ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,564)
  • Copernicus  (1,564)
  • 2010-2014  (1,564)
  • 1980-1984
  • 1925-1929
  • Geoscientific Model Development Discussions  (563)
  • Solid Earth  (188)
  • 102049
  • 133345
  • 201
    Publication Date: 2011-04-20
    Description: Modeling anthropogenically-controled secondary organic aerosols in a megacity: a simplified framework for global and climate models Geoscientific Model Development Discussions, 4, 869-905, 2011 Author(s): A. Hodzic and J. L. Jimenez A simplified parameterization for secondary organic aerosol (SOA) formation in polluted air and biomass burning smoke is tested and optimized in this work, towards the goal of a computationally inexpensive method to calculate pollution and biomass burning SOA in global and climate models. A regional chemistry-transport model is used as the testbed for the parameterization, which is compared against observations from the Mexico City metropolitan area during the MILAGRO 2006 field experiment. The empirical parameterization is based on the observed proportionality of SOA concentrations to excess CO and photochemical age of the airmass. The approach consists in emitting an organic gas as lumped SOA precursor surrogate proportional to anthropogenic or biomass burning CO emissions according to the observed ratio between SOA and CO in aged air, and reacting this surrogate with OH into a single non-volatile species that condenses to form SOA. An emission factor of 0.08 g of the lumped SOA precursor per g of CO and a rate constant with OH of 1.25 × 10 −11 cm 3 molecule −1 s −1 reproduce the observed average SOA mass within 30% in the urban area and downwind. When a 2.5 times slower rate is used (5 × 10 −12 cm 3 molecule −1 s −1 ) the predicted SOA amount and temporal evolution is nearly identical to the results obtained with SOA formation from semi-volatile and intermediate volatility primary organic vapors according to the Robinson et al. (2007) formulation. Our simplified method has the advantage of being much less computationally expensive than Robinson-type methods, and can be used in regions where the emissions of SOA precursors are not yet available. As the aged pollution SOA/ΔCO ratios are rather consistent globally, this parameterization could be reasonably tested in and applied to other regions. The potential enhancement of biogenic SOA by anthropogenic pollution, which has been suggested to play a major role in global SOA formation, is also tested using two simple parameterizations. Our results suggest that the pollution enhancement of biogenic SOA could provide several μg m −3 of additional SOA, but does not however explain the concentrations or especially the spatial and temporal variations of measured SOA mass in the vicinity of Mexico City, which appears to be controlled by anthropogenic sources. The contribution of the biomass burning to the predicted SOA is less than 10% during the study period.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 202
    Publication Date: 2011-04-30
    Description: Evaluation of a Dynamic Global Vegetation Model using time series of satellite vegetation indices Geoscientific Model Development Discussions, 4, 907-941, 2011 Author(s): F. Maignan, F.-M. Bréon, F. Chevallier, N. Viovy, P. Ciais, C. Garrec, J. Trules, and M. Mancip Atmospheric CO 2 drives most of the greenhouse effect increase and one major uncertainty on the future rate of increase of CO 2 in the atmosphere is the impact of the anticipated climate change on the vegetation. Dynamic Global Vegetation Models (DGVM) are used to address this question. ORCHIDEE is such a DGVM that has proven useful for climate change studies. However, there is no objective and methodological way to accurately assess each new available version on the global scale. In this paper, we submit a methodological evaluation of ORCHIDEE by correlating satellite-derived Vegetation Index time series against those of the modeled Fraction of absorbed Photosynthetically Active Radiation (FPAR). A perfect correlation between the two is not expected, however an improvement of the model should lead to an increase of the median correlation. We detail two case studies in which model improvements are demonstrated, using our methodology. In the first one, a new phenology version in ORCHIDEE is shown to bring a significant impact on the simulated annual cycles, in particular for C3 Grasses and C3 Crops. In the second case study, we compare the simulations when using two different weather fields to drive ORCHIDEE. The ERA-Interim forcing leads to a better description of the FPAR interannual anomalies than the simulation forced by a mixed CRU-NCEP dataset. This work shows that long time series of satellite observations, despite their uncertainties, can identify weaknesses in global vegetation models, a necessary first step to improving them.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 203
    Publication Date: 2011-03-10
    Description: Coupled atmosphere-wildland fire modeling with WRF-Fire version 3.3 Geoscientific Model Development Discussions, 4, 497-545, 2011 Author(s): J. Mandel, J. D. Beezley, and A. K. Kochanski We describe the physical model, numerical algorithms, and software structure of WRF-Fire. WRF-Fire consists of a fire-spread model, implemented by the level-set method, coupled with the Weather Research and Forecasting model. In every time step, the fire model inputs the surface wind, which drives the fire, and outputs the heat flux from the fire into the atmosphere, which in turn influences the atmosphere. The level-set method allows submesh representation of the burning region and flexible implementation of various kinds of ignition. WRF-Fire is distributed as a part of WRF and it uses the WRF parallel infrastructure for parallel computing.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 204
    Publication Date: 2011-03-22
    Description: Influence of the compiler on multi-CPU performance of WRFv3 Geoscientific Model Development Discussions, 4, 547-573, 2011 Author(s): T. Langkamp The Weather Research and Forecasting system version 3 (WRFv3) is an open source and state of the art numerical regional climate model used in climate related sciences. Over the years the model has been successfully optimized on a wide variety of clustered compute nodes connected with high speed interconnects. This is currently the most used hardware architecture for high-performance computing. As such, understanding WRFs dependency on the various hardware elements like the CPU, its interconnects, and the software is crucial for saving computing time. This is important because computing time in general is rare, resource intensive, and hence very expensive. This paper evaluates the influence of different compilers on WRFs performance, which was found to differ up to 26%. The paper also evaluates the performance of different message passing interface library versions, a software which is needed for multi CPU runs, and of different WRF versions. Both showed no significant influence on the performance for this test case on the used High Performance Cluster (HPC) hardware. Some emphasis is also laid on the applied non-standard method of performance measuring, which was required because of performance fluctuations between identical runs on the used HPC. Those are caused by contention for network resources, a phenomenon examined for many HPCs.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 205
    Publication Date: 2011-03-24
    Description: LANL* V2.0: global modeling and validation Geoscientific Model Development Discussions, 4, 575-594, 2011 Author(s): J. Koller and S. Zaharia We describe in this paper the new version of LANL*. Just like the previous version, this new version V2.0 of LANL* is an artificial neural network (ANN) for calculating the magnetic drift invariant, L *, that is used for modeling radiation belt dynamics and for other space weather applications. We have implemented the following enhancements in the new version: (1) we have removed the limitation to geosynchronous orbit and the model can now be used for any type of orbit. (2) The new version is based on the improved magnetic field model by Tsyganenko and Sitnov (2005) (TS05) instead of the older model by Tsyganenko et al. (2003). We have validated the model and compared our results to L * calculations with the TS05 model based on ephemerides for CRRES, Polar, GPS, a LANL geosynchronous satellite, and a virtual RBSP type orbit. We find that the neural network performs very well for all these orbits with an error typically Δ L * 〈 0.2 which corresponds to an error of 3% at geosynchronous orbit. This new LANL-V2.0 artificial neural network is orders of magnitudes faster than traditional numerical field line integration techniques with the TS05 model. It has applications to real-time radiation belt forecasting, analysis of data sets involving decades of satellite of observations, and other problems in space weather.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 206
    Publication Date: 2013-12-06
    Description: An improved non-iterative surface layer flux scheme for atmospheric stable stratification condition Geoscientific Model Development Discussions, 6, 6459-6492, 2013 Author(s): Y. Li, Z. Gao, D. Li, L. Wang, and H. Wang Parameterization of turbulent fluxes under stably stratified conditions has always been a challenge. Current surface fluxes calculation schemes either need iterations or suffer low accuracy. In this paper, a non-iteration scheme is proposed to approach the classic iterative computation results using multiple regressions. It can be applied to the full range of roughness status 10 ≤ z/z 0 ≤ 10 5 and −0.5 ≤ log( z 0 / z 0h ) ≤ 30 under stable conditions 0 〈 Ri B ≤ 2.5. The maximum (average) relative errors for the turbulent transfer coefficients for momentum and sensible heat are 12% (1%) and 9% (1%), respectively.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 207
    Publication Date: 2013-12-07
    Description: A system of conservative regridding for ice/atmosphere coupling in a GCM Geoscientific Model Development Discussions, 6, 6493-6568, 2013 Author(s): R. Fischer, S. Nowicki, M. Kelley, and G. A. Schmidt The method of elevation classes has proven to be a useful way for a low-resolution general circulation model (GCM) to produce high-resolution downscaled surface mass balance fields, for use in one-way studies coupling GCMs and ice flow models. Past uses of elevation classes have been a cause of non-conservation of mass and energy, caused by inconsistency in regridding schemes chosen to regrid to the atmosphere vs. downscaling to the ice model. This causes problems for two-way coupling. A strategy that resolves this conservation issue has been designed and is presented here. The approach identifies three grids between which data must be regridded, and five transformations between those grids required by a typical coupled GCM–ice flow model. This paper shows how each of those transformations may be achieved in a consistent, conservative manner. These transformations are implemented in GLINT2, a library used to couple GCMs with ice models. Source code and documentation are available for download. Confounding real-world issues are discussed, including the use of projections for ice modeling, how to handle dynamically changing ice geometry, and modifications required for finite element ice models.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 208
    Publication Date: 2013-12-07
    Description: A 24-variable low-order coupled ocean–atmosphere model: OA-QG-WS v2 Geoscientific Model Development Discussions, 6, 6569-6604, 2013 Author(s): S. Vannitsem and L. De Cruz A new low-order coupled ocean–atmosphere model for mid-latitudes is derived. It is based on quasi-geostrophic equations for both the ocean and the atmosphere, coupled through momentum transfer at the interface. The systematic reduction of the number of modes describing the dynamics leads to an atmospheric low-order component of 20 ordinary differential equations, already discussed in Reinhold and Pierrehumbert (1982), and an oceanic low-order component of 4 ordinary differential equations, as proposed by Pierini (2012). The coupling terms for both components are derived and all the coefficients of the ocean model are provided. Its dynamics is then briefly explored, through the analysis of its mean field, its variability and its instability properties. The wind-driven ocean displays a decadal variability induced by the atmospheric chaotic wind forcing. The chaotic behavior of the coupled system is highly sensitive to the ocean–atmosphere coupling, for low values of the thermal forcing affecting the atmosphere (corresponding to a weakly chaotic coupled system). But it is less sensitive for large values of the thermal forcing (corresponding to a highly chaotic coupled system). In all the cases explored, the number of positive exponents is increasing with the coupling. A Fortran code of the model integration is provided as Supplement.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 209
    Publication Date: 2013-12-10
    Description: 3-D reflection seismic imaging of the Hontomín structure in the Basque–Cantabrian Basin (Spain) Solid Earth, 4, 481-496, 2013 Author(s): J. Alcalde, D. Martí, C. Juhlin, A. Malehmir, D. Sopher, E. Saura, I. Marzán, P. Ayarza, A. Calahorrano, A. Pérez-Estaún, and R. Carbonell The Basque–Cantabrian Basin of the northern Iberia Peninsula constitutes a unique example of a major deformation system, featuring a dome structure developed by extensional tectonics followed by compressional reactivation. The occurrence of natural resources in the area and the possibility of establishing a geological storage site for carbon dioxide motivated the acquisition of a 3-D seismic reflection survey in 2010, centered on the Jurassic Hontomín dome. The objectives of this survey were to obtain a geological model of the overall structure and to establish a baseline model for a possible geological CO 2 storage site. The 36 km 2 survey included approximately 5000 mixed (Vibroseis and explosives) source points recorded with a 25 m inline source and receiver spacing. The target reservoir is a saline aquifer, at approximately 1450 m depth, encased and sealed by carbonate formations. Acquisition and processing parameters were influenced by the rough topography and relatively complex geology. A strong near-surface velocity inversion is evident in the data, affecting the quality of the data. The resulting 3-D image provides constraints on the key features of the geologic model. The Hontomín structure is interpreted to consist of an approximately 10 7 m 2 large elongated dome with two major (W–E and NW–SE) striking faults bounding it. Preliminary capacity estimates indicate that about 1.2 Gt of CO 2 can be stored in the target reservoir.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 210
    Publication Date: 2013-12-13
    Description: A variational data assimilation system for soil–atmosphere flux estimates for the Community Land Model (CLM3.5) Geoscientific Model Development Discussions, 6, 6605-6637, 2013 Author(s): C. M. Hoppe, H. Elbern, and J. Schwinger This article presents the development and implementation of a spatio–temporal variational data assimilation system (4D-var) for the soil–vegetation–atmosphere–transfer model "Community Land Model" (CLM3.5), along with the development of the adjoint code for the core soil-atmosphere transfer scheme of energy and soil moisture. The purpose of this work is to obtain an improved estimation technique for the energy fluxes (sensible and latent heat fluxes) between the soil and the atmosphere. Optimal assessments of these fluxes are neither available from model simulations nor measurements alone, while a 4D-var data assimilation has the potential to combine both information sources by a Best Linear Unbiased Estimate (BLUE). The 4D-var method requires the development of the adjoint model of the CLM which was established in this work. The new data assimilation algorithm is able to assimilate soil temperature and soil moisture measurements for one-dimensional columns of the model grid. Numerical experiments were first used to test the algorithm under idealised conditions. It was found that the analysis delivers improved results whenever there is a dependence between the initial values and the assimilated quantity. Furthermore, soil temperature and soil moisture from in situ field measurements were assimilated. These calculations demonstrate the improved performance of flux estimates, whenever soil property parameters are available of sufficient quality. Misspecifications could also be identified by the performance of the variational scheme.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 211
    Publication Date: 2014-01-15
    Description: The Secondary Organic Aerosol Processor (SOAP v1.0) model: a unified model with different ranges of complexity based on the molecular surrogate approach Geoscientific Model Development Discussions, 7, 379-429, 2014 Author(s): F. Couvidat and K. Sartelet The Secondary Organic Aerosol Processor (SOAP v1.0) model is presented. This model is designed to be modular with different user options depending on the computing time and the complexity required by the user. This model is based on the molecular surrogate approach, in which each surrogate compound is associated with a molecular structure to estimate some properties and parameters (hygroscopicity, absorption on the aqueous phase of particles, activity coefficients, phase separation). Each surrogate can be hydrophilic (condenses only on the aqueous phase of particles), hydrophobic (condenses only on the organic phase of particles) or both (condenses on both the aqueous and the organic phases of particles). Activity coefficients are computed with the UNIFAC thermodynamic model for short-range interactions and with the AIOMFAC parameterization for medium and long-range interactions between electrolytes and organic compounds. Phase separation is determined by Gibbs energy minimization. The user can choose between an equilibrium and a dynamic representation of the organic aerosol. In the equilibrium representation, compounds in the particle phase are assumed to be at equilibrium with the gas phase. However, recent studies show that the organic aerosol (OA) is not at equilibrium with the gas phase because the organic phase could be semi-solid (very viscous liquid phase). The condensation or evaporation of organic compounds could then be limited by the diffusion in the organic phase due to the high viscosity. A dynamic representation of secondary organic aerosols (SOA) is used with OA divided into layers, the first layer at the center of the particle (slowly reaches equilibrium) and the final layer near the interface with the gas phase (quickly reaches equilibrium).
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 212
    Publication Date: 2014-01-15
    Description: Comparison of the ensemble Kalman filter and 4D-Var assimilation methods using a stratospheric tracer transport model Geoscientific Model Development Discussions, 7, 339-377, 2014 Author(s): S. Skachko, Q. Errera, R. Ménard, Y. Christophe, and S. Chabrillat The Ensemble Kalman filter (EnKF) assimilation method is applied to the tracer transport using the same stratospheric transport model as in the 4D-Var assimilation system BASCOE. This EnKF version of BASCOE was built primarily to avoid the large costs associated with the maintenance of an adjoint model. The EnKF developed in BASCOE accounts for two adjustable parameters: a parameter α controlling the model error term and a parameter r controlling the observational error. The EnKF system is shown to be markedly sensitive to these two parameters, which are adjusted based on the monitoring of a χ 2 -test measuring the misfit between the control variable and the observations. The performance of the EnKF and 4D-Var versions was estimated through the assimilation of Aura-MLS ozone observations during an 8 month period which includes the formation of the 2008 Antarctic ozone hole. To ensure a proper comparison, despite the fundamental differences between the two assimilation methods, both systems use identical and carefully calibrated input error statistics. We provide the detailed procedure for these calibrations, and compare the two sets of analyses with a focus on the lower and middle stratosphere where the ozone lifetime is much larger than the observational update frequency. Based on the Observation-minus-Forecast statistics, we show that the analyses provided by the two systems are markedly similar, with biases smaller than 5% and standard deviation errors smaller than 10% in most of the stratosphere. Since the biases are markedly similar, they have most probably the same causes: these can be deficiencies in the model and in the observation dataset, but not in the assimilation algorithm nor in the error calibration. The remarkably similar performance also shows that in the context of stratospheric transport, the choice of the assimilation method can be based on application-dependent factors, such as CPU cost or the ability to generate an ensemble of forecasts.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 213
    Publication Date: 2014-01-15
    Description: Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble Geoscientific Model Development Discussions, 7, 217-293, 2014 Author(s): S. Kotlarski, K. Keuler, O. B. Christensen, A. Colette, M. Déqué, A. Gobiet, K. Goergen, D. Jacob, D. Lüthi, E. van Meijgaard, G. Nikulin, C. Schär, C. Teichmann, R. Vautard, K. Warrach-Sagi, and V. Wulfmeyer EURO-CORDEX is an international climate downscaling initiative that aims to provide high-resolution climate scenarios for Europe. Here an evaluation of the ERA-Interim-driven EURO-CORDEX regional climate model (RCM) ensemble is presented. The study documents the performance of the individual models in representing the basic spatio-temporal patterns of the European climate for the period 1989–2008. Model evaluation focuses on near-surface air temperature and precipitation, and uses the E-OBS dataset as observational reference. The ensemble consists of 17 simulations carried out by seven different models at grid resolutions of 12 km (nine experiments) and 50 km (eight experiments). Several performance metrics computed from monthly and seasonal mean values are used to assess model performance over eight sub-domains of the European continent. Results are compared to those for the ERA40-driven ENSEMBLES simulations. The analysis confirms the ability of RCMs to capture the basic features of the European climate, including its variability in space and time. But it also identifies non-negligible deficiencies of the simulations for selected metrics, regions and seasons. Seasonally and regionally averaged temperature biases are mostly smaller than 1.5 °C, while precipitation biases are typically located in the ±40% range. Some bias characteristics, such as a predominant cold and wet bias in most seasons and over most parts of Europe and a warm and dry summer bias over southern and south-eastern Europe reflect common model biases. For seasonal mean quantities averaged over large European sub-domains, no clear benefit of an increased spatial resolution (12 km vs. 50 km) can be identified. The bias ranges of the EURO-CORDEX ensemble mostly correspond to those of the ENSEMBLES simulations, but some improvements in model performance can be identified (e.g., a less pronounced southern European warm summer bias). The temperature bias spread across different configurations of one individual model can be of a similar magnitude as the spread across different models, demonstrating a strong influence of the specific choices in physical parameterizations and experimental setup on model performance. Based on a number of simply reproducible metrics, the present study quantifies the currently achievable accuracy of RCMs used for regional climate simulations over Europe and provides a quality standard for future model developments.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 214
    Publication Date: 2014-01-17
    Description: Simulation of trace gases and aerosols over the Indian domain: evaluation of the WRF-Chem model Geoscientific Model Development Discussions, 7, 431-482, 2014 Author(s): M. Michael, A. Yadav, S. N. Tripathi, V. P. Kanawade, A. Gaur, P. Sadavarte, and C. Venkataraman The "online" meteorological and chemical transport Weather Research and Forecasting/Chemistry (WRF-Chem) model has been implemented over the Indian subcontinent for three consecutive summers in 2008, 2009 and 2010 to study the aerosol properties over the domain. The model simulated the meteorological parameters, trace gases and particulate matter. Predicted mixing ratios of trace gases (Ozone, carbon monoxide and sulfur dioxide) are compared with ground based observations over Kanpur. Simulated aerosol optical depth are compared with those observed at nine Aerosol Robotic Network stations (AERONET). The simulations show that the aerosol optical depth of the less polluted regions is better simulated compared to that of the locations where the aerosol loading is very high. The vertical profiles of extinction coefficient observed at the Kanpur Micropulse Lidar Network (MPLNET) station is underpredicted by the model by 10 to 50% for altitudes greater than 1.5 km and qualitatively simulate the elevated layers of aerosols. The simulated mass concentration of black carbon shows a correlation coefficient of 0.4 with observations. Vertical profiles of black carbon at various locations have also been compared with observations from an aircraft campaign held during pre-monsoon period of 2008 and 2009. This study shows that WRF-Chem model captures many important features of the observed atmospheric composition during the pre-monsoon season in India.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 215
    Publication Date: 2014-01-18
    Description: Three-dimensional phase-field study of crack-seal microstructures – insights from innovative post-processing techniques Geoscientific Model Development Discussions, 7, 631-658, 2014 Author(s): K. Ankit, M. Selzer, and B. Nestler Numerical simulations of vein evolution contribute to a better understanding of processes involved in their formation and possess the potential to provide invaluable insights into the rock deformation history and fluid flow pathways. The primary aim of the present article is to investigate the influence of a "realistic" boundary condition, i.e. an algorithmically generated "fractal" surface, on the vein evolution in 3-D using a thermodynamically consistent approach, while explaining the benefits of accounting for an extra dimensionality. The 3-D simulation results are supplemented by innovative numerical post-processing and advanced visualization techniques. The new methodologies to measure the tracking efficiency demonstrate the importance of accounting the temporal evolution; no such information is usually accessible in field studies and notoriously difficult to obtain from laboratory experiments as well. The grain growth statistics obtained by numerically post-processing the 3-D computational microstructures explain the pinning mechanism which leads to arrest of grain boundaries/multi-junctions by crack peaks, thereby, enhancing the tracking behavior.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 216
    Publication Date: 2014-01-18
    Description: A simple parameterization of the short-wave aerosol optical properties for surface direct and diffuse irradiances assessment in a numerical weather model Geoscientific Model Development Discussions, 7, 593-629, 2014 Author(s): J. A. Ruiz-Arias and J. Dudhia Broadband short-wave (SW) surface direct and diffuse irradiances are not typically within the set of output variables produced by numerical weather prediction (NWP) models. However, they are being more and more demanded in solar energy applications. A detailed representation of the aerosol optical properties is important to achieve an accurate assessment of these direct and diffuse irradiances. Nonetheless, NWP models typically oversimplify its representation or even neglect its effect. In this work, a flexible method to account for the SW aerosol optical properties in the computation of broadband SW surface direct and diffuse irradiances is presented. It only requires aerosol optical depth at 0.55 μm and the type of predominant aerosol. The rest of parameters needed to consider spectral aerosol extinction, namely, Angström exponent, aerosol single-scattering albedo and aerosol asymmetry factor, are parameterized. The parameterization has been tested in the RRTMG SW scheme of the Weather Research and Forecasting (WRF) NWP model. However, it can be adapted to any other SW radiative transfer band model. It has been verified against a control experiment along five radiometric stations in the contiguous US. The control experiment consisted of a clear-sky evaluation of the RRTMG solar radiation estimates obtained in WRF when RRTMG is driven with ground-observed aerosol optical properties. Overall, the verification has shown very satisfactory results for both broadband SW surface direct and diffuse irradiances. It has proven effective to significantly reduce the prediction error and constraint the seasonal bias in clear-sky conditions to within the typical observational error in well-maintained radiometers.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 217
    Publication Date: 2014-01-18
    Description: High resolution global climate modelling; the UPSCALE project, a large simulation campaign Geoscientific Model Development Discussions, 7, 563-591, 2014 Author(s): M. S. Mizielinski, M. J. Roberts, P. L. Vidale, R. Schiemann, M.-E. Demory, J. Strachan, T. Edwards, A. Stephens, B. N. Lawrence, M. Pritchard, P. Chiu, A. Iwi, J. Churchill, C. del Cano Novales, J. Kettleborough, W. Roseblade, P. Selwood, M. Foster, M. Glover, and A. Malcolm The UPSCALE (UK on PRACE: weather-resolving Simulations of Climate for globAL Environmental risk) project constructed and ran an ensemble of HadGEM3 (Hadley centre Global Environment Model 3) atmosphere-only global climate simulations over the period 1985–2011, at resolutions of N512 (25 km), N216 (60 km) and N96 (130 km) as used in current global weather forecasting, seasonal prediction and climate modelling respectively. Alongside these present climate simulations a parallel ensemble looking at extremes of future climate was run, using a time-slice methodology to consider conditions at the end of this century. These simulations were primarily performed using a 144 million core hour, single year grant of computing time from PRACE (the Partnership for Advanced Computing in Europe) in 2012, with additional resources supplied by the Natural Environmental Research Council (NERC) and the Met Office. Almost 400 terabytes of simulation data were generated on the HERMIT supercomputer at the high performance computing center Stuttgart (HLRS), and transferred to the JASMIN super-data cluster provided by the Science and Technology Facilities Council Centre for Data Archival (STFC CEDA) for analysis and storage. In this paper we describe the implementation of the project, present the technical challenges in terms of optimisation, data output, transfer and storage that such a project involves and include details of the model configuration and the composition of the UPSCALE dataset. This dataset is available for scientific analysis to allow assessment of the value of model resolution in both present and potential future climate conditions.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 218
    Publication Date: 2014-01-18
    Description: A suite of Early Eocene (~55 Ma) climate model boundary conditions Geoscientific Model Development Discussions, 7, 529-562, 2014 Author(s): N. Herold, J. Buzan, M. Seton, A. Goldner, J. A. M. Green, R. D. Müller, P. Markwick, and M. Huber We describe a set of Early Eocene (~55 Ma) climate model boundary conditions constructed in a self-consistent reference frame and incorporating recent data and methodologies. Given the growing need for uniform experimental design within the Eocene climate modelling community, we make publically available our datasets of Eocene topography, bathymetry, tidal dissipation, vegetation, aerosol distributions and river runoff. Particularly our Eocene topography and bathymetry has been significantly improved compared to previously utilized boundary conditions. Major improvements include the paleogeography of Antarctica, Australia, Europe, the Drake Passage and the Isthmus of Panama, and our boundary conditions include modelled estimates of Eocene aerosol distributions and tidal dissipation for the first time, both consistent with our paleotopography and paleobathymetry. The resolution of our datasets (1° × 1°) is also unprecedented and will facilitate high resolution climate simulations. In light of the inherent uncertainties involved in reconstructing global boundary conditions for past time periods these datasets should be considered as one interpretation of the available data. This paper marks the beginning of a process for reconstructing a set of accurate, open-access Eocene boundary conditions for use in climate models.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 219
    Publication Date: 2014-01-24
    Description: Improved simulation of fire-vegetation interactions in the Land surface Processes and eXchanges dynamic global vegetation model (LPX-Mv1) Geoscientific Model Development Discussions, 7, 931-1000, 2014 Author(s): D. I. Kelley, S. P. Harrison, and I. C. Prentice The Land surface Processes and eXchanges (LPX) model is a fire-enabled dynamic global vegetation model that performs well globally but has problems representing fire regimes and vegetative mix in savannas. Here we focus on improving the fire module. To improve the representation of ignitions, we introduced a treatment of lightning that allows the fraction of ground strikes to vary spatially and seasonally, realistically partitions strike distribution between wet and dry days, and varies the number of dry-days with strikes. Fuel availability and moisture content were improved by implementing decomposition rates specific to individual plant functional types and litter classes, and litter drying rates driven by atmospheric water content. To improve water extraction by grasses, we use realistic plant-specific treatments of deep roots. To improve fire responses, we introduced adaptive bark thickness and post-fire resprouting for tropical and temperate broadleaf trees. All improvements are based on extensive analyses of relevant observational data sets. We test model performance for Australia, first evaluating parameterisations separately and then measuring overall behaviour against standard benchmarks. Changes to the lightning parameterisation produce a more realistic simulation of fires in southeastern and central Australia. Implementation of PFT-specific decomposition rates enhances performance in central Australia. Changes in fuel drying improve fire in northern Australia, while changes in rooting depth produce a more realistic simulation of fuel availability and structure in central and northern Australia. The introduction of adaptive bark thickness and resprouting produces more realistic fire regimes in savannas, including simulating biomass recovery rates consistent with observations. The new model (LPX-Mv1) improves Australian vegetation composition by 33% and burnt area by 19% compared to LPX.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 220
    Publication Date: 2014-01-11
    Description: Estimation of uncertainties due to data scarcity in model upscaling: a case study of methane emissions from rice paddies in China Geoscientific Model Development Discussions, 7, 181-216, 2014 Author(s): W. Zhang, T. Li, Y. Huang, Q. Zhang, J. Bian, and P. Han Data scarcity is a major cause of substantial uncertainties in regional estimations conducted with model upscaling. To evaluate the impact of data scarcity on model upscaling, we introduce an approach for aggregating uncertainties in model estimations. A data sharing matrix was developed to aggregate the modeled uncertainties in divisions of a subject region. In a case study, the uncertainty in methane emissions from rice paddies on mainland China was calculated with a local-scale model CH4MOD. The data scarcities in five of the most sensitive model variables were included in the analysis. The national total methane emissions were 6.44–7.32 Tg, depending on the spatial resolution used for modeling, with a 95% confidence interval of 4.5–8.7 Tg. Based on the data sharing matrix, two numeral indices, I R and I ds , were also introduced to suggest the proper spatial resolution in model upscaling.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 221
    Publication Date: 2014-01-15
    Description: A flexible three-dimensional stratocumulus, cumulus and cirrus cloud generator (3DCLOUD) based on drastically simplified atmospheric equations and Fourier transform framework Geoscientific Model Development Discussions, 7, 295-337, 2014 Author(s): F. Szczap, Y. Gour, T. Fauchez, C. Cornet, T. Faure, O. Jourdan, and P. Dubuisson The 3DCLOUD algorithm for generating stochastic three-dimensional (3-D) cloud fields is described in this paper. The generated outputs are 3-D optical depth (τ) for stratocumulus and cumulus fields and 3-D ice water content (IWC) for cirrus clouds. This model is designed to generate cloud fields that share some statistical properties observed in real clouds such as the inhomogeneity parameter ρ (standard deviation normalized by the mean of the studied quantity), the Fourier spectral slope β close to −5/3 between the smallest scale of the simulation to the outer L out (where the spectrum becomes flat). Firstly, 3DCLOUD assimilates meteorological profiles (humidity, pressure, temperature and wind velocity). The cloud coverage C , defined by the user, can also be assimilated, but only for stratocumulus and cumulus regime. 3DCLOUD solves drastically simplified basic atmospheric equations, in order to simulate 3-D cloud structures of liquid or ice water content. Secondly, Fourier filtering method is used to constrain intensity of ρ, β, L out and mean of τ or IWC of these 3-D cloud structures. 3DCLOUD model was developed to run on a personnel computer under Matlab environment with the Matlab statistics toolbox. It is used to study 3-D interactions between cloudy atmosphere and radiation.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 222
    Publication Date: 2014-01-22
    Description: Global mass fixer algorithms for conservative tracer transport in the ECMWF model Geoscientific Model Development Discussions, 7, 777-814, 2014 Author(s): M. Diamantakis and J. Flemming Various mass fixer algorithms (MFA) have been implemented in the Integrated Forecasting System (IFS) of ECMWF to ensure mass conservation of atmospheric tracers within the Semi-Lagrangian (SL) advection scheme. Emphasis has been placed in implementing schemes that despite being primarily global in nature adjust the solution mostly in regions where the advected field has large gradients and therefore interpolation (transport) error is assumed larger. The MFA have been tested in weather forecast, idealised and atmospheric dispersion cases. Applying these fixers to specific humidity and cloud fields did not change the accuracy of 10 day forecasts. In other words, global mass tracer conservation is achieved without deteriorating the solution accuracy. However, for longer forecast timescales or for forecasts in which correlated species are transported, experiments suggest that MFA may improve IFS forecasts.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 223
    Publication Date: 2014-01-22
    Description: Simultaneous parameterization of the two-source evapotranspiration model by Bayesian approach: application to spring maize in an arid region of northwest China Geoscientific Model Development Discussions, 7, 741-775, 2014 Author(s): G. F. Zhu, X. Li, Y. H. Su, K. Zhang, Y. Bai, J. Z. Ma, C. B. Li, X. L. Hu, and J. H. He Based on direct measurements of half-hourly canopy evapotranspiration (ET; W m −2 ) using the eddy covariance (EC) system and daily soil evaporation ( E ; mm d −1 ) using microlysimeters over a crop ecosystem in arid northwest China from 27 May to 14 September in 2013, a Bayesian method was used to simultaneously parameterize the soil surface and canopy resistances in the Shuttleworth–Wallace (S–W) model. The posterior distributions of the parameters in most cases were well updated by the multiple measuring dataset with relatively narrow high-probability intervals. There was a good agreement between measured and simulated values of half-hourly ET and daily E with a linear regression being y = 0.84 x +0.18 ( R 2 = 0.83) and y = 1.01 x + 0.01 ( R 2 = 0.82), respectively. The causes of underestimations of ET by the S–W model was mainly attributed to the micro-scale advection, which can contribute an added energy in the form of downward sensible heat fluxes to the ET process. Therefore, the advection process should be taken into accounted in simulating ET in heterogeneous land surface. Also, underestimations were observed on or shortly after rainy days due to direct evaporation of liquid water intercepted in the canopy. Thus, the canopy interception model should be coupled to the S–W model in the long-term ET simulation.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 224
    Publication Date: 2014-01-22
    Description: The MESSy aerosol submodel MADE3 (v2.0b): description and a box model test Geoscientific Model Development Discussions, 7, 691-739, 2014 Author(s): J. C. Kaiser, J. Hendricks, M. Righi, N. Riemer, R. A. Zaveri, S. Metzger, and V. Aquila We introduce MADE3 (Modal Aerosol Dynamics model for Europe, adapted for global applications, 3rd generation), an aerosol dynamics submodel for application within the MESSy framework (Modular Earth Submodel System). MADE3 builds on the predecessor aerosol submodels MADE and MADE-in. Its main new features are the explicit representation of coarse particle interactions both with other particles and with condensable gases, and the inclusion of hydrochloric acid (HCl)/chloride (Cl) partitioning between the gas and condensed phases. The aerosol size distribution is represented in the new submodel as a superposition of nine lognormal modes: one for fully soluble particles, one for insoluble particles, and one for mixed particles in each of three size ranges (Aitken, accumulation, and coarse mode size ranges). In order to assess the performance of MADE3 we compare it to its predecessor MADE and to the much more detailed particle-resolved aerosol model PartMC-MOSAIC in a box model simulation of an idealised marine boundary layer test case. MADE3 and MADE results are very similar, except in the coarse mode, where the aerosol is dominated by sea spray particles. Cl is reduced in MADE3 with respect to MADE due to the HCl/Cl partitioning that leads to Cl removal from the sea spray aerosol in our test case. Additionally, aerosol nitrate concentration is higher in MADE3 due to the condensation of nitric acid on coarse particles. MADE3 and PartMC-MOSAIC show substantial differences in the fine particle size distributions (sizes ≲ 2 μm) that could be relevant when simulating climate effects on a global scale. Nevertheless, the agreement between MADE3 and PartMC-MOSAIC is very good when it comes to coarse particle size distribution, and also in terms of aerosol composition. Considering these results and the well-established ability of MADE in reproducing observed aerosol loadings and composition, MADE3 seems suitable for application within a global model.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 225
    Publication Date: 2014-01-23
    Description: Long residence times of rapidly decomposable soil organic matter: application of a multi-phase, multi-component, and vertically-resolved model (TOUGHREACTv1) to soil carbon dynamics Geoscientific Model Development Discussions, 7, 815-870, 2014 Author(s): W. J. Riley, F. M. Maggi, M. Kleber, M. S. Torn, J. Y. Tang, D. Dwivedi, and N. Guerry Accurate representation of soil organic matter (SOM) dynamics in Earth System Models is critical for future climate prediction, yet large uncertainties exist regarding how, and to what extent, the suite of proposed relevant mechanisms should be included. To investigate how various mechanisms interact to influence SOM storage and dynamics, we developed a SOM reaction network integrated in a one-dimensional, multi-phase, and multi-component reactive transport solver. The model includes representations of bacterial and fungal activity, multiple archetypal polymeric and monomeric carbon substrate groups, aqueous chemistry, aqueous advection and diffusion, gaseous diffusion, and adsorption (and protection) and desorption from the soil mineral phase. The model predictions reasonably matched observed depth-resolved SOM and dissolved organic carbon (DOC) stocks in grassland ecosystems as well as lignin content and fungi to aerobic bacteria ratios. We performed a suite of sensitivity analyses under equilibrium and dynamic conditions to examine the role of dynamic sorption, microbial assimilation rates, and carbon inputs. To our knowledge, observations do not exist to fully test such a complicated model structure or to test the hypotheses used to explain observations of substantial storage of very old SOM below the rooting depth. Nevertheless, we demonstrated that a reasonable combination of sorption parameters, microbial biomass and necromass dynamics, and advective transport can match observations without resorting to an arbitrary depth-dependent decline in SOM turnover rates, as is often done. We conclude that, contrary to assertions derived from existing turnover time based model formulations, observed carbon content and δ 14 C vertical profiles are consistent with a representation of SOM dynamics consisting of (1) carbon compounds without designated intrinsic turnover times, (2) vertical aqueous transport, and (3) dynamic protection on mineral surfaces.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 226
    Publication Date: 2013-12-06
    Description: A novel model evaluation approach focussing on local and advected contributions to urban PM 2.5 levels – application to Paris, France Geoscientific Model Development Discussions, 6, 6391-6457, 2013 Author(s): H. Petetin, M. Beekmann, J. Sciare, M. Bressi, A. Rosso, O. Sanchez, and V. Ghersi Aerosol simulations in chemistry transport models (CTMs) still suffer from numerous uncertainties, and diagnostic evaluations are required to point out major error sources. This paper presents an original approach to evaluate CTMs based on local and imported contributions in a large megacity rather than urban background concentrations. The study is applied to the CHIMERE model in the Paris region (France) and considers the fine particulate matter (PM 2.5 ) and its main chemical constituents (elemental and organic carbon, nitrate, sulfate and ammonium), for which daily measurements are available during a whole year at various stations (PARTICULES project). Back-trajectory data are used to locate the upwind station, from which the concentration is identified as the import, the local production being deduced from the urban concentration by subtraction. Uncertainties on these contributions are quantified. Small biases in urban background PM 2.5 simulations (bias of +16%) hide significant error compensations between local and advected contributions, as well as in PM 2.5 chemical compounds. In particular, wintertime OM imports appear strongly underestimated while local OM and EC production are overestimated all along the year. Erroneous continental woodburning emissions and missing SOA pathways may explain errors on advected OM, while carbonaceous compounds overestimation is likely to be related to errors in emissions and dynamics. A statistically significant local formation of nitrate is also highlighted from observations, but missed by the model. Together with the overestimation of nitrate imports, it leads to a bias of +51% on the local PM 2.5 contribution. Such an evaluation finally gives more detailed insights on major gaps in current CTMs on which future efforts are needed.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 227
    Publication Date: 2013-10-09
    Description: Adding a dynamical cryosphere into i LOVECLIM (version 1.0) – Part 1: Coupling with the GRISLI ice-sheet model Geoscientific Model Development Discussions, 6, 5215-5249, 2013 Author(s): D. M. Roche, C. Dumas, M. Bügelmayer, S. Charbit, and C. Ritz We present the coupling approach and the first results of the GRISLI ice-sheet model within the i LOVECLIM coupled climate model. The climate component is a relatively low resolution Earth System Model of Intermediate complexity, well suited for long-term integrations and thus for coupled climate–cryosphere studies. We describe the coupling procedure with emphasise on the downscaling scheme and the methods to compute the snow fraction from total precipitation fields. We then present results for the Northern Hemisphere ice sheet (Greenland) under pre-industrial climate conditions at the end of a 14 000 yr-long integration. The obtained simulated ice sheet presents a too large thickness in central Greenland owing to the overestimation of precipitation in the atmospheric component. We find that including downscaling procedures for temperature improves the temperature distributions over Greenland for both summer and annual mean temperatures. Overall, we find an ice-sheet areal extent in reasonnable agreement with the observed Greenland ice sheet given the simplicity of the chosen climate model.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 228
    Publication Date: 2013-10-12
    Description: Two-dimensional numerical investigations on the termination of bilinear flow in fractures Solid Earth, 4, 331-345, 2013 Author(s): A. E. Ortiz R., R. Jung, and J. Renner Bilinear flow occurs when fluid is drained from a permeable matrix by producing it through an enclosed fracture of finite conductivity intersecting a well along its axis. The terminology reflects the combination of two approximately linear flow regimes: one in the matrix with flow essentially perpendicular to the fracture, and one along the fracture itself associated with the non-negligible pressure drop in it. We investigated the characteristics, in particular the termination, of bilinear flow by numerical modeling allowing for an examination of the entire flow field without prescribing the flow geometry in the matrix. Fracture storage capacity was neglected relying on previous findings that bilinear flow is associated with a quasi-steady flow in the fracture. Numerical results were generalized by dimensionless presentation. Definition of a dimensionless time that, other than in previous approaches, does not use geometrical parameters of the fracture permitted identifying the dimensionless well pressure for the infinitely long fracture as the master curve for type curves of all fractures with finite length from the beginning of bilinear flow up to fully developed radial flow. In log–log scale the master curve's logarithmic derivative initially follows a 1/4-slope straight line (characteristic for bilinear flow) and gradually bends into a horizontal line (characteristic for radial flow) for long times. During the bilinear flow period, isobars normalized to well pressure propagate with the fourth and second root of time in fracture and matrix, respectively. The width-to-length ratio of the pressure field increases proportional to the fourth root of time during the bilinear period, and starts to deviate from this relation close to the deviation of well pressure and its derivative from their fourth-root-of-time relations. At this time, isobars are already significantly inclined with respect to the fracture. The type curves of finite fractures all deviate counterclockwise from the master curve instead of clockwise or counterclockwise from the 1/4-slope straight line as previously proposed. The counterclockwise deviation from the master curve was identified as the arrival of a normalized isobar reflected at the fracture tip 16 times earlier. Nevertheless, two distinct regimes were found in regard to pressure at the fracture tip when bilinear flow ends. For dimensionless fracture conductivities T D 〈 1, a significant pressure increase is not observed at the fracture tip until bilinear flow is succeeded by radial flow at a fixed dimensionless time. For T D 〉 10, the pressure at the fracture tip has reached substantial fractions of the associated change in well pressure when the flow field transforms towards intermittent formation linear flow at times that scale inversely with the fourth power of dimensionless fracture conductivity. Our results suggest that semi-log plots of normalized well pressure provide a means for the determination of hydraulic parameters of fracture and matrix after shorter test duration than for conventional analysis.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 229
    Publication Date: 2013-10-16
    Description: An objective rationale for the choice of regularisation parameter with application to global multiple-frequency S -wave tomography Solid Earth, 4, 357-371, 2013 Author(s): C. Zaroli, M. Sambridge, J.-J. Lévêque, E. Debayle, and G. Nolet In a linear ill-posed inverse problem, the regularisation parameter (damping) controls the balance between minimising both the residual data misfit and the model norm. Poor knowledge of data uncertainties often makes the selection of damping rather arbitrary. To go beyond that subjectivity, an objective rationale for the choice of damping is presented, which is based on the coherency of delay-time estimates in different frequency bands. Our method is tailored to the problem of global multiple-frequency tomography (MFT), using a data set of 287 078 S -wave delay times measured in five frequency bands (10, 15, 22, 34, and 51 s central periods). Whereas for each ray path the delay-time estimates should vary coherently from one period to the other, the noise most likely is not coherent. Thus, the lack of coherency of the information in different frequency bands is exploited, using an analogy with the cross-validation method, to identify models dominated by noise. In addition, a sharp change of behaviour of the model ℓ ∞ -norm, as the damping becomes lower than a threshold value, is interpreted as the signature of data noise starting to significantly pollute at least one model component. Models with damping larger than this threshold are diagnosed as being constructed with poor data exploitation. Finally, a preferred model is selected from the remaining range of permitted model solutions. This choice is quasi-objective in terms of model interpretation, as the selected model shows a high degree of similarity with almost all other permitted models (correlation superior to 98% up to spherical harmonic degree 80). The obtained tomographic model is displayed in the mid lower-mantle (660–1910 km depth), and is shown to be compatible with three other recent global shear-velocity models. A wider application of the presented rationale should permit us to converge towards more objective seismic imaging of Earth's mantle.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 230
    Publication Date: 2013-10-10
    Description: ADISM v.1.0: an adjoint of a thermomechanical ice-sheet model obtained using an algorithmic differentiation tool Geoscientific Model Development Discussions, 6, 5251-5288, 2013 Author(s): J. McGovern, I. Rutt, J. Utke, and T. Murray A number of problems in contemporary glaciology could benefit from the application of adjoint models. On a simple level, adjoint models can be used to calculate ice-sheet sensitivities with respect to spatially varying parameters such as the basal sliding coefficient. At a more sophisticated level, adjoint models may be used as components of variational data assimilation schemes, allowing problems of model initialization and data-constrained evolution to be tackled. Fundamentally, adjoint models calculate the sensitivity of a cost function to a suite of control parameters. Such model sensitivities can alternatively be obtained by running the model many times, perturbing each control parameter separately in turn, and calculating the resulting sensitivity in each case. For large numbers of control parameters, however, such as the case where a control parameter corresponds to each point in the model domain, the computational cost becomes prohibitive. The use of adjoint models allows sensitivities to be obtained more efficiently – adjoint model sensitivities are obtained in a single run – and more accurately, since the differentiation of the model is done with machine precision. We present a finite-difference shallow ice approximation (SIA), thermomechanical ice-sheet model (the forward model), and its adjoint, as generated by using the OpenAD algorithmic differentiation tool. We verify the ice-sheet model using standard SIA benchmark tests and check the consistency between derivatives computed by OpenAD and certain numerically approximated derivatives. Typical adjoint calculations are demonstrated by application to the Greenland ice sheet.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 231
    Publication Date: 2013-10-16
    Description: A workflow for building and calibrating 3-D geomechanical models &ndash a case study for a gas reservoir in the North German Basin Solid Earth, 4, 347-355, 2013 Author(s): K. Fischer and A. Henk The optimal use of conventional and unconventional hydrocarbon reservoirs depends, amongst other things, on the local tectonic stress field. For example, wellbore stability, orientation of hydraulically induced fractures and – especially in fractured reservoirs – permeability anisotropies are controlled by the present-day in situ stresses. Faults and lithological changes can lead to stress perturbations and produce local stresses that can significantly deviate from the regional stress field. Geomechanical reservoir models aim for a robust, ideally "pre-drilling" prediction of the local variations in stress magnitude and orientation. This requires a numerical modelling approach that is capable to incorporate the specific geometry and mechanical properties of the subsurface reservoir. The workflow presented in this paper can be used to build 3-D geomechanical models based on the finite element (FE) method and ranging from field-scale models to smaller, detailed submodels of individual fault blocks. The approach is successfully applied to an intensively faulted gas reservoir in the North German Basin. The in situ stresses predicted by the geomechanical FE model were calibrated against stress data actually observed, e.g. borehole breakouts and extended leak-off tests. Such a validated model can provide insights into the stress perturbations in the inter-well space and undrilled parts of the reservoir. In addition, the tendency of the existing fault network to slip or dilate in the present-day stress regime can be addressed.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 232
    Publication Date: 2013-10-12
    Description: The microstructural record of porphyroclasts and matrix of partly serpentinized peridotite mylonites – from brittle and crystal-plastic deformation to dissolution–precipitation creep Solid Earth, 4, 315-330, 2013 Author(s): J. Bial and C. A. Trepmann We present microfabrics in high-pressure, metamorphic, partly serpentinized peridotite mylonites from the Voltri Massif, in which porphyroclasts and matrix record independent deformation events. The microfabrics are analysed using polarization microscopy and electron microscopy (SEM/EBSD, EMP). The mylonites contain diopside and olivine porphyroclasts originating from the mantle protolith embedded in a fine-grained matrix consisting mainly of antigorite and minor olivine and pyroxene. The porphyroclasts record brittle and crystal-plastic deformation of the peridotite at upper-mantle conditions and differential stresses of a few hundred MPa. After the peridotites became serpentinized, deformation occurred mainly by dissolution–precipitation creep resulting in a pronounced foliation of the antigorite matrix, crenulation cleavages and newly precipitated olivine and pyroxene from the pore fluid at sites of dilation, i.e. in strain shadows next to porphyroclasts and folded fine-grained antigorite layers. Antigorite reveals a pronounced associated shape preferred orientation (SPO) and crystallographic preferred orientation (CPO) with the basal (001) cleavage plane oriented in the foliation plane. In monomineralic antigorite aggregates at sites of stress concentration around porphyroclasts, a characteristically reduced grain size and deflecting CPO as well as sutured grain boundaries indicate also some contribution of crystal-plastic deformation and grain-boundary migration of antigorite. In contrast, the absence of any intragranular deformation features in newly precipitated olivine in strain shadows reveals that stresses were not sufficiently high to allow for significant dislocation creep of olivine at conditions at which antigorite is stable. The porphyroclast microstructures are not associated with the microstructures of the mylonitic matrix, but are inherited from an independent earlier deformation. The porphyroclasts record a high-stress deformation of the peridotite with dislocation creep of olivine in the upper mantle probably related to rifting processes, whereas the serpentinite matrix records dominantly dissolution–precipitation creep and low stresses during subduction and exhumation.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 233
    Publication Date: 2013-10-19
    Description: Can vesicle size distributions assess eruption intensity during volcanic activity? Solid Earth, 4, 373-380, 2013 Author(s): A. LaRue, D. R. Baker, M. Polacci, P. Allard, and N. Sodini We studied three-dimensional (3-D) vesicle size distributions by X-ray microtomography in scoria collected during the relatively quiescent Phase II of the April–May 2010 eruption at Eyjafjallajökull volcano, Iceland. Our goal was to compare cumulative vesicle size distributions (VSDs) measured in these samples with those found in Stromboli volcano, Italy. Stromboli was chosen because its VSDs are well-characterized and show a correlation with eruption intensity: typical Strombolian activity produces VSDs with power-law exponents near 1, whereas larger and more energetic vulcanian-type explosions and Plinian eruptions produce VSDs with power-law exponents near 1.5. The first hypothesis to be tested was whether or not the samples studied in this work would contain VSDs similar to normal Strombolian products, display higher power-law exponents, or be described by exponential functions. Before making this comparison, we tested a second hypothesis, which was that the magma–water interactions in the Eyjafjallajökull eruption might have a significant effect on the VSDs. We performed 1 bar bubble-growth experiments in which the samples were inundated with water and compared them to similar control experiments without water inundation. No significant differences between the VSDs of the two sets of experiments were found, and the second hypothesis is not supported by the experimental evidence. The Phase II Eyjafjallajökull VSDs are described by power-law exponents of ~0.8, typical of normal Strombolian eruptions, and support the first hypothesis. The comparable VSDs and behavior of Phase II of the Eyjafjallajökull 2010 eruption to Stromboli are interpreted to be a reflection of similar conduit systems in both volcanoes that are being constantly fed by the ascent of mingled/mixed magma from depth. Such behavior implies that continued activity during Phase II of the Eyjafjallajökull eruption could be expected and would have been predicted, had our VSDs been measured in real time during the eruption. However, the products studied show no peculiar feature that could herald the renewed eruption intensity observed in the following Phase III of the eruption.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 234
    Publication Date: 2014-03-11
    Description: New insights on the occurrence of peperites and sedimentary deposits within the silicic volcanic sequences of the Paraná Magmatic Province, Brazil Solid Earth, 5, 121-130, 2014 Author(s): A. C. F. Luchetti, A. J. R. Nardy, F. B. Machado, J. E. O. Madeira, and J. M. Arnosio The PMP (Paraná Magmatic Province) is characterized by lava flows of the Early Cretaceous Serra Geral Formation which covers about 75% of the Paraná Basin (southern and southeastern Brazil), composed of a thick (up to 1600 m) volcanic sequence formed by a succession of petrographically and geochemically distinct units of basic and silicic composition. The whole package must have been emplaced during approximately 3 million years of nearly uninterrupted activity. A few aeolian sandstone layers, indicating arid environmental conditions (the Botucatu Formation), are interlayered in the lower basalts. Above the basalts, the Palmas and Chapecó Members are composed of silicic volcanic rocks (quartz latites, dacites, rhyodacites and rhyolites) and basalts. This paper presents new evidence of sedimentation episodes separating silicic volcanic events, expressed by the occurrence of sedimentary deposits. Interaction between the volcanic bodies and the coeval unconsolidated sediments formed peperites. The sediments were observed between basaltic lava flows and silicic rocks or interlayered in the Palmas-type rocks, between the Chapecó-type rocks and overlying basaltic flows, between silicic bodies of the Palmas and Chapecó types, and interlayered within Palmas-type units. The observed structures indicate that the sediments were still wet and unconsolidated, or weakly consolidated, at the time of volcanism, which, coupled with the sediment features, reflect environmental conditions that are different from those characterizing the Botucatu arid conditions.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 235
    Publication Date: 2014-03-13
    Description: Thermal shock and splash effects on burned gypseous soils from the Ebro Basin (NE Spain) Solid Earth, 5, 131-140, 2014 Author(s): J. León, M. Seeger, D. Badía, P. Peters, and M. T. Echeverría Fire is a natural factor of landscape evolution in Mediterranean ecosystems. The middle Ebro Valley has extreme aridity, which results in a low plant cover and high soil erodibility, especially on gypseous substrates. The aim of this research is to analyze the effects of moderate heating on physical and chemical soil properties, mineralogical composition and susceptibility to splash erosion. Topsoil samples (15 cm depth) were taken in the Remolinos mountain slopes (Ebro Valley, NE Spain) from two soil types: Leptic Gypsisol (LP) in a convex slope and Haplic Gypsisol (GY) in a concave slope. To assess the heating effects on the mineralogy we burned the soils at 105 and 205 °C in an oven and to assess the splash effects we used a rainfall simulator under laboratory conditions using undisturbed topsoil subsamples (0–5 cm depth of Ah horizon). LP soil has lower soil organic matter (SOM) and soil aggregate stability (SAS) and higher gypsum content than GY soil. Gypsum and dolomite are the main minerals (〉80%) in the LP soil, while gypsum, dolomite, calcite and quartz have similar proportions in GY soil. Clay minerals (kaolinite and illite) are scarce in both soils. Heating at 105 °C has no effect on soil mineralogy. However, heating to 205 °C transforms gypsum to bassanite, increases significantly the soil salinity (EC) in both soil units (LP and GY) and decreases pH only in GY soil. Despite differences in the content of organic matter and structural stability, both soils show no significant differences (P 〈 0.01) in the splash erosion rates. The size of pores is reduced by heating, as derived from variations in soil water retention capacity.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 236
    Publication Date: 2014-03-13
    Description: Seismic visibility of a deep subduction channel – insights from numerical simulation of high-frequency seismic waves emitted from intermediate depth earthquakes Solid Earth, 5, 141-159, 2014 Author(s): W. Friederich, L. Lambrecht, B. Stöckhert, S. Wassmann, and C. Moos Return flow in a deep subduction channel (DSC) has been proposed to explain rapid exhumation of high pressure–low temperature metamorphic rocks, entirely based on the fossil rock record. Supported by thermo-mechanical models, the DSC is envisioned as a thin layer on top of the subducted plate reaching down to minimum depths of about 150 km. We perform numerical simulations of high-frequency seismic wave propagation (1–5 Hz) to explore potential seismological evidence for the in situ existence of a DSC. Motivated by field observations, for modeling purposes we assume a simple block-in-matrix (BIM) structure with eclogitic blocks floating in a serpentinite matrix. Homogenization calculations for BIM structures demonstrate that effective seismic velocities in such composites are lower than in the surrounding oceanic crust and mantle, with nearly constant values along the entire length of the DSC. Synthetic seismograms for receivers at the surface computed for intermediate depth earthquakes in the subducted oceanic crust for models with and without DSC turn out to be markedly influenced by its presence or absence. While for both models P and S waveforms are dominated by delayed high-amplitude guided waves, models with DSC exhibit a very different pattern of seismic arrivals compared to models without DSC. The main reason for the difference is the greater length and width of the low-velocity channel when a DSC is present. Seismic velocity heterogeneity within the DSC or oceanic crust is of minor importance. The characteristic patterns allow for definition of typical signatures by which models with and without DSC may be discriminated. The signatures stably recur in slightly modified form for earthquakes at different depths inside subducted oceanic crust. Available seismological data from intermediate depth earthquakes recorded in the forearc of the Hellenic subduction zone exhibit similar multi-arrival waveforms as observed in the synthetic seismograms for models with DSC. According to our results, observation of intermediate depth earthquakes along a profile across the forearc may allow to test the hypothesis of a DSC and to identify situations where such processes could be active today.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 237
    Publication Date: 2014-03-14
    Description: Implementation of a soil albedo scheme in the CABLEv1.4b land surface model and evaluation against MODIS estimates over Australia Geoscientific Model Development Discussions, 7, 1671-1707, 2014 Author(s): J. Kala, J. P. Evans, A. J. Pitman, C. B. Schaaf, M. Decker, C. Carouge, D. Mocko, and Q. Sun Land surface albedo, the fraction of incoming solar radiation reflected by the land surface, is a key component of the earth system. This study evaluates snow-free surface albedo simulations by the Community Atmosphere Biosphere Land Exchange (CABLEv1.4b) model with the Moderate Resolution Imaging Spectroradiometer (MODIS) albedo. We compare results from two offline simulations over the Australian continent, one with prescribed background snow-free and vegetation-free soil albedo derived from MODIS (the control), and the other with a simple parameterisation based on soil moisture and colour. The control simulation shows that CABLE simulates albedo over Australia reasonably well, with differences with MODIS within an acceptable range. Inclusion of the parameterisation for soil albedo however introduced large errors for the near infra red albedo, especially for desert regions of central Australia. These large errors were not fully explained by errors in soil moisture or parameter uncertainties, but are similar to errors in albedo in other land surface models which use the same soil albedo scheme. Although this new parameterisation has introduced larger errors as compared to prescribing soil albedo, dynamic soil moisture-albedo feedbacks are now enabled in CABLE. Future directions for albedo parameterisations development in CABLE are discussed.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 238
    Publication Date: 2014-05-06
    Description: Coupling the high complexity land surface model ACASA to the mesoscale model WRF Geoscientific Model Development Discussions, 7, 2829-2875, 2014 Author(s): L. Xu, R. D. Pyles, K. T. Paw U, S. H. Chen, and E. Monier In this study, the Weather Research and Forecasting Model (WRF) is coupled with the Advanced Canopy–Atmosphere–Soil Algorithm (ACASA), a high complexity land surface model. Although WRF is a state-of-the-art regional atmospheric model with high spatial and temporal resolutions, the land surface schemes available in WRF are simple and lack the capability to simulate carbon dioxide, for example, the popular NOAH LSM. ACASA is a complex multilayer land surface model with interactive canopy physiology and full surface hydrological processes. It allows microenvironmental variables such as air and surface temperatures, wind speed, humidity, and carbon dioxide concentration to vary vertically. Simulations of surface conditions such as air temperature, dew point temperature, and relative humidity from WRF–ACASA and WRF–NOAH are compared with surface observation from over 700 meteorological stations in California. Results show that the increase in complexity in the WRF–ACASA model not only maintains model accuracy, it also properly accounts for the dominant biological and physical processes describing ecosystem-atmosphere interactions that are scientifically valuable. The different complexities of physical and physiological processes in the WRF–ACASA and WRF–NOAH models also highlight the impacts of different land surface and model components on atmospheric and surface conditions.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 239
    Publication Date: 2014-05-06
    Description: Improved routines to model the ocean carbonate system: mocsy 1.0 Geoscientific Model Development Discussions, 7, 2877-2902, 2014 Author(s): J. C. Orr and J.-M. Epitalon Software used by modelers to compute ocean carbonate chemistry is often based on code from the Ocean Carbon Cycle Model Intercomparison Project (OCMIP), last revised in 2005. As an update, we offer here new publicly available Fortran 95 routines to model the ocean carbonate system (mocsy). Both codes take as input dissolved inorganic carbon C T and total alkalinity A T , the only two tracers of the ocean carbonate system that are unaffected by changes in temperature and salinity and conservative with respect to mixing, properties that make them ideally suited for ocean carbon models. With the same basic thermodynamic equilibria, both codes compute surface-ocean p CO 2 in order to simulate air–sea CO 2 fluxes. The mocsy package goes beyond the OCMIP code by computing all other carbonate system variables (e.g., pH, CO 3 2− , and CaCO 3 saturation states) and by doing so throughout the water column. Moreover, it avoids three common model approximations: that density is constant, that modeled potential temperature is equivalent to in situ temperature, and that depth is equivalent to pressure. These approximations work well at the surface, but total errors in computed variables grow with depth, e.g., reaching −8 μatm in p CO 2 , +0.010 in pH, and +0.01 in Ω A at 5000 m. Besides the equilibrium constants recommended for best practices, mocsy also offers users three new options: (1) a recent formulation for total boron that increases its ocean content by 4%, (2) an older formulation for K F common to all other such software, and (3) recent formulations for K 1 and K 2 designed to also include low-salinity waters. More total boron increases borate alkalinity and reduces carbonate alkalinity, which is calculated as a difference from total alkalinity. As a result, the computed surface p CO 2 increases by 4 to 6 μatm, while the computed aragonite saturation horizon (ASH) shallows by 60 m in the North Atlantic and by up to 90 m in the Southern Ocean. Changes due to the new formulation for K 1 and K 2 enhance p CO 2 by up to 8 μatm in the deep ocean and in high-latitude surface waters. These changes are comparable in magnitude to errors in the same regions associated with neglecting nutrient contributions to total alkalinity, a common practice in ocean biogeochemical modeling. The mocsy code with the standard options for best practices and none of the 3 approximations agrees with results from the CO2SYS package generally within 0.005%.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 240
    Publication Date: 2014-05-06
    Description: Droplet activation parameterization: the population splitting concept revisited Geoscientific Model Development Discussions, 7, 2903-2932, 2014 Author(s): R. Morales Betancourt and A. Nenes In this work we postulate, implement and evaluate modifications to the "population splitting" concept introduced by Nenes and Seinfeld (2003) for calculation of water condensation rates in droplet activation parameterizations. The modifications introduced here lead to an improved accuracy and precision of the parameterization-derived maximum supersaturation, s max , and droplet number concentration, N d , as determined by comparing against those of detailed numerical simulations of the activation process. A numerical computation of the first-order derivatives ∂ N d /∂ χ j of the parameterized N d to input variables χ j was performed, and compared against the corresponding parcel model derived sensitivities, providing a thorough evaluation of the impacts of the introduced modifications in the parameterization ability to respond to aerosol characteristics. The proposed modifications require only minor changes for their numerical implementation in existing codes based on the population splitting concept.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 241
    Publication Date: 2014-03-20
    Description: SEHR-ECHO v1.0: a Spatially-Explicit Hydrologic Response model for ecohydrologic applications Geoscientific Model Development Discussions, 7, 1865-1904, 2014 Author(s): B. Schaefli, L. Nicótina, C. Imfeld, P. Da Ronco, E. Bertuzzo, and A. Rinaldo This paper presents the Spatially-Explicit Hydrologic Response (SEHR) model developed at the Laboratory of Ecohydrology of the Ecole Polytechnique Fédérale de Lausanne for the simulation of hydrological processes at the catchment scale. The key concept of the model is the formulation of water transport by geomorphologic travel time distributions through gravity-driven transitions among geomorphic states: the mobilization of water (and possibly dissolved solutes) is simulated at the sub-catchment scale and the resulting responses are convolved with the travel paths distribution within the river network to obtain the hydrologic response at the catchment outlet. The model thus breaks down the complexity of the hydrologic response into an explicit geomorphological combination of dominant spatial patterns of precipitation input and of hydrologic process controls. Nonstationarity and nonlinearity effects are tackled through soil moisture dynamics in the active soil layer. We present here the basic model set-up for precipitation–runoff simulation. The performance of the model is illustrated for a snow-dominated catchment in Switzerland with a small glacier cover.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 242
    Publication Date: 2014-04-30
    Description: Modelling of primary aerosols in the chemical transport model MOCAGE: development and evaluation of aerosol physical parameterizations Geoscientific Model Development Discussions, 7, 2745-2796, 2014 Author(s): B. Sič, L. El Amraoui, V. Marécal, B. Josse, J. Arteta, J. Guth, M. Joly, and P. Hamer This paper deals with recent improvements to the chemical transport model of Météo-France MOCAGE that consists of updates to different aerosol parameterizations. MOCAGE only contains primary aerosol species. We introduced important changes to the aerosol parameterization concerning emissions, wet deposition and sedimentation. For the emissions, size distribution and wind calculations are modified for desert dust aerosols, and a surface sea temperature dependant source function is introduced for sea salt aerosols. Wet deposition is modified toward a more physically realistic representation by introducing re-evaporation of falling rain and snowfall scavenging, and by changing in-cloud scavenging scheme along with calculations of precipitation cloud cover and rain properties. The sedimentation scheme update includes changes regarding the stability and viscosity calculations. Independent data from satellites (MODIS, SEVIRI), the ground (AERONET), and a model inter-comparison project (AeroCom) is compared with MOCAGE simulations and showed that the introduced changes brought a significant improvement on aerosol representation, properties and global distribution. Emitted quantities of desert dust and sea salt, as well their lifetimes, moved closer towards values of AeroCom estimates and the multi-model average. When comparing the model simulations with MODIS aerosol optical depth (AOD) observations over the oceans, the updated model configuration shows a decrease in the bias (from 0.032 to 0.002) and a better correlation (from 0.062 to 0.322) in terms of the geographical distribution and the temporal variability. The updates corrected a strong positive bias in the sea salt representation at high latitudes (from 0.153 to 0.026), and a negative bias in the desert dust representation in the African dust outflow region (from −0.179 to −0.051). The updates in sedimentation produced a modest difference; the bias with MODIS data from 0.002 in the updated configuration went to 0.003 in the updated configuration only without the sedimentation updates. Yet, the updates in the emissions and the wet deposition made a stronger impact on the results; the bias was 0.041 and 0.032 in updated configurations only without emission, and wet deposition updates, respectively. Also, the lifetime, the extent, and the strength of the episodic aerosol events are better reproduced in the updated configuration. The wet deposition processes and the differences between the various configurations that were tested greatly influence the representation of the episodic events. However, wet deposition is not a continuous process; it has a local and episodic signature and its representation depends strongly on the precipitation regime in the model.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 243
    Publication Date: 2014-04-30
    Description: MM5 v3.6.1 and WRF v3.2.1 model comparison of standard and surface energy variables in the development of the planetary boundary layer Geoscientific Model Development Discussions, 7, 2705-2743, 2014 Author(s): C.-S. M. Wilmot, B. Rappenglück, and X. Li Air quality forecasting requires atmospheric weather models to generate accurate meteorological conditions, one of which is the development of the planetary boundary layer (PBL). An important contributor to the development of the PBL is the land-air exchange captured in the energy budget as well as turbulence parameters. Standard and surface energy variables were modeled using the fifth-generation Penn State/National Center for Atmospheric Research mesoscale model (MM5), version 3.6.1, and the Weather Research and Forecasting (WRF) model, version 3.2.1, and compared to measurements for a southeastern Texas coastal region. The study period was 28 August–1 September 2006. It also included a frontal passage. The results of the study are ambiguous. Although WRF does not perform as well as MM5 in predicting PBL heights, it better simulates most of the general and energy budget variables. Both models overestimate incoming solar radiation, which implies a surplus of energy that could be redistributed in either the partitioning of the surface energy variables or in some other aspect of the meteorological modeling not examined here. The MM5 model consistently had much drier conditions than the WRF model, which could lead to more energy available to other parts of the meteorological system. On the clearest day of the study period MM5 had increased latent heat flux, which could lead to higher evaporation rates and lower moisture in the model. However, this latent heat disparity between the two models is not visible during any other part of the study. The observed frontal passage affected the performance of most of the variables, including the radiation, flux, and turbulence variables, at times creating dramatic differences in the r 2 values.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 244
    Publication Date: 2014-04-30
    Description: A new WRF-Chem treatment for studying regional scale impacts of cloud-aerosol interactions in parameterized cumuli Geoscientific Model Development Discussions, 7, 2651-2704, 2014 Author(s): L. K. Berg, M. Shrivastava, R. C. Easter, J. D. Fast, E. G. Chapman, and Y. Liu A new treatment of cloud-aerosol interactions within parameterized shallow and deep convection has been implemented in WRF-Chem that can be used to better understand the aerosol lifecycle over regional to synoptic scales. The modifications to the model to represent cloud-aerosol interactions include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain–Fritsch cumulus parameterization that has been modified to better represent shallow convective clouds. Preliminary testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS) as well as a high-resolution simulation that does not include parameterized convection. The simulation results are used to investigate the impact of cloud-aerosol interactions on regional scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column integrated BC can be as large as −50% when cloud-aerosol interactions are considered (due largely to wet removal), or as large as +40% for sulfate in non-precipitating conditions due to the sulfate production in the parameterized clouds. The modifications to WRF-Chem version 3.2.1 are found to account for changes in the cloud drop number concentration (CDNC) and changes in the chemical composition of cloud-drop residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to WRF-Chem version 3.5, and it is anticipated that they will be included in a future public release of WRF-Chem.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 245
    Publication Date: 2014-05-01
    Description: IL-GLOBO (1.0) – integrated Lagrangian particle model and Eulerian general circulation model GLOBO: development of the vertical diffusion module Geoscientific Model Development Discussions, 7, 2797-2828, 2014 Author(s): D. Rossi and A. Maurizi The development and validation of the vertical diffusion module of IL-GLOBO, a Lagrangian transport model coupled online with the Eulerian General Circulation Model GLOBO, is described. The module simulates the effects of turbulence on particle motion by means of a Lagrangian Stochastic Model (LSM) consistent with the turbulent diffusion equation used in GLOBO. The implemented LSM integrates particle trajectories, using the native σ-hybrid coordinates of the Eulerian component, and fulfills the Well Mixed Condition (WMC) in the general case of a variable density profile. The module is validated through a series of 1-D numerical experiments by assessing its accuracy in maintaining an initially well mixed distribution. A dynamical time-step selection algorithm with constraints related to the shape of the diffusion coefficient profile is developed and gives accurate results, even for strongly peaked diffusivity profiles. Finally, the skills of a linear interpolation and a modified Akima spline interpolation method are compared, showing that the former generally introduces deviations from the WMC, due to the inconsistency between the local value of the diffusion coefficient and its derivatives. The Akima interpolation algorithm, for which the model satisfies the WMC rigorously, has a computational cost within 120% of the linear interpolation algorithm, making it a reasonable option for implementation in the 3-D model.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 246
    Publication Date: 2014-04-26
    Description: A model using marginal efficiency of investment to analyse carbon and nitrogen interactions in terrestrial ecosystems (ACONITE Version 1) Geoscientific Model Development Discussions, 7, 2525-2580, 2014 Author(s): R. Q. Thomas and M. Williams Carbon (C) and nitrogen (N) cycles are coupled in terrestrial ecosystems through multiple processes including photosynthesis, tissue allocation, respiration, N fixation, N uptake, and decomposition of litter and soil organic matter. Capturing the constraint of N on terrestrial C uptake and storage has been a focus of the Earth System modelling community. However there is little understanding of the trade-offs and sensitivities of allocating C and N to different tissues in order to optimize the productivity of plants. Here we describe a new, simple model of ecosystem C–N cycling and interactions (ACONITE), that builds on theory related to plant economics in order to predict key ecosystem properties (leaf area index, leaf C : N, N fixation, and plant C use efficiency) using emergent constraints provided by marginal returns on investment for C and/or N allocation. We simulated and evaluated steady-state ecosystem stocks and fluxes in three different forest ecosystems types (tropical evergreen, temperate deciduous, and temperate evergreen). Leaf C : N differed among the three ecosystem types (temperate deciduous 〈 tropical evergreen 〈 temperature evergreen), a result that compared well to observations from a global database describing plant traits. Gross primary productivity (GPP) and net primary productivity (NPP) estimates compared well to observed fluxes at the simulation sites. Simulated N fixation at steady-state, calculated based on relative demand for N and the marginal return on C investment to acquire N, was an order of magnitude higher in the tropical forest than in the temperate forest, consistent with observations. A sensitivity analysis revealed that parameterization of the relationship between leaf N and leaf respiration had the largest influence on leaf area index and leaf C : N. Also, a widely used linear leaf N-respiration relationship did not yield a realistic leaf C : N, while a more recently reported non-linear relationship performed better. A parameter governing how photosynthesis scales with day length had the largest influence on total vegetation C, GPP, and NPP. Multiple parameters associated with photosynthesis, respiration, and N uptake influenced the rate of N fixation. Overall, our ability to constrain leaf area index and have spatially and temporally variable leaf C : N helps address challenges for ecosystem and Earth System models. Furthermore, the simple approach with emergent properties based on coupled C–N dynamics has potential for use in research that uses data-assimilation methods to integrate data on both the C and N cycles to improve C flux forecasts.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 247
    Publication Date: 2014-03-05
    Description: Description and basic evaluation of BNU-ESM version 1 Geoscientific Model Development Discussions, 7, 1601-1647, 2014 Author(s): D. Ji, L. Wang, J. Feng, Q. Wu, H. Cheng, Q. Zhang, J. Yang, W. Dong, Y. Dai, D. Gong, R.-H. Zhang, X. Wang, J. Liu, J. C. Moore, D. Chen, and M. Zhou An earth system model has been developed at Beijing Normal University (Beijing Normal University Earth System Model, BNU-ESM); the model is based on several widely evaluated climate model components and is used to study mechanisms of ocean–atmosphere interactions, natural climate variability and carbon-climate feedbacks at interannual to interdecadal time scales. In this paper, the model structure and individual components are described briefly. Further, results for the CMIP5 (Coupled Model Intercomparison Project phase 5) pre-industrial control and historical simulations are presented to demonstrate the model's performance in terms of the mean model state and the internal variability. It is illustrated that BNU-ESM can simulate many observed features of the earth climate system, such as the climatological annual cycle of surface air temperature and precipitation, annual cycle of tropical Pacific sea surface temperature (SST), the overall patterns and positions of cells in global ocean meridional overturning circulation. For example, the El Niño-Southern Oscillation (ENSO) simulated in BNU-ESM exhibits an irregular oscillation between 2 and 5 years with the seasonal phase locking feature of ENSO. Important biases with regard to observations are presented and discussed, including warm SST discrepancies in the major upwelling regions, an equatorward drift of midlatitude westerly wind bands, and tropical precipitation bias over the ocean that is related to the double Intertropical Convergence Zone (ITCZ).
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 248
    Publication Date: 2014-04-29
    Description: Towards a representation of halogen chemistry within volcanic plumes in a chemistry transport model Geoscientific Model Development Discussions, 7, 2581-2650, 2014 Author(s): L. Grellier, V. Marécal, B. Josse, P. D. Hamer, T. J. Roberts, A. Aiuppa, and M. Pirre Volcanoes are a known source of halogens to the atmosphere. HBr volcanic emissions lead rapidly to the formation of BrO within volcanic plumes as shown by recent work based on observations and models. BrO, having a longer residence time in the atmosphere than HBr, is expected to have a significant impact on tropospheric chemistry, at least at the local and regional scales. The objective of this paper is to prepare a framework that will allow 3-D modelling of volcanic halogen emissions in order to determine their fate within the volcanic plume and then in the atmosphere at the regional and global scales. This work is based on a 1-D configuration of the chemistry transport model MOCAGE whose low computational cost allows us to perform a large set of sensitivity studies. This paper studies the Etna eruption on the 10 May 2008 that took place just before night time. Adaptations are made to MOCAGE to be able to produce the chemistry occurring within the volcanic plume. A simple sub-grid scale parameterization of the volcanic plume is implemented and tested. The use of this parameterization in a 0.5° × 0.5° configuration (typical regional resolution) has an influence on the partitioning between the various bromine compounds both during the eruption period and also during the night period immediately afterwards. During the day after the eruption, simulations both with and without parameterizations give very similar results that are consistent with the tropospheric column of BrO and SO 2 in the volcanic plume derived from GOME-2 observations. Tests have been performed to evaluate the sensitivity of the results to the mixing between ambient air and the magmatic air at very high temperature at the crater vent that modifies the composition of the emission, and in particular the sulphate aerosol content that is key compound in the BrO production. Simulations show that the plume chemistry is not very sensitive to the assumptions used for the mixing parameter (relative quantity of ambient air mixed with magmatic air in the mixture) that is not well known. This is because there is no large change in the compounds limiting/favouring the BrO production in the plume. The impact of the model grid resolution is also tested in view of future 3-D-simulations at the global scale. A dilution of the emitted gases and aerosols is observed when using the typical global resolution (2°) as compared to a typical regional resolution (0.5°), as expected. Taking this into account, the results of the 2° resolution simulations are consistent with the GOME-2 observations. In general the simulations at 2° resolution are less efficient at producing BrO after the emission both with and without the subgrid-scale parameterization. The differences are mainly due to an interaction between concentration effects than stem from using a reduced volume in the 0.5° resolution combined with second order rate kinetics. The last series of tests were on the mean radius assumed for the sulphate aerosols that indirectly impacts the production of BrO by heterogeneous reactions. The simulations show that the BrO production is sensitive to this parameter with a stronger production when smaller aerosols are assumed. These results will be used to guide the implementation of volcanic halogen emissions in the 3-D configuration of MOCAGE.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 249
    Publication Date: 2014-01-25
    Description: Simulations of direct and reflected waves trajectories for in situ GNSS-R experiments Geoscientific Model Development Discussions, 7, 1001-1062, 2014 Author(s): N. Roussel, F. Frappart, G. Ramillien, C. Desjardins, P. Gegout, F. Pérosanz, and R. Biancale The detection of Global Navigation Satellite System (GNSS) signals that are reflected off the surface, together with the reception of direct GNSS signals offers a unique opportunity to monitor water level variations over land and ocean. The time delay between the reception of the direct and the reflected signal gives access to the altitude of the receiver over the reflecting surface. The field of view of the receiver is highly dependent on both the orbits of the GNSS satellites and the configuration of the study site geometries. A simulator has been developed to determine the accurate location of the reflection points on the surface by modelling the trajectories of GNSS electromagnetic waves that are reflected on the surface of the Earth. Only the geometric problem have been considered using a specular reflection assumption. The orbit of the GNSS constellations satellite (mainly GPS, GLONASS and Galileo), and the position of a fixed receiver are used as input. Three different simulation modes are proposed depending on the choice of the Earth surface (local sphere or ellipsoid) and the consideration of topography likely to cause masking effects. Atmospheric delay effects derived from adaptive mapping functions are also taken into account. This simulator was developed to determine where the GNSS-R receivers should be located to monitor efficiently a given study area. In this study, two test sites were considered. The first one at the top of the Cordouan lighthouse (45°35'11'' N; 1°10'24'' W; 65 m) and the second one in the shore of the Geneva lake (46°24'30'' N; 6°43'6'' E, with a 50 m receiver height). This site is hidden by mountains in the South (altitude up to 2000 m), and overlooking the lake in the North (altitude of 370 m). For this second test site configuration, reflections occur until 560 m from the receiver. The geometric differences between the positions of the specular reflection points obtained considering the Earth as a sphere or as an ellipsoid were found to be on average 44 cm for satellites elevation angle greater than 10° and 1 m for satellite elevation angle between 5° and 10°. The simulations highlight the importance of the DEM integration: differences with and without integrating the DEM were found to be about 3.80 m with the minimum elevation angle equal to 5° and 1.4 m with the minimum elevation angle set to 10°. The correction of the tropospheric effects on the signal leads to geometric differences about 24 m maximum for a 50 m receiver height whereas the maximum is 43 cm for a 5 m receiver height. These errors deeply increase with the receiver height. By setting it to 300 m, the geometric errors reach 103 m for satellite elevation angle lower than 10°. The tests performed with the simulator presented in this paper highlight the importance of the choice of the Earth representation and also the non-negligible effect of the troposphere on the specular reflection points positions. Various outputs (time-varying reflection point coordinates, satellites positions and ground paths, wave trajectories, Fresnel first surfaces, etc.) are provided either as text or KML files for a convenient use.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 250
    Publication Date: 2014-01-25
    Description: The permeability and elastic moduli of tuff from Campi Flegrei, Italy: implications for ground deformation modelling Solid Earth, 5, 25-44, 2014 Author(s): M. J. Heap, P. Baud, P. G. Meredith, S. Vinciguerra, and T. Reuschlé The accuracy of ground deformation modelling at active volcanoes is a principal requirement in volcanic hazard mitigation. However, the reliability of such models relies on the accuracy of the rock physical property (permeability and elastic moduli) input parameters. Unfortunately, laboratory-derived values on representative rocks are usually rare. To this end we have performed a systematic laboratory study on the influence of pressure and temperature on the permeability and elastic moduli of samples from the two most widespread lithified pyroclastic deposits at the Campi Flegrei volcanic district, Italy. Our data show that the water permeability of Neapolitan Yellow Tuff and a tuff from the Campanian Ignimbrite differ by about 1.5 orders of magnitude. As pressure (depth) increases beyond the critical point for inelastic pore collapse (at an effective pressure of 10–15 MPa, or a depth of about 750 m), permeability and porosity decrease significantly, and ultrasonic wave velocities and dynamic elastic moduli increase significantly. Increasing the thermal stressing temperature increases the permeability and decreases the ultrasonic wave velocities and dynamic elastic moduli of the Neapolitan Yellow Tuff; whereas the tuff from the Campanian Ignimbrite remains unaffected. This difference is due to the presence of thermally unstable zeolites within the Neapolitan Yellow Tuff. For both rocks we also find, under the same pressure conditions, that the dynamic (calculated from ultrasonic wave velocities) and static (calculated from triaxial stress-strain data) elastic moduli differ significantly. The choice of elastic moduli in ground deformation modelling is therefore an important consideration. While we urge that these new laboratory data should be considered in routine ground deformation modelling, we highlight the challenges for ground deformation modelling based on the heterogeneous nature (vertically and laterally) of the rocks that comprise the caldera at Campi Flegrei.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 251
    Publication Date: 2013-12-12
    Description: Seasonal changes in the soil hydrological and erosive response depending on aspect, vegetation type and soil water repellency in different Mediterranean microenvironments Solid Earth, 4, 497-509, 2013 Author(s): M. A. Gabarrón-Galeote, J. F. Martínez-Murillo, M. A. Quesada, and J. D. Ruiz-Sinoga Mediterranean areas are characterized by a strong spatial variability that makes the soil hydrological response highly complex. Moreover, Mediterranean climate has marked seasons that provoke dramatic changes on soil properties determining the runoff rates, such as soil water content or soil water repellency (SWR). Thus, soil hydrological and erosive response in Mediterranean areas can be highly time- as well as space-dependant. This study shows SWR, aspect and vegetation as factors of the soil hydrological and erosive response. Erosion plots were set up in the north- and the south-facing hillslope and rainfall, runoff, sediments and SWR were monitored. Soil water repellency showed a seasonal behaviour and it was presented in three out of four microenvironments after the summer, disappearing in the wet season. In general, runoff rate was higher in shrubs patches (0.47 ± 0.67 mm) than in inter-shrub soils (1.54 ± 2.14 mm), but it changed seasonally in different ways, depending on the aspect considered, decreasing in the north-facing hillslope and increasing in the south-facing one. The main factor determining the hydrological and erosive response was the rainfall intensity, regardless of the rainfall depth of the event. This response was modulated mainly by SWR in the north-facing hillslope and the vegetation pattern in the south-facing one.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 252
    Publication Date: 2013-12-13
    Description: Earth System Models that simulate crops underestimate CO 2 emissions from land use by neglecting soil disturbance due to cultivation Geoscientific Model Development Discussions, 6, 6639-6658, 2013 Author(s): S. Levis, M. D. Hartman, and G. B. Bonan The Community Land Model (CLM) can simulate planting and harvesting of crops but does not include effects of cultivation on soil carbon decomposition. The biogeochemistry model DayCent does account for cultivation and provides a baseline for evaluating the CLM. With the goal of representing cultivation effects on soil carbon decomposition, we implemented the DayCent cultivation parameterization in the CLM and compared CLM and DayCent simulations at eight Midwestern United States sites with and without the cultivation parameterization. Cultivation decreases soil carbon by about 1350 g C m −2 in the CLM and 1660 g C m −2 in DayCent across the eight sites from first cultivation (early 1900s) to 2010. CLM crop simulations without cultivation have soil carbon gain, not loss, over this period, in contrast to the expected declining trends in agricultural soil carbon. A global cultivation simulation for 1973–2004 reduces ecosystem carbon by 0.4 Pg yr −1 over temperate corn, soybean, and cereal crop areas, which occupy approximately 1/3 of global crop area. Earth System Models may improve their atmospheric CO 2 and soil carbon simulations by accounting for enhanced decomposition from cultivation.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 253
    Publication Date: 2014-02-21
    Description: Review of some significant claimed irregularities in Scandinavian postglacial uplift on timescales of tens to thousands of years – earthquakes in Denmark? Solid Earth, 5, 109-118, 2014 Author(s): S. Gregersen and P. H. Voss The postglacial uplift and surrounding subsidence in Scandinavia is well described as close to regular, and the phenomenon is similar on timescales of tens, hundreds and thousands of years studied via geodesy, seismology and geology. Searches for irregularities in the form of earthquakes claimed in the scientific literature have disclosed many earthquakes right after the Ice Age, 9000 yr ago, and some later cases for further evaluation. In a previous report, the present authors have mentioned doubts about the validity of some of the most significant claimed irregularities. In the present paper, a review is made of these significant claimed irregularities in the south-western flank of the Scandinavian postglacial uplift and subsidence via literature studies of geodetic and geological claims of earthquakes as well as discussions in the field. Geodetic observations exist for all of Scandinavia that describe the phenomenon on a scale of 10s–100s of years. Earthquake observations in seismology are of relevance in the same timescales. Geological studies of dated shore lines describe the postglacial vertical earth-surface motion in a quite different timescale of 100s–1000s of years. There is a need for integration of these observations geographically. This is happening in the various timescales in the DynaQlim project. The review finds the claims unlikely to be earthquakes concerning the following: (1) geodynamical motion in the Copenhagen area, (2) a palaeo-earthquake in Læsø and (3) the recently proposed water level discrepancy in the southern part of Denmark. The assessment is less certain, but falls to improbable when concerning (4) proposed palaeo-earthquakes by Hallandsåsen in south-western Sweden.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 254
    Publication Date: 2014-02-22
    Description: Numerical simulations of oceanic oxygen cycling in the FAMOUS Earth-System model: FAMOUS-ES, version 1.0 Geoscientific Model Development Discussions, 7, 1453-1476, 2014 Author(s): J. H. T. Williams, I. J. Totterdell, P. R. Halloran, and P. J. Valdes Addition and validation of an oxygen cycle to the ocean component of the FAMOUS climate model are described. Surface validation is carried out with respect to HadGEM2-ES where good agreement is found and where discrepancies are mainly attributed to disagreement in surface temperature structure between the models. The agreement between the models at depth (where observations are also used in the comparison) in the Southern Hemisphere is less encouraging than in the Northern Hemisphere. This is attributed to a combination of excessive surface productivity in FAMOUS' equatorial waters (and its concomitant effect on remineralisation at depth) and its reduced overturning circulation compared to HadGEM2-ES. For the entire Atlantic basin FAMOUS has a circulation strength of 12.7 ± 0.4 Sv compared to 15.0 ± 0.9 for HadGEM2-ES. The HadGEM2-ES data used in this paper were obtained from the online database of the fifth Coupled Model Intercomparison Project, CMIP5 (Taylor et al., 2012).
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 255
    Publication Date: 2014-02-14
    Description: Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review Solid Earth, 5, 65-75, 2014 Author(s): J. Paz-Ferreiro, H. Lu, S. Fu, A. Méndez, and G. Gascó Anthropogenic activities are resulting in an increase of the use and extraction of heavy metals. Heavy metals cannot be degraded and hence accumulate in the environment, having the potential to contaminate the food chain. This pollution threatens soil quality, plant survival and human health. The remediation of heavy metals deserves attention, but it is impaired by the cost of these processes. Phytoremediation and biochar are two sound environmental technologies which could be at the forefront to mitigate soil pollution. This review provides an overview of the state of the art of the scientific research on phytoremediation and biochar application to remediate heavy-metal-contaminated soils. Research to date has attempted only in a limited number of occasions to combine both techniques, however we discuss the potential advantages of combining both, and the potential mechanisms involved in the interaction between phytoremediators and biochar. We identified specific research needs to ensure a sustainable use of phytoremediation and biochar as remediation tools.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 256
    Publication Date: 2014-02-28
    Description: Coupling earth system and integrated assessment models: the problem of steady state Geoscientific Model Development Discussions, 7, 1499-1524, 2014 Author(s): B. Bond-Lamberty, K. Calvin, A. D. Jones, J. Mao, P. Patel, X. Shi, A. Thomson, P. Thornton, and Y. Zhou Human activities are significantly altering biogeochemical cycles at the global scale, posing a significant problem for earth system models (ESMs), which may incorporate static land-use change inputs but do not actively simulate policy or economic forces. One option to address this problem is to couple an ESM with an economically oriented integrated assessment model. Here we have implemented and tested a coupling mechanism between the carbon cycles of an ESM (CESM, the Community Earth System Model) and an integrated assessment (GCAM) model, examining the best proxy variables to share between the models, and quantifying our ability to distinguish climate- and land-use-driven flux changes. The net primary production and heterotrophic respiration outputs of the Community Land Model (CLM), the land component of CESM, were found to be the most robust proxy variables by which to manipulate GCAM's assumptions of long-term ecosystem steady state carbon, with short-term forest production strongly correlated with long-term biomass changes in climate-change model runs. Carbon-cycle effects of anthropogenic land-use change are short-term and spatially limited relative to widely distributed climate effects, and as a result we were able to distinguish these effects successfully in the model coupling, passing only the latter to GCAM. By allowing climate effects from a full earth system model to dynamically modulate the economic and policy decisions of an integrated assessment model, this work provides a foundation for linking these models in a robust and flexible framework capable of examining two-way interactions between human and earth system processes.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 257
    Publication Date: 2014-03-26
    Description: Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth Geoscientific Model Development Discussions, 7, 1933-2006, 2014 Author(s): T. P. C. van Noije, P. Le Sager, A. J. Segers, P. F. J. van Velthoven, M. C. Krol, and W. Hazeleger We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the integrated forecasting system (IFS) model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which likely reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The methane lifetime is 7% higher in EC-Earth, but remains well within the range reported in the literature. We evaluate the model by comparing the simulated climatologies of surface carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 258
    Publication Date: 2014-03-26
    Description: Probabilistic calibration of a Greenland Ice Sheet model using spatially-resolved synthetic observations: toward projections of ice mass loss with uncertainties Geoscientific Model Development Discussions, 7, 1905-1931, 2014 Author(s): W. Chang, P. J. Applegate, M. Haran, and K. Keller Computer models of ice sheet behavior are important tools for projecting future sea level rise. The simulated modern ice sheets generated by these models differ markedly as input parameters are varied. To ensure accurate ice sheet mass loss projections, these parameters must be constrained using observational data. Which model parameter combinations make sense, given observations? Our method assigns probabilities to parameter combinations based on how well the model reproduces the Greenland Ice Sheet profile. We improve on the previous state of the art by accounting for spatial information, and by carefully sampling the full range of realistic parameter combinations, using statistically rigorous methods. Specifically, we estimate the joint posterior probability density function of model parameters using Gaussian process-based emulation and calibration. This method is an important step toward probabilistic projections of ice sheet contributions to sea level rise, in that it uses observational data to learn about parameter values. This information can, in turn, be used to make projections while taking into account various sources of uncertainty, including parametric uncertainty, data–model discrepancy, and spatial correlation in the error structure. We demonstrate the utility of our method using a perfect model experiment, which shows that many different parameter combinations can generate similar modern ice sheet profiles. This result suggests that the large divergence of projections from different ice sheet models is partly due to parametric uncertainty. Moreover, our method enables insight into ice sheet processes represented by parameter interactions in the model.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 259
    Publication Date: 2014-03-29
    Description: Editorial Note A case of plagiarism: "Modelling of the wave fields by the modification of the matrix method in anisotropic media" published in Solid Earth Discuss., 6, 1–19, 2014 Solid Earth, 5, 161-161, 2014 Author(s): F. Storti No abstract available.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 260
    Publication Date: 2014-04-01
    Description: Corrigendum to "3-D reflection seismic imaging of the Hontomín structure in the Basque–Cantabrian Basin (Spain)" published in Solid Earth, 4, 481–496, 2013 Solid Earth, 5, 181-181, 2014 Author(s): J. Alcalde, D. Martí, C. Juhlin, A. Malehmir, D. Sopher, E. Saura, I. Marzán, P. Ayarza, A. Calahorrano, A. Pérez-Estaún, and R. Carbonell No abstract available.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 261
    Publication Date: 2014-04-01
    Description: Lithospheric-scale structures in New Guinea and their control on the location of gold and copper deposits Solid Earth, 5, 163-179, 2014 Author(s): L. T. White, M. P. Morse, and G. S. Lister The locations of major gold and copper deposits on the island of New Guinea are considered by many to be controlled by a series of transfer faults that strike N–S to NE–SW, perpendicular to the long axis of the island. The premise is that these faults dilate perpendicular to the regional stress field, forming conduits for metalliferous gases and fluids to drop out of solution. However, the data on which this idea was first proposed were often not presented or, when the data were presented, were of poor quality or low resolution. We therefore present a review of the existing structural interpretations and compare these with several recently published geophysical data sets to determine if the mineralization controlling transfer faults could be observed. These data were used to produce a new lineament map of New Guinea. A comparison of the lineaments with the location of major gold and copper deposits indicates there is a link between the arc-normal structures and mineralization. However, it is only those deposits that are less than 4.5 million years old that could be associated with these structures. Gravity and seismic tomography data indicate that some of these structures could penetrate deep levels of the lithosphere, providing some support to the earlier idea that the arc-normal structures act as conduits for the younger mineral deposits of New Guinea. The gravity data can also be used to infer the location of igneous intrusions at depth, which could have brought metal-bearing fluids and gases closer to the Earth's surface. These regions might be of interest for future exploration campaigns, particularly those areas that are crosscut by deep, vertical faults. However, new exploration models are needed to explain the location of the deposits that are older than 5 Ma.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 262
    Publication Date: 2014-04-02
    Description: On the sensitivity of 3-D thermal convection codes to numerical discretization: a model intercomparison Geoscientific Model Development Discussions, 7, 2033-2064, 2014 Author(s): P.-A. Arrial, N. Flyer, G. B. Wright, and L. H. Kellogg Fully 3-D numerical simulations of thermal convection in a spherical shell have become a standard for studying the dynamics of pattern formation and its stability under perturbations to various parameter values. The question arises as to how does the discretization of the governing equations affect the outcome and thus any physical interpretation. This work demonstrates the impact of numerical discretization on the observed patterns, the value at which symmetry is broken, and how stability and stationary behavior is dependent upon it. Motivated by numerical simulations of convection in the Earth's mantle, we consider isoviscous Rayleigh-Bénard convection at infinite Prandtl number, where the aspect ratio between the inner and outer shell is 0.55. We show that the subtleties involved in development mantle convection models are considerably more delicate than has been previously appreciated, due to the rich dynamical behavior of the system. Two codes with different numerical discretization schemes: an established, community-developed, and benchmarked finite element code (CitcomS) and a novel spectral method that combines Chebyshev polynomials with radial basis functions (RBF) are compared. A full numerical study is investigated for the following three cases. The first case is based on the cubic (or octahedral) initial condition (spherical harmonics of degree ℓ =4). How variations in the behavior of the cubic pattern to perturbations in the initial condition and Rayleigh number between the two numerical discrezations is studied. The second case investigates the stability of the dodecahedral (or icosahedral) initial condition (spherical harmonics of degree ℓ = 6). Although both methods converge first to the same pattern, this structure is ultimately unstable and systematically degenerates to cubic or tetrahedral symmetries, depending on the code used. Lastly, a new steady state pattern is presented as a combination of order 3 and 4 spherical harmonics leading to a five cell or a hexahedral pattern and stable up to 70 times the critical Rayleigh number. This pattern can provide the basis for a new accuracy benchmark for 3-D spherical mantle convection codes.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 263
    Publication Date: 2014-04-02
    Description: Decoupling the effects of clear atmosphere and clouds to simplify calculations of the broadband solar irradiance at ground level Geoscientific Model Development Discussions, 7, 2007-2032, 2014 Author(s): A. Oumbe, Z. Qu, P. Blanc, M. Lefèvre, L. Wald, and S. Cros In the case of infinite plane-parallel single- and double-layered cloud, the solar irradiance at ground level computed by a radiative transfer model can be approximated by the product of the irradiance under clear atmosphere and a modification factor due to cloud properties and ground albedo only. Changes in clear-atmosphere properties have negligible effect on the latter so that both terms can be calculated independently. The error made in using this approximation depends mostly on the solar zenith angle, the ground albedo and the cloud optical depth. In most cases, the maximum errors (percentile 95%) on global and direct surface irradiances are less than 15 W m −2 and less than 2–5% in relative value. These values are similar to those recommended by the World Meteorological Organization for high quality measurements of the solar irradiance. Practically, the results mean that a model for fast calculation of surface solar irradiance may be separated into two distinct and independent models, possibly abaci-based, whose input parameters and resolutions can be different, and whose creation requires less computation time and resources than a single model.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 264
    Publication Date: 2014-04-02
    Description: The ring-shaped thermal field of Stefanos crater, Nisyros Island: a conceptual model Solid Earth, 5, 183-198, 2014 Author(s): M. Pantaleo and T. R. Walter Fumarole fields related to hydrothermal processes release the heat of the underground through permeable pathways. Thermal changes, therefore, are likely to depend also on the size and permeability variation of these pathways. There may be different explanations for the observed permeability changes, such as fault control, lithology, weathering/alteration, heterogeneous sediment accumulation/erosion and physical changes of the fluids (e.g., temperature and viscosity). A common difficulty, however, in surface temperature field studies at active volcanoes is that the parameters controlling the ascending routes of fluids are poorly constrained in general. Here we analyze the crater of Stefanos, Nisyros (Greece), and highlight complexities in the spatial pattern of the fumarole field related to permeability conditions. We combine high-resolution infrared mosaics and grain-size analysis of soils, aiming to elaborate parameters controlling the appearance of the fumarole field. We find a ring-shaped thermal field located within the explosion crater, which we interpret to reflect near-surface contrasts of the soil granulometry and volcanotectonic history at depth. We develop a conceptual model of how the ring-shaped thermal field formed at the Stefanos crater and similarly at other volcanic edifices, highlighting the importance of local permeability contrast that may increase or decrease the thermal fluid flux.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 265
    Publication Date: 2014-04-04
    Description: MOMBA 1.1 – a high-resolution Baltic Sea configuration of GFDL's modular ocean model Geoscientific Model Development Discussions, 7, 2065-2124, 2014 Author(s): H. Dietze, U. Löptien, and K. Getzlaff We present a new coupled ocean circulation – ice model configuration of the Baltic Sea. The model features, contrary to most existing configurations, a high horizontal resolution of ≈1 nautical mile which is eddy resolving over much of the domain. The vertical discretisation comprises a total of 47 vertical levels. Results from a 1987 to 1999 hind cast simulation show that the model's fidelity is competitive. As suggested by a comparison with sea surface temperatures observed from space, this applies especially to near-surface processes. Hence, the configuration is well suited to serve as a nucleus of a full-fledged coupled ocean circulation biogeochemical model (which is yet to be developed). A caveat is that the model fails to reproduce major inflow events. We trace this back to spurious vertical circulation patterns at the sills which may well be endemic to high resolution models based on geopotential coordinates. Further, we present indications that – so far neglected – eddy/wind effects exert significant control on wind-induced up- and downwelling.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 266
    Publication Date: 2012-03-27
    Description: The regional aerosol-climate model REMO-HAM Geoscientific Model Development Discussions, 5, 737-779, 2012 Author(s): J.-P. Pietikäinen, D. O'Donnell, C. Teichmann, U. Karstens, S. Pfeifer, J. Kazil, R. Podzun, S. Fiedler, H. Kokkola, W. Birmili, C. O'Dowd, U. Baltensperger, E. Weingartner, R. Gehrig, G. Spindler, M. Kulmala, J. Feichter, D. Jacob, and A. Laaksonen REMO-HAM is a new regional aerosol-climate model. It is based on the REMO regional climate model and includes all of the major aerosol processes. The structure for aerosol is similar to the global aerosol-climate model ECHAM5-HAM, for example the aerosol module HAM-M7 has been coupled with a two-moment stratiform cloud scheme. In this work, we have evaluated the model and compared the results against ECHAM5-HAM and measurements. Four different measurement sites was chosen for the comparison of total number concentrations, size distributions and gas phase sulfur dioxide concentrations: Hyytiälä in Finland, Melpitz in Germany, Mace Head in Ireland and Jungfraujoch in Switzerland. REMO-HAM is run with two different resolutions: 50×50 km 2 and 10×10 km 2 . Based on our simulations, REMO-HAM can represent the measured values reasonably well. The total number concentrations are slightly underestimated, which is probably due to the missing boundary layer nucleation and online secondary organic aerosol model. The differences in the total number concentrations between REMO-HAM and ECHAM5-HAM can be mainly explained by the difference in the nucleation mode. From the meteorological point of view, REMO-HAM represents the precipitation fields and 2 m temperature profile very well compared to measurement. Overall, we have shown that REMO-HAM is a functional aerosol-climate model, which will be used in further studies.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 267
    Publication Date: 2012-04-03
    Description: DInSAR Coseismic Deformation of the May 2011 M w 5.1 Lorca Earthquake (southeastern Spain) Solid Earth, 3, 111-119, 2012 Author(s): T. Frontera, A. Concha, P. Blanco, A. Echeverria, X. Goula, R. Arbiol, G. Khazaradze, F. Pérez, and E. Suriñach The coseismic superficial deformation at the region of Lorca (Murcia, southeastern Spain) due to the M w 5.1 earthquake on 11 May 2011 was characterized by a multidisciplinary team, integrating information from DInSAR, GPS and numerical modelling techniques. Despite the moderate magnitude of the event, quantitative information was obtained from the interferometric study of a pair of TerraSAR-X images. The DinSAR results defined the trace of the fault plane and evidenced uplift of the hanging wall block in agreement with the estimated deformation obtained through an elastic rupture dislocation numerical model. Meanwhile for the footwall block, interferometric results showed that tectonic deformation is masked by an important subsidence related to groundwater extraction previously identified at the area of study. Horizontal crustal deformation rates and velocity vectors, obtained from GPS stations existent at the area, were also coherent with the tectonic setting of the southern margin of the Iberian Peninsula and with the focal mechanism calculated for the Lorca event. The analysis of a continuous GPS site in Lorca showed good agreement with the horizontal N–S direction component relative to the numerical model and tectonics of the region. This is the first time at this seismic active area that a multi-technique analysis has been performed immediately after the occurrence of a seismic event, comparing the existing deformation data with a theoretical numerical model based on estimated seismic rupture dislocation.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 268
    Publication Date: 2012-03-14
    Description: Floating stones off El Hierro, Canary Islands: xenoliths of pre-island sedimentary origin in the early products of the October 2011 eruption Solid Earth, 3, 97-110, 2012 Author(s): V. R. Troll, A. Klügel, M.-A. Longpré, S. Burchardt, F. M. Deegan, J. C. Carracedo, S. Wiesmaier, U. Kueppers, B. Dahren, L. S. Blythe, T. H. Hansteen, C. Freda, D. A. Budd, E. M. Jolis, E. Jonsson, F. C. Meade, C. Harris, S. E. Berg, L. Mancini, M. Polacci, and K. Pedroza A submarine eruption started off the south coast of El Hierro, Canary Islands, on 10 October 2011 and continues at the time of this writing (February 2012). In the first days of the event, peculiar eruption products were found floating on the sea surface, drifting for long distances from the eruption site. These specimens, which have in the meantime been termed "restingolites" (after the close-by village of La Restinga), appeared as black volcanic "bombs" that exhibit cores of white and porous pumice-like material. Since their brief appearance, the nature and origin of these "floating stones" has been vigorously debated among researchers, with important implications for the interpretation of the hazard potential of the ongoing eruption. The "restingolites" have been proposed to be either (i) juvenile high-silica magma (e.g. rhyolite), (ii) remelted magmatic material (trachyte), (iii) altered volcanic rock, or (iv) reheated hyaloclastites or zeolite from the submarine slopes of El Hierro. Here, we provide evidence that supports yet a different conclusion. We have analysed the textures and compositions of representative "restingolites" and compared the results to previous work on similar rocks found in the Canary Islands. Based on their high-silica content, the lack of igneous trace element signatures, the presence of remnant quartz crystals, jasper fragments and carbonate as well as wollastonite (derived from thermal overprint of carbonate) and their relatively high oxygen isotope values, we conclude that "restingolites" are in fact xenoliths from pre-island sedimentary layers that were picked up and heated by the ascending magma, causing them to partially melt and vesiculate. As they are closely resembling pumice in appearance, but are xenolithic in origin, we refer to these rocks as "xeno-pumice". The El Hierro xeno-pumices hence represent messengers from depth that help us to understand the interaction between ascending magma and crustal lithologies beneath the Canary Islands as well as in similar Atlantic islands that rest on sediment-covered ocean crust (e.g. Cape Verdes, Azores). The occurrence of "restingolites" indicates that crustal recycling is a relevant process in ocean islands, too, but does not herald the arrival of potentially explosive high-silica magma in the active plumbing system beneath El Hierro.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 269
    Publication Date: 2011-07-06
    Description: Use of agricultural statistics to verify the internannual variability in land surface models: a case study over France with ISBA-A-gs Geoscientific Model Development Discussions, 4, 1477-1512, 2011 Author(s): J.-C. Calvet, S. Lafont, E. Cloppet, F. Souverain, V. Badeau, and C. Le Bas In order to verify the interannual variability of the above-ground biomass of herbaceous vegetation simulated by the ISBA-A-gs land surface model, within the SURFEX modelling platform, French agricultural statistics for C3 crops and grasslands were compared with the simulations for the 1994–2008 period. While excellent correlations are obtained for grasslands, representing the interannual variability of crops is more difficult. It is shown that, the Maximum Available soil Water Capacity (MaxAWC) has a large influence on the correlation between the model and the agricultural statistics. In particular, high values of MaxAWC tend to reduce the impact of the climate interannual variability on the simulated biomass, and to allow the simulation of a negative trend in biomass production, in relation to a marked warming trend, of about 0.12 Ky −1 on average, affecting the daily maximum air temperature during the growing period (April–June), especially in northern France. The estimates of MaxAWC for C3 crops and grasslands, currently used in SURFEX, are about 129 mm and do not vary much. Therefore, more accurate grid-cell values of this parameter are needed.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 270
    Publication Date: 2011-06-30
    Description: LOSCAR: Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir Model Geoscientific Model Development Discussions, 4, 1435-1476, 2011 Author(s): R. E. Zeebe The LOSCAR model is designed to efficiently compute the partitioning of carbon between ocean, atmosphere, and sediments on time scales ranging from centuries to millions of years. While a variety of computationally inexpensive carbon cycle models are already available, many are missing a critical sediment component, which is indispensable for long-term integrations. One of LOSCAR's strengths is the coupling of ocean-atmosphere routines to a computationally efficient sediment module. This allows, for instance, adequate computation of CaCO 3 dissolution, calcite compensation, and long-term carbon cycle fluxes, including weathering of carbonate and silicate rocks. The ocean component includes various biogeochemical tracers such as total carbon, alkalinity, phosphate, oxygen, and stable carbon isotopes. We have previously published applications of the model tackling future projections of ocean chemistry and weathering, p CO 2 sensitivity to carbon cycle perturbations throughout the Cenozoic, and carbon/calcium cycling during the Paleocene-Eocene Thermal Maximum. The focus of the present contribution is the detailed description of the model including numerical architecture, processes and parameterizations, tuning, and examples of input and output. Typical CPU integration times of LOSCAR are of order seconds for several thousand model years on current standard desktop machines. The LOSCAR source code in C can be obtained from the author by sending a request to loscar.model@gmail.com.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 271
    Publication Date: 2011-07-09
    Description: Development of an ensemble-adjoint optimization approach to derive uncertainties in net carbon fluxes Geoscientific Model Development Discussions, 4, 1513-1531, 2011 Author(s): T. Ziehn, M. Scholze, and W. Knorr Accurate modelling of the carbon cycle strongly depends on the parametrization of its underlying processes. The Carbon Cycle Data Assimilation System (CCDAS) can be used as an estimator algorithm to derive posterior parameter values and uncertainties for the Biosphere Energy Transfer and Hydrology scheme (BETHY). However, the simultaneous optimization of all process parameters can be quite challenging, due to the complexity and non-linearity of the BETHY model. Therefore, we propose a new overall concept, which uses ensemble runs and the adjoint optimization approach of CCDAS to derive the full probability density function (PDF) for posterior soil carbon parameters and the net carbon flux at the global scale. In this way, we only optimize those parameters, which can be constrained best by atmospheric carbon dioxide CO 2 ) data. The prior uncertainties of the remaining parameters are included in a consistent way through ensemble runs, but are not constrained by data. The final PDF for the optimized parameters and the net carbon flux are then derived by superimposing the individual PDFs for each ensemble member. We find that the optimization with CCDAS converges much faster, due to the smaller number of processes involved. Moreover, it is more likely that we find the global minimum in the reduced parameter space.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 272
    Publication Date: 2011-08-27
    Description: Plant functional type mapping for earth system models Geoscientific Model Development Discussions, 4, 2081-2121, 2011 Author(s): B. Poulter, P. Ciais, E. Hodson, H. Lischke, F. Maignan, S. Plummer, and N. E. Zimmermann The sensitivity of global carbon and water cycling to climate variability is coupled directly to land cover and the distribution of vegetation. To investigate biogeochemistry-climate interactions, earth system models require a representation of vegetation distributions that are either prescribed from remote sensing data or simulated via biogeography models. However, the abstraction of earth system state variables in models means that data products derived from remote sensing need to be post-processed for model-data assimilation. Dynamic global vegetation models (DGVM) rely on the concept of plant functional types (PFT) to group shared traits of thousands of plant species into just several classes. Available databases of observed PFT distributions must be relevant to existing satellite sensors and their derived products, and to the present day distribution of managed lands. Here, we develop four PFT datasets based on land-cover information from three satellite sensors (EOS-MODIS 1 km and 0.5 km, SPOT4-VEGETATION 1 km, and ENVISAT-MERIS 0.3 km spatial resolution) that are merged with spatially-consistent Köppen-Geiger climate zones. Using a beta (β) diversity metric to assess reclassification similarity, we find that the greatest uncertainty in PFT classifications occur most frequently between cropland and grassland categories, and in dryland systems between shrubland, grassland and forest categories because of differences in the minimum threshold required for forest cover. The biogeography-biogeochemistry DGVM, LPJmL, is used in diagnostic mode with the four PFT datasets prescribed to quantify the effect of land-cover uncertainty on climatic sensitivity of gross primary productivity (GPP) and transpiration fluxes. Our results show that land-cover uncertainty has large effects in arid regions, contributing up to 30 % (20 %) uncertainty in the sensitivity of GPP (transpiration) to precipitation. The availability of plant functional type datasets that are consistent with current satellite products and adapted for earth system models is an important component for reducing the uncertainty of terrestrial biogeochemistry to climate variability.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 273
    Publication Date: 2011-07-08
    Description: Re-evaluation of the Mentelle Basin, a polyphase rifted margin basin, offshore southwest Australia: new insights from integrated regional seismic datasets Solid Earth, 2, 107-123, 2011 Author(s): D. Maloney, C. Sargent, N. G. Direen, R. W. Hobbs, and D. R. Gröcke Vintage 2-D (two-dimensional) seismic reflection surveys from the sparsely explored Mentelle Basin (western Australian margin) have been reprocessed and integrated with a recent high-quality 2-D seismic survey and stratigraphic borehole data. Interpretation of these data sets allows the internal geometry of the Mentelle Basin fill and depositional history to be reanalysed and new insights into its formation revealed. Basin stratigraphy can be subdivided into several seismically defined megasequences separated by major unconformities related to both breakup between India-Madagascar and Australia-Antarctica in the Valanginian-Late Hauterivian and tectonically-driven switches in deposition through the Albian. Resting on the Valanginian-Late Hauterivian breakup unconformity are several kilometre-scale mounded structures that formed during Late Jurassic to Early Cretaceous extension. These have previously been interpreted as volcanic edifices although direct evidence of volcanic feeder systems is lacking. An alternative interpretation is that these features may be carbonate build-ups. The latter interpretation carries significant climatic ramifications since carbonate build-ups would have formed at high palaeolatitude, ~60° S. Soon after breakup, initial subsidence resulted in a shallow marine environment and deposition of Barremian-Aptian silty-sandy mudstones. As subsidence continued, thick successions of Albian ferruginous black clays were deposited. Internally, seismic megasequences composed of successions of black clays show previously unresolved unconformities, onlapping and downlapping packages, which reflect a complex depositional, rifting and subsidence history at odds with their previous interpretation as open marine sediments. Southwestwards migration of the Kerguelen hotspot led to thermal contraction and subsidence to the present day water depth (~3000 m). This was accompanied by Turonian-Santonian deposition of massive chalk beds, which are unconformably overlain by pelagic Palaeocene-Holocene sediments. This substantial unconformity is related to the diachronous breakup and onset of slow spreading between Australia and Antarctica, which may have led to the reactivation and inversion of basement faults and was followed by rapid seafloor spreading from the Middle Eocene to the present.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 274
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2011-09-14
    Description: Dynamical geochemistry of the mantle Solid Earth, 2, 159-189, 2011 Author(s): G. F. Davies The reconciliation of mantle chemistry with the structure of the mantle inferred from geophysics and dynamical modelling has been a long-standing problem. This paper reviews three main aspects. First, extensions and refinements of dynamical modelling and theory of mantle processing over the past decade. Second, a recent reconsideration of the implications of mantle heterogeneity for melting, melt migration, mantle differentiation and mantle segregation. Third, a recent proposed shift in the primitive chemical baseline of the mantle inferred from observations of non-chondritic 142 Nd in the Earth. It seems most issues can now be resolved, except the level of heating required to maintain the mantle's thermal evolution. A reconciliation of refractory trace elements and their isotopes with the dynamical mantle, proposed and given preliminary quantification by Hofmann, White and Christensen, has been strengthened by work over the past decade. The apparent age of lead isotopes and the broad refractory-element differences among and between ocean island basalts (OIBs) and mid-ocean ridge basalts (MORBs) can now be quantitatively accounted for with some assurance. The association of the least radiogenic helium with relatively depleted sources and their location in the mantle have been enigmatic. The least radiogenic helium samples have recently been recognised as matching the proposed non-chondritic primitive mantle. It has also been proposed recently that noble gases reside in a so-called hybrid pyroxenite assemblage that is the result of melt from fusible pods reacting with surrounding refractory peridotite and refreezing. Hybrid pyroxenite that is off-axis may not remelt and erupt at MORs, so its volatile constituents would recirculate within the mantle. Hybrid pyroxenite is likely to be denser than average mantle, and thus some would tend to settle in the D" zone at the base of the mantle, along with some old subducted oceanic crust. Residence times in D" are longer, so the hybrid pyroxenite there would be less degassed. Plumes would sample both the degassed, enriched old oceanic crust and the gassy, less enriched hybrid pyroxenite and deliver them to OIBs. These findings can account quantitatively for the main He, Ne and Ar isotopic observations. It has been commonly inferred that the MORB source is strongly depleted of incompatible elements. However it has recently been argued that conventional estimates of the MORB source composition fail to take full account of mantle heterogeneity, and in particular focus on an ill-defined "depleted" mantle component while neglecting less common enriched components. Previous estimates have also been tied to the composition of peridotites, but these probably do not reflect the full complement of incompatible elements in the heterogeneous mantle. New estimates that account for enriched mantle components suggest the MORB source complement of incompatibles could be as much as 50–100 % larger than previous estimates. A major difficulty has been the inference that mass balances of incompatible trace elements could only be satisfied if there is a deep enriched layer in the mantle, but the Earth's topography precludes such a layer. The difficulty might be resolved if either the Earth is depleted relative to chondritic or the MORB source is less depleted than previous estimates. Together these factors can certainly resolve the mass balance difficulties.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 275
    Publication Date: 2011-09-23
    Description: WRF-CMAQ two-way coupled system with aerosol feedback: software development and preliminary results Geoscientific Model Development Discussions, 4, 2417-2450, 2011 Author(s): D. C. Wong, J. Pleim, R. Mathur, F. Binkowski, T. Otte, R. Gilliam, G. Pouliot, A. Xiu, J. O. Young, and D. Kang Air quality models such as the EPA Community Multiscale Air Quality (CMAQ) require meteorological data as part of the input to drive the chemistry and transport simulation. The Meteorology-Chemistry Interface Processor (MCIP) is used to convert meteorological data into CMAQ-ready input. Key shortcoming of such one-way coupling include: excessive temporal interpolation of coarsely saved meteorological input and lack of feedback of atmospheric pollutant loading on simulated dynamics. We have developed a two-way coupled system to address these issues. A single source code principle was used to construct this two-way coupling system so that CMAQ can be consistently executed as a stand-alone model or part of the coupled system without any code changes; this approach eliminates maintenance of separate code versions for the coupled and uncoupled systems. The design also provides the flexibility to permit users: (1) to adjust the call frequency of WRF and CMAQ to balance the accuracy of the simulation versus computational intensity of the system, and (2) to execute the two-way coupling system with feedbacks to study the effect of gases and aerosols on short wave radiation and subsequent simulated dynamics. Details on the development and implementation of this two-way coupled system are provided. When the coupled system is executed without radiative feedback, computational time is virtually identical when using the Community Atmospheric Model (CAM) radiation option and a slightly increased (~8.5 %) when using the Rapid Radiative Transfer Model for GCMs (RRTMG) radiation option in the coupled system compared to the offline WRF-CMAQ system. Once the feedback mechanism is turned on, the execution time increases only slightly with CAM but increases about 60 % with RRTMG due to the use of a more detailed Mie calculation in this implementation of feedback mechanism. This two-way model with radiative feedback shows noticeably reduced bias in simulated surface shortwave radiation and 2 m temperatures as well improved correlation of simulated ambient ozone and PM 2.5 relative to observed values for a test case with significant tropospheric aerosol loading from California wildfires.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 276
    Publication Date: 2011-09-29
    Description: Modelling oxygen isotopes in the University of Victoria Earth System Climate Model Geoscientific Model Development Discussions, 4, 2545-2576, 2011 Author(s): C. E. Brennan, A. J. Weaver, M. Eby, and K. J. Meissner Implementing oxygen isotopes (H 2 18 O, H 2 16 O) in coupled climate models provides both an important test of the individual model's hydrological cycle, and a powerful tool to mechanistically explore past climate changes while producing results directly comparable to isotope proxy records. Here we describe the addition of oxygen isotopes in the University of Victoria Earth System Climate Model (UVic ESCM). Equilibrium simulations are performed for preindustrial and Last Glacial Maximum conditions. The oxygen isotope content in the model preindustrial climate is compared against observations for precipitation and seawater. The distribution of oxygen isotopes during the LGM is compared against available paleo-reconstructions.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 277
    Publication Date: 2011-09-17
    Description: CAM-chem: description and evaluation of interactive atmospheric chemistry in CESM Geoscientific Model Development Discussions, 4, 2199-2278, 2011 Author(s): J.-F. Lamarque, L. K. Emmons, P. G. Hess, D. E. Kinnison, S. Tilmes, F. Vitt, C. L. Heald, E. A. Holland, P. H. Lauritzen, J. Neu, J. J. Orlando, P. Rasch, and G. Tyndall We discuss and evaluate the representation of atmospheric chemistry in the global Community Atmosphere Model (CAM) version 4, the atmospheric component of the Community Earth System Model (CESM). We present a variety of configurations for the representation of tropospheric and stratospheric chemistry, wet removal, and online and offline meteorology. Results from simulations illustrating these configurations are compared with surface, aircraft and satellite observations. Overall, the model indicates a good performance when compared to observations. Major biases include a negative bias in the high-latitude CO distribution and a positive bias in upper-tropospheric/lower-stratospheric ozone, especially when online meteorology is used. The CAM-chem code as described in this paper, along with all the necessary datasets needed to perform the simulations described here, are available for download at http://www.cesm.ucar.edu .
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 278
    Publication Date: 2011-09-20
    Description: Vegetation height products between 60° S and 60° N from ICESat GLAS data Geoscientific Model Development Discussions, 4, 2327-2363, 2011 Author(s): S. O. Los, J. A. B. Rosette, N. Kljun, P. R. J. North, J. C. Suárez, C. Hopkinson, R. A. Hill, L. Chasmer, E. van Gorsel, C. Mahoney, and J. A. J. Berni We present a new method to obtain coarse resolution (0.5 ° × 0.5 ° ) vegetation height and vegetation-cover fraction data sets between 60 ° S and 60 ° N for use in climate models and ecological models. The data sets are derived from the Geoscience Laser Altimeter System (GLAS) on the Ice, Cloud and land Elevation Satellite (ICESat), which is the only LiDAR instrument that provides close to global coverage when all data collected for 2003–2009 are combined. Filters are applied to the GLAS data to identify and eliminate spurious observations, e.g. data that are affected by clouds, atmosphere and terrain and as such result in erroneous estimates of vegetation height or vegetation cover. GLAS vegetation height estimates are aggregated in histograms from 0 to 70 m in 0.5 m intervals. The GLAS vegetation height product is evaluated in four ways. First, unfiltered and filtered individual GLAS vegetation height measurements are compared with aircraft LiDAR measurements of the same from seven sites in the Americas, Europe, and Australia. Application of filters increases the correlation with aircraft data from r = 0.36 to r = 0.67 and decreases the root-mean-square error by a factor 3. Second, the global aggregated GLAS vegetation height product is tested for sensitivity towards the choice of data quality filters; areas with frequent cloud cover and areas with steep terrain are the most sensitive to the choice of thresholds for the filters. Thirdly, the GLAS global vegetation height product is compared with two other global vegetation height products and is believed to produce more realistic characteristics: dominant vegetation height for tropical forests between 30 and 60 m versus 20 and 40 m in existing products. Finally, the GLAS bare soil cover fraction is compared globally with the MODIS bare soil fraction ( r = 0.55) and with the FASIR bare soil cover fraction estimates ( r = 0.58); the correlation between GLAS and MODIS tree-cover fraction was ( r = 0.76). The evaluation indicates that filters applied to the GLAS data are conservative and eliminate a large proportion of spurious data, while only in a minority of cases at the cost of removing reliable data as well. The present GLAS vegetation height product appears more realistic than previous data sets used for input to climate models and ecological models and hence should significantly improve simulations that involve the land surface.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 279
    Publication Date: 2011-09-21
    Description: The detailed snowpack scheme Crocus and its implementation in SURFEX v7 Geoscientific Model Development Discussions, 4, 2365-2415, 2011 Author(s): V. Vionnet, E. Brun, S. Morin, A. Boone, S. Faroux, P. Le Moigne, E. Martin, and J.-M. Willemet Detailed studies of snow cover processes require models that offer a fine description of the snow cover properties. The detailed snowpack model Crocus is such a scheme, and has been run operationally for avalanche forecasting over the French mountains for 20 years. It is also used for climate or hydrological studies. To extend its potential applications, Crocus has been recently integrated within the framework of the externalized surface module SURFEX. SURFEX computes the exchanges of energy and mass between different types of surface, and the atmosphere and includes in particular the land surface scheme ISBA (Interactions between Soil, Biosphere, and Atmosphere). It allows Crocus to be run either in stand-alone mode, using a time series of forcing meteorological data or in fully coupled mode (explicit or fully implicit numerics) with atmospheric models ranging from meso-scale models to general circulation models. This approach also insures a full coupling between the snow cover and the soil beneath. Several applications of this new simulation platform are presented. They range from a 1D stand-alone simulation (Col de Porte, France) to fully-distributed simulations in complex terrain, either in forced mode over a whole mountain range (Massif des Grandes Rousses, France), or in coupled mode such as a snow transport simulation (Col du Lac Blanc, France), or a surface energy balance and boundary layer simulation over a polar ice cap (Dome C, Antarctica).
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 280
    Publication Date: 2011-09-24
    Description: Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1) Geoscientific Model Development Discussions, 4, 2451-2467, 2011 Author(s): G. A. Schmidt, J. H. Jungclaus, C. M. Ammann, E. Bard, P. Braconnot, T. J. Crowley, G. Delaygue, F. Joos, N. A. Krivova, R. Muscheler, B. L. Otto-Bliesner, J. Pongratz, D. T. Shindell, S. K. Solanki, F. Steinhilber, and L. E. A. Vieira We update the forcings for the PMIP3 experiments for the Last Millennium to include a new assessment of historical land use changes and discuss new suggestions for calibrating solar activity proxies to total solar irradiance.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 281
    Publication Date: 2011-09-09
    Description: Verification of SpacePy's radial diffusion radiation belt model Geoscientific Model Development Discussions, 4, 2165-2197, 2011 Author(s): D. T. Welling, J. Koller, and E. Camporeale Model verification, or the process of ensuring that the prescribed equations are properly solved, is a necessary step in code development. Careful, quantitative verification guides users when selecting grid resolution and time step and gives confidence to code developers that existing code is properly instituted. This work introduces the RadBelt radiation belt model, a new, open-source version of the Dynamic Radiation Environment Assimilation Model (DREAM) and uses the Method of Manufactured Solutions (MMS) to quantitatively verify it. Order of convergence is investigated for a plethora of code configurations and source terms. The ability to apply many different diffusion coefficients, including time constant and time varying, is thoroughly investigated. The model passes all of the tests, demonstrating correct implementation of the numerical solver. The importance of D LL and source term dynamics on the selection of time step and grid size is also explored. Finally, an alternative method to apply the source term is examined to illustrate additional considerations required when non-linear source terms are used.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 282
    Publication Date: 2011-09-17
    Description: The application of the Modified Band Approach for the calculation of on-line photodissociation rate constants in TM5: implications for oxidative capacity Geoscientific Model Development Discussions, 4, 2279-2325, 2011 Author(s): J. E. Williams, A. Strunk, V. Huijnen, and M. van Weele A flexible and explicit on-line parameterization for the calculation of tropospheric photodissociation rate constants (J-values) has been integrated into the global Chemistry Transport Model TM5. Here we provide a comprehensive description of this Modified Band Approach (MBA) including details of the optimization procedure employed, the methodology applied for calculating actinic fluxes, the photochemical reaction data used for each chemical species and the parameterizations adopted for improving the description of scattering and absorption by clouds and aerosols. The resulting J-values change markedly throughout the troposphere when compared to the offline approach used to date, with significant increases in the boundary layer and upper troposphere. Conversely, for the middle troposphere a reduction in the actinic flux results in a decrease in J-values. Integrating effects shows that application of the MBA introduces seasonal dependent differences in important trace gas oxidants. Tropospheric ozone changes by ±5% in the seasonal mean mixing ratios throughout the troposphere, which induces changes of ±15% in tropospheric OH. In part this is due to an increase in the re-cycling efficiency of nitrogen oxides. The overall increase in northern hemispheric tropospheric ozone strengthens the oxidizing capacity of the troposphere significantly and reduces the lifetime of CO and CH 4 by ~5% and ~4%, respectively. Changes in the tropospheric CO burden, however, are limited to a few percent due to competing effects. Comparing the distribution of tropospheric ozone in the boundary layer and middle troposphere against observations in Europe shows there are improvements in the model performance during boreal winter in the Northern Hemisphere near regions affected by high nitrogen oxide emissions. Monthly mean total columns of nitrogen dioxide and formaldehyde also compare more favorably against OMI and SCIAMACHY total column observations.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 283
    Publication Date: 2011-09-27
    Description: Positive geothermal anomalies in oceanic crust of Cretaceous age offshore Kamchatka Solid Earth, 2, 191-198, 2011 Author(s): G. Delisle Heat flow measurements were carried out in 2009 offshore Kamchatka during the German-Russian joint-expedition KALMAR. An area with elevated heat flow in oceanic crust of Cretaceous age – detected ~30 yr ago in the course of several Russian heat flow surveys – was revisited. One previous interpretation postulated anomalous lithospheric conditions or a connection between a postulated mantle plume at great depth (〉200 km) as the source for the observed high heat flow. However, the positive heat flow anomaly – as our bathymetric data show – is closely associated with the fragmentation of the western flank of the Meiji Seamount into a horst and graben structure initiated during descent of the oceanic crust into the subduction zone offshore Kamchatka. This paper offers an alternative interpretation, which connects high heat flow primarily with natural convection of fluids in the fragmented rock mass and, as a potential additional factor, high rates of erosion, for which evidence is available from our collected bathymetric image. Given high erosion rates, warm rock material at depth rises to nearer the sea floor, where it cools and causes temporary elevated heat flow.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 284
    Publication Date: 2011-12-14
    Description: The ACCENT-protocol: a framework for benchmarking and model evaluation Geoscientific Model Development Discussions, 4, 3599-3621, 2011 Author(s): V. Grewe, N. Moussiopoulos, P. Builtjes, C. Borrego, I. S. A. Isaksen, and A. Volz-Thomas We summarise results from a workshop on "Model Benchmarking and Quality Assurance" of the EU-Network of Excellence ACCENT, including results from other activities (e.g. COST Action 732) and publications. A formalised evaluation protocol is presented, i.e. a generic formalism describing the procedure how to perform a model evaluation. This includes eight steps and examples from global model applications are given for illustration. The first and important step is concerning the purpose of the model application, i.e. the addressed underlying scientific or political question. We give examples to demonstrate that there is no model evaluation per se, i.e. without a focused purpose. Model evaluation is testing, whether a model is fit for its purpose. The following steps are deduced from the purpose and include model requirements, input data, key processes and quantities, benchmark data, quality indicators, sensitivities, as well as benchmarking and grading. We define "benchmarking" as the process of comparing the model output against either observational data or high fidelity model data, i.e. benchmark data. Special focus is given to the uncertainties, e.g. in observational data, which have the potential to lead to wrong conclusions in the model evaluation if not considered carefully.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 285
    Publication Date: 2011-12-13
    Description: Toward a minimal representation of aerosol direct and indirect effects: model description and evaluation Geoscientific Model Development Discussions, 4, 3485-3598, 2011 Author(s): X. Liu, R. C. Easter, S. J. Ghan, R. Zaveri, P. Rasch, X. Shi, J.-F. Lamarque, A. Gettelman, H. Morrison, F. Vitt, A. Conley, S. Park, R. Neale, C. Hannay, A. M. L. Ekman, P. Hess, N. Mahowald, W. Collins, M. J. Iacono, C. S. Bretherton, M. G. Flanner, and D. Mitchell A modal aerosol module (MAM) has been developed for the Community Atmosphere Model version 5 (CAM5), the atmospheric component of the Community Earth System Model version 1 (CESM1). MAM is capable of simulating the aerosol size distribution and both internal and external mixing between aerosol components, treating numerous complicated aerosol processes and aerosol physical, chemical and optical properties in a physically based manner. Two MAM versions were developed: a more complete version with seven lognormal modes (MAM7), and a version with three lognormal modes (MAM3) for the purpose of long-term (decades to centuries) simulations. Major approximations in MAM3 include assuming immediate mixing of primary organic matter (POM) and black carbon (BC) with other aerosol components, merging of the MAM7 fine dust and fine sea salt modes into the accumulation mode, merging of the MAM7 coarse dust and coarse sea salt modes into the single coarse mode, and neglecting the explicit treatment of ammonia and ammonium cycles. Simulated sulfate and secondary organic aerosol (SOA) mass concentrations are remarkably similar between MAM3 and MAM7 as most (~90%) of these aerosol species are in the accumulation mode. Differences of POM and BC concentrations between MAM3 and MAM7 are also small (mostly within 10%) because of the assumed hygroscopic nature of POM, so that much of the freshly emitted POM and BC is wet-removed before mixing internally with soluble aerosol species. Sensitivity tests with the POM assumed to be hydrophobic and with slower aging increase the POM and BC concentrations, especially at high latitudes (by several times). The mineral dust global burden differs by 10% and sea salt burden by 30–40% between MAM3 and MAM7 mainly due to the different size ranges for dust and sea salt modes and different standard deviations of the log-normal size distribution for sea salt modes between MAM3 and MAM7. The model is able to qualitatively capture the observed geographical and temporal variations of aerosol mass and number concentrations, size distributions, and aerosol optical properties. However, there are noticeable biases, e.g., simulated sulfate and mineral dust concentrations at surface over the oceans are too low. Simulated BC concentrations are significantly lower than measurements in the Arctic. There is a low bias in modeled aerosol optical depth on the global scale, especially in the developing countries. There biases in aerosol simulations clearly indicate the need for improvements of aerosol processes (e.g., emission fluxes of anthropogenic aerosols and precursor gases in developing countries, boundary layer nucleation) and properties (e.g., primary aerosol emission size, POM hygroscopicity). In addition the critical role of cloud properties (e.g., liquid water content, cloud fraction) responsible for the wet scavenging of aerosol is highlighted.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 286
    Publication Date: 2011-12-16
    Description: Domains of Archean mantle lithosphere deciphered by seismic anisotropy – inferences from the LAPNET array in northern Fennoscandia Solid Earth, 2, 303-313, 2011 Author(s): J. Plomerová, L. Vecsey, V. Babuška, and LAPNET Working Group An international LAPNET array (2007–2009, http://www.oulu.fi/sgo-oty/lapnet ) of the POLENET/LAPNET sub-project of the POLENET-IPY consortium, related to seismic and geodetic studies in the Arctic regions, consisted of about 60 broadband seismic stations located on the territory of northern Finland and adjacent parts of Sweden, Norway and Russia. We analyze relative P-wave travel-time deviations evaluated for a subset of 90 teleseismic events recorded by the LAPNET array and show examples of lateral variations of shear-wave splitting to demonstrate variability of fabrics of the Archean mantle lithosphere. The initial results clearly demonstrate the Archean mantle lithosphere consists of domains with consistent fabrics reflecting fossil anisotropic structures. 3-D self-consistent anisotropic models with inclined symmetry axes accommodate two independent sets of body-wave anisotropic observations. Individual domains are delimited by boundaries (sutures), where the anisotropic parameters change. The results obtained from the LAPNET array fill a gap in structural studies of the upper mantle beneath northern Fennoscandia.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 287
    Publication Date: 2011-12-20
    Description: "Gtool5": a Fortran90 library of input/output interfaces for self-descriptive multi-dimensional numerical data Geoscientific Model Development Discussions, 4, 3691-3707, 2011 Author(s): M. Ishiwatari, E. Toyoda, Y. Morikawa, S. Takehiro, Y. Sasaki, S. Nishizawa, M. Odaka, N. Otobe, Y. O. Takahashi, K. Nakajima, T. Horinouchi, M. Shiotani, Y.-Y. Hayashi, and Gtool development group A Fortran90 input/output library, "gtool5", is developed for use with numerical simulation models in the fields of Earth and planetary sciences. The use of this library will simplify implementation of input/output operations into program code in a consolidated form independent of the size and complexity of the software and data. The library also enables simple specification of the metadata needed for post-processing and visualization of the data. These aspects improve the readability of simulation code, which facilitates the simultaneous performance of multiple numerical experiments with different software and efficiency in examining and comparing the numerical results. The library is expected to provide a common software platform to reinforce research on, for instance, the atmosphere and ocean, where a close combination of multiple simulation models with a wide variety of complexity of physics implementations from massive climate models to simple geophysical fluid dynamics models is required.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 288
    Publication Date: 2011-12-14
    Description: Erosion rates deduced from seasonal mass balance along the upper Urumqi River in Tianshan Solid Earth, 2, 283-301, 2011 Author(s): Y. Liu, F. Métivier, J. Gaillardet, B. Ye, P. Meunier, C. Narteau, E. Lajeunesse, T. Han, and L. Malverti We report measurements performed during two complete flow seasons on the Urumqi River, a proglacial mountain stream in the northeastern flank of the Tianshan, an active mountain range in Central Asia. This survey of flow dynamics and sediment transport (dissolved, suspended and bed loads), together with a 25-year record of daily discharge, enables the assessment of secular denudation rates on this high mountain catchment of Central Asia. Our results show that chemical weathering accounts for more than one-third of the total denudation rate. Sediment transported as bed load cannot be neglected in the balance, given that sand and gravel transport accounts for one third of the solid load of the river. Overall, the mean denudation rates are low, averaging 46 t × km −2 × yr −1 (17–18 m Myr −1 ). We furthermore analyse the hydrologic record to show that the long-term sediment budget is not dominated by extreme and rare events but by the total amount of rainfall or annual runoff. The rates we obtain are in agreement with rates obtained from the mass balance reconstruction of the Plio-Quaternary gravely deposits of the foreland but signicantly lower than the rates recently obtained from cosmogenic dating of the Kuitun River sands, west of the Urumqi River. We show that the resolution of this incompatibility may have an important consquence for our understanding of the interplay between erosion and tectonics in the semi-humid ranges of Central Asia.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 289
    Publication Date: 2011-12-15
    Description: Evaluation of the sectional aerosol microphysics module SALSA implementation in ECHAM5-HAM aerosol-climate model Geoscientific Model Development Discussions, 4, 3623-3690, 2011 Author(s): T. Bergman, V.-M. Kerminen, H. Korhonen, K. J. Lehtinen, R. Makkonen, A. Arola, T. Mielonen, S. Romakkaniemi, M. Kulmala, and H. Kokkola We present the implementation and evaluation of a sectional aerosol microphysics model SALSA within the aerosol-climate model ECHAM5-HAM. This aerosol microphysics module has been designed to be flexible and computationally efficient so that it can be implemented in regional or global scale models. The computational efficiency has been achieved by keeping the number of variables needed to describe the size and composition distribution to the minimum. The aerosol size distribution is described using 20 size sections with 10 size sections in size space which cover diameters ranging from 3 nm to 10 μm divided to three subranges each having distinct optimised process and compound selection. The ability of the module to describe the global aerosol properties was evaluated by comparison against (1) measured continental and marine size distributions, (2) observed variability of continental modal number concentrations, (3) measured sulphate, organic carbon, black carbon and sea salt mass concentrations, (4) observations of AOD and other aerosol optical properties from satellites and AERONET network, (5) global aerosol budgets and concentrations from previous model studies, and (6) model results using M7 which is the default aerosol microphysics module in ECHAM5-HAM. The evaluation shows that the global aerosol properties can be reproduced reasonably well using the coarse resolution of 10 size sections in size space. The simulated global aerosol budgets are within the range of previous studies. Surface concentrations of sea salt, sulphate and carbonaceous species have an annual mean within a factor of five of the observations, while the simulated sea salt concentrations reproduce the observations less accurately and show high variability. Regionally, AOD is in relatively good agreement with the observations (within a factor of two). At mid-latitudes the observed AOD is captured well, while at high-latitudes as well as in some polluted and dust regions the modeled AOD is significantly lower than the observed. Regarding the most investigated aerosol properties, the performances of SALSA and the modal aerosol module M7 against observations are comparable. However, SALSA reproduces the observed number concentrations and the size distributions of CCN sized particles much more accurately than M7, and is therefore a good choice for aerosol-cloud interaction studies in global models. Our study also shows that when including activation type nucleation process in the boundary layer, the modeled concentrations of particles under 50 nm in diameter are reproduced much better compared to when only binary nucleation is assumed.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 290
    Publication Date: 2011-12-20
    Description: Influence of the Ringwoodite-Perovskite transition on mantle convection in spherical geometry as a function of Clapeyron slope and Rayleigh number Solid Earth, 2, 315-326, 2011 Author(s): M. Wolstencroft and J. H. Davies We investigate the influence on mantle convection of the negative Clapeyron slope ringwoodite to perovskite and ferro-periclase mantle phase transition, which is correlated with the seismic discontinuity at 660 km depth. In particular, we focus on understanding the influence of the magnitude of the Clapeyron slope (as measured by the Phase Buoyancy parameter, P ) and the vigour of convection (as measured by the Rayleigh number, Ra ) on mantle convection. We have undertaken 76 simulations of isoviscous mantle convection in spherical geometry, varying Ra and P . Three domains of behaviour were found: layered convection for high Ra and more negative P , whole mantle convection for low Ra and less negative P , and transitional behaviour in an intervening domain. The boundary between the layered and transitional domain was fit by a curve P = α Ra β where α = −1.05, and β = −0.1, and the fit for the boundary between the transitional and whole mantle convection domain was α = −4.8, and β = −0.25. These two curves converge at Ra ≈ 2.5 × 10 4 (well below Earth mantle vigour) and P ≈ −0.38. Extrapolating to high Ra , which is likely earlier in Earth history, this work suggests a large transitional domain. It is therefore likely that convection in the Archean would have been influenced by this phase change, with Earth being at least in the transitional domain, if not the layered domain.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 291
    Publication Date: 2011-12-06
    Description: Set-up and preliminary results of mid-Pliocene climate simulations with CAM3.1 Geoscientific Model Development Discussions, 4, 3339-3361, 2011 Author(s): Q. Yan, Z. Zhang, H. Wang, Y. Gao, and W. Zheng The mid-Pliocene warm period (~3.3 to 3.0 Ma BP) is a potential analogue for future climate under global warming. In this study, we use an atmospheric general circulation model (AGCM) called CAM3.1 to simulate the mid-Pliocene climate with the PRISM3D boundary conditions. The simulations show that the global annual mean surface air temperature (SAT) increases by 2.0 °C in the mid-Pliocene compared with the pre-industrial temperature. The greatest warming mainly occurs in the high latitudes of both hemispheres, with little change in SAT at low latitudes. The equator-to-pole SAT gradient is reduced in the mid-Pliocene simulation. The annual mean precipitation is enhanced by 3.6% of the pre-industrial value. However, the changes in precipitation are greater in low latitudes than high latitudes.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 292
    Publication Date: 2011-12-06
    Description: Supersaturation calculation in large eddy simulation models for prediction of the droplet number concentration Geoscientific Model Development Discussions, 4, 3313-3337, 2011 Author(s): O. Thouron, J.-L. Brenguier, and F. Burnet A new parameterization scheme is described for calculation of supersaturation in LES models that specifically aims at the simulation of cloud condensation nuclei (CCN) activation and prediction of the droplet number concentration. The scheme is tested against current parameterizations in the framework of the Meso-NH LES model. It is shown that the saturation adjustment scheme based on parameterizations of CCN activation in a convective updraft over estimates the droplet concentration in the cloud core while it cannot simulate cloud top supersaturation production due to mixing between cloudy and clear air. A supersaturation diagnostic scheme mitigates these artefacts by accounting for the presence of already condensed water in the cloud core but it is too sensitive to supersaturation fluctuations at cloud top and produces spurious CCN activation during cloud top mixing. The proposed pseudo-prognostic scheme shows performance similar to the diagnostic one in the cloud core but significantly mitigates CCN activation at cloud top.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 293
    Publication Date: 2012-01-11
    Description: Carbon-nitrogen feedbacks in the UVic ESCM Geoscientific Model Development Discussions, 5, 67-118, 2012 Author(s): R. Wania, K. J. Meissner, M. Eby, V. Arora, I. Ross, and A. J. Weaver A representation of the terrestrial nitrogen cycle is introduced into the UVic Earth System Climate Model (UVic ESCM). The UVic ESCM now contains five terrestrial carbon pools and seven terrestrial nitrogen pools: soil, litter, leaves, stem and roots for both elements and ammonium and nitrate in the soil for nitrogen. Nitrogen cycles through plant tissue, litter, soil and the mineral pools before being taken up again by the plant. Biological N 2 fixation and nitrogen deposition represent the external input and loss from the plant-soil system can occur via leaching. Simulated carbon and nitrogen pools and fluxes are in the range of other models and data. Gross primary production (GPP) for the 1990s in the CN-coupled version is 129.6 Pg C a −1 and net C uptake is 0.83 Pg C a −1 , whereas the C-only version results in a GPP of 133.1 Pg C a −1 and a net C uptake of 1.57 Pg C a −1 . At the end of a transient experiment for the years 1800–2000, where temperature is held constant but CO 2 fertilisation for vegetation is allowed to happen, the CN-coupled version shows an enhanced net C uptake of 1.05 Pg C a −1 , whereas in the experiment where CO 2 is held constant and temperature is transient the land turns into a C source of 0.60 Pg C a −1 by the 1990s. The arithmetic sum of the temperature and CO 2 effects results in 0.45 Pg C a −1 , which is 0.38 Pg C a −1 lower than seen in the fully forced model, suggesting a strong non-linearity in the CN-coupled version. Anthropogenic N deposition has a positive effect on Net Ecosystem Production of 0.35 Pg C a −1 . Overall, the UVic CN-coupled version shows similar characteristics in terms of C and N pools and fluxes to other CN-coupled Earth System Models.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 294
    Publication Date: 2012-01-14
    Description: Pre-industrial and mid-Pliocene simulations with NorESM-L Geoscientific Model Development Discussions, 5, 119-148, 2012 Author(s): Z. S. Zhang, K. Nisancioglu, M. Bentsen, J. Tjiputra, I. Bethke, Q. Yan, B. Risebrobakken, C. Andersson, and E. Jansen The mid-Pliocene period (3.3 to 3.0 Ma) is known as a warm climate with atmospheric greenhouse gas levels similar to the present. As the climate at this time was in equilibrium with the greenhouse forcing, it is a valuable test case to better understand the long term response to high levels of atmospheric greenhouse gases. In this study, we use the low resolution version of the Norwegian Earth System Model (NorESM-L) to simulate the pre-industrial and the mid-Pliocene climate. Comparison of the simulation with observations demonstrates that NorESM-L simulates a realistic pre-industrial climate. The simulated mid-Pliocene global mean surface air temperature is 16.7 °C, which is 3.2 °C warmer than the pre-industrial. The simulated mid-Pliocene global mean sea surface temperature is 19.1 °C, which is 2.0 °C warmer than the pre-industrial. The warming is relatively uniform globally, except for a strong amplification at high latitudes.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 295
    Publication Date: 2012-01-18
    Description: Implementation and evaluation of online gas-phase chemistry within a regional climate model (RegCM-CHEM4) Geoscientific Model Development Discussions, 5, 149-188, 2012 Author(s): A. K. Shalaby, A. S. Zakey, A. B. Tawfik, F. Solmon, F. Giorgi, F. Stordal, S. Sillman, R. A. Zaveri, and A. L. Steiner The RegCM-CHEM4 is a new online climate-chemistry model based on the International Centre for Theoretical Physics (ICTP) regional climate model (RegCM4). Tropospheric gas-phase chemistry is integrated into the climate model using the condensed version of the Carbon Bond Mechanism (CBM-Z; Zaveri and Peters, 1999) with a fast solver based on radical balances. We evaluate the model over Continental Europe for two different time scales: (1) an event-based analysis of the ozone episode associated with the heat wave of August 2003 and (2) a climatological analysis of a six-year simulation (2000–2005). For the episode analysis, model simulations show good agreement with European Monitoring and Evaluation Program (EMEP) observations of hourly ozone over different regions in Europe and capture ozone concentrations during and after the August 2003 heat wave event. For long-term climate simulations, the model captures the seasonal cycle of ozone concentrations with some over prediction of ozone concentrations in non-heat wave summers. Overall, the ozone and ozone precursor evaluation shows the feasibility of using RegCM-CHEM4 for decadal-length simulations of chemistry-climate interactions.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 296
    Publication Date: 2012-01-28
    Description: Bio-chemostratigraphy of the Barremian-Aptian shallow-water carbonates of the southern Apennines (Italy): pinpointing the OAE1a in a Tethyan carbonate platform Solid Earth, 3, 1-28, 2012 Author(s): M. Di Lucia, A. Trecalli, M. Mutti, and M. Parente Low biostratigraphic resolution and lack of chronostratigraphic calibration hinder precise correlations between platform carbonates and coeval deep-water successions. These are the main obstacle when studying the record of Mesozoic oceanic anoxic events in carbonate platforms. In this paper carbon and strontium isotope stratigraphy are used to produce the first chronostratigraphic calibration of the Barremian-Aptian biostratigraphy of the Apenninic carbonate platform of southern Italy. According to this calibration, the segment of decreasing δ 13 C values, leading to the negative peak that is generally taken as the onset of the Selli event, starts a few metres above the last occurrence of Palorbitolina lenticularis and Voloshinoides murgensis . The following rise of δ 13 C values, corresponding to the interval of enhanced accumulation of organic matter in deep-water sections, ends just below the first acme of Salpingoporella dinarica , which roughly corresponds to the segment of peak δ 13 C values. The whole carbon isotope excursion associated with the oceanic anoxic event 1a is bracketed in the Apenninic carbonate platform between the last occurrence of Voloshinoides murgensis and the "Orbitolina level", characterized by the association of Mesorbitolina parva and Mesorbitolina texana . Since these bioevents have been widely recognized beyond the Apenninic platform, the calibration presented in this paper can be used to pinpoint the interval corresponding to the Early Aptian oceanic anoxic event in other carbonate platforms of central and southern Tethys. This calibration will be particularly useful to interpret the record of the Selli event in carbonate platform sections for which a reliable carbon isotope stratigraphy is not available.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 297
    Publication Date: 2012-02-18
    Description: Downscaling the climate change for oceans around Australia Geoscientific Model Development Discussions, 5, 425-458, 2012 Author(s): M. A. Chamberlain, C. Sun, R. J. Matear, M. Feng, and S. J. Phipps At present, global climate models used to project changes in climate do not resolve mesoscale ocean features such as boundary currents and eddies. These missing features may be important to realistically project the marine impacts of climate change. Here we present a framework for dynamically downscaling coarse climate change projections utilising a global ocean model that resolves these features in the Australian region. The downscaling model used here is ocean-only. The ocean feedback on the air-sea fluxes is explored by restoring to surface temperature and salinity, as well as a calculated feedback to wind stress. These feedback approximations do not replace the need for fully coupled models, but they allow us to assess the sensitivity of the ocean in downscaled climate change simulations. Significant differences are found in sea surface temperature, salinity, stratification and transport between the downscaled projections and those of the climate model. While the magnitude of the climate change differences may vary with the feedback parameterisation used, the patterns of the climate change differences are consistent and develop rapidly indicating they are mostly independent of feedback that ocean differences may have on the air-sea fluxes. Until such a time when it is feasible to regularly run a global climate model with eddy resolution, our framework for ocean climate change downscaling provides an attractive way to explore how climate change may affect the mesoscale ocean environment.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 298
    Publication Date: 2012-02-18
    Description: Mid-Pliocene global climate simulation with MRI-CGCM2.3: set-up and initial results of PlioMIP Experiments 1 and 2 Geoscientific Model Development Discussions, 5, 383-423, 2012 Author(s): Y. Kamae and H. Ueda The mid-Pliocene (3.3 to 3.0 million yr ago), a globally warm period before the Quaternary, is recently attracting attention as a new target for paleoclimate modelling and data-model synthesis. This paper reports set-ups and results of experiments proposed in Pliocene Model Intercomparison Project (PlioMIP) using with a global climate model, MRI-CGCM2.3. We conducted pre-industrial and mid-Pliocene runs by using of the coupled atmosphere-ocean general circulation model (AOGCM) and its atmospheric component (AGCM) for the PlioMIP Experiments 2 and 1, respectively. In addition, we conducted two types of integrations in AOGCM simulation, with and without flux adjustments on sea surface. General characteristics of differences in the simulated mid-Pliocene climate relative to the pre-industrial in the three integrations are compared in this study. Generally, difference of simulated surface climate between AGCM and AOGCM is larger than that between the two AOGCM runs, with and without flux adjustments. The simulated climate shows different pattern between AGCM and AOGCM particularly over low latitude oceans, subtropical land regions, and high latitude oceans. The AOGCM simulations do not reproduce wetter environment in the subtropics relative to the present-day, which is suggested by terrestrial proxy data. The differences between the two types of AOGCM runs are little over the land but evident over the ocean particularly in the North Atlantic and polar regions.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 299
    Publication Date: 2011-12-10
    Description: Coupling a new turbulence parametrization to RegCM adds realistic stratocumulus clouds Geoscientific Model Development Discussions, 4, 3437-3484, 2011 Author(s): T. A. O'Brien, P. Y. Chuang, L. C. Sloan, I. C. Faloona, and D. L. Rossiter To model stratocumulus clouds in the regional climate model, RegCM4.1, the University of Washington (UW) turbulence parametrization has been coupled to RegCM. We describe improvements in RegCM's coastal and near-coastal climatology, including improvements in the representation of stratiform clouds. By comparing output from a 27-yr (1982–2009) simulation of the climate of Western North America to a wide variety of observational data (station data, satellite data, and aircraft in situ data), we show the following: (1) RegCM-UW is appropriate for use in general regional climate studies, and (2) the UW model distinctly improves the representation of the marine boundary layer in RegCM. These model-data comparisons also show that RegCM-UW has slight cold bias, a (wet) precipitation bias, a systematic low bias in the vertically-integrated liquid water content near the coast, and a high bias in the fractional cloud coverage. The model represents well the diurnal, monthly, and interannual variability in low clouds. These results show RegCM-UW as a nascent mesoscale stratocumulus model that is appropriate for stratocumulus investigations at scales ranging from hourly to decadal. The source code for RegCM-UW is publicly available, under the GNU license, through the International Centre for Theoretical Physics.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 300
    Publication Date: 2012-02-03
    Description: Phanerozoic environments of black shale deposition and the Wilson Cycle Solid Earth, 3, 29-42, 2012 Author(s): J. Trabucho-Alexandre, W. W. Hay, and P. L. de Boer The spatial and temporal distribution of black shales is related to the development of environments in which they accumulate and to a propitious combination of environmental variables. In recent years, much has been done to improve our understanding of the mechanisms behind the temporal distribution of black shales in the Phanerozoic and of the environmental variables that result in their deposition. However, the interpretation of ancient black shale depositional environments is dominated by an oversimplistic set of three depositional models that do not capture their complexity and dynamics. These three models, the restricted circulation, the (open) ocean oxygen minimum and the continental shelf models, are an oversimplification of the variety of black shale depositional environments that arise and coexist throughout the course of a basin's Wilson Cycle, i.e. the dynamic sequence of events and stages that characterise the evolution of an ocean basin, from the opening continental rift to the closing orogeny. We examine the spatial distribution of black shales in the context of the Wilson Cycle using examples from the Phanerozoic. It is shown that the geographical distribution of environments of black shale deposition and the position of black shales in the basin infill sequence strongly depend on basin evolution, which controls the development of sedimentary environments where black shales may be deposited. The nature of the black shales that are deposited, i.e. lithology and type of organic matter, also depends on basin evolution and palaeogeography. We propose that in studies of black shales more attention should be given to the sedimentary processes that have led to their formation and to the interpretation of their sedimentary environments.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...