ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (12,558)
  • Copernicus  (12,558)
  • Wiley-Blackwell
  • Biogeosciences Discussions  (4,059)
  • Geoscientific Model Development Discussions  (1,850)
  • 102049
  • 42429
  • 1
    Publication Date: 2015-08-11
    Description: Looking beyond stratification: a model-based analysis of the biological drivers of oxygen depletion in the North Sea Biogeosciences Discussions, 12, 12543-12610, 2015 Author(s): F. Große, N. Greenwood, M. Kreus, H. J. Lenhart, D. Machoczek, J. Pätsch, L. A. Salt, and H. Thomas The problem of low oxygen conditions, often referred to as hypoxia, occurs regularly in the North Sea, a temperate European shelf sea. Stratification represents a major process regulating the seasonal dynamics of bottom oxygen. However, lowest oxygen conditions in the North Sea do not occur in the regions of strongest stratification. This suggests that stratification is an important prerequisite for hypoxia, but that the complex interaction between hydrodynamics and the biological processes drives its development. In this study we use the ecosystem model HAMSOM-ECOHAM5 to provide a general characteristic of the different North Sea oxygen regimes, and to quantify the impact of the different physical and biological factors driving the oxygen dynamics below the thermocline and in the bottom layer. We show that the North Sea can be subdivided into three different regimes in terms of oxygen dynamics: (1) a highly productive, non-stratified coastal regime, (2) a productive, seasonally stratified regime with a small sub-thermocline volume, and (3) a productive, seasonally stratified regime with a large sub-thermocline volume, with regime 2 being highly susceptible to hypoxic conditions. Our analysis of the different processes driving the oxygen development reveals that inter-annual variations in the oxygen conditions are caused by variations in primary production, while spatial differences can be attributed to differences in stratification and water depth. In addition, we show that benthic bacteria represent the main oxygen consumers in the bottom layer, consistently accounting for more than 50 % of the overall consumption. By providing these valuable insights, we show that ecosystem models can be a useful tool for the interpretation of observations and the estimation of the impact of anthropogenic drivers on the North Sea oxygen conditions.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-11
    Description: Singular vector based targeted observations of chemical constituents: description and first application of the EURAD-IM-SVA Geoscientific Model Development Discussions, 8, 6267-6307, 2015 Author(s): N. Goris and H. Elbern Measurements of the large dimensional chemical state of the atmosphere provide only sparse snapshots of the state of the system due to their typically insufficient temporal and spatial density. In order to optimize the measurement configurations despite those limitations, the present work describes the identification of sensitive states of the chemical system as optimal target areas for adaptive observations. For this purpose, the technique of singular vector analysis (SVA), which has been proved effective for targeted observations in numerical weather predication, is implemented into the chemical transport model EURAD-IM (EURopean Air pollution and Dispersion – Inverse Model) yielding the EURAD-IM-SVA. Besides initial values, emissions are investigated as critical simulation controlling targeting variables. For both variants, singular vectors are applied to determine the optimal placement for observations and moreover to quantify which chemical compounds have to be observed with preference. Based on measurements of the airship based ZEPTER-2 campaign, the EURAD-IM-SVA has been evaluated by conducting a comprehensive set of model runs involving different initial states and simulation lengths. Since the considered cases are restricted in terms of considered chemical compounds and selected areas, they allow for a retracing of the results and a confirmation of their correctness. Our analysis shows that the optimal placement for observations of chemical species is not entirely determined by mere transport and mixing processes. Rather, a combination of initial chemical concentrations, chemical conversions, and meteorological processes determine the influence of chemical compounds and regions. We furthermore demonstrate that the optimal placement of observations of emission strengths is highly dependent on the location of emission sources and that the benefit of including emissions as target variables outperforms the value of initial value optimisation with growing simulation length. The obtained results confirm the benefit of considering both initial values and emission strengths as target variables and of applying the EURAD-IM-SVA for measurement decision guidance with respect to chemical compounds.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-11
    Description: A global scale mechanistic model of the photosynthetic capacity Geoscientific Model Development Discussions, 8, 6217-6266, 2015 Author(s): A. A. Ali, C. Xu, A. Rogers, R. A. Fisher, S. D. Wullschleger, N. G. McDowell, E. C. Massoud, J. A. Vrugt, J. D. Muss, J. B. Fisher, P. B. Reich, and C. J. Wilson Although plant photosynthetic capacity as determined by the maximum carboxylation rate (i.e., V c, max25 ) and the maximum electron transport rate (i.e., J max25 ) at a reference temperature (generally 25 °C) is known to vary substantially in space and time in response to environmental conditions, it is typically parameterized in Earth system models (ESMs) with tabulated values associated to plant functional types. In this study, we developed a mechanistic model of leaf utilization of nitrogen for assimilation (LUNA V1.0) to predict the photosynthetic capacity at the global scale under different environmental conditions, based on the optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The LUNA model was able to reasonably well capture the observed patterns of photosynthetic capacity in view that it explained approximately 55 % of the variation in observed V c, max25 and 65 % of the variation in observed J max25 across the globe. Our model simulations under current and future climate conditions indicated that V c, max25 could be most affected in high-latitude regions under a warming climate and that ESMs using a fixed V c, max25 or J max25 by plant functional types were likely to substantially overestimate future global photosynthesis.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-12
    Description: Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling Biogeosciences Discussions, 12, 12823-12850, 2015 Author(s): A. Sattar, C. Arslan, C. Ji, S. Sattar, K. Yousaf, and S. Hashim The effect of temperature on bio-hydrogen production by co-digestion of sewerage sludge with food waste and its two derivatives, i.e. noodle waste and rice waste, was investigated by statistical modelling. Experimental results showed that increasing temperature from mesophilic (37 °C) to thermophilic (55 °C) was an effective mean for increasing bio-hydrogen production from food waste and noodle waste, but it caused a negative impact on bio-hydrogen production from rice waste. The maximum cumulative bio-hydrogen production of 650 mL was obtained from noodle waste under mesophilic temperature condition. Most of the production was observed during 48 h of incubation that continued till 72 h of incubation, and a decline in pH during this interval was 4.3 and 4.4 from a starting value of 7 under mesophilic and thermophilic conditions, respectively. Most of glucose consumption was also observed during 72 h of incubation and the maximum consumption was observed during the first 24 h, which was the same duration where the maximum pH drop occurred. The maximum hydrogen yields of 82.47 mL VS −1 , 131.38 mL COD −1 , and 44.90 mL glucose −1 were obtained from mesophilic food waste, thermophilic noodle waste and mesophilic rice waste respectively. The production of volatile fatty acids increased with an increase in time and temperature from food waste and noodle waste reactors whereas it decreased with temperature in rice waste reactors. The statistical modelling returned good results with high values of coefficient of determination ( R 2 ) for each waste type when it was opted for the study of cumulative hydrogen production, glucose consumption and volatile fatty acid production. The 3-D response surface plots developed by the statistical models helped a lot in developing better understanding of the impact of temperature and incubation time.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-13
    Description: Stable isotope study of a new chondrichthyan fauna (Kimmeridgian, Porrentruy, Swiss Jura): an unusual freshwater-influenced isotopic composition for the hybodont shark Asteracanthus Biogeosciences Discussions, 12, 12899-12921, 2015 Author(s): L. Leuzinger, L. Kocsis, J.-P. Billon-Bruyat, S. Spezzaferri, and T. Vennemann Chondrichthyan teeth (sharks, rays and chimaeras) are mineralised in isotopic equilibrium with the surrounding water, and parameters such as water temperature and salinity can be inferred from the oxygen isotopic composition (δ 18 O p ) of their bioapatite. We analysed a new chondrichthyan assemblage, as well as teeth from bony fish (Pycnodontiformes). All specimens are from Kimmeridgian coastal marine deposits of the Swiss Jura (vicinity of Porrentruy, Ajoie district, NW Switzerland). While the overall faunal composition and the isotopic composition of bony fish are consistent with marine conditions, unusually low δ 18 O p values were measured for the hybodont shark Asteracanthus . These values are also lower compared to previously published data from older European Jurassic localities. Additional analyses on material from Solothurn (Kimmeridgian, NW Switzerland) also have comparable, low- 18 O isotopic compositions for Asteracanthus . The data are hence interpreted to represent a so far unique, freshwater-influenced isotopic composition for this shark that is classically considered as a marine genus. While reproduction in freshwater or brackish realms is established for other hybodonts, a similar behaviour for Asteracanthus is proposed here. Regular excursions into lower salinity waters can be linked to the age of the deposits and correspond to an ecological adaptation, most likely driven by the Kimmeridgian transgression and by the competition of the primitive shark Asteracanthus with the rapidly diversifying neoselachians (modern sharks).
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-08-13
    Description: Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in CMIP5 models Biogeosciences Discussions, 12, 12851-12897, 2015 Author(s): W. Fu, J. Randerson, and J. K. Moore We examine climate change impacts on net primary production (NPP) and export production (sinking particulate flux; EP) with simulations from nine Earth System Models (ESMs) performed in the framework of the fifth Coupled Model Inter-comparison Project (CMIP5). Global NPP and EP are reduced considerably by the end of the century for the intense warming scenario of Representative Concentration Pathway (RCP) 8.5. Relative to the 1990s, global NPP in the 2090s is reduced by 2.3–16 % and EP by 7–18 %. The models with the largest increases in stratification (and largest relative reductions in NPP and EP) also show the largest positive biases in stratification for the contemporary period, suggesting some potential overestimation of climate impacts on NPP and EP. All of the CMIP5 models show an increase in stratification in response to surface ocean warming and freshening that is accompanied by decreases in NPP, EP, and surface macronutrient concentrations. There is considerable variability across models in the absolute magnitude of these fluxes, surface nutrient concentrations, and their perturbations by climate change, indicating large model uncertainties. The negative response of NPP and EP to stratification increases reflects a bottom-up control, as nutrient flux to the euphotic zone declines. Models with dynamic phytoplankton community structure show larger declines in EP than in NPP. This is driven by phytoplankton community composition shifts, with a reduced percentage of NPP by large phytoplankton under RCP 8.5, as smaller phytoplankton are favored under the increasing nutrient stress. Thus, projections of the NPP response to climate change in the CMIP5 models are critically dependent on the simulated phytoplankton community structure, the efficiency of the biological pump, and the resulting (highly variable) levels of regenerated production. Community composition is represented relatively simply in the CMIP5 models, and should be expanded to better capture the spatial patterns and the changes in export efficiency that are necessary for predicting climate impacts on NPP.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-08-14
    Description: Technical Note: A simple calculation algorithm to separate high-resolution CH 4 flux measurements into ebullition and diffusion-derived components Biogeosciences Discussions, 12, 12923-12945, 2015 Author(s): M. Hoffmann, M. Schulz-Hanke, J. Garcia Alba, N. Jurisch, U. Hagemann, T. Sachs, M. Sommer, and J. Augustin Processes driving the production, transformation and transport of methane (CH 4 ) in wetland ecosystems are highly complex. Thus, serious challenges are constitutes in terms of the mechanistic process understanding, the identification of potential environmental drivers and the calculation of reliable CH 4 emission estimates. We present a simple calculation algorithm to separate open-water CH 4 fluxes measured with automatic chambers into diffusion- and ebullition-derived components, which helps facilitating the identification of underlying dynamics and potential environmental drivers. Flux separation is based on ebullition related sudden concentration changes during single measurements. A variable ebullition filter is applied, using the lower and upper quartile and the interquartile range (IQR). Automation of data processing is achieved by using an established R-script, adjusted for the purpose of CH 4 flux calculation. The algorithm was tested using flux measurement data (July to September 2013) from a former fen grassland site, converted into a shallow lake as a result of rewetting ebullition and diffusion contributed 46 and 55 %, respectively, to total CH 4 emissions, which is comparable to those previously reported by literature. Moreover, the separation algorithm revealed a concealed shift in the diurnal trend of diffusive fluxes throughout the measurement period.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-04
    Description: Nitrogen export from a boreal stream network following forest harvesting: seasonal nitrate removal and conservative export of organic forms Biogeosciences Discussions, 12, 12061-12089, 2015 Author(s): J. Schelker, R. Sponseller, E. Ring, L. Högbom, S. Löfgren, and H. Laudon Boreal streams are under pressure from large scale disturbance by forestry. Recent scenarios predict an increase in forest production in Scandinavia to meet market demands and to mitigate higher anthropogenic CO 2 emissions. Increased fertilization and shorter forest rotations are anticipated which will likely enhance the pressure on boreal streams in the near future. Among the major environmental impacts of forest harvesting is the increased mobilization of inorganic nitrogen (N), primarily as nitrate (NO 3 - ) into surface waters. But whereas NO 3 - inputs to first-order streams have been previously described, their downstream fate and impact is not well understood. We evaluated the downstream fate of N inputs in a boreal landscape that has been altered by forest harvests over a 10 year period to estimate the effects of multiple clear-cuts on aquatic N export in a boreal stream network. Small streams showed substantial leaching of NO 3 - in response to harvests with concentrations increasing by ~ 15 fold. NO 3 - concentrations at two sampling stations further downstream in the network were strongly seasonal and increased significantly in response to harvesting at the medium size, but not at the larger stream. Nitrate removal efficiency, E r , calculated as the percentage of "forestry derived" NO 3 - that was retained within the landscape using a mass balance model was highest during the snow melt season followed by the growing season, but declined continuously throughout the dormant season. In contrast, export of organic N from the landscape indicated little removal and was essentially conservative. Overall, net removal of NO 3 - between 2008 and 2011 accounted for ~ 70 % of the total NO 3 - mass exported from harvested patches distributed across the landscape. These results highlight the capacity and limitation of N-limited terrestrial and aquatic ecosystems to buffer inorganic N mobilization that arises from multiple clear-cuts within meso-scale boreal watersheds.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-20
    Description: Hydroxy fatty acids in fresh snow samples from northern Japan: long-range atmospheric transport of Gram-negative bacteria by Asian winter monsoon Biogeosciences Discussions, 12, 13375-13397, 2015 Author(s): P. Tyagi, S. Yamamoto, and K. Kawamura Hydroxy fatty acids (FAs) in fresh snow from Sapporo, one of the heaviest snowfall regions in the world, have been studied to ascertain the airborne bacterial endotoxin concentrations and their biomass. The presence of β-hydroxy FAs (C 9 –C 28 ), constituents of Gram-negative bacteria (GNB), suggests long-range transport of soil microbes. Likewise, the occurrence of α- and ω-hydroxy FAs (C 9 –C 30 and C 9 –C 28 , respectively) in snow reveals their contribution from epicuticular waxes and soil microorganisms. Estimated endotoxin and GNB mass can aid in assessing their possible impacts on the diversity and functioning of aquatic and terrestrial ecosystems, as well as lethal effects on pedestrians through dispersal of microbes. Air mass back trajectories together with hydroxy FAs unveil their sources from Siberia, Russian Far East and North China by the Asian monsoon. This study highlights the role of fresh snow that reduces the human health risk of GNB and endotoxin by scavenging from the air.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-08-20
    Description: Evaluation of an operational ocean model configuration at 1/12° spatial resolution for the Indonesian seas – Part 2: Biogeochemistry Geoscientific Model Development Discussions, 8, 6669-6706, 2015 Author(s): E. Gutknecht, G. Reffray, M. Gehlen, I. Triyulianti, D. Berlianty, and P. Gaspar In the framework of the INDESO (Infrastructure evelopment of Space Oceanography) project, an operational ocean forecasting system was developed to monitor the state of the Indonesian seas in terms of circulation, biogeochemistry and fisheries. This forecasting system combines a suite of numerical models connecting physical and biogeochemical variables to population dynamics of large marine predators (tunas). The physical/biogeochemical coupled component (INDO12BIO configuration) covers a large region extending from the western Pacific Ocean to the Eastern Indian Ocean at 1/12° resolution. The OPA/NEMO physical ocean model and the PISCES biogeochemical model are coupled in "on-line" mode without degradation in space and time. The operational global ocean forecasting system (1/4°) operated by Mercator Ocean provides the physical forcing while climatological open boundary conditions are prescribed for the biogeochemistry. This paper describes the skill assessment of the INDO12BIO configuration. Model skill is assessed by evaluating a reference hindcast simulation covering the last 8 years (2007–2014). Model results are compared to satellite, climatological and in situ observations. Diagnostics are performed on chlorophyll a , primary production, mesozooplankton, nutrients and oxygen. Model results reproduce the main characteristics of biogeochemical tracer distributions in space and time. The seasonal cycle of chlorophyll a is in phase with satellite observations. The northern and southern parts of the archipelago present a distinct seasonal cycle, with higher chlorophyll biomass in the southern (northern) part during SE (NW) monsoon. Nutrient and oxygen concentrations are correctly reproduced in terms of horizontal and vertical distributions. The biogeochemical content of water masses entering in the archipelago as well as the water mass transformation across the archipelago conserves realistic vertical distribution in Banda Sea and at the exit of the archipelago.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...