ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (7,950)
  • MDPI Publishing  (7,950)
  • Energies  (7,950)
  • 109050
  • 52541
  • 1
    Publication Date: 2018-09-24
    Description: Energies, Vol. 11, Pages 2539: Mine Strata Pressure Characteristics and Mechanisms in Gob-Side Entry Retention by Roof Cutting under Medium-Thick Coal Seam and Compound Roof Conditions Energies doi: 10.3390/en11102539 Authors: Xingen Ma Manchao He Jiong Wang Yubing Gao Daoyong Zhu Yuxing Liu Coal is among the most important energy sources, and gob-side entry retention by roof cutting (GERRC) is an innovative non-pillar mining technique that can effectively increase coal recovery rates and avoid coal wastage. To investigate the characteristics of mine strata pressure using the GERRC technique, a field case study under conditions involving a medium-thick coal seam and a compound roof was performed, and the mine strata behavior mechanisms were studied by theoretical analysis. Field monitoring shows that the distributions of the weighting step and strength along the longwall working face are asymmetrical. The periodic weighting length on the entry retaining side is longer than that on the other sides of the longwall working face, and the average increase is appropriately 4 m. Compared to the other sides of the longwall, on the entry retaining side, the periodic weighting strength is weaker, the average pressure is reduced by 2.1 MPa, and the peak pressure is reduced by 10.2 MPa. The lateral distance affected by roof cutting along the longwall is approximately 29.75 m, and the closer to the cutting slit, the more significant the roof cutting effect is. The retained entry becomes stable when it is more than 230 m behind the mining face, and the final cross section of the retained entry can meet the reuse demand of the next mining face. Theoretical analysis shows that the roof pressure mechanism in GERRC can be explained using cantilever beam theory. Within the area affected by roof cutting, the thickness of the immediate roof increases, and the suspension plate length of the roof immediately behind the longwall decreases. Then, the gangue pile in the goaf behind the longwall formed by the immediate roof’s collapse and expansion can support the main roof and other overlying strata much better. Therefore, the rotational breaking angle of the main roof is smaller, the periodic weighting step strength increases, and the periodic weighting decreases. According to the structural state of the surrounding rocks during the entire entry retaining process, the retained entry can be divided into coal support, dynamic pressure and stable entry areas.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-09-24
    Description: Energies, Vol. 11, Pages 2536: Application of Wind as a Renewable Energy Source for Passive Cooling through Windcatchers Integrated with Wing Walls Energies doi: 10.3390/en11102536 Authors: Payam Nejat Fatemeh Jomehzadeh Hasanen Mohammed Hussen John Kaiser Calautit Muhd Zaimi Abd Majid Generally, two-third of a building’s energy is consumed by heating, ventilation and air-conditioning systems. One green alternative for conventional air conditioner systems is the implementation of passive cooling. Wing walls and windcatchers are two prominent passive cooling techniques which use wind as a renewable resource for cooling. However, in low wind speed regions and climates, the utilization of natural ventilation systems is accompanied by serious uncertainties. The performance of ventilation systems can be potentially enhanced by integrating windcatchers with wing walls. Since previous studies have not considered this integration, in the first part of this research the effect of this integration on the ventilation performance was assessed and the optimum angle was revealed. However, there is still gap of this combination; thus, in the second part, the impact of wing wall length on the indoor air quality factors was evaluated. This research implemented a Computational Fluid Dynamics (CFD) method to address the gap. The CFD simulation was successfully validated with experimental data from wind tunnel tests related to the previous part. Ten different lengths from 10 cm to 100 cm were analyzed and it was found that the increase in wing wall length leads to a gradual reduction in ventilation performance. Hence, the length does not have a considerable influence on the indoor air quality factors. However, the best performance was seen in 10 cm, that could provide 0.8 m/s for supply air velocity, 790 L/s for air flow rate, 39.5 1/h for air change rate, 107 s for mean age of air and 92% for air change effectiveness.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-09-24
    Description: Energies, Vol. 11, Pages 2542: Compensation for Inverter Nonlinearity in Permanent Magnet Synchronous Motor Drive and Effect on Torsional Vibration of Electric Vehicle Driveline Energies doi: 10.3390/en11102542 Authors: Weihua Wang Wenkai Wang Permanent magnet synchronous motors (PMSMs) with inverters are widely used in electric vehicles (EVs). However, current harmonics caused by the nonlinearity of the inverter generate torque ripples and give rise to torsional vibration in the vehicle driveline. This paper proposes a new compensation method to suppress the torque ripples. This method extracts the 6th-order harmonic component online from the d-axis and q-axis currents with the approximate Fourier transform, and adopts a harmonic current PI regulator to calculate compensation voltage, which is added to the voltage reference to compensate the nonlinearity of the inverter. After correcting the current distortion and improving the motor torque smoothness, the torsional vibration of the driveline caused by the motor pulsating torque is reduced. According to the simulation results, the 6th-order of motor torque ripple and the torsional vibration response is reduced about 26–28%, which confirms the validity of the proposed strategy. The proposed method does not need any additional hardware and can be implemented broadly in PMSM drives.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-09-24
    Description: Energies, Vol. 11, Pages 2540: Thermodynamic Analysis on an Integrated Liquefied Air Energy Storage and Electricity Generation System Energies doi: 10.3390/en11102540 Authors: Yingbai Xie Xiaodong Xue For an integrated liquefied air energy storage and electricity generation system, mathematical models of the liquefied air energy storage and electricity generation process are established using a thermodynamic theory. The effects of the outlet pressure of the compressor unit, the outlet pressure of the cryogenic pump, the heat exchanger effectiveness, the initial air temperature and pressure before throttling on the performances of the integrated liquefied air energy storage, and the electricity generation system are investigated, using the cycle efficiency and liquid air yield ratio as the evaluation indexes. The results show that if the compressor outlet pressure is raised, both the compression work and the expansion work increase, but because the expansion work increases more slowly, the cycle efficiency of the system gradually decreases. Increasing the cryogenic pump outlet pressure and heat exchanger effectiveness can significantly increase the cycle efficiency of the system; the higher the air pressure and the lower the air temperature before throttling, the greater the liquid air yield after expansion, and the higher the cycle efficiency. The theoretical analysis models and research results can provide a reference for the development of an integrated system of liquefied air energy storage and electricity production, as well as for the development of medium-capacity energy storage technology.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-09-24
    Description: Energies, Vol. 11, Pages 2541: Numerical and Experimental Investigations of the Interactions between Hydraulic and Natural Fractures in Shale Formations Energies doi: 10.3390/en11102541 Authors: Chang Guo Zhou Song Yang Natural fractures (NFs) have been recognized as the dominant factors that increase hydraulic fracture complexity and reservoir productivity. However, the interactions between hydraulic and natural fractures are far from being fully understood. In this study, a two-dimensional numerical model based on the displacement discontinuity method (DDM) has been developed and used to investigate the interaction between hydraulic and pre-existing natural fractures. The inelastic deformation, e.g., stick, slip and separation, of the geologic discontinuities is captured by a special friction joint element called Mohr-Coulomb joint element. The dynamic stress transfer mechanisms between the two fracture systems and the possible location of secondary tensile fracture that reinitiates along the opposite sides of the NF are discussed. Furthermore, the model results are validated by a series of large tri-axial hydraulic fracture (HF) tests. Both experimental and numerical results showed that the displacements and stresses along the NFs are all in highly dynamic changes. When the HF is approaching the NF, the HF tip can exert remote compressional and shear stresses on the NF interface, which results in the debonding of the NF. The location and value of the evoked stress is a function of the far-field horizontal differential stress, inclination angle of the NF, and the net pressure used in fracturing. For a small approaching angle, the stress peak is located farther away from the intersection point, so an offset fracture is more likely to be generated. The cemented strength of the NF also has an important influence on the interaction mechanism. Weakly bonded NF surfaces increase the occurrence of a shear slippage, but for a moderate strength NF, the hybrid failure model with both tensile and shear failures, and conversion may appear.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-09-24
    Description: Energies, Vol. 11, Pages 2538: Experimental Research on the Structural Behavior of Fractured Coal under Uniaxial Compression Energies doi: 10.3390/en11102538 Authors: Dongjie Xue Hongwei Zhou Jianfeng Liu Jie Zhou Yintong Liu Yongwei Zhao Liao Zhang Tests of the effects of uniaxial compression on the structural behavior of fractured coals were conducted. The structural behavior is different from the material behavior of intact samples and the discontinuous behavior based on the block theory. It is a macro response of continuous-discontinuous behavior in coal with varied fracture structure geometry, and includes the material behavior with cracking and contact behavior with sliding. The structural behavior is studied based on the complete stress-strain curve, the material parameters, i.e. elastic modulus, Poisson’s ratio, and compression strength, and the structural integrity parameters, i.e. longitudinal and shear wave velocity, and the physical parameter, i.e. density. All the parameters are compared with the different fracture patterns. Various types of parameter degradation damage are defined to describe the structural characteristics with the different fracture patterns. They shows the effective relation of damage with strength. Furthermore, the mechanisms of the structural modulus degradation, structural failure deformation, and structural strength evolution are discussed. The results show that the post-peak behavior can be defined as the structural behavior. With the structural formation-reloading failure cycle, the mutual conversion changes between structural geometry instability and stability, and the characteristics are stress drops or stress platforms generated by structural rebalance. It is pointed out that the post-peak unloading is a macro response of the structural geometry. It includes the recovery of elastic strain and structural resilience strain, and structural stress drop.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-09-24
    Description: Energies, Vol. 11, Pages 2537: (Solar) Mixed Reforming of Methane: Potential and Limits in Utilizing CO2 as Feedstock for Syngas Production—A Thermodynamic Analysis Energies doi: 10.3390/en11102537 Authors: Henrik von Storch Sonja Becker-Hardt Christian Sattler The reforming of natural gas with steam and CO2 is commonly referred to as mixed reforming and considered a promising route to utilize CO2 in the production of synthetic fuels and base chemicals such as methanol. In the present study, the mixed reforming reaction is assessed regarding its potential to effectively utilize CO2 in such processes based on simple thermodynamic models. Requirements for the mixed reforming reactions based on process considerations are defined. These are the avoidance of carbon formation in the reactor, high conversion of the valuable inlet streams CH4 and CO2 as well as a suitable syngas composition for subsequent synthesis. The syngas composition is evaluated based on the module M = ( z H 2 − z CO 2 ) / ( z CO 2 + z CO ) ,   which should assume a value close to 2. A large number of different configurations regarding CO2/H2O/CH4 at the reactor inlet, operating pressure and outlet temperature are simulated and evaluated according to the defined requirements. The results show that the actual potential of the mixed reforming reaction to utilize CO2 as feedstock for fuels and methanol is limited to approximately 0.35 CO2/CH4, which is significantly lower than suggested in literature. At 900 °C and 7 bar at the reactor outlet, which is seen suitable for solar reforming, a ratio of H2O/CH4 of 1.4 can be set and the resulting value of M is 1.92 (CO2/CO/H2 = 0.07/0.4/1).
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-09-23
    Description: Energies, Vol. 11, Pages 2534: The Main Elements of a Strategy for Combined Utilization of Industrial and Municipal Waste from Neighboring Regions by Burning it as Part of Composite Fuels Energies doi: 10.3390/en11102534 Authors: Dmitrii Glushkov Geniy Kuznetsov Kristina Paushkina Dmitrii Shabardin An experimental study has been conducted into the ignition and combustion processes of composite fuel droplets fed into a heated muffle furnace on a holder. Consistent patterns and characteristics of physical and chemical processes have been established for a group of fuel compositions: wet coal processing waste (a mixture of fine coals and water) 85% + municipal solid waste (wood, or plastic, or rubber) 10% + used oil 5%. Burning a coal-water slurry instead of dry coal dust is characterized by a positive environmental effect. Adding used oil to a coal-water slurry results in better energy performance characteristics of the composite fuel during combustion. Adding fine municipal solid waste (MSW) to the fuel composition makes it possible to effectively recover it by burning in boiler furnaces with energy performance characteristics of combustion and environmental characteristics of flue gases that are as good as those of composite fuel compositions without MSW. Sustainability of the composite fuel ignition process and complete burnout of liquid and solid combustible components have been determined. The values of the guaranteed ignition delay times for droplets with a size (diameter) of about 2 mm have been established for the composite fuel compositions under study in the ambient temperature range 600–1000 °C. The minimum values of ignition delay times are about 3 s, the maximum values are about 15 s under the near-threshold ignition conditions. The obtained findings enabled to elaborate the main elements of the strategy for combined recovery of industrial and municipal waste by burning it as part of composite fuels.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-09-23
    Description: Energies, Vol. 11, Pages 2532: Research on the Axial Force of Conical-Rotor Permanent Magnet Synchronous Motors with Turbines Energies doi: 10.3390/en11102532 Authors: Jiabao Wang Shoudao Huang Chao Guo Yaojin Feng The general method to suppress the axial force of the permanent magnet synchronous motor (PMSM) direct-drive turbine is to increase the number of balance devices, such as balance disks and special bearings, to counteract its influence, but this also leads to complex system structure and higher mechanical losses. Aiming to solve the above issue, this paper presents a novel PMSM structure with a conical-rotor (CR). Due to its adaptive equilibrium of axial force and simple structure of rotor with turbine, the CR-PMSM can help improve the system efficiency. Both surface-type and interior-type motors are analyzed, and the axial magnetic force of CR-PMSM is studied in detail. The 3-D finite-element method (FEM) is used to model and simulate the machine, and the magnetic-field distribution, axial magnetic force and driving performance are obtained. Also, the control rule of d-axis current is analyzed to achieve the adaptive equilibrium of axial force. A 2.0 kW, 6000 r/min prototype motor is fabricated and tested to validate the theory.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-09-23
    Description: Energies, Vol. 11, Pages 2535: Biochar and Biomass Ash as a Soil Ameliorant: The Effect on Selected Soil Properties and Yield of Giant Miscanthus (Miscanthus x giganteus) Energies doi: 10.3390/en11102535 Authors: Bogdan Saletnik Grzegorz Zagula Marcin Bajcar Maria Czernicka Czeslaw Puchalski We assess the possibility of using biochar and ash from plant biomass to fertilise giant miscanthus (Miscanthus x giganteus). The paper concerns the optimisation of the combination of fertiliser applications of the aforementioned materials in the context of the plant yield obtained. There was an increase in yield of 8–68% over the two years of research when compared with the control plots. It was found that the application of biochar, ash from biomass and a combination of the two at appropriate rates as a soil additive can substitute for classic mineral fertilisers and strengthen the ecological aspects of energy crop cultivation. The interpretation of the results obtained enabled the selection of optimum fertiliser applications, resulting in a significant increase in the yield of plants and an improvement in soil chemical properties. It was found that the highest yield of dry matter of giant miscanthus plants, after both the first and second year of cultivation, was obtained by applying the fertiliser containing ash at a rate of 1.5 t ha−1, together with biocarbon and the combination of biochar and ash at a rate of 1.5 t ha−1.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...