: Abstract The advantages in provenance research of U‐Pb dating different detrital minerals along with simultaneously analyzing trace elements is demonstrated in a study of sand from the mouth of the Merrimack River in New England, USA. Zircon ages record episodes of magmatism in the Early Paleozoic, peaking in the Early Devonian, followed by quiescence through the remainder of the Paleozoic and additional magmatic episodes in the Jurassic and Cretaceous. Simultaneous measurement of trace elements in zircons reveals a shift from arc magmatism to crustal melting associated with terrane collision in the Early Devonian while many Jurassic grains are clearly derived from A‐type granites. Detrital monazites and rutiles have Devonian and Permian ages. Many of the older monazites have trace element characteristics suggestive of igneous origin while Permian monazites are clearly metamorphic and record orogenesis that is absent from the detrital zircon record. Rutile grains have trace element chemistry indicative of mostly metasedimentary source rocks, and Zr thermometry indicates growth under amphibolite facies conditions. Age offsets between monazite and rutile populations provide information about the region's cooling history. Titanite grains have trace element chemistry mostly consistent with igneous origin and U‐Pb ages lining up with minor zircon age populations in the Ordovician‐Silurian and the Middle Devonian, suggesting that these magmatic episodes produced metaluminous compositions. These results show that combing trace element fingerprinting with dating and analyzing multiple detrital mineral species provide a more complete portrait of the geologic history of the sediment source region than U‐Pb dating of zircon alone.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 52
    Publikationsdatum: 2019
    Beschreibung: Abstract Glacial cirques are widely used palaeoenvironmental indicators, and are key to understanding the role of glaciers in shaping mountain topography. However, notable uncertainty persists regarding the rate and timing of cirque erosion. In order to address this uncertainty, we analyse the dimensions of 2208 cirques in Britain and Ireland and model ice accumulation to investigate the degree of coupling between glacier occupation times and cirque growth. Results indicate that during the last ~120 ka, cirques were glacier‐free for an average of 52.0 ± 21.2 ka (43 ± 18%); occupied by small (largely cirque‐confined) glaciers for 16.2 ± 9.9 ka (14 ± 8%); and occupied by large glaciers, including ice sheets, for 51.8 ± 18.6 ka (43 ± 16%). Over the entire Quaternary (i.e., 2.6 Ma), we estimate that cirques were glacier‐free for 1.1 ± 0.5 Ma; occupied by small glaciers for 0.3 ± 0.2 Ma; and occupied by large glaciers for 1.1 ± 0.4 Ma. Comparing occupation times to cirque depths, and calculating required erosion rates reveals that continuous cirque growth during glacier occupation is unlikely. Instead, we propose that cirques attained much of their size during the first occupation of a non‐glacially sculpted landscape (perhaps during the timeframe of a single glacial cycle). During subsequent glacier occupations, cirque growth may have slowed considerably, with the highest rates of subglacial erosion focused during periods of marginal (small glacier) glaciation. We propose comparatively slow rates of growth following initial cirque development because a ‘least resistance’ shape is formed, and as cirques deepen, sediment becomes trapped subglacially, partly protecting the bedrock from subsequent erosion. In support of the idea of rapid cirque growth, we present evidence from northern British Columbia, where cirques of comparable size to those in Britain and Ireland developed in less than 140 ka.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 53
    Publikationsdatum: 2019
    Beschreibung: Abstract The thermal evolution of a solid planet is governed by mantle convection and therefore the dependence of viscosity on temperature. In this study, over a span of five billion years, we investigate the effect of viscosity clipping (i.e., limiting the maximum value of the viscosity) on the thermal evolution of lunar‐sized initially hot bodies featuring decaying internal heat sources. Models with a decreasing viscosity contrast resulting from limiting the maximum viscosity to 105.5 times the initial viscosity at the core‐mantle boundary were first examined. At times determined by the initial internal heating rate, rapid cooling sets in as a result of a convective regime change from stagnant‐lid to mobile‐lid convection, followed by gradual cooling to a weakly convecting and eventually nearly conductive state. Subsequently, we employ a dynamic clipping viscosity of 105.5 times the viscosity at the core‐mantle boundary, throughout the planet's evolution. In this case, stagnant‐lid convection is the only convective regime observed. Finally, convection with an initially large viscosity contrast (1010) is modeled in both 2D and 3D spherical geometry and we find strong agreement in the thermal evolution when compared with the dynamic clipping model. Our findings show that convective regime changes due to secular cooling can occur due to implementing a fixed viscosity contrast that becomes sub‐critical with respect to obtaining a stagnant‐lid. To avoid spurious convective regime changes, the specification of a dynamic clipping viscosity can be used to emulate much higher viscosity contrasts.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 54
    Publikationsdatum: 2019
    Beschreibung: Abstract The Three Gorges Dam (TGD) has altered downstream flow‐sediment regimes and led to significant changes in the morphodynamic processes in the Middle Yangtze River (MYR). However, due to the complexity of this large river, the driving forces and implication of the morphodynamic processes remain insufficiently understood. This study selected two typical meandering and bar‐braided reaches, the Zhicheng (ZC) and Shashi (SS) reach, to examine their responses to the TGD operation. The results showed that in the post‐dam period significant channel erosion occurred with a higher erosion rate in the ZC reach (closer to the TGD) compared with the SS reach. The area of the Guanzhou mid‐channel bar (ZC reach) and the Sanba mid‐channel bar (SS reach) shrank by 30% and 90% from 2003 to 2015, respectively. The increased fluvial erosion intensity due to the reduction in suspended sediment concentration (SSC) drove the shrinkage of the mid‐channel bars as demonstrated by empirical relationships between bar geometry and fluvial erosion intensity. An increase of 22 days per year in the frequency of post‐dam medium‐high discharges (10,000‐25,000 m3/s), and associated with the reduction in SSC, jointly led to the greater erosion at the convex (inner) banks than the concave (outer) banks, which has negatively affected the designed navigation channels at the concave banks by decreasing their discharge partitioning ratios. Post‐dam water level at a given high discharge (〉 25,000 m3/s) showed no evident change, but the water level at a given low discharge (〈 10,000 m3/s) decreased. The reduction in water levels at low flows can affect water supply and riverine ecosystems in the MYR.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 55
    Publikationsdatum: 2019
    Beschreibung: Abstract Sand‐shale mélanges from the Kodiak Accretionary Complex and Shimanto Belt of Japan record deformation during underthrusting along a paleosubduction interface in the range 150 to 350°C. We use observations from these mélanges to construct a simple kinetic model that estimates the maximum time required to seal a single fracture as a measure of the rate of fault zone healing. Crack sealing involves diffusive redistribution of Si from mudstones with scaly fabric to undersaturated fluid‐filled cracks in sandstone blocks. Two driving forces are considered for the chemical potential gradient that drives crack sealing: 1) a transient drop in fluid pressure ∆Pf , and 2) a difference in mean stress between scaly slip surfaces in mudstones and cracks in stronger sandstone blocks. Sealing times are more sensitive to mean stress than ∆Pf, with up to four orders of magnitude faster sealing. Sealing durations are dependent on crack‐spacing, silica diffusion kinetics, and magnitude of the strength contrast between block and matrix, each of which are loosely constrained for conditions relevant to the seismogenic zone. We apply the model to three active subduction zones and find that sealing rates are fastest along Cascadia and several orders of magnitude slower for a given depth along Nicaragua and Tohoku slab‐top geotherms. The model provides: 1) a framework for geochemical processes that influence subduction mechanics via crack sealing and shear fabric development and 2) demonstration that kinetically‐driven mass redistribution during the interseismic period is a plausible mechanism for creating asperities along smooth, sediment‐dominated convergent margins.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 56
    Publikationsdatum: 2019
    Beschreibung: Abstract We developed a fully automated magnetic field scanner dedicated to uniaxial magnetic field measurements to determine remanent magnetization intensities and their variations in sedimentary U‐channels. A fluxgate magnetometer located as close as possible to the sedimentary section is used to perform uniaxial measurements of magnetic fields generated by the isothermal remanent magnetization of the sediment. This artificial magnetization, which is known to be a powerful proxy in environmental magnetism, is produced perpendicular to the U‐channel long axis, and parallel to the fluxgate axis, using a Halbach cylinder prior to the measurement. The present magnetic scanner offers a maximal spatial resolution of 5.8 mm for point sources. A spatial resolution of 14 mm is obtained for U channel samples. The magnetic scanner presents a reliable magnetic field range over about 3 orders of magnitude allowing measurement of magnetizations that saturate the Superconducting Rock Magnetometer in its classical configuration. The estimation of remanent magnetization intensities along the U‐channel is based on a modeling approach that uses successive uniformly magnetized prisms. In lacustrine laminated sections, comparison between modeling results based on prisms of a constant thickness, on prisms determined from sedimentary facies and on prisms determined from XRF (X‐Ray Fluorescence) data helps to understand the detrital vs. diagenetic history of the sedimentary succession.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 57
    Publikationsdatum: 2019
    Beschreibung: Abstract Ocean bottom seismometers (OBS) commonly record short duration events (SDEs), that could be described by all of these characteristics: (i) duration 〈 1 s, (ii) one single‐wave train with no identified P‐ nor S‐wave arrivals and (iii) a dominant frequency usually between 4 Hz and 30 Hz. In many areas, SDEs have been associated with gas or fluid‐related processes near cold seeps or hydrothermal vents, although fish bumps, instrumental or current‐generated noise have been proposed as possible sources. In order to address some remaining issues, this study presents results from in situ and laboratory experiments combined with observations from 2 contrasting areas, the Sea of Marmara (Turkey) and the Chilean subduction zone. The in situ experiment was conducted at the EMSO‐Molène submarine observatory (near Brest, France) and consisted in continuously monitoring two OBSs with a camera. The images revealed that no fish regularly bumped into the instruments. Laboratory experiments aimed at reproducing SDEs’ waveforms by injecting air or water in a tank filled by sand and sea‐water and monitored with an OBS. Injecting air in the sediments produced waveforms very similar to the observed SDEs, while injecting air in the water column did not, constraining the source of SDEs in the seafloor sediments. Finally, the systematic analysis of two real data sets revealed that it is possible to discriminate gas‐related SDEs from biological or sea‐state related noise from simple source parameters, such as the temporal mode of occurrence, the back azimuth and the dominant frequency.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 58
    Publikationsdatum: 2019
    Beschreibung: Abstract The variety of coral reefs morphologies highlights their sensitivities to several forcings; fossil reefs stack in sequences that are accordingly diverse. In order to understand their genesis and architectures, we devised a numerical approach, accounting for Quaternary sea‐level oscillations, vertical land motion, initial slope, wave erosion, and reef growth. We first test our model on the subsiding sequence of Hawaii, and on the uplifting sequence of Wangi‐Wangi (Sulawesi) that bears active barriers. We then construct a parametric study, that we analyse based on a comprehensive yet compact description of sequences as barcodes, that depict the vertical distribution of a few geometrical characteristics (number, width and height of the terraces, barriers). We find that geological factors suffice to explain the variety of architectures of reefal sequences at first order, regardless of additional ecosystemic processes. Vertical land motion and foundation slopes are the prime players, while reef growth rates only play a minor role. Barriers may develop both in uplift and subsidence mode, and their preservation attests for the erosional power. Last, we reappraise the genesis of sequences and find that sequences do not fingerprint discrete events of sea‐level oscillations but a continuous process harrowed by stochastic events: Major sea‐level fluctuations can be over‐represented by several terraces, or conversely absent; reoccupations may yield composite terraces representing multiple events. Overall, sequences shall not be regarded as stacks of reef bodies forming during sea‐level highstands, which implies that the commonly assumed bijective relationship between sea‐level highstands and terraces shall be abandoned.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 59
    Publikationsdatum: 2019
    Beschreibung: Summary Landscape experiments of fluvial environments such as rivers and deltas are often conducted with live seedlings to investigate effects of biogeomorphological interactions on morphology and stratigraphy. However, such experiments were limited to a single species, usually Alfalfa (Medicago sativa), while important environments in nature have many different vegetation types and eco‐engineering effects. Landscape experimentation would therefore benefit from a larger choice of tested plant species. For the purpose of experimental design our objective was to identify fast‐germinating and fast‐growing species and determine their sensitivity to flow conditions during and after settling, their maximum growth, hydraulic resistance and added bank strength. We tested germination time and seedling growth rate of eighteen candidate species with readily available seeds that are fast‐growing and occur at waterlines, plus Medicago sativa as a control. We selected five species that germinate and develop within days and measured properties and eco‐engineering effects depending on plant age and density, targeting typical experimental conditions of 0‐0.3 m/s flow velocity and 0‐30 mm water depth. Tested eco‐engineering effects include bank strength and flow resistance. We found that Rumex hydrolapathum can represent riparian trees. The much smaller Veronica beccabunga and Lotus pedunculatus can represent grass and saltmarsh species as they grow in dense patches with high flow resistance but are readily erodible. Sorghum bicolor grows into tall, straight shoots, which add significantly to bank strength, but adds little flow resistance and may represent sparse hardwood trees. Medicago sativa also grows densely under water, suggesting a use for mangroves and perhaps peat. In stronger and deeper flows the application of all species changes accordingly. These species can now be used in a range of landscape experiments to investigate combined effects on living landscape patterns and possible facilitation between species. The testing and treatment methodology can be applied to new species and other laboratory conditions. This article is protected by copyright. All rights reserved.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 60
    Publikationsdatum: 2019
    Beschreibung: ABSTRACT Ion‐microprobe 206Pb/238U geochronology and trace element geochemistry of the unpolished rims and sectioned interiors of zircons from Yellowstone caldera's oldest post‐caldera lavas provide insight into the magmatic system during the prelude and aftermath of the caldera‐forming Lava Creek supereruption. The post‐caldera lavas compose the Upper Basin Member of the Plateau Rhyolite, and fall into two groups based on zircon crystallization age: early lavas with zircon ages between ~750‐550 ka and late lavas with zircon ages between ~350‐250 ka. Zircons from the early‐erupted East Biscuit Basin flow yield U‐Pb dates and trace element compositions, which when considered with the Pb isotopic compositions of their coexisting feldspars and pyroxenes, point to an isotopically distinct parental melt present during crystallization of the Lava Creek magma but untapped by the supereruption. Distinct zircon crystallization ages and Pb‐isotope compositions of major minerals between the early and late Upper Basin Member groups suggest contrasting sources in the magma reservoir. As proxies for melt evolution, the zircons indicate that Yellowstone's post‐caldera rhyolites became more evolved between mid‐ to late‐Pleistocene time, during the same interval that melting of hydrothermally‐altered wall rock and recharge by new silicic magmas changed in their relative roles. The results from this study indicate that discrete and ephemeral bodies of silicic magma, at times within a mush dominated reservoir and including during the prelude to the Lava Creek eruption, have characterized Yellowstone's subvolcanic reservoir.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 61
    Publikationsdatum: 2019
    Beschreibung: Abstract Rockwall slope erosion is defined for the upper Bhagirathi catchment using cosmogenic 10Be concentrations in sediment from medial moraines on Gangotri glacier. Beryllium‐10 concentrations range from 1.1±0.2 to 2.7±0.3x104 at/g SiO2, yielding rockwall slope erosion rates from 2.4±0.4 to 6.9±1.9 mm/a. Slope erosion rates are likely to have varied over space and time and responded to shifts in climate, geomorphic and/or tectonic regime throughout the late Quaternary. Geomorphic and sedimentological analyses confirm that the moraines are predominately composed of rockfall and avalanche debris mobilized from steep relief rockwall slopes via periglacial weathering processes. Slope erosion affects sediment flux and storage of snow and ice at the catchment head on diurnal to millennial timescales, and more broadly influences catchment configuration and relief, glacier dynamics and microclimates. The slope erosion rates exceed the averaged catchment‐wide and exhumation rates of Bhagirathi and the Garhwal region on geomorphic timescales (103−105 years), supporting the view that erosion at the headwaters can outpace the wider catchment. The 10Be concentrations of medial moraine sediment for the upper Bhagirathi catchment and the catchments of Chhota Shigri in Lahul, northern India and Baltoro glacier in Central Karakoram, Pakistan show a tentative relationship between 10Be concentration and rainfall. As such there is more rapid slope erosion in the monsoon‐influenced Lesser and Greater Himalaya compared to the semi‐arid interior of the orogen. Rockwall slope erosion in the three study areas, and more broadly across the NW Himalaya is likely governed by individual catchment dynamics that vary across space and time.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 62
    Publikationsdatum: 2019
    Beschreibung: Abstract River confluences are characterized by a complex mixing zone with three‐dimensional (3D) turbulent structures which have been described as both streamwise‐oriented structures and Kelvin‐Helmholtz (KH) vertical‐oriented structures. The latter are visible where there is a turbidity difference between the two tributaries, whereas the former are usually derived from mean velocity measurements or numerical simulations. Few field studies recorded turbulent velocity fluctuations at high frequency to investigate these structures, particularly at medium‐sized confluences where logistical constraints make it difficult to use devices such as Acoustic Doppler Velocimeter (ADV). This study uses the ice cover present at the confluence of the Mitis and Neigette Rivers in Quebec (Canada) to obtain long‐duration, fixed measurements along the mixing zone. The confluence is also characterized by a marked turbidity difference which allows to investigate the mixing zone dynamics from drone imagery during ice‐free conditions. The aim of the study is to characterize and compare the flow structure in the mixing zone at a medium‐sized (~ 40 m) river confluence with and without an ice cover. Detailed 3D turbulent velocity measurements were taken under the ice along the mixing plane with an ADV through eight holes at around 20 positions on the vertical. For ice‐free conditions, drone imagery results indicate that large (KH) coherent structures are present, occupying up to 50% of the width of the parent channel. During winter, the ice cover affects velocity profiles by moving the highest velocities towards the centre of the profiles. Large turbulent structures are visible in both the streamwise and lateral velocity components. The strong correlation between these velocity components indicates that KH vortices are the dominating coherent structures in the mixing zone. A spatio‐temporal conceptual model is presented to illustrate the main differences on the 3D flow structure at the river confluence with and without the ice cover.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 63
    Publikationsdatum: 2019
    Beschreibung: Abstract Studying offshore slow‐slip events (SSEs) along subduction zone interfaces is important for constraining the overall slip budget and potential for seismic slip, and the relationship with large megathrust earthquakes. Models using only onshore data increasingly lack model resolution the further from the shore the SSE occurs. In this study, we combine data from the Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip (HOBITSS) seafloor absolute pressure gauge (APG) network with daily position timeseries from New Zealand's GeoNet to create time‐dependent models of slip during the 2014 Gisborne, New Zealand SSE using the Network Inversion Filter (NIF). We compare models assuming heterogeneous vs. homogenous elastic properties to explore their influence on our models. The time‐dependent results show that slip uncertainties under the APGs drop by about 23%. We also find that the peak value of slip increases with heterogeneous elastic properties as compared to homogenous models. The inclusion of the offshore APG data in our models places more slip near the trench and detects a more defined migration of slip, especially in the heterogeneous model. These differences are important for interpreting the relationship between the SSE and associated tremor, which occurs after the peak SSE slip‐rate. Additionally, we use a static “potency bounding” technique in order to gauge the range of models that can fit the data. This analysis demonstrates that the inclusion of offshore data helps to substantially narrow the range of plausible slip models.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 64
    Publikationsdatum: 2019
    Beschreibung: Abstract For ~82 million years, the Hawaiian‐Emperor chain volcanoes have sampled the Pacific mantle via the Hawaiian mantle plume, providing evidence that its composition varies on a range of temporal and spatial scales. Hawaiian volcanoes from 0 to 2 Ma are divided into southwestern (Loa) and northeastern (Kea) geographic and geochemical trends that are interpreted to reflect the bilateral chemical structure of the underlying plume and its corresponding deep mantle sources. Older Hawaiian volcanoes that formed between 8 and 3 Ma record a geochemical transition between the Kea‐dominated Northwest Hawaiian Ridge (8 to 49 Ma) and the bilateral trends of the younger Hawaiian Islands. High‐precision Pb isotopic analyses conducted on 55 new shield‐stage samples from two of these key volcanoes, Kauaʻi and Waiʻanae, show that Loa‐like Pb isotopic ratios (e.g., elevated 208Pb*/206Pb*) gradually increase with decreasing age among the northern Hawaiian volcanoes and dominate for over two million years prior to the onset of the bilateral Loa and Kea geochemical trends. Distinct isotopic groups are observed across Kauaʻi and the distribution of Loa and Kea isotopic compositions is rotated relative to that observed on the younger Hawaiian Islands. Protracted Loa compositions and the atypical Loa‐Kea trend on Kauaʻi are accounted for by: 1) the arrival of a voluminous, Loa mantle heterogeneity possibly associated with anchoring of the Hawaiian plume to the Pacific Large Low Shear Velocity Province, and 2) a different orientation of the Pacific plate relative to the Loa‐Kea compositional boundary prior to 2 Ma.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 65
    Publikationsdatum: 2019
    Beschreibung: Abstract Alluvial fans at tributary junctions modulate sediment flux through river networks, by buffering the mainstem channel from disturbance in the tributaries. Buffering occurs through the storage (and release) of sediment in fans. Here, we use an extensive historic dataset to characterise the ways in which fan buffering can change as sediment supply varies. In New Zealand's East Coast region, sediment supply and fluvial transport are prolific by global standards. We reconstruct how tributary‐junction fans in this region have responded to sediment generated by deforestation and extreme storms. The dynamics of five fans along the Tapuaeroa River are examined for the period 1939‐2015. In response to major sediment loading, fans aggraded by up to 12 m and prograded by up to 170 m. Net sediment accumulation ranged from near zero to 1.5 ×106 m3. Fan size, gradient, sediment storage and buffering were influenced by both upstream and downstream controls. Key upstream (tributary) influences were sediment supply and stream power; downstream (mainstem) influences included distal confinement and, importantly, the nature of fan interaction with the mainstem, which aggraded by up to 6 m. The fans' ability to buffer the Tapuaeroa River from change in the tributaries was largely governed by this downstream interaction: red as the mainstem aggraded, it increasingly curtailed fan progradation, thus limiting buffering. Previous studies of tributary‐junction fans have related fan morphometry to basin characteristics. However, we find that fan slope and area can vary considerably at decadal, annual or even monthly timescales. Consequently, we suggest that such studies could benefit by examining regional histories of disturbance.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 66
    Publikationsdatum: 2019
    Beschreibung: The impact of sub‐threshold flow duration on three sediment beds has been quantified. Results show that increasing antecedent duration increases the average threshold shear stress of the D50 by up to 18% and decreases bedload flux by up to 90%. The rate of response of both variables is non‐linear and inversely proportional to antecedent duration and there is a grade dependent response where the uniform bed is up to twice as responsive to the graded beds. Abstract Limited field and flume data suggests that both uniform and graded beds appear to progressively stabilize when subjected to inter‐flood flows as characterized by the absence of active bedload transport. Previous work has shown that the degree of bed stabilization scales with duration of inter‐flood flow, however, the sensitivity of this response to bed surface grain size distribution has not been explored. This article presents the first detailed comparison of the dependence of graded bed stability on inter‐flood flow duration. Sixty discrete experiments, including repetitions, were undertaken using three grain size distributions of identical D50 (4.8 mm); near‐uniform (σg = 1.13), unimodal (σg = 1.63) and bimodal (σg = 2.08). Each bed was conditioned for between 0 (benchmark) and 960 minutes by an antecedent shear stress below the entrainment threshold of the bed (τ*c50). The degree of bed stabilization was determined by measuring changes to critical entrainment thresholds and bedload flux characteristics. Results show that (i) increasing inter‐flood duration from 0 to 960 minutes increases the average threshold shear stress of the D50 by up to 18%; (ii) bedload transport rates were reduced by up to 90% as inter‐flood duration increased from 0 to 960 minutes; (iii) the rate of response to changes in inter‐flood duration in both critical shear stress and bedload transport rate is non‐linear and is inversely proportional to antecedent duration; (iv) there is a grade dependent response to changes in critical shear stress where the magnitude of response in uniform beds is up to twice that of the graded beds; and (v) there is a grade dependent response to changes in bedload transport rate where the bimodal bed is most responsive in terms of the magnitude of change. These advances underpin the development of more accurate predictions of both entrainment thresholds and bedload flux timing and magnitude, as well as having implications for the management of environmental flow design. © 2019 John Wiley & Sons, Ltd.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 67
    Publikationsdatum: 2019
    Beschreibung: Abstract Groundwater dolocretes may exert an important geomorphic control on landscape evolution within sub‐humid to arid regions. However, the geomorphic and hydrogeological settings of dolocrete remain poorly described. The hydrochemical conditions of dolomite precipitation in groundwater environments are also not well known. Classic models of dolocrete formation explain dolomite precipitation from highly evolved groundwaters at the terminus of major drainage but do not explain dolocrete distributed in regionally elevated landscapes, upgradient of major drainage. This study investigated the mineralogy, micromorphology and stable carbon and oxygen isotope compositions of three dolocrete profiles within a regionally elevated sub‐basin of the Hamersley Ranges in the Pilbara region of northwest Australia. We sought to establish the environmental and hydrochemical conditions and present a model for dolocrete formation. We found that dolocrete formed within zones of emerging groundwater under saline‐evaporitic conditions within internally draining sub‐basins, most likely during the Late Miocene and Pliocene. Saline‐evaporitic conditions were indicated by: i) the mineralogy, dominated by dolomite, palygorskite and smectite; ii) desiccation features and the presence of phreatic and vadose cements, indicative of a shallow fluctuating water table, and; iii) dolomite δ18O values (median = ‐5.88‰). Dolomite precipitation was promoted by evaporation and CO2 degassing from shallow Mg‐rich groundwater. These factors appear to have been the major drivers of dolocrete development without a requirement for significant down‐dip hydrochemical modification. Primary dolomite precipitation was possible due to the presence of microbial extracellular polymeric substances (EPS). EPS provided negatively charged nucleation sites, which bound Mg2+, overcoming kinetic effects. High microbial activity within groundwater systems suggest these processes may be important for dolocrete formation worldwide and that groundwater dolocretes may be more pervasive in landscapes than currently recognised.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 68
    facet.materialart.
    Unbekannt
    Wiley
    Publikationsdatum: 2019
    Beschreibung: Earth Surface Processes and Landforms, Volume 0, Issue ja, -Not available-.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 69
    Publikationsdatum: 2019
    Beschreibung: Abstract In Mediterranean mountain agroecosystems, soil erosion associated with the development of ephemeral gullies is a common environmental problem that contributes to a loss of nutrient‐rich topsoil. Little is known about the influence of ephemeral gully erosion on particle size distribution and its effect on soil organic (SOC) and inorganic (SIC) carbon among different sized soil particles in agricultural soils. In this study, laboratory tests were conducted using velocity settling tube experiments to examine the effects of erosion on sediment particle size distributions from an incised ephemeral gully, associated with an extreme event (265 mm). We also consider subsequent deposition on an alluvial fan in order to assess the distribution of SOC and SIC concentrations and dissolved carbon before and after the extreme event. Soil fractionation was carried out on topsoil samples (5 cm) collected along an ephemeral gully in a cultivated field, located in the lower part of a Mediterranean mountain catchment. The results of this study showed that the sediment transported downstream by runoff plays a key role in the particle size distribution and transportability of soil particles and associated carbon distribution in carbonate rich soils. The eroding sediment is enriched in clay and silt‐sized particles at upslope positions with higher SOC contents and gradually becomes coarser and enriched in SIC at the end of the ephemeral gully because the finest particles are washed‐out of the study field. The extreme event was associated with an accumulation of dissolved organic carbon at the distal part of the depositional fan. Assessment of soil particle distribution using settling velocity experiments provides basic information for a better understanding of soil carbon dynamics in carbonate rich soils. Processes of soil and carbon transport and relationships between soil properties, erodibility and aggregate stability can be helpful in the development of more accurate soil erosion models.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 70
    Publikationsdatum: 2019
    Beschreibung: Abstract Experiments have been conducted in which CO2 gases with varying C and O isotopic compositions and with stochastic and non‐stochastic Δ47 values have been allowed to equilibrate with phosphoric acid of two concentrations in reaction vessels of varying dimensions at temperatures of 25 and 90oC. Rates of 13C18O and 18O exchange between the CO2 and the phosphoric acid varied as a function of the length of exposure, volume of reaction vessel, acid strength, and difference of the initial Δ47 and δ18O values of the CO2 from theoretical equilibrium values. The Δ47 values were also altered by heated stainless steel surfaces such as those found within the Kiel Device and other preparation systems. These results have been used to explain variations in the differences in the fractionation between 25 and 90oC reported for calcite by different workers as well as differences in the slopes between temperature and Δ47 values produced by reacting samples at different temperatures (25 and 90oC).
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 71
    Publikationsdatum: 2019
    Beschreibung: Abstract Rills are generated on homogeneous hillslopes by the action of different discharges and evolve morphologically over short timescales due to a strong interaction between the flow and bed morphology. Such an interaction generates a reconfiguration of the bed geometry. Previous works suggest that bed geometry is often characterized by alternation between pools and flat reaches (steps). Each step‐pool unit may contribute to hydraulic resistance and affects flow behaviour. The objectives of this work are (i) to assess different (innovative) techniques for the in situ assessment of rill bed geometry, (ii) to use these techniques to assess the geometry of eroded rills in situ in order to determine the spatial arrangement in the bed macro‐scale roughness and (iii) finally to analyse the role of slope and discharge as driving factors associated with the development of these macroforms. Roughly rectilinear, long rills were formed in the field as a result of combining different slope and discharges. Photogrammetry provided detailed digital elevation models (DEMs) before and after the experiments. The rills were morphologically characterized from the DEMs. In each rill, the presence of step‐pools was identified from long profiles according mainly to morphological criteria published elsewhere, but with ad hoc critical threshold values more appropriate for small eroded channels. The minimum slope required for the development of step‐pool units seem to be somewhere in between 5% and 15%. Discharge seems to affect pool size or roughness amplitude. There does not seem to be a clear step‐pool periodicity. However, external factors could have affected the normal growth and alternation of these structures. Identification of steps and pools from longitudinal elevation profiles can be objectively accomplished using a series of geometric rules originally proposed for rivers and large channels, and adapted to rills.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 72
    Publikationsdatum: 2019
    Beschreibung: Abstract The Louisville Seamounts display age progressive volcanism and are thought to have formed as the Pacific plate moved over a long‐lived primary hotspot. Here we present 70 new 40Ar/39Ar age results from the Integrated Ocean Drilling Program (IODP) Sites U1372, U1375, U1376 and U1377 drilled and cored during Expedition 330 to the northern, older end of the Louisville Seamounts. The five seamounts drilled are flat‐topped guyots with ages ranging from ∼74 Ma (Canopus Guyot) to ∼51 Ma (Hadar Guyot) recovering up to ∼510 m of basaltic material beneath thin sediment interfaces. Our 40Ar/39Ar measurements reveal that throughout each drill hole most dates are constant within ∼500‐900 kyr at the 2σ confidence interval. In this study we use the new Louisville age information to compare against the Hawaiian‐Emperor trail on the Pacific Plate. The Louisville hotspot trail is low volume, dominantly alkali basalt, and seamounts have a relatively short lifespan up to ∼4 Myr, whereas the Hawaiian hotspot trail is high volume, has a tholeiitic shield‐building stage capped by an alkalic post‐shield stage, and have a lifespan up to ∼6‐7 Myr. Here we show a new approach to estimating a seamount's inception age based on the known cumulative age distributions for seamounts in the Louisville and Hawaii‐Emperor seamount trails. Based on our new 40Ar/39Ar analyses we conclude that existing absolute plate motion models misrepresent the age progression of Louisville seamounts and that the timing of the Hawaiian‐Emperor Bend and the 169°W bend in the Louisville seamounts are asynchronous by ~3.7 Myr.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 73
    Publikationsdatum: 2019
    Beschreibung: Abstract Many models of incision by bedrock rivers predict water depth and shear stress from discharge; conversely, palaeoflood discharge is sometimes reconstructed from flow depth markers in rock gorges. In both cases assumptions are made about flow resistance. The depth‐discharge relation in a bedrock river must depend on at least two roughness length scales (exposed rock and sediment cover) and possibly a third (sidewalls). A conceptually attractive way to model the depth‐discharge relation in such situations is to partition the total shear stress and friction factor, but it is not obvious how to quantify the friction factor for rough walls in a way that can be used in incision process models. We show that a single flow resistance calculation using a spatially‐averaged roughness length scale closely approximates the partitioning of stress between sediment and rock, and between bed and walls, in idealised scenarios. Both approaches give closer fits to the measured depth‐discharge relations in two small bedrock reaches than can be achieved using a fixed value of Manning's n or the Chézy friction factor. Sidewalls that are substantially rougher or smoother than the bed have a significant effect on the partitioning of shear stress between bed and sidewalls. More research is needed on how best to estimate roughness length scales from observable or measurable channel characteristics.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 74
    Publikationsdatum: 2019
    Beschreibung: Abstract Dissolved inorganic carbon (DIC) is the most important carbon component in karst aquatic system where fluid is highly transmissive, but has rarely been examined in subtropical karst critical zone (K‐CZ). In this study, concentrations of dissolved solutes and isotopic compositions of DIC (δ13CDIC) at 11 sites of a 73.4 km2 karstic catchment in Southwestern China were analyzed monthly in order to uncover the spatiotemporal variations of both DIC and its dominant sources, and to identify relevant controlling factors. Both DIC concentrations and δ13CDIC were highly variable, ranging from 2.52 to 5.85 mmol/L and from ‐15.7‰ to ‐4.5‰, respectively. DIC in underground water (UGW) was higher in concentration and more depleted in 13C compared to surface water (SFS). DIC concentrations showed an inconsistent seasonal trend with other solutes, with higher values in the wet season at some sites. δ13CDIC values were lower in the wet season than in the dry season. The results of mixing model IsoSource revealed spatiotemporal patterns of DIC sources. During the dry season, carbonate weathering was the primary contributor to DIC in UGW (excluding in the middle reaches). However, during the wet season, soil CO2 was the dominant source of DIC in both UGW and SFS, and it was higher than in the dry season. Overall, there are significant spatiotemporal disparities and highly transmissive characteristics of both DIC and its sources in the K‐CZ, which are controlled by multiple factors. This study also highlights that rainfall may plays a crucial role in accelerating carbon dynamics in the K‐CZ. High‐frequency sampling campaigns in high‐flow periods and deep‐going analyses are needed in future work to elucidate the related processes and mechanisms.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 75
    Publikationsdatum: 2019
    Beschreibung: Deforestation, cultivation and stocking density increases influenced the incessant growth of erosion rates since the second half of the nineteenth century. Stocking density, bare soil and stream power index are factors that affect the spatial variation of the soil erosion rates along hillsides. Abstract Changes in land use are common in Mediterranean areas and are reported as having produced changes in the intensity of soil erosion. Dehesas are rangelands with a disperse tree cover, widespread in the south‐western part of the Iberian Peninsula and similar ecosystems are also common in other areas with a Mediterranean climate. The aim of the present study is to analyse temporal and spatial variations of soil erosion rates estimated along three hillsides, located in two farms (Buitrera and Parapuños) in southwest Spain. To understand the temporal variation, soil erosion rates were studied in light of land use‐management changes that took place during the last few centuries. Results indicate very low erosion rates prior to the 18th century in both farms. In Buitrera, a first increase of soil loss rates was identified during the period 1831‐1897, amounting to 7.4 t ha‐1 y‐1. A further increase took place during the 20th century, reaching a mean erosion rate of 29.1 t ha‐1 y‐1. In Parapuños, data points to a significant increase from 1881 onwards, with an estimated mean erosion rate of 18.5 t ha‐1 y‐1. Those increases were presumably connected with an intensification of land use, such as cultivation and excessive livestock populations. Regarding spatial variation, the bare surface and the erosive power of run‐off along the hillsides accounts for 76% of the soil erosion rates dispersion. At a local scale, the variability of erosion rates could not be explained, because of (i) uncertainty related to the micromorphology of the past soil surface and (ii) the role of tillage erosion in the past. However, the results obtained offer valuable data on the temporal and spatial variation of erosion rates in dehesas at the hillslope scale and a similar approach could be used for other rangelands with a disperse tree cover. © 2019 John Wiley & Sons, Ltd.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 76
    Publikationsdatum: 2019
    Beschreibung: Abstract Ciomadul is the youngest volcano in the Carpathian‐Pannonian Region, Eastern‐Central Europe, which last erupted 30 ka. This volcano is considered to be inactive, however, combined evidence from petrologic and magnetotelluric data, as well as seismic tomography studies, suggests the existence of a subvolcanic crystal mush with variable melt content. The volcanic area is characterized by high CO2 gas output rate, with a minimum of 8.7 × 103 t/year. We investigated 31 gas emissions at Ciomadul to constrain the origin of the volatiles. The δ13C–CO2 and 3He/4He compositions suggest the outgassing of a significant component of mantle‐derived fluids. The He isotope signature in the outgassing fluids (up to 3.10 Ra) is lower than the values in the peridotite xenoliths of the nearby alkaline basalt volcanic field (R/Ra 5.95 Ra ± 0.01), which are representative of a continental lithospheric mantle and significantly lower than MORB values. Considering the chemical characteristics of the Ciomadul dacite, including trace element and Sr–Nd and O isotope compositions, an upper crustal contamination is less probable, whereas the primary magmas could have been derived from an enriched mantle source. The low He isotopic ratios could indicate a strongly metasomatized mantle lithosphere. This could be due to infiltration of subduction‐related fluids and postmetasomatic ingrowth of radiogenic He. The metasomatic fluids are inferred to have contained subducted carbonate material resulting in a heavier carbon isotope composition (δ13C is in the range of −1.4‰ to −4.6‰) and an increase of CO2/3He ratio. Our study shows the magmatic contribution to the emitted gases.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 77
    Publikationsdatum: 2019
    Beschreibung: Abstract The Talamanca Cordillera in the Central America Arc (Costa Rica‐Panama) preserves the record of the geochemical evolution from an intraoceanic arc to a juvenile continental arc in an active subduction zone, making it a testbed to explore processes that resulted in juvenile continental crust formation and explore potential mechanisms of early continental crust generation. Here we present a comprehensive set of geochronological, geochemical, and petrological data from the Talamanca Cordillera that tracks the key turning point (12–8 Ma) from the evolution of an oceanic arc depleted in incompatible elements to a juvenile continent. Most plutonic rocks from this transition and postintrusive rocks share striking similarities with average upper continental crust and Archean tonalite, trondhjemite, and granodiorite. We complement these data with seismic studies across the arc. Seismic velocities within the Caribbean Plate (basement of the arc) show a relatively uniform lateral structure consistent with a thick mafic large igneous province. Comparisons of seismic velocity profiles in the middle and lower crust beneath the active arc and remnant Miocene arc suggest a transition toward more felsic compositions as the volcanic center migrated toward the location of the modern arc. Seismic velocities along the modern arc in Costa Rica compared with other active arcs and average continental crust suggest an intermediate composition beneath the active arc in Costa Rica closer to average crust. Our geochemical modeling and radiogenic isotopes systematics suggest that input components from melting of the subducting Galapagos hotspot tracks are required for this compositional change.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 78
    Publikationsdatum: 2019
    Beschreibung: Abstract Several recent studies have employed variations in the concentration and isotopic composition of molybdenum as tracers of igneous processes. In this study we present new Mo concentration and δ98/95Mo data on the peculiar subduction‐related potassic magmas of the Central‐Southern Italian peninsula; the leucite‐free (lamproite‐like) rocks of the Tuscan Magmatic Province and the leucite‐bearing rocks of Mt. Vesuvius. These rocks display exotic and distinctive geochemical and isotopic features due to differences in the lithology of the subducted material in their respective mantle sources. We examine the elemental and isotopic systematics of Mo in the context of these geochemical variations. The two different associations of magmas display significantly different Ce/Mo values but surprisingly similar δ98/95Mo values (0.10–0.26‰ for Vesuvius and 0.07–0.24‰ for Tuscan Magmatic Province), which are significantly heavier than typical mid‐ocean ridge basalts. While the δ98/95Mo implicate an isotopically heavy sedimentary component recycled into their respective mantle sources, the different Ce/Mo ratios reflect contrasting elemental fractionation during sediment melting related to the lithology and consequent residual mineralogy (sulfides vs. epidote) of the subducted sedimentary material undergoing melting (Ca poor vs. Ca rich). This indicates that the heavy Mo isotopic signature of these magmas is independent of the lithology of the recycled material, which instead controls the elemental fractionation of Mo.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 79
    Publikationsdatum: 2019
    Beschreibung: Abstract Magma transfer from the mantle to the crust in arcs is an important step in the global cycling of elements and volatiles from Earth's interior to the atmosphere. Arc intrusive rocks dominate the total magma mass budget over extrusive rocks. However, their total volume and rate of addition is still poorly constrained, especially in continental arcs. We present lateral (forearc to backarc) and depth‐dependent (volcanics to deep crust) magma volume additions and arc‐wide magma addition rates (MARs) calculated from three continental arc crustal sections preserving magma flare‐up periods. We observe an increase in volume addition with depth and less magma added in the forearc (~15%) and backarc (~10% to 30%) compared to the main arc. Crustal‐wide MARs for each section are remarkably similar and around 0.7–0.9 km3/km2/Ma. MARs can be used to estimate CO2 fluxes from continental arcs. With initial magma CO2 contents of 1.5 wt.%, global continental arc lengths, and MARs, we calculate changes in C (Mt/year) released from continental arcs since 750 Ma. Calculated present‐day global C fluxes are similar to values constrained by other methods. Throughout the Phanerozoic, assuming equal durations of flare‐up and lull magmatism, calculated continental CO2 flux rates vary between 4 and 18 Mt C/year with highest values in the Mesozoic. These fluxes are considered minima since the intake of mantle and/or crustal carbon is not considered. Magmatic episodicity in continental arcs and changes in arc thickness and width are critical to consider when calculating MARs through time.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 80
    Publikationsdatum: 2019
    Beschreibung: Abstract First‐order variations in sea level exhibit amplitudes of ∼200 m over periods that coincide with those of supercontinental cycles (∼300–500 Myr). Proposed mechanisms for this sea level change include processes that change the container volume of the ocean basins and the relative elevation of continents. Here we investigate how unbalanced rates of water exchange between Earth's surface and mantle interior, resulting from fluctuations in tectonic rates, can cause sea level changes. Previous modeling studies of subduction water fluxes suggest that the amount of water that reaches sub‐arc depths is well correlated with the velocity and age of the subducting plate. We use these models to calibrate a parameterization of the deep subduction water flux, which we together with a parameterization of mid‐ocean ridge outgassing, then apply to reconstructions of Earth's tectonic history. This allows us to estimate the global water fluxes between the oceans and mantle for the past 230 Myr and compute the associated sea level change. Our model suggests that a sea level drop of up to 130 m is possible over this period and that it was partly caused by the ∼150Ma rift pulse that opened the Atlantic and forced rapid subduction of old oceanic lithosphere. This indicates that deep water cycling may be one of the more important sea level changing mechanisms on supercontinental time scales and provides a more complete picture of the dynamic interplay between tectonics and sea level change.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 81
    Publikationsdatum: 2019
    Beschreibung: 1. Erosion and deposition occur in distinct regions with a circular blowout. Deposition in the upwind third and erosion in the downwind third. 2. Comparison of numerically modelled wind flow and surface elevation change showed strong negative relationships for overall topographic surface change and wind speed, and for erosion and vertical wind velocity. 3. Wind flow and topographic change analysis suggests that a ‘bowl’ morphology is the net evolutionary response of blowouts in a bi‐ to multi‐ directional wind environment. Abstract A number of studies have measured and numerically modelled near surface wind velocity over a range of aeolian landforms and made suppositions about topographic change and landform evolution. However, the precise measurement and correlation of flow dynamics and resulting topographic change have not yet been fully realized. Here, using repeated high‐resolution terrestrial laser scanning and numerical flow modelling within a bowl blowout, we statistically analyse the relationship between wind speed, vertical wind velocity, turbulent kinetic energy and topographic change over a 33‐day period. Topographic results showed that erosion and deposition occurred in distinct regions within the blowout. Deposition occurred in the upwind third of the deflation basin, where wind flow became separated and velocity and turbulent kinetic energy decreased, and erosion occurred in the downwind third of the deflation basin, where wind flow reattached and aligned with incident wind direction. Statistical analysis of wind flow and topographic change indicated that wind speed had a strong correlation with overall topographic change and that vertical wind velocity (including both positive and negative) displayed a strong correlation with negative topographic change (erosion). Only weak or very weak correlations exist for wind flow parameters and positive topographic change (accretion). This study demonstrates that wind flow modelling using average incident wind conditions can be utilized successfully to identify regions of overall change and erosion for a complex aeolian landform, but not to identify and predict regions where solely accretion will occur. © 2019 John Wiley & Sons, Ltd.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 82
    Publikationsdatum: 2019
    Beschreibung: We use the unique Glacsweb wireless in situ probe (embedded in the ice and till) to record seasonal water pressure changes and till deformation from Skálafellsjökull, Iceland. Water pressures are high during summer and experience melt‐driven cyclical behaviour during winter, with till deformation occurring all year. Due to the soft bed the subglacial hydrology is dominated by a distributed system that may become more channelized in winter, and these systems are very responsive to melt water inputs. Abstract We investigate the spatial and temporal englacial and subglacial processes associated with a temperate glacier resting on a deformable bed using the unique Glacsweb wireless in situ probes (embedded in the ice and the till) combined with other techniques [including ground penetrating radar (GPR) and borehole analysis]. During the melt season (spring, summer and autumn), high surface melt leads to high water pressures in the englacial and subglacial environment. Winter is characterized by no surface melting on most days (‘base’) apart from a series of positive degree days. Once winter begins, a diurnal water pressure cycle is established in the ice and at the ice/sediment interface, with direct meltwater inputs from the positive degree days and a secondary slower englacial pathway with a five day lag. This direct surface melt also drives water pressure changes in the till. Till deformation occurred throughout the year, with the winter rate approximately 60% that of the melt season. We were able to show the bed comprised patches of till with different strengths, and were able to estimate their size, relative percentage and temporal stability. We show that the melt season is characterized by a high pressure distributed system, and winter by a low pressure channelized system. We contrast this with studies from Greenland (overlying rigid bedrock), where the opposite was found. We argue our results are typical of soft bedded glaciers with low englacial water content, and suggest this type of glacier can rapidly respond to surface‐driven melt. Based on theoretical and field results we suggest that the subglacial hydrology comprises a melt season distributed system dominated by wide anastomosing broad flat channels and thin water sheets, which may become more channelized in winter, and more responsive to changes in meltwater inputs. © 2019 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 83
    Publikationsdatum: 2019
    Beschreibung: Key findings: Organic carbon (OC) was evenly enriched in each sediment particles by aggregate breakdown. The more severe aggregate breakdown enriched OC in smaller aggregates. Low stream power and runoff depth were necessary factors for aggregate breakdown. Abstract Organic carbon (OC) is easily enriched in sediment particles of different sizes due to aggregate breakdown and selective transport for sheet erosion. However, the transport of aggregate‐associated OC has not been thoroughly investigated. To address this issue, 27 simulated rainfall experiments were conducted in a 1 m × 0.35 m box on slope gradients of 15°, 10°, and 15°and under three rainfall intensities of 45 mm h−1, 90 mm h−1 and 120 mm h−1. The results showed that OC was obviously enriched in sediment particles of different sizes under sheet erosion. The soil organic carbon (SOC) concentrations of each aggregate size class in sediments were different from those in the original soil, especially when the rainfall intensity or slope was sufficiently low, such as 45 mm h–1 or 5°, respectively. Under a slope of 5°, the SOC enrichment ratios (ERocs) of small macroaggregates and microaggregates were high but decreased over time. As rainfall intensity increased, OC became enriched in increasingly fine sediment particles. Under a rainfall intensity of 45 mm h–1, the ERocs of the different aggregate size classes were always high throughout the entire erosion process. Under a rainfall intensity of 〉 45 mm h–1 and slope of 〉 5°, the ERocs of the different aggregate size classes were close to 1.0, especially those of clay and silt. Therefore, the high ERocs in sediments resulted from the first transport of effective clay. Among total SOC loss, the proportion of OC loss caused by the transport of microaggregates and silt plus clay‐sized particles was greater than 50%. We also found that low stream power and low water depth were two requirements for the high ERocs in aggregates. Stream power was closely related to sediment particle distribution. Flow velocity was significantly and positively related to the percentage of OC‐enriched macroaggregates in the sediments (P 〉 0.01). Our study will provide important information for understanding the fate of SOC and building physical‐based SOC transport models. © 2019 John Wiley & Sons, Ltd.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 84
    Publikationsdatum: 2019
    Beschreibung: This study offers a new combination of InSAR techniques and structural field observations, along with morphometric and seismologic correlations to identify and quantify slope‐instability phenomena along a tectonically active mountain front. We identified deep‐seated gravitational slope deformation (DSGSD) and slow mass movements with continuous downslope speed of approximately 71 mm year−1 in the southern Tien Shan Mountains front using interferometric synthetic aperture radar (InSAR) time‐series from ALOS/PALSAR satellite data. Abstract We investigated deep‐seated gravitational slope deformation (DSGSD) and slow mass movements in the southern Tien Shan Mountains front using synthetic aperture radar (SAR) time‐series data obtained by the ALOS/PALSAR satellite. DSGSD evolves with a variety of geomorphological changes (e.g. valley erosion, incision of slope drainage networks) over time that affect earth surfaces and, therefore, often remain unexplored. We analysed 118 interferograms generated from 20 SAR images that covered about 900 km2. To understand the spatial pattern of the slope movements and to identify triggering parameters, we correlated surface dynamics with the tectono‐geomorphic processes and lithologic conditions of the active front of the Alai Range. We observed spatially continuous, constant hillslope movements with a downslope speed of approximately 71 mm year−1 velocity. Our findings suggest that the lithological and structural framework defined by protracted deformation was the main controlling factor for sustained relief and, consequently, downslope mass movements. The analysed structures revealed integration of a geological/structural setting with the superposition of Cretaceous–Paleogene alternating carbonatic and clastic sedimentary structures as the substratum for younger, less consolidated sediments. This type of structural setting causes the development of large‐scale, gravity‐driven DSGSD and slow mass movement. Surface deformations with clear scarps and multiple crest lines triggered planes for large‐scale deep mass creeps, and these were related directly to active faults and folds in the geologic structures. Our study offers a new combination of InSAR techniques and structural field observations, along with morphometric and seismologic correlations, to identify and quantify slope instability phenomena along a tectonically active mountain front. These results contribute to an improved natural risk assessment in these structures. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 85
    Publikationsdatum: 2019
    Beschreibung: Abstract Tidal marshes form at the confluence between estuarine and marine environments where tidal movement regulates their developmental processes. Here, we investigate how the interplay between tides, channel morphology, and vegetation affect sediment dynamics in a low energy tidal marsh at the Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island. Poplar Island is an active restoration site where fine‐grained material dredged from navigation channels in the upper Chesapeake Bay are being used to restore remote tidal marsh habitat toward the middle bay (Maryland, USA). Tidal currents were measured over multiple tidal cycles in the inlets and tidal creeks of one marsh at Poplar Island, Cell 1B, using Acoustic Doppler Current Profilers (ADCP) to estimate water fluxes throughout the marsh complex. Sediment fluxes were estimated using acoustic backscatter recorded by ADCPs and validated against total suspended solid measurements taken on site. A high‐resolution geomorphic survey was conducted to capture channel cross sections and tidal marsh morphology. We integrated simple numerical models built in Delft3d with empirical observations to identify which eco‐geomorphological factors influence sediment distribution in various channel configurations with differing vegetative characteristics. Channel morphology influences flood‐ebb dominance in marshes, where deep, narrow channels promote high tidal velocities and incision, increasing sediment suspension and reducing resilience in marshes at Poplar Island. Our numerical models suggest that accurately modelling plant phenology is vital for estimating sediment accretion rates. In‐situ observations indicate that Poplar Island marshes are experiencing erosion typical for many Chesapeake Bay islands. Peak periods of sediment suspension frequently coincide with the largest outflows of water during ebb tides resulting in large sediment deficits. Ebb dominance (net sediment export) in tidal marshes is likely amplified by sea‐level rise and may lower marsh resilience. We couple field observations with numerical models to understand how tidal marsh morphodynamics contribute to marsh resilience.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 86
    Publikationsdatum: 2019
    Beschreibung: Abstract Anthropogenic global warming might cause expansion of the drylands and trigger socio‐economic challenges in the water deficit subtropical regions. Changes in hydroclimate during the intervals of variable global temperature over the recent geological past, however, could provide useful information about the possible responses of these arid ecosystems to the near future warmer conditions. We evaluated hydroclimates of two different parts of the subtropical North America by generating new records of surface processes and regional vegetation from the drought‐prone northeast Mexico and subsequently compared them with paleoclimate of the central‐southern USA. Our study suggests congruent changes occurred in both the parts during ~13.5‐9.5 cal ka BP, an interval with no warm pool in the northern Gulf of Mexico. The precipitation and erosion responded to temperature‐modulated variations in positions of the Inter‐Tropical Convergence Zone (ITCZ). Conditions were wetter than today in the subsequent warmer interval (~9.5‐8.2 cal ka BP) with generally stable ITCZ and the highest summer insolation. Hydroclimate changes of both the parts lacked congruency during ~8.2‐6.8 cal ka BP as the northern Gulf of Mexico began hosting a warm pool. Similar to the modern conditions, this warm pool might have modified trajectories of the tropical storms. Erosion and abundance of C3 plants decreased in the northeast Mexico. Higher wetness in the Mississippi River Basin and the southern Great Plains during this interval suggested that the storms made landfall more frequently in the central‐southern USA.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 87
    Publikationsdatum: 2019
    Beschreibung: Two shoals in the mouth zone of the Yangtze Estuary accreted progressively prior to 2010, but reverted to erosion thereafter. Human activities such as dredging and dumping activities contribute to the erosion, masking the impacts of sediment source reduction. The morphodynamic response time of the mouth zone to riverine sediment decrease is further suggested to be 〉30 years (starting from the mid‐1980s). Abstract The morphology of the Yangtze Estuary has changed substantially at decadal time scales in response to natural processes, local human interference and reduced sediment supply. Due to its high sediment load, the morphodynamic response time of the estuary is short, providing a valuable semi‐natural system to evaluate large‐scale estuarine morphodynamic responses to interference. Previous studies primarily addressed local morphologic changes within the estuary, but since an overall sediment balance is missing, it remains unclear whether the estuary as a whole has shifted from sedimentation to erosion in response to reduced riverine sediment supply (e.g. resulting from construction of the Three Gorges Dam). In this paper we examine the morphological changes of two large shoals in the mouth zone (i.e. the Hengsha flat and the Jiuduan shoal) using bathymetric data collected between 1953 and 2016 and a series of satellite images. We observe that the two shoals accreted at different rates before 2010 but reverted to erosion thereafter. Human activities such as dredging and dumping contribute to erosion, masking the impacts of sediment source reduction. The effects of local human intervention (such as the construction of a navigation channel) are instantaneous and are likely to have already resulted in new dynamic equilibrium conditions. The morphodynamic response time of the mouth zone to riverine sediment decrease is further suggested to be 〉30 years (starting from the mid‐1980s). Accounting for the different adaptation time scales of various human activities is essential when interpreting morphodynamic changes in large‐scale estuaries and deltas. © 2019 John Wiley & Sons, Ltd.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 88
    Publikationsdatum: 2019
    Beschreibung: ABSTRACT Results from computational morphodynamics modeling of coupled flow‐bed‐sediment systems are described for ten applications as a review of recent advances in the field. Each of these applications is drawn from solvers included in the public‐domain International River Interface Cooperative (iRIC) software package. For mesoscale river features such as bars, predictions of alternate and higher mode river bars are shown for flows with equilibrium sediment supply and for a single case of oversupplied sediment. For microscale bed features such as bedforms, computational results are shown for the development and evolution of two‐dimensional bedforms using a simple closure‐based two‐dimensional model, for two‐ and three‐dimensional ripples and dunes using a three‐dimensional large‐eddy simulation flow model coupled to a physics‐based particle transport model, and for the development of bed streaks using a three‐dimensional unsteady Reynolds‐averaged Navier‐Stokes solver with a simple sediment‐transport treatment. Finally, macroscale or channel evolution treatments are used to examine the temporal development of meandering channels, a failure model for cantilevered banks, the effect of bank vegetation on channel width, the development of channel networks in tidal systems, and the evolution of bedrock channels. In all examples, computational morphodynamics results from iRIC solvers compare well to observations of natural bed morphology. For each of the three scales investigated here, brief suggestions for future work and potential research directions are offered.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 89
    Publikationsdatum: 2019
    Beschreibung: Within a multidisciplinary approach, we mapped with unprecedented detail the seafloor morphology, sediment distribution and benthic habitats of a tidal inlet which has been highly impacted by human activity. We identified an unusual habitat for lagoon environment connected to rip‐rap used for jetties and hard structures and we estimated that the new pattern of flow around these hard structures caused the erosion of 430 000 m3 of sediment in eight years. Abstract Adopting a multidisciplinary approach, we mapped with unprecedented detail the seafloor morphology, sediment distribution and benthic habitats of a tidal inlet in the Venice Lagoon, Italy, which has been greatly impacted by human activity. Thanks to very high‐resolution multibeam data, we identified ebb and flood‐tidal deltas, a tidal point bar, active dune fields, pools and scour holes. The seafloor substrate of the inlet was investigated by integrating automatically classified multibeam backscatter data with sediment samples and underwater seafloor images. The sediment composition comprises four textural classes with 75% overall thematic accuracy. The particle size distribution of each morphological feature was assessed distinguishing, in particular, sediments over crests and troughs of small‐dune fields with wavelengths and heights of less than 4 m and 0.2 m, respectively. Adopting state‐of‐the‐art benthic habitat mapping procedures, we found seven distinctive benthic habitats that reflect spatial variability in hydrodynamics and sediment transport pathways. The dominant classes were Sand with sparse shell detritus (46%) and Bare sand (32%). The rip‐rap revetment used for the inlet jetties and for the hard structures, built in the inlet channel to protect Venice from flooding, created a new habitat that covers 5.5% of the study area. This study shows how combining geomorphological and ecological analyses is crucial for the monitoring and management of tidal inlets and coastal infrastructures. © 2019 John Wiley & Sons, Ltd.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 90
    Publikationsdatum: 2019
    Beschreibung: ABSTRACT This paper presents novel methods for robust statistical testing of particle shape data. Shape (the relative lengths of three orthogonal axes) is a key property of sedimentary particles, providing information on provenance, transport history and depositional environment. However, the usefulness of shape data, including the ability to make robust comparisons between samples, has been constrained by the absence of a satisfactory definition of the mean shape for a sample of particles. Such a definition is proposed and used to develop confidence regions for the population mean shape using both parametric (theoretical) and computational (bootstrap) methods. These techniques are based on a transform that permits multivariate statistical methods for the analysis of compositional data to be extended to shape. These techniques are validated with reference to a dataset of 169 clast samples and found to perform well. A statistical test on the mean – using the multivariate extension of Student's t‐test, Hotelling's T2 – is presented. The benefits of the methods presented are demonstrated with reference to a case study.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 91
    Publikationsdatum: 2019
    Beschreibung: Successive wildfires alter burned area hydrologic response in ways that may lead to greater debris flow potential. Abstract Climate and land use changes have led to recent increases in fire size, severity, and/or frequency in many different geographic regions and ecozones. Most post‐wildfire geomorphology studies focus on the impact of a single wildfire but changing wildfire regimes underscore the need to quantify the effects of repeated disturbance by wildfire and the subsequent impacts on system resilience. Here, we examine the impact of two successive wildfires on soil hydraulic properties and debris flow hazards. The 2004 Nuttall‐Gibson Complex and the 2017 Frye Fire affected large portions of the Pinaleño Mountains in southern Arizona, creating a mosaic of burn severity patterns that allowed us to quantify differences in wildfire‐induced hydrologic changes as a function of burn severity and recent fire history (i.e. burned in only the Frye Fire or burned in both fires). Field observations after the 2017 Frye Fire indicated debris flow activity in areas burned predominantly at low severity. Many of these areas, however, were also affected by the 2004 Nuttall‐Gibson Complex, suggesting that the relatively short recovery time between the two wildfires may have played a role in the geomorphic response to the most recent wildfire. Field measurements of soil hydraulic properties suggest that soils burned at moderate severity in 2004 and low severity in 2017 have a lower infiltration capacity relative to those that remained unburned in 2004 and burned at low severity in 2017. Simulations of runoff demonstrate that measured differences in infiltration capacity between once‐ and twice‐burned soils are sufficient in some cases to influence the rainfall intensities needed to initiate runoff generated debris flows. Results quantify the impact of wildfire history and burn severity on runoff and debris flow activity in a landscape affected by successive wildfires and provide insight into how the resilience of geomorphic systems may be affected by successive wildfires. © 2019 John Wiley & Sons, Ltd.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 92
    Publikationsdatum: 2019
    Beschreibung: Given the ease with which we can now measure river morphology, morphological estimation of the bedload transport rate is appealing. Here, we show how this can be done in 2D to estimate the spatial distribution of transport rates over large areas of a braided river, and discuss both the limits of the method and its potential to study fluvial processes. Abstract Research in the 1990s showed that bed‐material transport rates could be estimated at the reach scale in both one‐dimension and, over small spatial scales (10s of m), in two‐dimensions. The limit on the latter was the spatial scale over which it was possible to obtain distributed data on morphological change. Here, we revisit the morphological method given progress in both topographical data acquisition and hydraulic modelling. The bed‐material transport needed to conserve mass is calculated in both one and two dimensions for a 1600 m × 300 m Alpine braided river “laboratory”. High‐resolution topographical data were acquired by laser scanning to quantify Digital Elevation Models (DEMs), and morphological changes caused by the flushing of the water intake were derived from repeated surveys. Based on DEMs of differences, 1D bed‐material transport rates were calculated using the morphological method. Then, a 2D hydraulic model was combined with a topographic correction to route sediment through the network of braided channels and to obtain a spatially variable estimate of transport in both downstream and cross‐stream directions. Monte Carlo simulation was applied to the routing model parameters, allowing identification of the most probable parameter values needed to minimize negative transport. The results show that within‐section spatial compensation of erosion and deposition using the 1D treatment leads to substantial local errors in transport rate estimates, to a degree related to braiding intensity. Even though the 2D application showed that a large proportion of the total transport was actually concentrated into one main channel during the studied low flow event, the proportion of transport in secondary anabranches is substantial when the river starts braiding. Investigations of the effects of DEM resolution, competent flow duration and survey frequency related to ‘travelling bedload’ and sequential erosion‐deposition emphasized the critical importance of careful data collection in the application of the morphological method. © 2019 John Wiley & Sons, Ltd.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 93
    Publikationsdatum: 2019
    Beschreibung: Simulating network‐scale, post‐wildfire sediment cascades for the spatially explicit prediction of downstream sediment impacts. A new framework linking new and existing models of post‐wildfire debris flows generation, storage of debris flow sediment within valleys, delivery of debris flow sediment to active channels, and the routing of sediment through large river networks. Abstract Wildfires represent one of the largest disturbances in watersheds of the Intermountain West. Yet, we lack models capable of predicting post‐wildfire impacts on downstream ecosystems and infrastructure. Here we present a novel modeling framework that links new and existing models to simulate the post‐wildfire sediment cascade, including spatially explicit predictions of debris flows, storage of debris flow sediment within valleys, delivery of debris flow sediment to active channels, and the downstream routing of sediment through river networks. We apply the model to sediment dynamics in Clear Creek watershed following the 2010 Twitchell Canyon Fire in the Tushar Mountains of southern Utah. The debris flow generation model performed well, correctly predicting 19 out of 20 debris flows from the largest catchments, with only four false positives and two false negatives at observed rainfall intensities. In total, the model predicts the occurrence of 160 post‐wildfire debris flows across the Clear Creek watershed, generating more than 650 000 m3 of sediment. Our new storage and delivery model predicts the vast majority of this sediment is stored within valleys, and only 13% is delivered to the river network. The sediment routing model identifies numerous sediment bottlenecks within the network, which alter transport dynamics and may be hotspots for aggradation and aquatic habitat alteration. The volume of sediment exported from the watershed after seven years of simulation totals 17% of that delivered, or 2% of the total generated debris flow sediment. In the case of the Twitchell Canyon Fire, this highlights that significant post‐wildfire sediment volumes can be stored in valleys (87%) and within the stream network (11%). Finally, we discuss useful insights that can be gleaned from the model framework, as well as the limitations and need for more monitoring and theory development in order to better constrain essential inputs, process rates, and morphodynamics. © 2019 John Wiley & Sons, Ltd.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 94
    Publikationsdatum: 2019
    Beschreibung: We successfully reconstruct soil reworking using feldspar single‐grain luminescence. A new conceptual model explains the observed luminescence trends along a hillslope catena. We are able to disentangle bioturbation, soil production and erosion/ deposition based on two luminescence proxies. Luminescence data provides more robust measures of soil thickness than field observations. Abstract The interplay of bioturbation, soil production and long‐term erosion–deposition in soil and landscape co‐evolution is poorly understood. Single‐grain post‐infrared infrared stimulated luminescence (post‐IR IRSL) measurements on sand‐sized grains of feldspar from the soil matrix can provide direct information on all three processes. To explore the potential of this novel method, we propose a conceptual model of how post‐IR IRSL‐derived burial age and fraction of surface‐visiting grains change with soil depth and along a hillslope catena. We then tested this conceptual model by comparison with post‐IR IRSL results for 15 samples taken at different depths within four soil profiles along a hillslope catena in the Santa Clotilde Critical Zone Observatory (southern Spain). In our work, we observed clear differences in apparent post‐IR IRSL burial age distributions with depth along the catena, with younger ages and more linear age–depth structure for the hill‐base profile, indicating the influence of lateral deposition processes. We noted shallower soils and truncated burial age–depth functions for the two erosional mid‐slope profiles, and an exponential decline of burial age with depth for the hill‐top profile. We suggest that the downslope increase in the fraction of surface‐visiting grains at intermediate depths (20 cm) indicates creep to be the dominant erosion process. Our study demonstrates that single‐grain feldspar luminescence signature‐depth profiles provide a new way of tracing vertical and lateral soil mixing and transport processes. In addition, we propose a new objective luminescence‐based criterion for mapping the soil‐bedrock boundary, thus producing soil depths in better agreement with geomorphological process considerations. Our work highlights the possibilities of feldspar single grain techniques to provide quantitative insights into soil production, bioturbation and erosion–deposition. © 2019 The Authors Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 95
    Publikationsdatum: 2019
    Beschreibung: This study uses the depth‐age information derived from feldspar‐based single grain post Infrared Stimulated Luminescence (post‐IR IRSL) to quantify erosion and bioturbation processes along a hillslope We propose, for the first time, an analytical solution for the diffusion–advection equation to calculate diffusivity constant and erosion‐deposition rates. A sensitivity and uncertainty analysis were applied to the model Abstract Particles on soil‐mantled hillslopes are subject to downslope transport by erosion processes and vertical mixing by bioturbation. Both are key processes for understanding landscape evolution and soil formation, and affect the functioning of the critical zone. We show here how the depth–age information, derived from feldspar‐based single grain post‐infrared infrared stimulated luminescence (pIRIR), can be used to simultaneously quantify erosion and bioturbation processes along a hillslope. In this study, we propose, for the first time, an analytical solution for the diffusion–advection equation to calculate the diffusivity constant and erosion–deposition rates. We have fitted this model to age–depth data derived from 15 soil samples from four soil profiles along a catena located under natural grassland in the Santa Clotilde Critical Zone Observatory, in the south of Spain. A global sensitivity analysis was used to assess the relative importance of each model parameter in the output. Finally, the posterior probability density functions were calculated to evaluate the uncertainty in the model parameter estimates. The results show that the diffusivity constant at the surface varies from 11.4 to 81.9 mm2 a‐1 for the hilltop and hill‐base profile, respectively, and between 7.4 and 64.8 mm2 a‐1 at 50 cm depth. The uncertainty in the estimation of the erosion–deposition rates was found to be too high to make a reliable estimate, probably because erosion–deposition processes are much slower than bioturbation processes in this environment. This is confirmed by a global sensitivity analysis that shows how the most important parameters controlling the age–depth structure in this environment are the diffusivity constant and regolith depth. Finally, we have found a good agreement between the soil reworking rates proposed by earlier studies, considering only particle age and depth, and the estimated diffusivity constants. The soil reworking rates are effective rates, corrected for the proportion of particles actually participating in the process. © 2019 John Wiley & Sons, Ltd.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 96
    Publikationsdatum: 2019
    Beschreibung: 3D landscape schematization of wild boar damages (red circles) and their potential connections (arrows) to different landscape features. The purpose of this research is to analyse the role of wild boars as a geomorphologic agent, presenting a general diagnostic framework regarding the geomorphic impact of this species, classifying and mapping potential sediment hotspots and their likely connection to rivers and road networks. Abstract Among the main invasive species, the wild boar (Sus scrofa) is the most responsible for soil degradation in Europe and many Italian regions. At the same time, the stable presence of this species in agricultural areas has induced a conflict with humans, causing economic losses, environmental degradation and also social issues. A clear quantification of the potential damages (in terms of soil bioturbation) of this species at large scale is, however, still obscure. The purpose of this research is to analyse the role of wild boars as a geomorphologic agent, presenting a general diagnostic framework regarding the geomorphic impact of this species, classifying and mapping potential sediment hotspots and their likely connection to rivers and road networks. Accordingly, a record of wild boar damage types is first presented, and their possible interaction with hydrological and geomorphological processes is described. Then, a pilot case study is discussed on mapping and quantifying wild boar damages in a hilly agricultural landscape located in northeast Italy. The wild boar damages were geolocalized using a geographical positioning system (GPS) in two years of intensive field campaigns among agricultural fields involved in wild boar damaging activities. For each damaged area (total 406), several measures of soil erosion depth were taken and the degradation surface of interest mapped for a total of 10 150 measures. The volume of removed soil was then estimated, considering the average depth of damages previously recorded. Finally, the Index of Connectivity was applied to provide a classification of the considered damages based on their connection to both river and road networks. The results indicate that the ongoing uncontrolled wild boar expansion may not affect crops only or be a risk for people, but can also increase soil erosion, with a potential connection to hydrographic networks and human infrastructures. © 2019 John Wiley & Sons, Ltd.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 97
    Publikationsdatum: 2019
    Beschreibung: Abstract Sediment in urban stormwater systems creates a significant maintenance burden, while a lack of coarse‐grained bed sediment in streams limits their ecological value and geomorphic resilience. Gravel substrates, for example, provide benthic habitat yet are often scoured from the channel bed only to end up in a detention basin or treatment wetland. This dual problem of both ‘too much’ and ‘too little’ coarse‐grained sediment reflects a watershed sediment budget that is profoundly altered. We developed a conceptual urban coarse‐grained (〉 0.5 mm) sediment budget across three domains: hillslopes (urban land surfaces), the built stormwater network and stream channels. We then quantified key sources, sinks and storages for a suburban case study, using a combination of hillslope and in‐channel monitoring, and interrogation of local government records. Around 36% of the sediment supplied to the stormwater network reached the catchment outlet, a level of sediment delivery much higher than observed in similar‐sized natural catchments. The remainder was deposited in the sediment cascade and either stored, or extracted and removed from the catchment (e.g. material deposited in sediment ponds and gross pollutant traps). Conventional urban drainage networks are characterised by high hillslope sediment supply and low storage, resulting in efficient sediment delivery. Channel erosion, deposition in (and extraction from) pipes and channels, and floodplain deposition are small compared to sediment transport through the cascade. An understanding of the sediment budget of urban headwater catchments can provide stormwater and waterway managers with the information they need to address specific sediment problems such as sedimentation in stormwater assets and geomorphic recovery of urban streams.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 98
    facet.materialart.
    Unbekannt
    Wiley
    Publikationsdatum: 2019
    Beschreibung: No abstract is available for this article. © 2019 John Wiley & Sons, Ltd.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 99
    Publikationsdatum: 2019
    Beschreibung: Abstract Knowledge of soil microtopography and its changes in space and over time is important to the understanding of how tillage in uences infiltration, runoff generation and erosion. In this study, the use of a Terrestrial Laser Scanner (TLS) is assessed for its ability to quantify small changes in the soil surface at high spatial resolutions for a relatively large surface area (100 m2). Changes in soil surface morphology during snow cover and melt are driven by frost heave, slaking, pressure exertion by the snow pack and overland ow (erosion and deposition). An attempt is undertaken to link these processes to observed changes at the soil surface. A new algorithm for soil surface roughness is introduced to make optimal use of the raw point cloud. This algorithm is less scale‐dependent than several commonly used roughness calculations. The results of this study show that TLS can be used for multitemporal scanning of large surfaces and that small changes in surface elevation and roughness can be detected. Statistical analysis of the observed changes against terrain indices did not yield significant evidence for process differentiation. This article is protected by copyright. All rights reserved.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 100
    Publikationsdatum: 2019
    Beschreibung: Abstract Current techniques assessing longshore sediment transport rates have large uncertainties, pleading for the development of alternative and complementary approaches. The present study proposes a method to estimate the decadal average rate of longshore transport at modern ebb‐tidal deltas based on a sediment budget analysis of the outer shoal growth. This transport is obtained as the balance of the other contributions to the shoal with the total sediment input rate obtained from an inverse application of the inlet reservoir model. The method is applied to the Guadiana ebb‐tidal delta, yielding an average longshore sediment transport rate (~85,000 m3/yr) in good agreement with expectations for the region. It is exemplified that this decadal averaged rate can be used to improve longshore sediment transport expressions in order to study its variability over shorter time scales. At the Guadiana, the yearly longshore sediment transport from the improved formula ranges from ~25,000 m3 (westward) to ~245,000 m3 (eastward) and is related to the North Atlantic Oscillation index. Overall, the proposed method constitutes an alternative tool to constrain the average longshore sediment transport rate over decades in the vicinity of tidal inlets. It is applicable to ebb‐tidal deltas where the outer shoal growth (from an early to a mature stage) is well‐documented by bathymetric maps, and where the main transport pathways towards the outer shoal can be specified.
    Print ISSN: 0360-1269
    Digitale ISSN: 1096-9837
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...