ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,958)
  • 2015-2019  (1,958)
  • 1990-1994
  • 1945-1949
  • 2016  (1,958)
  • Journal of Materials Engineering and Performance  (508)
  • JOM Journal of the Minerals, Metals and Materials Society  (364)
  • 10374
  • 4547
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (1,958)
  • Political Science
  • Computer Science
Collection
  • Articles  (1,958)
Publisher
Years
  • 2015-2019  (1,958)
  • 1990-1994
  • 1945-1949
Year
Topic
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (1,958)
  • Political Science
  • Computer Science
  • 1
    Publication Date: 2016-07-15
    Description: Direct evidence of the relationship between the polymorphic phase transformation from monoclinic Cu 6 Sn 5 to hexagonal Cu 6 Sn 5 and stress accumulation/release in Cu 6 Sn 5 , formed at the interface between Sn-0.7Cu lead-free solder and their Cu substrates, has been obtained. To explore this challenging phenomenon, we developed an in situ heating/isothermal observation technique in ultrahigh-voltage transmission electron microscopy that enables the observation of thick samples (around 0.5  μ m) for solder joints, including Cu/Cu 3 Sn/Cu 6 Sn 5 /Sn-0.7Cu solder interfaces prepared by a focused ion beam milling technique. The results show evidence of stress creation and release events by imaging bend contours that may arise due to the polymorphic transformations of the Cu 6 Sn 5 phase and the associated volumetric change.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-15
    Description: Effects of temperature and slag basicity on the reduction rate of iron oxide in molten synthetic electric arc furnace oxidizing slag by Al-40 wt.%Fe alloy was investigated. An alloy sample was dropped into molten slag in an MgO crucible. When the initial slag temperature was 1723 K, there was no reduction. However, when the initial slag temperature was 1773 K and the slag basicity was 1.1, the reduction was initiated and the temperature of the slag rapidly increased. When the slag basicity was 1.1, increasing the initial slag temperature from 1773 K to 1823 K increases the reaction rate. As the slag basicity increased from 1.1 to 1.4 at 1773 K, the reaction rate increased. From SEM analysis, it was found that an Al 2 O 3 or a spinel phase at the slag-metal interface inhibited the reaction at a lower temperature and a lower slag basicity.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-15
    Description: The paper describes an experimental study aimed at suppressing stress corrosion cracking susceptibility of machined 304L stainless steel specimens through laser shock peening. The study also evaluates a new approach of oblique laser shock peening to suppress stress corrosion cracking susceptibility of internal surface of type 304L stainless steel tube. The results of the study, performed with an indigenously developed 2.5 J/7 ns Nd:YAG laser, demonstrated that laser shock peening effectively suppresses chloride stress corrosion cracking susceptibility of machined surface of type 304L stainless steel. In the investigated range of incident laser power density (3.2-6.4 GW/cm 2 ), machined specimens peened with power density of 4.5 and 6.4 GW/cm 2 displayed lower stress corrosion cracking susceptibility considerably than those treated with 3.2 and 3.6 GW/cm 2 in boiling magnesium chloride test. Oblique laser shock peening, performed on machined internal surface of a type 304L stainless steel tube (OD = 111 mm; ID = 101 mm), was successful in introducing residual compressive surface stresses which brought about significant suppression of its stress corrosion cracking susceptibility. The technique of oblique laser shock peening, in spite of its inherent limitations on the length of peened region being limited by tube internal diameter and the need for access from both the sides, presents a simplified approach for peening internal surface of small tubular components.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-07-20
    Description: TiN and (Ti,Mg)N thin film coatings were deposited on Ti substrates by an arc-physical vapor deposition technique. The effect of cell presence on hydroxyapatite (HA) formation was investigated using surfaces with four different Mg contents (0, 8.1, 11.31, and 28.49 at.%). Accelerated corrosion above 10 at.% Mg had a negative effect on the performance in terms of both cell proliferation and mineralization. In the absence of cells, Mg-free TiN coatings and low-Mg (8.1 at.%)-doped (Ti,Mg)N surfaces led to an early HA deposition (after 7 days and 14 days, respectively) in cell culture medium (DMEM), but the crystallinity was low. More crystalline HA structures were obtained in the presence of the cells. HA deposits with an ideal Ca/P ratio were obtained at least a week earlier, at day 14, in TiN and low-Mg (8.1 at.%)-doped (Ti,Mg)N compared with that of high-Mg-containing surfaces (〉10 at.%). A thicker mineralized matrix was formed on low-Mg (8.1 at.%)-doped (Ti,Mg)N relative to that of the TiN sample. Low-Mg doping (〈10 at.%) into TiN coatings resulted in better cell proliferation and thicker mineralized matrix formation, so it could be a promising alternative for hard tissue applications.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-07-21
    Description: The present work explores how deposition parameters affect structural and morphological characteristics of ZnNi/nano-SiC composites in order to engineer an environmentally benign corrosion-resistant coating. In this regard, ZnNi and ZnNi coatings containing SiC nanoparticles were electrodeposited from chloride bath by direct current method, and the effects of SiC concentration, deposition current density and two types of surfactant (sodium dodecyl sulfate, SDS, and hexadecyltrimethyl ammonium bromide, HTAB) were investigated. Increasing SiC nanoparticles concentration in the electrolyte enhances the SiC content of the coating and can affect the coating composition, structure and morphology. Elevation of deposition current density may reduce SiC content of the coating, yet this decline can be compensated by the addition of HTAB. Application of 11 g/L SiC nanoparticles produced a coating with a more even surface and less porosity that had the highest corrosion resistance. The presence of nanoparticles seemingly reduces the available surface for electrochemical reactions and decelerates corrosion.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-07-21
    Description: The effect of deep cryogenic treatment (DCT) on microstructure and mechanical properties including corrosion behavior of the squeeze-cast AE42 alloy has been investigated. For comparison, the same has also been studied on the untreated alloy. Both the untreated and deep cryogenic-treated (DCTed) alloys comprised α-Mg and Al 4 RE phases. Volume fraction of the Al 4 RE phase in the AE42 alloy reduced gradually following DCT carried out from 4 to 16 h. Ductility and UTS increase significantly with a marginal increase in YS of all the DCTed alloys. The improvement was attributed to the dissolution of the brittle Al 4 RE phase following DCT. Among the alloys employed, the best tensile properties were obtained for the 16-h DCT alloy due to its lowest content of the brittle Al 4 RE phase. Creep resistance of the DCTed alloys was lower than that of the untreated alloy owing to the presence of less amount of thermally stable intermetallic Al 4 RE phase. Wear resistance of the alloy reduces following DCT due to reduced hardness of the DCTed alloys. The untreated alloy exhibits the best corrosion resistance, whereas poor corrosion resistance of the DCTed alloys is attributed to the reduced amount of Al 4 RE phase that fails to built a corrosion resistance barrier.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-07-21
    Description: Based on the growing application value of the P11 alloy steel in the nuclear power field, its dynamic recrystallization (DRX) behavior was firstly investigated by means of isothermal hot compression experiments, under the conditions of a testing temperature range between 800 and 950 °C, and a strain rate range between 0.01 and 2/s. Furthermore, optical microscopy and transmission electron microscopy were also employed to analyze the effect of the mechanism of the strain rate on DRX. The results indicated that the grain size could be significantly refined with the increase of strain rate. Also, the recrystallized volume fraction was increased and the dislocation density decreased with the decrease of strain rate, for the same strain values. Subsequently, numerical simulations, under the assistance of experimental results on DRX behavior, were successfully used to study the hot push bending process and simultaneously obtain the processing parameters of the actual work-pieces. Finally, some comparative analyses were performed and discussed in parallel with the deformed actual work-pieces. The EBSD results on the deformed P11 alloy steel were emphasized for exploring the forming properties of this alloy steel.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-07-21
    Description: Flexure, compressive, and shear properties of the carbon matrix in carbon/carbon (C/C) composites made via a pitch impregnation method have been determined. The pitch carbon matrix was made using the same densification cycle used in making the C/C composite. Cyclic compression tests were performed on the matrix specimens. While unloading, a reduction in modulus was observed and residual strains were observed on complete unloading. These features were attributed to the presence of damage and plasticity in the densified matrix. A J 2 plasticity model with damage was used to simulate this behavior numerically. The parameters required for plasticity and damage model were evaluated iteratively by comparing the results in experiments with simulation.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-07-22
    Description: The content of TiO 2 has an important influence on both the basic structure and the crystallization behavior of titanium-bearing blast furnace (BF) slag. The results of thermodynamic calculations show that, when the mass content of TiO 2 is smaller than 25%, CaTiO 3 increases as the content of TiO 2 increases. However, when the TiO 2 content is more than 25%, the CaTiO 3 content decreases and TiO 2 gradually increases. The results of a confocal laser scanning microscopy (CLSM) experiment show that, when the TiO 2 mass content is 10%, Ca 2 MgSi 2 O 7 and Ca 2 Al 2 SiO 7 are the main crystallized phases resulting from the molten slag. Furthermore, when the TiO 2 mass content is 20%, CaMgSi 2 O 6 , Ca(Ti,Mg,Al)(Si,Al) 2 O 7 and dendrite CaTiO 3 are the crystallized phases, while when the TiO 2 mass content increases to 30%, CaTiO 3 is the sole phase. The discrepancy between the CLSM results and the thermodynamic calculations occurs mainly due to the high melting point of the titanium-bearing BF slag. During the cooling process for the molten slag, CaTiO 3 is crystallized first, due to its high crystallization temperature. Furthermore, the molten slag is solidified in its entirety before the other phases crystallize.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-07-22
    Description: Forest-derived biomaterials can play an integral role in a sustainable and renewable future. Research across a range of disciplines is required to develop the knowledge necessary to overcome the challenges of incorporating more renewable forest resources in materials, chemicals, and fuels. We focus on wood specifically because in our view, better characterization of wood as a raw material and as a feedstock will lead to its increased utilization. We first give an overview of wood structure and chemical composition and then highlight current topics in forest products research, including (1) industrial chemicals, biofuels, and energy from woody materials; (2) wood-based activated carbon and carbon nanostructures; (3) development of improved wood protection treatments; (4) massive timber construction; (5) wood as a bioinspiring material; and (6) atomic simulations of wood polymers. We conclude with a discussion of the sustainability of wood as a renewable forest resource.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-07-22
    Description: The AA7050 alloy strips can be successfully prepared by semi-solid powder rolling. The effect and factors of particle size on the microstructure, relative density, and mechanical properties were discussed. The results show that coarse starting powders require less liquid to achieve high relative density, and the formed strips have lower elongation compared with that prepared with the fine starting powders. The strength is more related to defects, whereas elongation partially depends on the grain size. Additionally, the fracture mechanism of strips prepared with fine powders is the ductile fracture because many dimples are observed. For relative density, when the initial liquid fraction is lower than 10%, the difference of deformation degree is the main factor. When the liquid fraction is higher than 10–20%, premature solidification and more particle interfaces are the two main factors.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-07-23
    Description: Hydrogen was intentionally introduced into ultra-high strength steel by cadmium plating. The purpose was to examine the effect of cadmium plate thickness and hence hydrogen on the impact energy of the steel. The AISI 4340 steel was austenitized at 1000 °C for 1 h, water quenched, and tempered at temperatures between 257 and 593 °C in order to achieve a range of targeted strength levels. The specimens were cadmium plated with 0.00508 mm (0.2 mils), 0.00762 mm (0.3 mils), and 0.0127 mm (0.5 mils). Results demonstrated that the uncharged specimens exhibited higher impact energy values when compared to the plated specimens at all tempering temperatures. The cadmium-plated specimens had very low Charpy impact values irrespective of their ultimate tensile strength values. The model of hydrogen transport by mobile dislocations to the fracture site appears to provide the most suitable explanation of the results.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-07-23
    Description: Based on FACTSage® software, this paper focuses on the thermodynamic calculations of selective carbothermal reactions of vanadium-bearing titanomagnetite concentrates for preparing iron-based wear-resistant material directly from vanadium-bearing titanomagnetite concentrates. The calculations show that it was most likely to generate metallic iron, titanium carbide and vanadium carbide among all possible carbothermal reactions of vanadium-bearing titanomagnetite concentrates in a vacuum of 10 Pa. The equilibrium composition calculations indicate that Fe 3 O 4 can be reduced to metallic iron by carbon above 400°C, FeTiO 3 can be converted into TiC by carbon above 800°C and V 2 O 5 can be converted into VC by carbon above 600°C in a vacuum of 10 Pa. The investigations demonstrated that the percentage of ferrous oxides reduced to metallic iron was about 96%, the conversion percentage of FeTiO 3 into TiC was about 75% and the conversion percentage of V 2 O 5 into VC was about 94% after the selective carbothermal reactions of vanadium-bearing titanomagnetite concentrates at 1300°C for 3 h in a vacuum of 10 Pa.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-07-26
    Description: Hot compression tests were performed on high titanium content 6061 aluminum alloy (AA 6061-Ti) using a Gleeble-3500 thermomechanical testing system at temperatures from 350 to 510 °C with a constant strain rate in the range of 0.001-10 s −1 . Three types of flow stress models were established from the experimental stress-strain curves, the correlation coefficient ( R ), mean absolute relative error ( MARE ), and root mean square deviation ( RMSD ) between the predicted data and the experimental data were also calculated. The results show that the Fields–Backofen model, which includes a softening factor, was the simplest mathematical expression with a level of precision appropriate for the numerical simulations. However, the Arrhenius and artificial neural network (ANN) models were also consistent with the experimental results but they are more limited in their application in terms of their accuracy and the mathematical expression of the models.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-07-27
    Description: Cellulose nanomaterials (CNs) are a new class of cellulose particles with properties and functionalities distinct from molecular cellulose and wood pulp, and as a result, they are being developed for applications that were once thought impossible for cellulosic materials. Momentum is growing in CN research and development, and commercialization in this field is happening because of the unique combination of characteristics (e.g., high mechanical properties, sustainability, and large-scale production potential) and utility across a broad spectrum of material applications (e.g. as an additive, self-sustaining structures, and template structures) that CNs offer. Despite the challenges typical for materials development, CN and near-CN production is ramping up with pilot scale to industry demonstration trials, and the first commercial products are starting to hit the marketplace. This review provides a broad overview of CNs and their capabilities that are enabling new application areas for cellulose-based materials.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2016-07-28
    Description: Novel kinds of nanocomposites based on bisphenol A-aniline based polybenzoxazine matrix P(BA-a) and 0 wt.%–20 wt.% boron carbide (B 4 C) nanoparticles were produced and their properties were evaluated in terms of the nano-B 4 C content. The thermal conductivity of the P(BA-a) matrix was improved approximately three times from 0.18 W/m K to 0.86 W/m K at 20 wt.% nano-B 4 C loading, while its coefficient of thermal expansion (CTE) was deceased by 47% with the same nanofiller content. The microhardness properties were significantly improved by adding the B 4 C nanoparticles. At 20 wt.% of nano-B 4 C content, dynamic mechanical analysis (DMA) revealed a marked increase in the storage modulus and the glass transition temperature ( T g ) of the nanocomposites, reaching 3.9 GPa and 204°C, respectively. Hot water uptake tests showed that the water-resistance of the polybenzoxazine matrix was increased by filling with nano-B 4 C nano-filler. The morphological analysis reflected that the improvements obtained in the mechanical and thermal properties are related to the uniform dispersion of the nano-B 4 C particles and their strong adhesion to the P(BA-a) matrix.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2016-07-28
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-07-28
    Description: This article investigates the development of porosity in titania-rich slag obtained by sintering via conventional and thermal plasma heating at 1000°C in inert atmosphere. The holder in the plasma reactor acted as the discharge anode confined within a hollow graphite cathode. Quantitative evaluation of the porosity in the conventionally sintered and plasma-sintered titania-rich slag was performed via pycnometry. Specifically, the physical dimension and morphology of the pores were characterized according to the area fraction, mean diameter, shape factor, and elongation factor. Under both conventional and thermal plasma heating conditions, porosity developed on the surface of titania-rich slag. The titania-rich slag obtained by two processes showed different porosity features in terms of the morphology and porosity. A lower porosity was observed in the plasma-sintered sample when compared with that obtained via conventional heating.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-07-28
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2016-07-28
    Description: The solubility of lithium metal in molten LiCl–Li 2 O mixtures has been measured at various concentrations of Li 2 O ranging from 0 wt.% to 2.7 wt.% at a temperature of approximately 670–680°C. After contacting molten lithium with molten LiCl–Li 2 O for several hours to achieve equilibrium saturation, samples were taken by freezing the salt onto a room-temperature steel rod and dissolving in water for analysis. Both volume of hydrogen gas generated and volume of titrated HCl were measured to investigate two different approaches to calculating the lithium concentration. There appeared to be no effect of Li 2 O concentration on the Li solubility in the salt. But the results vary between different methods of deducing the amount of dissolved Li. The H 2 collection method is recommended, but care must be taken to ensure all of the H 2 has been included.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2016-07-28
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2016-07-28
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2016-07-28
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-07-28
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2016-07-30
    Description: Decreasing pitch size in electronic packaging has resulted in a drastic decrease in solder volumes. The Sn grain crystallography and fraction of intermetallic compounds (IMCs) in small-scale solder joints evolve much differently at the smaller length scales. A cross-sectional study limits the morphological analysis of microstructural features to two dimensions. This study utilizes serial sectioning technique in conjunction with electron backscatter diffraction to investigate the crystallographic orientation of both Sn grains and Cu 6 Sn 5 IMCs in Cu/Pure Sn/Cu solder joints in three dimensional (3D). Quantification of grain aspect ratio is affected by local cooling rate differences within the solder volume. Backscatter electron imaging and focused ion beam serial sectioning enabled the visualization of morphology of both nanosized Cu 6 Sn 5 IMCs and the hollow hexagonal morphology type Cu 6 Sn 5 IMCs in 3D. Quantification and visualization of microstructural features in 3D thus enable us to better understand the microstructure and deformation mechanics within these small scale solder joints.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2016-07-30
    Description: Pulsed laser spot welding of intersection points of zirconium alloys straps was performed. Weld bead size, microstructure and the corrosion behavior of weld bead were investigated. With the increasing laser peak power or number of shots, the weld width of the beads increased, the protrusion decreased and the dimple increased with further increase in heat input. The fusion zone consisted of a mixture of αZr and residual βZr phases. After annealing treatment, βNb and Zr(Fe, Nb) 2 second phase particles were precipitated inter- and intragranular of αZr grains adequately. The oxide thickness of annealed weld bead was about 3.90 μm, decreased by about 18.1% relative to the 4.76 μm of as-welded specimen corroded at 400 °C and 10.3 MPa for 20 days. The corrosion resistance of annealed specimen was better than that of as-welded specimen, since the second phase particles exerted better corrosion resistance, and the content of Nb in βZr and the fraction of βZr decreased after the annealing treatment.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2016-07-30
    Description: Al 2 O 3 micro-powder was suspended in the basis electrolyte to form micro-arc oxidation (MAO) coatings on 6061 aluminum alloy by MAO. During the stage of micro-arc oxidation, Al 2 O 3 micro-powder with negative surface charge was melted by the micro-arc around the anode and incorporated into the MAO coatings. With the continuous addition of Al 2 O 3 micro-powder, the oxidation voltages rose up firstly and then decreased. The surface and cross-sectional morphologies showed that the size of micropores decreased and the MAO coatings surface got loosened following the variation in Al 2 O 3 micro-powder concentration. As a consequence of the changing coating structure, the corrosion resistance of the coatings decreased apparently. The micro-hardness of the coatings increased firstly and then decreased, opposite to the trend of the average friction coefficient. It revealed the minimum average friction coefficient of MAO coatings and maximum adhesion between the coatings and substrate when 2.0 g/L Al 2 O 3 micro-powder was added into electrolyte. There were visible cracks and peelings on the coating surface merely at 4.0 g/L after thermal shock tests. The x-ray diffraction results indicated that the addition of Al 2 O 3 micro-powder had less effect on the phase composition of MAO coatings.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2016-08-03
    Description: Free-standing NiCo 2 O 4 @Ni cathodes for aprotic lithium-oxygen batteries were synthesized through a simple hydrothermal process followed by heat treatment in the air. The morphology of the NiCo 2 O 4 deposit changed from nanosheet to nanowire with the increase of hydrothermal time. Further observation revealed that the nanosheet/nanowire NiCo 2 O 4 were assembled by nanoparticles with a size of 10–20 nm. The directional assembly of the nanoparticles were not affected by the reaction time. The influence of catalyst microstructure on the electrochemical performance of Li-O 2 batteries was studied. The results of battery tests in pure oxygen indicate that the cathode material with a high specific surface area, large pore volume and broad pore size distribution can facilitate the discharge reaction, leading to an improved cell performance. As a result, the cathode based on the NiCo 2 O 4 nanowire array delivered a specific discharge capacity of 1682 mAh g −1 at 30 mA g −1 and a stable cyclability of 50 cycles with a capacity limitation of 500 mAh g −1 .
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2016-08-05
    Description: Microstructure and functional mechanism of friction layer need to be further researched. In the present work, the friction coefficients and wear rates are analyzed through response surface methodology to obtain an empirical model for the best response. Fitting results show that the tribological performance of Ni 3 Al matrix composites (NMCs) with graphene nanoplatelets (GNPs) is better than that of NMCs without GNPs, especially at high sliding velocities and high loads. Further research suggests that the formation of integrated friction layer, which consists of a soft microfilm on a hard coating, is the major reason to cause the differences. Of which, the wear debris layer (WDL) with a low shear strength can reduce the shear force. The ultrafine layer (UL), which is much harder and finer, can effectively avoid fracture and improve the load support capacity. Moreover, the GNPs in WDL and UL can be easily sheared and help to withstand the loads, trending to be parallel to the direction of shear force.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2016-08-06
    Description: The room temperature mechanical behavior of the fully bainitic steel grade 20CrMoVTiB410 was studied in the as-quenched and tempered conditions. The hardenability response of the steel during heat treatment was assessed. In the as-quenched condition itself, the steel exhibited a good combination of strength, ductility and toughness. Tempering the quenched steel till to 550°C, showed uniform mechanical properties. Tempering at 650°C showed secondary hardening behaviour, where the highest strength and least impact toughness was observed. Tempering at 700°C showed a sharp decrease in strength but with significant enhancement of toughness. The properties obtained were correlated with the microstructure and phase analysis was established using optical, scanning electron microscope, transmission electron microscope and x-ray diffraction techniques.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2016-08-06
    Description: In present study, 6061- and A356-based nano-composites are fabricated by using the ultrasonic stirring technology (UST) in a coreless induction furnace. SiC nanoparticles are used as the reinforcement. Nanoparticles are added into the molten metal and then dispersed by ultrasonic cavitation and acoustic streaming assisted by electromagnetic stirring. The applied UST parameters in the current experiments are used to validate a recently developed magneto-hydro-dynamics (MHD) model, which is capable of modeling the cavitation and nanoparticle dispersion during UST processing. The MHD model accounts for turbulent fluid flow, heat transfer and solidification, and electromagnetic field, as well as the complex interaction between the nanoparticles and both the molten and solidified alloys by using ANSYS Maxwell and ANSYS Fluent. Molecular dynamics (MD) simulations are conducted to analyze the complex interactions between the nanoparticle and the liquid/solid interface. The current modeling results demonstrate that a strong flow can disperse the nanoparticles relatively well during molten metal and solidification processes. MD simulation results prove that ultrafine particles (10 nm) will be engulfed by the solidification front instead of being pushed, which is beneficial for nano-dispersion.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2016-08-06
    Description: Spark plasma sintering (SPS) is a powder metallurgy process that sinters powder materials within a short time by simultaneous application of electrical current and pressure. SPS differs from other conventional powder metallurgy processes by its heating mechanism, which is Joule heating of the sample within a graphite die. This study investigates the consolidation of aluminum powder by SPS. Different pressures were used and particle bonding evaluated by means of fracture surface analysis. Electrical resistance, obtained from online monitoring of the variation of voltage and current during the process, showed an enhanced descent at 0.3  T m , and the area under this drop was associated with ductility: the greater the area, the higher the ductility. This temperature corresponds to a significant increase in the hardness ratio of the oxide layer to aluminum, where breakdown of the oxide layer becomes easier, permitting enhanced metallurgical bonding between the powder particles.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2016-08-06
    Description: Microstructures of the heat-affected zone (HAZ) of a Gr. 91 steel weld were simulated to evaluate their effects on the creep life of the weld at elevated temperatures. The Ac 1 and Ac 3 temperatures of the Gr. 91 steel were determined by a dilatometer to be at 867 and 907 °C, respectively. An infrared heating system was employed to heat the samples to 860 (STOT), 900 (ICHAZ) and 940 °C (FGHAZ) for 1 min, followed by cooling to room temperature. The simulated specimens were then subjected to conventional post-weld heat treatment (PWHT) at 750 °C/2 h. After the PWHT, the tempered ICHAZ specimen had a shortest creep life among the specimens tested at 650 °C/60 MPa. Moreover, the simulated specimen heated to 860 °C (STOT) was more likely to fracture at 615 °C/80 MPa than others.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2016-08-06
    Description: Sliding wear tests were performed for H13 steel in atmosphere, distilled water, 3.5% NaCl, and 5% NaOH water solutions under various loads on a pin-on-disk wear tester. The results showed that for different environmental media, the wear rate of H13 steel in atmosphere was the maximum and that in 3.5% NaCl solution was the minimum. The maximum wear rate in atmosphere was caused by a larger quantity of heat produced in the friction process. In this case, the adhesive wear prevailed. In three wet environments, the mild wear prevailed due to the good lubrication and cooling capacity of media as well as corrosion product film on worn surface. In distilled water, the wear mechanism was a typical fatigue wear. On the other hand, in 3.5% NaCl and 5% NaOH solutions, corrosive wear prevailed. The minimum wear rate in 3.5% NaCl solution was attributed to the protective function of corrosion product film. On the contrary, noncompact corrosion product film in 5% NaOH solution resulted in higher wear rate.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2016-08-06
    Description: The microstructure and mechanical properties of laser-welded high-strength Mg-Gd-Y-Zr alloy in T6 condition were investigated. The network-distributed precipitates at grain boundaries were identified as the Mg 24 (Gd,Y) 5 . No significant grain coarsening was observed in the heat-affected zone. The deterioration of mechanical properties was attributed to the dissolution of precipitates in the heat-affected zone during laser welding. For the weakest part of the heat-affected zone, solid solution strengthening was the most important strengthening factor.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2016-08-06
    Description: The effect of grain size and current density on deformation behavior during electrically assisted tension of Ti-6Al-4V alloy was investigated. The microstructural variations under different conditions were observed by optical microscope, SEM and TEM. The dislocation density was quantified by x-ray diffraction technique. The decrease in grain size could increase the elongation growth and stress reduction during electrically assisted tension. Fine grain size specimens can reach higher temperature than coarse grain specimens. With increasing current density, wider and deeper dimples on the fracture surfaces were observed, and less dislocation density and pileups were found in comparison with room-temperature tension without current. The dislocation density has a 62.1% reduction at 10.48 A/mm 2 compared with room-temperature tension for 9.2 μm grain size specimens.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2016-08-06
    Description: Reported work focuses on the effect of morphology of the Fe-rich intermetallic phases on the machinability of Al-alloy containing 〉2wt.% Fe, obtained from automotive scrap. Effect of Mo addition on the microstructure, high-temperature impression creep and thereby the machinability of the Al-recycled alloy were studied. The machinability of the recycled alloy was estimated by investigating the built-up-edge (BUE) and surface roughness ( R a ). SEM-EDS and TEM-SADP studies have shown that the crystal structure (BCC) of the Al 8 Fe 2 Si phase remained unchanged; however, Mo replaced few Fe atoms with little effect on the lattice dimension. It has been found that the addition of Mo to the recycled alloy suppresses the formation of β -phase (Al 5 FeSi) by suppressing the peritectic transformation of α (Al 8 Fe 2 Si) phase. Such suppression is found to improve the high-temperature creep resistance and the machinability with the increase in the Mo addition level.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2016-07-13
    Description: This study is the first attempt to investigate the influence of severe plastic deformation (SPD) treatment on material surface behavior under intensive erosive conditions. Samples of aluminum alloy 1235 (99.3 Al) before and after high-pressure torsion (HPT) were subjected to intensive erosion by corundum particles accelerated via air flow in a small-scale wind tunnel. Velocity of particles varied from 40 to 200 m/s, while particle average diameter was around 100 μm. Surface roughness measurements provided possibility to compare surface properties of both materials after erosion tests. Moreover, SPD processing appeared to increase noticeably the threshold velocity of the surface damaging process. Additionally, structural analysis of the fracture surfaces of the tested samples was carried out.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2016-07-14
    Description: Functionally graded aluminum foam (FG Al foam) is a new class of Al foam in which the pore structure varies over the foam, resulting in corresponding variations in the mechanical properties of the foam. In this study, FG Al foam plates were fabricated by a friction powder sintering (FPS) process with a traversing tool that is based on a previously developed sintering and dissolution process. The variation of the mechanical properties was realized by setting the volume fraction φ of NaCl in the mixture to 60, 70, and 80%. Long FG Al foam plates were fabricated with a length equal to the tool traversing length with φ varying in the tool traversing direction. From x-ray computed tomography observation, it was shown that the density of the Al foam decreased with increasing φ . In contrast, almost uniform pore structures were obtained in each area. According to the results of compression tests on each area, the plateau stress and energy absorption tended to decrease with increasing φ . Therefore, it was shown that FG Al foam plates with varying mechanical properties can be fabricated by the FPS process with the traversing tool.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2016-07-14
    Description: This review sheds light on the creep properties of AZ91 magnesium alloys with a major emphasis on the influence of microstructure on the creep resistance and underlying creep deformation mechanism based on stress exponent and activation energy. Effects of processing routes such as steel mold casting, die casting, and thixoforming are considered. Roles of a wide range of additional alloying elements such as Si, Sb, Bi, Ca, Sn, REs, and combined addition of them on the microstructure modification were investigated. The reaction between these elements and the Mg or Al in the matrix develops some thermally stable intermetallic phases which improves the creep resistance at elevated temperatures, however does not influence the creep mechanism.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2016-07-15
    Description: In this article, the wrinkling behavior and thickness distribution of 5A06 aluminum alloy sheets in an annealed state with thickness of 1.0 mm and 2.5 mm was numerically and experimentally investigated under different hydraulic pressures in the hydroforming of single-layer and double-layer sheets. Note that, in double-layer sheets hydroforming, an upper-aided sheet is needed. The upper, thicker sheet synchronously deforms with the lower, thinner sheet during hydroforming. When the double-layer sheets are separated, a thinner curved sheet part will be manufactured. As can be seen from the simulation and experimental results, the upper, thicker sheet could effectively suppress the wrinkles of the lower, thinner sheet and improve the thickness distribution due to the increasing anti-wrinkle ability of the formed sheet and the interfacial friction between the double-layer sheets. In addition, the maximum hydraulic pressure can be decreased via hydroforming of double-layer sheets; this approach reduces the drawing force for large sheet parts and meets the requirement of energy conservation.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2016-07-20
    Description: Manual attribution of crystallographic phases from high-throughput x-ray diffraction studies is an arduous task, and represents a rate-limiting step in high-throughput exploration of new materials. Here, we demonstrate a semi-supervised machine learning technique, SS-AutoPhase, which uses a two-step approach to identify automatically phases from diffraction data. First, clustering analysis is used to select a representative subset of samples automatically for human analysis. Second, an AdaBoost classifier uses the labeled samples to identify the presence of the different phases in diffraction data. SS-AutoPhase was used to identify the metallographic phases in 278 diffraction patterns from a FeGaPd composition spread sample. The accuracy of SS-AutoPhase was 〉82.6% for all phases when 15% of the diffraction patterns were used for training. The SS-AutoPhase predicted phase diagram showed excellent agreement with human expert analysis. Furthermore it was able to determine and identify correctly a previously unreported phase.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2016-07-21
    Description: In this study, using a nonlinear estimation of strain hardening rate versus strain, a new phenomenological constitutive equation is developed. Utilizing the presented model, three new equations were presented to determine the peak strain, critical strain for initiation of dynamic recrystallization (DRX), and transition strain associated with the maximum softening rate of DRX. Also, two temperature and strain rate-sensitive parameters were introduced to generate flow stress curve at any desired deformation conditions. The predicted results were found to be in a good agreement with the ones measured experimentally. Maximum errors in prediction of peak strain, critical strain, and transition strain were about 8, 11, and 4%, respectively. In addition, evaluation of maximum errors in prediction of flow stress indicates that the presented constitutive equation gives a more precise estimation of flow stress curves in comparison with the previous models pertaining modeling of single-peak flow stress curves.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2016-07-21
    Description: Hot compression tests of Ti-6Al-4V alloy in a wide temperature range of 1023-1323 K and strain rate range of 0.01-10 s −1 were conducted by a servo-hydraulic and computer-controlled Gleeble-3500 machine. In order to accurately and effectively characterize the highly nonlinear flow behaviors, support vector regression (SVR) which is a machine learning method was combined with genetic algorithm (GA) for characterizing the flow behaviors, namely, the GA-SVR. The prominent character of GA-SVR is that it with identical training parameters will keep training accuracy and prediction accuracy at a stable level in different attempts for a certain dataset. The learning abilities, generalization abilities, and modeling efficiencies of the mathematical regression model, ANN, and GA-SVR for Ti-6Al-4V alloy were detailedly compared. Comparison results show that the learning ability of the GA-SVR is stronger than the mathematical regression model. The generalization abilities and modeling efficiencies of these models were shown as follows in ascending order: the mathematical regression model 〈 ANN 〈 GA-SVR. The stress-strain data outside experimental conditions were predicted by the well-trained GA-SVR, which improved simulation accuracy of the load-stroke curve and can further improve the related research fields where stress-strain data play important roles, such as speculating work hardening and dynamic recovery, characterizing dynamic recrystallization evolution, and improving processing maps.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2016-07-21
    Description: Effects of the normalizing treatment on microstructural evolution, mechanical properties, and impact fracture behavior of 20MnV low alloy cryogenic as-rolled steel were evaluated. The results indicate that grain boundary carbide and acicular ferrite of the as-rolled steel were eliminated and a large amount of nanoscale VC precipitates were observed after 860 °C normalizing treatment. The as-normalized steel had lower strength, higher elongation, and impact absorbed energy than as-rolled steel. The optimal comprehensive mechanical property, especially the superior cryogenic toughness with impact absorbed energy values at −20 and −50 °C were 62 and 40 J, respectively, was obtained at 860 °C. The as-rolled steel contained shearing crack and necking crack simultaneously, while 860 °C as-normalized steel only contained deflecting necking crack, indicating the significant improvement of the toughness.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2016-07-21
    Description: In the present work, residual stresses distribution in the gas nitrided AISI 4140 sample has been studied using finite element (FE) simulation. The nitrogen concentration profile is obtained from the diffusion-controlled compound layer growth model, and nitrogen concentration controls the material volume change through phase transformation and lattice interstitials which results in residual stresses. Such model is validated through residual stress measurement technique—micro-ring-core method, which is applied to the nitriding process to obtain the residual stresses profiles in both the compound and diffusion layer. The numerical and experimental results are in good agreement with each other; they both indicate significant stress variation in the compound layer, which was not captured in previous research works due to the resolution limit of the traditional methods.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2016-07-22
    Description: Butt weld joints are prepared using pulse current gas tungsten arc welding out of thin sheets of AISI 1008 steel using various combinations of pulse parameters. During welding, the welding speed was kept high, but with the increase of welding speed the mean current was also increased to get the required weld joint at the constant heat input. The use of pulse current has led to improvement in mechanical and metallurgical properties of weld joints. It has resulted in less development of humping which is a common problem with high-speed welding. The undercut or dipped weld face is not observed severe. The tensile strength and hardness are enhanced by 12.5 and 12%. The increase of tensile strength and hardness is justified through TEM micrograph showing the presence of dislocation.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2016-07-22
    Description: To develop an optimised manufacturing method of fly ash-reinforced metal matrix composites, the preliminary tests were performed on the cenospheres selected from fly ash (FA CS ) with halloysite nanotubes (HNTs) addition. The preform made out of FA CS with and without the addition of HNT (with 5 and 10 wt.%) has been infiltrated by the pure aluminium (Al) via adapted gas pressure infiltration process. This paper reveals the influence of HNT addition on the microstructure (analysis was done by computed tomography and scanning electron microscopy combined with energy-dispersive x-ray spectroscopy), thermal properties (thermal expansion coefficient, thermal conductivity and specific heat) and the mechanical properties (hardness and compression test) of manufactured composites. The analysis of structure-property relationships for Al/FA CS -HNT composites produced shows that the addition of 5 wt.% of HNT to FA CS preform contributes to receiving of the best mechanical and structural properties of investigated composites.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2016-07-22
    Description: A Fe-Al-Cr alloyed layer was deposited onto the surface of Q235 low-carbon steel via double glow plasma surface metallurgy (DGPSM) to improve the steel’s wear resistance. After the DGPSM treatment, the Fe-Al-Cr alloyed layer grown on the Q235 low-carbon steel was homogeneous and compact and had a thickness of 25 µm. The layer was found to be metallurgically adhered to the substrate. The frictional coefficient and specific wear rate of the sample with a Fe-Al-Cr alloyed layer (treated sample) were both lower than those of the bare substrate (untreated sample) at the measured temperatures (25, 250 and 450 °C). The results indicated that the substrate and the alloyed layer suffered oxidative wear and abrasive wear, respectively, and that the treated samples exhibited much better tribological properties than did the substrate. The formation of Fe 2 AlCr, Fe 3 Al(Cr), FeAl(Cr), Fe(Cr) sosoloid and Cr 23 C 6 phases in the alloyed layer dramatically enhanced the wear resistance of the treated sample. In addition, the alloyed layer’s oxidation film exhibited a self-healing capacity with lubrication action that also contributed to the improvement of the wear resistance at high temperature. In particular, at 450 °C, the specific wear rate of treated sample was 2.524 × 10 −4  mm 3 /N m, which was only 45.2% of the untreated sample.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2016-07-23
    Description: The sliding wear under fretting condition, scratch adhesion, deformation behavior during micro- and nanoscratch studies have been studied for nanocomposite TiSiBC hard coating deposited on steel substrate by magnetron sputtering. The nanocomposite coatings having hardness and modulus around 30 and 300 GPa, respectively, showed a very significant decrease in fretting wear as compared to the uncoated steel. Pileup occurred along the sides of the scratch track due to plastic deformation of the substrate at the scratch load; however, cracks were not seen in films. The coefficient of friction remained 〈0.25 with increasing load. Under static load, even at 2000 gf (20 N) coating did not show crack in the film. Coated steel showed significant elastic recovery as compared to uncoated steel. The TiSiBC-coated substrate showed higher resistance to scratch, higher wear resistance, higher toughness and low coefficient of friction.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2016-07-23
    Description: Temperature histories of structural steel deep-penetration welds are presented, which are calculated using numerical-analytical basis functions and solidification-boundary constraints. These weld temperature histories can be adopted as input data to various types of computational procedures, which include numerical models for prediction of solid-state phase transformations and mechanical response. In addition, these temperature histories can be used parametrically for inverse thermal analysis of welds corresponding to other welding processes whose process conditions are within similar regimes. The present study applies an inverse thermal analysis procedure that uses three-dimensional constraint conditions whose two-dimensional projections are mapped within transverse cross sections of experimentally measured solidification boundaries. In addition, the present study uses experimentally measured estimates of the heat effect zone edge to examine the consistency of calculated temperature histories for steel welds.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2016-07-23
    Description: The present work focuses on the processing of cathode active material of spent lithium ion batteries to improve the recovery of constituent metals using reducing agents. Reductants enhance the solubility of metals, which hitherto have been solubilised to a lesser extent using only acid as leaching agent. Thus, we have investigated sulfuric acid leaching in the presence of sodium bisulfite comparing its efficiency with hydrogen peroxide. By simple acid leaching using 1 M H 2 SO 4 at 368 K and 50 g/L pulp density, 93.4% Li, 66.2% Co, 96.3% Ni and 50.2% Mn were recovered in 240 min. In the presence of 5% H 2 O 2 as a reducing agent at 368 K with 1 M H 2 SO 4 and 50 g/L pulp density, the leaching of cobalt (79.2%) and manganese (84.6%) were significantly improved in 240 min. With the addition of 0.075 M NaHSO 3 as a reducing agent, ~96.7% Li, 91.6% Co, 96.4% Ni and 87.9% Mn were recovered under similar conditions. Sodium bisulfite addition results in better recovery of cobalt and manganese by reducing them to their lower oxidation states. The HSC evaluation of thermodynamic feasibility vis-à-vis x-ray diffraction and scanning electron microscopy characterization of residues generated by leaching with hydrogen peroxide and sodium bisulfite substantiates the governing mechanism.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2016-07-27
    Description: This paper investigated the non-isothermal crystallization kinetics of the spinel crystals in vanadium slags containing high CaO content. Experiments were performed in combination with theoretical calculation to address this issue, and statistical analyses based on the Crystal Size Distribution theory. The results indicate that low cooling rate and high CaO content benefit the growth of spinel crystals. The growth mechanism is revealed to be controlled by interface reactions and diffusion at the cooling rates of 5 K/min and 15 K/min, respectively. However, at higher temperatures (〉1673 K), the growth of spinel crystals is controlled by nucleation. While the temperature is decreased to 1523 K at the cooling rate of 5 K/min, the mean diameter of spinel crystals could reach 36.44 μm. Experimental results combining with theoretical reveal that low cooling rate benefits spinels growth, especially for the interval of 1523 K–1200 K.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2016-07-30
    Description: The cross dissimilar welds between T92 martensitic steel and S30432 austenitic steel were crept at 625 °C with different applied stresses, and the creep deformation and microstructure behaviors were characterized. The results revealed that the creep deformation behavior of dissimilar weld joint was controlled by its martensitic T92 part due to the Ni-based filler metal employed. The fracture positions of crept dissimilar welded joints were located in base metal of T92 steel as the applied stress over than 140 MPa. The fracture type was mainly caused by plastic deformation and characterized by dimples and surface necking. In contrast, as applied stress was 〈140 MPa, fractured location was transferred into the fine-grained heat-affected zone of T92 part identified to be the intergranular brittle fracture. This phenomenon was controlled by creep deformation and related to undissolved carbides, fine grain size and constraint effect induced by creep deformation inconsistent in this zone.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2016-07-30
    Description: A triplex plasma (NiCoCrAlHfYSi/Al 2 O 3 ·13%TiO 2 )/polycaprolactone composite coating was successfully deposited on a Mg-1.2Ca alloy by a combination of atmospheric plasma spraying and dip-coating techniques. The NiCoCrAlHfYSi (MCrAlHYS) coating, as the first layer, contained a large number of voids, globular porosities, and micro-cracks with a thickness of 40-50 μm, while the Al 2 O 3 ·13%TiO 2 coating, as the second layer, presented a unique bimodal microstructure with a thickness of 70-80 μm. The top layer was a hydrophobic polymer, which effectively sealed the porosities of plasma layers. The results of micro-hardness and bonding strength tests showed that the plasma coating presented excellent hardness (870 HV) and good bonding strength (14.8 MPa). However, the plasma/polymer coatings interface exhibited low bonding strength (8.6 MPa). The polymer coating formed thick layer (100-110 μm) that homogeneously covered the surface of the plasma layers. Contact angle measurement showed that polymer coating over plasma layers significantly decreased surface wettability. The corrosion current density ( i corr ) of an uncoated sample (262.7 µA/cm 2 ) decreased to 76.9 µA/cm 2 after plasma coatings were applied. However, it was found that the i corr decreased significantly to 0.002 µA/cm 2 after polymer sealing of the porous plasma layers.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2016-08-03
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2016-08-03
    Description: To maximize the recovery of iron and copper from copper slag, the modification process by adding a compound additive (a mixture of hematite, pyrite and manganous oxide) and optimizing the cooling of the slag was studied. The phase reconstruction mechanism of the slag modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that the synergy between the burnt lime and the compound additive promotes the generation of target minerals, such as magnetite and copper matte. In addition, the multifunctional compound additive is able to improve the fluidity of the molten slag, which facilitates the coalescence and growth of fine particles of the target minerals. As a result, the percentage of iron distributed in the form of magnetite increased from 32.9% to 65.1%, and that of the copper exiting in the form of metallic copper and copper sulfide simultaneously increased from 80.0% to 90.3%. Meanwhile, the grains of the target minerals in the modified slag grew markedly to a mean size of over 50 μm after slow cooling. Ultimately, the beneficiation efficiency of copper and iron was improved because of the ease with which the target minerals could be liberated.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2016-08-03
    Description: The high cost and time typically expended in the successful deployment of new materials into high-performance commercial products is attributable to multiple factors. The most significant of these include the heavy reliance on experiments, the persisting disconnect between multiscale experiments and multiscale models, the lack of a broadly accessible data and knowledge infrastructure that can support the implementation of a holistic systems approach, and the lack of a suitable framework for facilitating and enhancing the critically needed cross-disciplinary collaborations. The emerging discipline of materials data science and informatics (MDSI) promises to address these key technology gaps. The potential benefits to the materials innovation enterprise that could accrue from an aggressive adoption of the novel concepts and toolsets offered by MDSI are examined. A specific vision is expounded for the role of MDSI in bridging the large gap that exists between the multiscale materials experiments and the multiscale materials models.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2016-08-03
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2016-08-03
    Description: Greenhouse gas (GHG) generation is inherent in the production of aluminium by a technology that uses carbon anodes. Most of those GHG are composed of CO 2 produced by redox reaction that occurs in the cell. However, a significant fraction of the annual GHG production is composed of perfluorocarbons (PFC) resulting from anode effects (AE). Multiple investigations have shown that tetrafluoromethane (CF 4 ) can be generated under low-voltage conditions in the electrolysis cells, without global anode effect. The aim of this paper is to find a quantitative relationship between monitored cell parameters and the emissions of CF 4 . To achieve this goal, a predictive algorithm has been developed using seven cell indicators. These indicators are based on the cell voltage, the noise level and other parameters calculated from individual anode current monitoring. The predictive algorithm is structured into three different steps. The first two steps give qualitative information while the third one quantitatively describes the expected CF 4 concentration at the duct end of the electrolysis cells. Validations after each step are presented and discussed. Finally, a sensitivity analysis was performed to understand the effect of each indicator on the onset of low-voltage PFC emissions. The standard deviation of individual anode currents was found to be the dominant variable. Cell voltage, noise level, and maximum individual anode current also showed a significant correlation with the presence of CF 4 in the output gas of an electrolysis cell.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2016-08-03
    Description: The study of material failure with digital analytics is in its infancy and offers a new perspective to advance our understanding of damage initiation and evolution in metals. In this article, we study the failure of aluminum using data-enabled methods, statistics and data mining. Through the use of tension tests, we establish a multivariate acoustic-data matrix of random damage events, which typically are not visible and are very difficult to measure due to their variability, diversity and interactivity during damage processes. Aluminium alloy 6061-T651 and single crystal aluminium with a (111) orientation were evaluated by comparing the collection of acoustic signals from damage events caused primarily by slip in the single crystal and multimode fracture of the alloy. We found the resulting acoustic damage-event data to be large semi-structured volumes of Big Data with the potential to be mined for information that describes the materials damage state under strain. Our data-enabled analyses has allowed us to determine statistical distributions of multiscale random damage that provide a means to quantify the material damage state.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2016-08-03
    Description: A two-stage sequential heavy reduction (HR) method, in which the reduction amount was increased both before and after the solidification end, is presented to simultaneously improve the homogeneity and compactness of the continuous casting bloom. With bearing steel GCr15 chosen as the specific research steel, a three-dimensional thermal–mechanical finite element model was developed to simulate and analyze the thermal and mechanical behaviors of the continuous casting bloom during the HR process. In order to ensure the accuracy of the simulation, the constitutive model parameters were derived from the experimental results. The predicted temperature distribution and shell thickness were verified using a thermal infrared camera and nail shooting results, respectively. The real measured relationship between the HR pressure and amount were applied to verify the mechanical model. The explorative application results showed that the quality of the bloom center and compactness of rolled bars have both been significantly improved after the HR was applied.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2016-08-03
    Description: The mass of automotive components has a direct influence on several aspects of vehicle performance, including both fuel consumption and tailpipe emissions, but the real environmental benefit has to be evaluated considering the entire life of the products with a proper life cycle assessment. In this context, the present paper analyzes the environmental burden connected to the production of a safety-relevant aluminum high-pressure die-casting component for commercial vehicles (a suspension cross-beam) considering all the phases connected to its manufacture. The focus on aluminum high-pressure die casting reflects the current trend of the industry and its high energy consumption. This work shows a new method that deeply analyzes every single step of the component’s production through the implementation of a wide database of primary data collected thanks to collaborations of some automotive supplier companies. This energy analysis shows significant environmental benefits of aluminum recycling.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2016-08-03
    Description: Tb 2 TiO 5 neutron absorber was synthesized by ball milling and sintering. Microstructure character of ball-milled Tb 4 O 7 -17.605%TiO 2 (mass fraction, %) powders and sintered bulks was analyzed using XRD, SEM and TEM. The microhardness, coefficient of thermal expansion and thermal conductivity of sintered bulks were measured. The experiment results showed that the nanocrystalline solid solution was obtained during ball milling. After 96 h of ball milling, TiO 2 was completely solved in Tb 4 O 7 and the crystal size of Tb 4 O 7 was up to 37 nm. The bulk materials prepared by cold isostatic pressing were sintered at 1300 °C. Tb 2 TiO 5 bulks with an orthorhombic structure were obtained. The microhardness of sintered bulks, as well as the thermal conductivity, increased firstly with increasing ball milling time and then decreased. The coefficient of thermal expansion decreased initially and then increased with increasing ball milling time. For the sintered bulk with powder milled for 48 h, the highest values of both microhardness and thermal conductivity were observed, whereas the lowest coefficient of thermal expansion was exhibited. In addition, with increasing testing temperature, the thermal conductivity of sintered bulks initially fell and then rebounded while an opposite trend was found in the coefficient of thermal expansion.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2016-08-03
    Description: This paper presents new studies of the physical and mechanical characterization of PA6 matrix composites with different volume fractions of glass microspheres (10, 15, 20, 25 and 30%), which have been processed in an industrial environment. The mechanical properties of different processed composites were obtained by three-point bending tests, and the influence of the time of immersion in water in the strength and modulus was analyzed. The mechanical properties obtained in static tests and DMA tests of the processed composites demonstrated significant increases with an increasing volume fraction of the glass microspheres. In fracture toughness tests, K IC values higher than 12% were obtained. On the contrary, the immersion in water for 20 days promotes a decrease in flexural strength and flexural modulus greater than 11 and 22%, respectively. Finally, the influence of the addition of glass microspheres to the polyamide matrix was analyzed, and the increase in Tg with increasing fraction of the glass microspheres was observed.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2016-08-03
    Description: The objective of this work is to understand the different mechanisms of crack formation in dense anodes used in the aluminum industry. The first approach used is based on the qualitative characterization of the surface cracks and the depth of these cracks. The second approach, which constitutes a quantitative characterization, is carried out by determining the distribution of the crack width along its length as well as the percentage of the surface containing cracks. A qualitative analysis of crack formation was also carried out using 3D tomography. It was observed that mixing and forming conditions have a significant effect on crack formation in green anodes. The devolatilization of pitch during baking causes the formation and propagation of cracks in baked anodes in which large particles control the direction of crack propagation.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2016-08-03
    Description: AZ31-Mg 2 Si in situ composites were prepared from AZ31 Mg alloy and Si particles by a gravity casting method. Several parameters, such as Si content, normal load, and environmental temperature, were varied in order to study their effects on the composite dry sliding wear properties. Tensile properties and hardness of the composites were also investigated. The obtained results showed that the wear resistance, yield strength, and hardness of the AZ31-Mg 2 Si composites increased with size and quantity of the Mg 2 Si phase. However, when the environmental temperature increased from 25 to 190 °C, the composite wear resistance and ultimate tensile strength gradually decreased due to softening of the AZ31 matrix.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2016-08-04
    Description: In the present research work, corrosion behavior of post-weld heat-treated (PWHT) AISI 316L (X2CrNiMo 17-13-2) specimens joined by gas metal arc welding is compared with as-welded samples by using potentiodynamic polarization technique. Welded samples were PWHT at 1323 K for 480 s and quenched. Mechanical properties, corrosion behavior and microstructures of as-welded and PWHT specimens were investigated. Microstructural studies have shown grain size refinement after PWHT. Ultimate tensile strength and yield strength were found maximum for PWHT samples. Bend test have shown that PWHT imparted ductility in welded sample. Fractographic analysis has evidenced ductile behavior for samples. Potentiodynamic polarization test was carried out in a solution composed of 1 M H 2 SO 4 and 1 N NaCl. Corrosion rate of weld region was 127.6 mpy, but after PWHT, it was decreased to 13.12 mpy.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2016-08-04
    Description: In this work, corrosion inhibitors were added into an electroless nickel plating bath to realize nickel-phosphorus (Ni-P) coating deposition on magnesium alloy directly. The performance of five corrosion inhibitors was evaluated by inhibition efficiency. The results showed that only ammonium hydrogen fluoride (NH 4 HF 2 ) and ammonium molybdate ((NH 4 ) 2 MoO 4 ) could be used as corrosion inhibitors for magnesium alloy in the bath. Moreover, compounding NH 4 HF 2 and (NH 4 ) 2 MoO 4 , the optimal concentrations were both at 1.5 ~ 2%. The deposition process of Ni-P coating was observed by using a scanning electron microscope (SEM). It showed corrosion inhibitors inhibited undesired dissolution of magnesium substrate during the electroless plating process. In addition, SEM observation indicated that the corrosion inhibition reaction and the Ni 2+ replacement reaction were competitive at the initial deposition time. Both electrochemical analysis and thermal shock test revealed that the Ni-P coating exhibited excellent corrosion resistance and adhesion properties in protecting the magnesium alloy.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2016-08-05
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2016-08-05
    Description: Nearly 400 million years of evolution and field-testing by the natural world has given humans thousands of wood types, each with unique structure–property relationships to study, exploit, and ideally, to manipulate, but the slow growth of trees makes them a recalcitrant experimental system. Variations in wood features of two genotypes of peach ( Prunus persica L.) trees, wild-type and crinkle-leaf, were examined to elucidate the nature of weak wood in crinkle-leaf trees. Crinkle-leaf is a naturally-occurring mutation in which wood strength is altered in conjunction with an easily observed ‘crinkling’ of the leaves’ surface. Trees from three vigor classes (low growth rate, average growth rate, and high growth rate) of each genotype were sampled. No meaningful tendency of dissimilarities among the different vigor classes was found, nor any pattern in features in a genotype-by-vigor analysis. Wild-type trees exhibited longer vessels and fibers, wider rays, and slightly higher specific gravity. Neither cell wall mechanical properties measured with nanoindentation nor cell wall histochemical properties were statistically or observably different between crinkle-leaf and wild-type wood. The crinkle-leaf mutant has the potential to be a useful model system for wood properties investigation and manipulation if it can serve as a field-observable vegetative marker for altered wood properties.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2016-08-05
    Description: Inherent strain analysis has been successfully applied to predict welding deformations of large-scale structural components, while thermal-elastic-plastic finite element method is rarely used for its disadvantages of long calculation period and large storage space. In this paper, a hybrid model considering nonlinear yield stress curves and multi-constraint equations to thermal-elastic-plastic analysis is further proposed to predict welding distortions and residual stresses of large-scale structures. For welding T-joint structural steel S355JR by metal active gas welding, the published experiment results of temperature and displacement fields are applied to illustrate the credibility of the proposed integration model. By comparing numerical results of four different cases with the experiment results, it is verified that prediction precision of welding deformations and residual stresses is apparently improved considering the power-law hardening model, and computational time is also obviously shortened about 30.14% using multi-constraint equations. On the whole, the proposed hybrid method can be further used to precisely and efficiently predict welding deformations and residual stresses of large-scale structures.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2016-08-05
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2016-08-05
    Description: In this study, four kinds of roughness structures were constructed on the Al alloy surface using laser marking technology. The tribological properties of the surfaces under the condition of dry friction were carefully investigated. The results indicate that the fabricated surfaces have similar compositions. The hardness of surfaces can be improved after the laser surface treatment. Besides, the texturing of surfaces can efficiently reduce friction and improve friction resistance. However, the friction-reducing mechanisms are not the same. The surfaces with lined and grating grooves can remove wear debris away from the interfaces between steel balls and surfaces, while those with irregular protrusions and micro-orifices array would be able to trap wear debris in the microstructure. Furthermore, due to the different friction mechanisms of distinct roughness structures, their friction-reducing performances are greatly affected by the actual friction conditions (sliding speed and load), which offers a guide for constructing a specific roughness structure on the Al alloy surface to improve its friction resistance efficiently.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2016-08-05
    Description: In this study, Taguchi design method with L 9 orthogonal array has been used to optimize the initial thickness and pre-aging parameters (temperature and time) for the mechanical properties of Al-0.2 wt.% Sc alloy heavily deformed by accumulative roll bonding (ARB) up to ten cycles. Analysis of variance was performed on the measured data and signal-to-noise ratios. It was found that the pre-aging temperature has the most significant parameter affecting the mechanical properties by percentage contribution of 64.51%. Pre-aging time (19.29%) has the next most significant effect, while initial thickness (5.31%) has statistically less significant effect. In order to confirm experimental conclusions, verification experiments were carried out at optimum working conditions. Under these conditions, the yield strength was 6.51 times higher and toughness was 6.86% lower compared with the starting Al-Sc material. Moreover, mean grain size was decreased to 220 nm by setting the control parameters, which was the lowest value obtained in this study. It was concluded that the Taguchi method was found to be a promising technique to obtain the optimum conditions for such studies. Consequently, by controlling the parameter levels, the high-strength and high-toughness Al-Sc samples were fabricated through pre-aging and subsequent ARB process.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2016-08-05
    Description: The passivity behavior of a 2209 duplex stainless steel welded joint was investigated using potentiodynamic polarization, Mott-Schottky analysis and EIS measurements. In order to evaluate the contribution of temperature, chloride concentration and microstructure, a sequence of polarization tests were carried out in aerated NaCl solutions selected according to robust design of a three level-three factors Taguchi L9 orthogonal array. Analysis of signal-to-noise ratio and ANOVA were achieved on all measured data, and the contribution of every control factor was estimated. The results showed that the corrosion resistance of 2209 duplex stainless steel welded joint is related to the evolution of the passive film formed on the surface. It was found that the passive film on the welded zone possessed n- and p-type semiconductor characteristics. With the increase of solution temperature and chlorides concentration, the corrosion resistance of the passive film is more affected in the weldment than in the base metal.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2016-08-05
    Description: The evolution of microstructure in the Cu-0.5%Cr-0.2%Zr alloy subjected to thermomechanical treatment has been studied by means of the x-ray analysis. The workpieces have been subjected to 1, 2, 4 and 8 passes of equal channel angular pressing, plain cold rolling and aging treatment. The results of the XRD investigations reflect the evolution of the lattice parameter, the size of coherently scattering domains, the elastic microdistortions and the dislocation density in Cu matrix. The observed changes in the microstructure are explained by the competition between the developing defects and precipitation of the Cr phase particles from the Cu matrix.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2016-08-05
    Description: Mechanical properties, including yield stress, relaxation behavior, moduli (elastic modulus at the strain of 0.5% and strain hardening modulus at strains above 70%), viscous stress, and quasi-static stress, are compared between polyethylene (PE) pipes that are made of PE80 and PE100 resins. The mechanical properties are measured using D-split tensile test on modified notched pipe ring specimens. The comparison includes the influence of strain rate (by the change of crosshead speed) on the yield strength and influence of pre-strain on the relaxation behavior and the modulus values. A two-stage approach is used to characterize the influence of pre-strain on the moduli, to ensure that viscous recovery from the first-stage of the test, to introduce the pre-strain, does not affect the modulus measurement from the second-stage test. The results show that elastic modulus, yield stress, strain hardening modulus, viscous stress, and quasi-static stress for PE100 are higher than those for PE80, but PE80 shows higher resistance to stress relaxation. The results also show that with the increase in the pre-strain level, the elastic modulus drops but the strain hardening modulus remains relatively constant.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2016-07-07
    Description: In this work, the separate and combined effects of elastic stress and cathodic protection (CP) potential on barrier properties of two marine coating systems applied on Q235 steel plates in artificial seawater were investigated through measurements of electrochemical impedance spectra. The obtained results indicated that elastic stress could have a significant influence on coating barrier property, and the extent of this influence depends on both the magnitude and direction of elastic stress. Meanwhile, it was shown that the separate application of CP could also promote coating degradation, and for both coating systems, the more negative the applied CP potential, the more quickly and more seriously the coatings deteriorated. Furthermore, compared with the sample with only stress or CP, the results showed that the interaction between mechanical stress and CP could reduce their respective impact on coating barrier property, and the combined effect depends on the predominant factor.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2016-07-08
    Description: As the size of databases has significantly increased, whether through high throughput computation or through informatics-based modeling, the challenge of selecting the optimal material for specific design requirements has also arisen. Given the multiple, and often conflicting, design requirements, this selection process is not as trivial as sorting the database for a given property value. We suggest that the materials selection process should minimize selector bias, as well as take data uncertainty into account. For this reason, we discuss and apply decision theory for identifying chemical additions to Ni-base alloys. We demonstrate and compare results for both a computational array of chemistries and standard commercial superalloys. We demonstrate how we can use decision theory to select the best chemical additions for enhancing both property and processing, which would not otherwise be easily identifiable. This work is one of the first examples of introducing the mathematical framework of set theory and decision analysis into the domain of the materials selection process.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2016-07-08
    Description: Distilled water and polyalkylene glycol (PAG)-based aqueous quenchants of 5 and 10 vol.% with and without carbonation were prepared and used as heat transfer media during immersion quenching. Cooling curves were recorded during quenching of an inconel 600 cylindrical probe instrumented with multiple thermocouples. It was observed that the vapor stage duration was prolonged and the wetting front ascended uniformly for quenching with carbonated media. The cooling data were analyzed by determining the critical cooling parameters and by estimating the spatially dependent probe/quenchant interfacial heat flux transients. The study showed significantly reduced values of heat transfer rate for carbonated quenchants compared to quenchants without carbonation. Further, the reduction was more pronounced in the case of PAG-based carbonated quenchants than carbonated distilled water. The results also showed the dependence of heat transfer characteristics of the carbonated media on polymer concentration. The effect of quench uniformity on the microstructure of the material was assessed.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2016-07-08
    Description: Five kinds of nano-SiO 2 /epoxy composite coatings were prepared on mild steels, and their corrosion protection performance was evaluated at room temperature (RT) and 50 °C (HT) using electrochemical methods combined with scanning electron microscopy (SEM). The effects of preparation and sealing processes on the corrosion protection performance of epoxy coatings were specially focused on. The results showed that it was favorable for the corrosion protection and durable performance to add the modified nano-SiO 2 during rather than after the synthesis of epoxy coatings. Furthermore, the employment of sealer varnish also had beneficial effects. The two better coatings still exhibited higher impedance values even after immersion tests for up to 1000 h at RT and 500 h at HT. SEM revealed that the improvement of corrosion protection performance mainly resulted from the enhancement of coating density. Moreover, the evolution of electrochemical behavior of the two better coatings with immersion time was also discussed by means of fitting the electrochemical impedance spectroscopy results using equivalent circuits with different physical meanings.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2016-06-22
    Description: Al-4.5wt.%Cu-5wt.%TiB 2 in situ composite, fabricated by stir casting through a mixed salt reaction route process, needs further processing to exclude casting defects. Mushy state rolling has been developed as an easy and energy-efficient method for microstructural refinement and improvement in mechanical properties. It has been carried out at 621°C and 632°C with 20 vol.% and 30 vol.% of liquid, respectively, for up to 5% reduction in thickness. Mushy state rolling of the as-cast composite gives rise to a bimodal microstructure, which consists of very fine equiaxed grains adjacent to the rolled surface and comparatively larger elongated grains away from the rolled surface of the sample. Microhardness of the mushy state rolled sample has been observed to decrease gradually from edge to center of the rolled sample. The presence of the dislocation tangles and subgrains formed by dynamic recovery within solid-state deformed elongated grains and formation of recrystallized grains just adjacent to the second-phase particles have been examined with the help of electron backscattered diffraction and transmission electron microscopy analysis.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2016-06-22
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2016-06-22
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2016-06-22
    Description: The effect of anisotropic hardening models on springback of an S-rail part was investigated. Two advanced constitutive models based on distortional and kinematic hardening, which captured the Bauschinger effect, transient hardening, and permanent softening during strain path change, were implemented in a finite element (FE) code. In-plane compression–tension tests were performed to identify the model parameters. The springback of the S-rail after forming a 980 MPa dual-phase steel sheet sample was measured and analyzed using different hardening models. The comparison between experimental and FE results demonstrated that the advanced anisotropic hardening models, which are particularly suitable for non-proportional loading, significantly improved the springback prediction capability of an advanced high strength steel.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2016-06-22
    Description: A recent Critical Materials Strategy report highlighted the supply chain risk associated with neodymium and dysprosium, which are used in the manufacturing of neodymium-iron-boron permanent magnets (PM). In response, the Critical Materials Institute is developing innovative strategies to increase and diversify primary production, develop substitutes, reduce material intensity and recycle critical materials. Our goal in this paper is to propose an economic model to quantify the impact of one of these strategies, material intensity reduction. Technologies that reduce material intensity impact the economics of magnet manufacturing in multiple ways because of: (1) the lower quantity of critical material required per unit PM, (2) more efficient use of limited supply, and (3) the potential impact on manufacturing cost. However, the net benefit of these technologies to a magnet manufacturer is an outcome of an internal production decision subject to market demand characteristics, availability and resource constraints. Our contribution in this paper shows how a manufacturer’s production economics moves from a region of being supply-constrained, to a region enabling the market optimal production quantity, to a region being constrained by resources other than critical materials, as the critical material intensity changes. Key insights for engineers and material scientists are: (1) material intensity reduction can have a significant market impact, (2) benefits to manufacturers are non-linear in the material intensity reduction, (3) there exists a threshold value for material intensity reduction that can be calculated for any target PM application, and (4) there is value for new intellectual property (IP) when existing manufacturing technology is IP-protected.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2016-06-22
    Description: As the demand for personal electronic devices, wind turbines, and electric vehicles increases, the world becomes more dependent on rare earth elements. Given the volatile, Chinese-concentrated supply chain, global attempts have been made to diversify supply of these materials. However, the overall effect of supply diversification on the entire supply chain, including increasing low-value rare earth demand, is not fully understood. This paper is the first attempt to shed some light on China’s supply chain from both demand and supply perspectives, taking into account different Chinese policies such as mining quotas, separation quotas, export quotas, and resource taxes. We constructed a simulation model using Powersim Studio that analyzes production (both legal and illegal), production costs, Chinese and rest-of-world demand, and market dynamics. We also simulated new demand of an automotive aluminum-cerium alloy in the US market starting from 2018. Results showed that market share of the illegal sector has grown since 2007–2015, ranging between 22% and 25% of China’s rare earth supply, translating into 59–65% illegal heavy rare earths and 14–16% illegal light rare earths. There will be a shortage in certain light and heavy rare earths given three production quota scenarios and constant demand growth rate from 2015 to 2030. The new simulated Ce demand would require supply beyond that produced in China. Finally, we illustrate revenue streams for different ore compositions in China in 2015.
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2016-06-22
    Description: The microstructure, mechanical properties, and corrosion behaviors of solution-treated AM60-2%RE magnesium alloy containing 0.2-0.8% wt.% Zn were investigated. With the increase of Zn, the volume fraction of dispersed rod-like Al 4 RE and granular-like Al 11 RE 3 phases of solution-treated AM60-2%RE +  x %Zn increased, which improved the mechanical properties by dispersion strengthening. With increasing Zn content, the corrosion current density decreased, and the corrosion potential and electrochemical impedance of the alloys increased, and the corrosion resistance of solution-treated AM60-2%RE +  x %Zn was improved. With the increase of Zn content, the leaf-like corrosion products of the alloy became smaller and more compact, and the content of Zn, Al, Ce, and La in corrosion products increased, which was beneficial to inhibit the corrosion progress.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2016-06-22
    Description: In this study, friction stir processing (FSP) was applied to the GTAW (TIG)-welded AZ91C cast alloy to refine the microstructure and optimize the mechanical properties of the weld zone. Microstructural investigation of the samples was performed by optical microscopy and the phases in the microstructure were determined by x-ray diffraction (XRD). The microstructural evaluations showed that FSP destroys the coarse dendritic microstructure. Furthermore, it dissolves the secondary hard and brittle β-Mg 17 Al 12 phase existing at grain boundaries of the TIG weld zone. The closure and decrease in amount of porosities along with the elimination of the cracks in the microstructure were observed. These changes were followed by a significant grain refinement to an average value of 11 µm. The results showed that the hardness values increased to the mean ones, respectively, for as-cast (63 Hv), TIG weld zone (67 Hv), and stir zone (79 Hv). The yield and ultimate strength were significantly enhanced after FSP. The fractography evaluations, by scanning electron microscopy (SEM), indicated to a transition from brittle to ductile fracture surface after applying FSP to the TIG weld zone.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2016-06-22
    Description: Finite element analysis (FEA) was used to model the joining of titanium grade 2 (Ti) to AISI 321 stainless steel (SS) transition joint of lap configuration with grooves at the interface on SS side. The hot forming of Ti for filling the grooves without defects was simulated. FEA involving large plastic flow with sticking friction condition was initially validated using compression test on cylindrical specimen at 900 °C. The barreled shape and a no-deformation zone in the sample predicted by FEA matched with those of the compression experiments. For the joining process, FEA computed the distribution of strain and hydrostatic stress in Ti and the minimum ram load required for a defect-free joint. The hot forming parameters for Ti to fill the grooves without defects and any geometrical distortion of the die were found to be 0.001 s −1 at 900 °C. Using these conditions a defect-free Ti-SS joint was experimentally produced.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2016-06-22
    Description: This paper presents the effect of microstructure and crystallographic texture by developed in hot rolling and different post-treatments on anisotropic and mechanical properties of SAE 970X steel. The experimental results showed that the hot-rolled sample followed by quenching and consequent tempering at 700 °C led to a significant improvement in anisotropic and mechanical properties. This happened due to the reduction in the number of grains oriented with {001} planes parallel to normal direction. Also, the formation of new strain-free and recrystallized grains associated with {111}//ND and {110}//ND directions improved the mechanical properties. These grains corresponded to the close-packed planes in BCC structure as well.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2016-06-19
    Description: The objective of this research is to produce superior quality aluminum alloy foam with low relative density and higher resistance against compression deformation. This investigation has studied crash energy capacities of unfilled and filled aluminum alloy foams in mild steel tubes. The foam has been prepared by the melt route process with an addition of 5wt.% silicon carbide particles. The fabricated aluminum alloy foams were characterized by field emission scanning electron microscopy, x-ray diffraction, Fourier transform infrared spectroscopy, and Material Pro analyzer. It was observed that the foam-filled tubes could absorb more energy as compared to the unfilled tubes before reaching the complete densification point. Also, the aluminum alloy foams had better energy absorption capacity during the crash or impact loading. This article demonstrates the excellent ability of aluminum alloy foam application in the field where there is a need to absorb crash energy. It is to be noted that the amount of energy absorption will be greater for low-density foam filled in thin-wall rectangular section tubes. We have seen an increasing trend in the application of aluminum foams inside the thin-wall mild steel tubes for maximum energy absorption.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2016-06-19
    Description: The contact angle measured using the sessile drop method is typically an advancing contact angle, which is often used for the evaluation of wettability. However, the precise measurement of the contact angle on rough substrates has been required for developing various industrial processes. In this study, a new measuring method by achieving the minimum total free energy by ultrasonic vibration (USV) was developed. The new method has been demonstrated for different rough surfaces, droplet volumes, and wettability conditions. The advancing contact angle significantly decreased when the USV is applied, but it immediately increased after stopping the USV. In order to capture the droplet behavior at the beginning and end of the USV, a high-speed camera was used. The contact angle was apparently a receding contact angle after stopping the ultrasonic vibration. Accordingly, the intrinsic contact angle was estimated using the values of the advancing contact angles obtained before applying the ultrasonic vibration and the receding contact angles obtained after stopping the ultrasonic vibration.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2016-06-19
    Description: The hot deformation behaviors of TA15 titanium alloy were investigated by isothermal compression experiments on Gleeble-3500 thermal simulation machine. The results indicate that the flow stress curves of TA15 titanium alloy in the two-phase region are dynamic recrystallization (DRX) type while in the β single-phase region are main dynamic recovery (DRV) type. The evolution of microstructure and substructure (grain boundary misorientation and dislocation) under different process parameters were studied by using electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM). Microstructure analysis shows that a large number of recrystallized α grains and martensite α′ phase appear as the strain rate decreases under the condition of two-phase region. However, lath martensite microstructure is replaced by lamellar martensite microstructure at low strain rate in β single-phase region. Grain boundary misorientation analysis indicates that low angle boundaries (LABs) transform into high angle boundaries (HABs) sufficiently by reducing strain rate or increasing deformation temperature. Texture evolution analysis shows that the degree of preferred orientation after deformation weakens and the intensity of texture decreases with strain rate increasing in the two-phase region. However, more potential slip systems are activated in the β single-phase region. TEM analysis suggests that microscopic deformation bands with high density of parallel arrangement dislocations evolve into subboundaries or boundaries. As the deformation continues, dislocations are accumulated around the subboundaries, and they promote the transformation of subgrains with LABs into new grains with HABs.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2016-06-19
    Description: In this study, intergranular corrosion behavior of UNS S31803 duplex stainless steel was investigated using conventional potentiodynamic polarization, double loop electrochemical potentiokinetic reactivation (DLEPR), and electrochemical impedance spectroscopy (EIS) technique carried out at different potentials in the transpassive region. Different types of heat treatments were used to obtain samples with different degrees of sensitization. The results of the DLEPR tests showed that the solution-annealed sample and that was sensitized for half an hour would be considered as nonsensitized ones. Moreover, the sample that was sensitized for 24 h exhibits the highest value of the degree of sensitization. Polarization test results showed a typical active-passive behavior from which the transpassive potential range was determined and used as the range of the applied DC bias in the EIS experiments. Three different AC responses (including capacitive and inductive responses) were observed depending on the value of applied DC bias in the EIS experiments. In addition, it was observed that the presence of the second inductive loop at high applied DC bias is due to the adsorption of nonsoluble corrosion products on the surface of the samples. Moreover, the fitted values to the charge transfer and polarization resistances ( R ct and R P ) decreased as the sensitization time increased from 30 min to 24 h. Such observations were in good accordance with the metallographic examination of the corroded surfaces, carried out by optical and scanning electron microscopy techniques, revealing discontinuous grain boundary attack in nonsensitized samples and a continuous network of grain boundary attack in the case of sensitized ones. Moreover, as the applied DC bias increases the ferrite phase attack also occurs in the sensitized samples. In addition, approximately no pitting corrosion was observed on the surface of the corroded samples which is in accordance with their respective cyclic polarization responses.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2016-06-22
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2016-06-19
    Description: Compact Cu matrix composites reinforced with graphene were prepared by thermochemical processes and cold isostatic pressing. Thermophysical properties were investigated using laser flash analysis, differential scanning calorimetry, and dilatometry. From the results of the measurements, it follows that within the entire investigated temperature range, both the thermal diffusivity and the calculated values therefrom of the thermal conductivity of copper-graphene composites change according to the temperature changes. Above 500 °C, abnormal decrease of the thermal diffusivity was registered for sample prepared from pure copper powder. In this case, the elevated temperature of test could cause sintering of copper particles, which were not coated by graphene. The as-received composites had higher thermal diffusivity and the thermal conductivity at the room temperature in comparison to the material obtained by standard pressing of pure copper powder. However, the production methods of some samples could cause their partial sintering. Based on the study, it could not be concluded that graphene only has impacts on the thermophysical properties.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2016-06-19
    Description: In this study, protective ceramic coatings were prepared on AZ91D magnesium alloy by plasma electrolytic oxidation (PEO) to improve the corrosion and mechanical properties of AZ91D magnesium alloy. The process was conducted in silicate-fluoride-based electrolyte solution. It was found that the average micro-hardness of the coating was significantly increased with an increase in the PEO processing time. The highest value of the average micro-hardness ~1271.2 HV was recorded for 60-min processing time. The phase analysis of the coatings indicated that they were mainly composed of Mg 2 SiO 4 , MgO, and MgF 2 phases. The surface and cross-sectional study demonstrated that porosity was largely reduced with processing time, together with the change in pore geometry from irregular to spherical shape. The results of the polarization test in 3.5 wt.% NaCl solution revealed that aggressive corrosion took place for 5-min sample; however, the corrosion current was noticeably decreased to 0.43 × 10 −7  A/cm 2 for the 60-min-coated sample. The superior nobility and hardness for long processing time are suggested to be due to the dense and highly thick coating, coupled with the presence of MgF 2 phase.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2016-06-19
    Description: This paper presents a method for predicting the strain-based forming limit curve (FLC) for steels using hardness. The stretching side (positive minor strain component) of the FLC was calculated by using a Marciniak-Kuczyński model with a non-quadratic yield function, while the drawing side (negative minor strain component) of the FLC was predicted based on the relationship between the major and minor critical strains, in accordance with the theory of maximum sheet tension for local necking. The requisite parameter that describes the plastic flow behavior (in this case, the strain hardening exponent) was calculated, based on correlations with the measured microhardness. Additionally, the strain rate sensitivity was considered in the model by using a newly developed empirical correlation between hardness and strain rate sensitivity. This hardness-based model was used to predict FLCs that demonstrate good agreement with experimental FLCs of a high-strength low-alloy steel and a dual-phase steel. Equations are provided that enable the calculation of the FLC from given hardness values for different severities of the material inhomogeneity.
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer on behalf of ASM International.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...