ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (750)
  • Copernicus  (750)
  • 2010-2014  (750)
  • 1980-1984
  • 1925-1929
  • 2013  (750)
  • Climate of the Past Discussions  (183)
  • Geoscientific Model Development Discussions  (159)
  • 102049
  • 133345
  • 57698
  • 1
    Publication Date: 2013-09-10
    Description: Influence of microphysical schemes on atmospheric water in the Weather Research and Forecasting model Geoscientific Model Development Discussions, 6, 4563-4601, 2013 Author(s): F. Cossu and K. Hocke This study examines how different microphysical parameterization schemes influence orographically-induced precipitation and the distributions of hydrometeors and water vapour for mid-latitude summer conditions in the Weather Research and Forecasting (WRF) model. A high-resolution two-dimensional idealized simulation is used to assess the differences between the schemes in which a moist air flow is interacting with a bell-shaped 2 km high mountain. Periodic lateral boundary conditions are chosen to recirculate atmospheric water in the domain. It is found that the 13 selected microphysical schemes conserve the water in the model domain. The gain or loss of water is less than 0.81% over a simulation time interval of 61 days. The differences of the microphysical schemes in terms of the distributions of water vapour, hydrometeors and accumulated precipitation are presented and discussed. The Kessler scheme, the only scheme without ice-phase processes, shows final values of cloud liquid water 14 times greater than the other schemes. The differences among the other schemes are not as extreme, but still they differ up to 79% in water vapour, up to 10 times in hydrometeors and up to 64% in accumulated precipitation at the end of the simulation. The microphysical schemes also differ in the surface evaporation rate. The WRF single-moment 3-class scheme has the highest surface evaporation rate compensated by the highest precipitation rate. The different distributions of hydrometeors and water vapour of the microphysical schemes induce differences up to 49 W m −2 in the downwelling shortwave radiation and up to 33 W m −2 in the downwelling longwave radiation.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-17
    Description: Similarity estimators for irregular and age uncertain time series Climate of the Past Discussions, 9, 5299-5346, 2013 Author(s): K. Rehfeld and J. Kurths Paleoclimate time series are often irregularly sampled and age uncertain, which is an important technical challenge to overcome for successful reconstruction of past climate variability and dynamics. Visual comparison and interpolation-based linear correlation approaches have been used to infer dependencies from such proxy time series. While the first is subjective, not measurable and not suitable for the comparison of many datasets at a time, the latter introduces interpolation bias, and both face difficulties if the underlying dependencies are nonlinear. In this paper we investigate similarity estimators that could be suitable for the quantitative investigation of dependencies in irregular and age uncertain time series. We compare the Gaussian-kernel based cross correlation (gXCF, Rehfeld et al., 2011) and mutual information (gMI, Rehfeld et al., 2013) against their interpolation-based counterparts and the new event synchronization function (ESF). We test the efficiency of the methods in estimating coupling strength and coupling lag numerically, using ensembles of synthetic stalagmites with short, autocorrelated, linear and nonlinearly coupled proxy time series, and in the application to real stalagmite time series. In the linear test case coupling strength increases are identified consistently for all estimators, while in the nonlinear test case the correlation-based approaches fail. The lag at which the time series are coupled is identified correctly as the maximum of the similarity functions in around 60–55% (in the linear case) to 53–42% (for the nonlinear processes) of the cases when the dating of the synthetic stalagmite is perfectly precise. If the age uncertainty increases beyond 5% of the time series length, however, the true coupling lag is not identified more often than the others for which the similarity function was estimated. Age uncertainty contributes up to half of the uncertainty in the similarity estimation process. Time series irregularity contributes less, particularly for the adapted Gaussian-kernel based estimators and the event synchronization function. The introduced link strength concept summarizes the hypothesis test results and balances the individual strengths of the estimators: while gXCF is particularly suitable for short and irregular time series, gMI and the ESF can identify nonlinear dependencies. ESF could, in particular, be suitable to study extreme event dynamics in paleoclimate records. Programs to analyze paleoclimatic time series for significant dependencies are included in a freely available software toolbox.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-18
    Description: Impact of precession on the climate, vegetation and fire activity in southern Africa during MIS4 Climate of the Past Discussions, 9, 5391-5438, 2013 Author(s): M.-N. Woillez, G. Levavasseur, A.-L. Daniau, M. Kageyama, D. H. Urrego, and M.-F. Sánchez-Goñi The relationships between climate, vegetation and fires are a major subject of investigation in the context of climate change. In southern Africa, fire is known to play a crucial role in the existence of grasslands and Mediterranean-like biomes. Microcharcoal-based reconstructions of past fire activity in that region have shown a tight correlation between grass-fueled fires and the precessional cycle, with maximum fire activity during maxima of the climatic precession index. These changes have been interpreted as the result of changes in fuel load in response to precipitation changes in eastern southern Africa. Here we use the general circulation model IPSL_CM5A and the dynamical vegetation model LPJ-LMfire to investigate the response of climate, vegetation and fire activity to precession changes in southern Africa during Marine Isotopic Stage 4. We perform two climatic simulations, for a maximum and minimum of the precession index, and use a statistical downscaling method to increase the spatial resolution of the IPSL_CM5A outputs over southern Africa and perform high-resolution simulations of the vegetation and fire activity. Our results show an anti-correlation between the North and South African monsoons in response to precession changes. A decrease of the precession climatic index leads to a precipitation decrease in the summer rainfall area of southern Africa. The drying of climate leads to a decrease of vegetation cover and fire activity. Our results are in qualitative agreement with data and confirm that fire activity in southern Africa is strongly dependent on the vegetation type.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-07
    Description: Ensemble meteorological reconstruction using circulation analogues of 1781–1785 Climate of the Past Discussions, 9, 5157-5182, 2013 Author(s): P. Yiou, M. Boichu, R. Vautard, M. Vrac, S. Jourdain, E. Garnier, F. Fluteau, and L. Menut This paper uses a method of atmospheric flow analogues to reconstruct an ensemble of atmospheric variables (namely sea-level pressure, surface temperature and wind speed) between 1781 and 1785. The properties of this ensemble are investigated and tested against observations of temperature. The goal of the paper is to assess whether the atmospheric circulation during the Laki volcanic eruption (in 1783) and the subsequent winter were similar to the conditions that prevailed in the winter 2009/2010 and during spring 2010. We find that the three months following the Laki eruption in June 1783 barely have analogues in 2010. The cold winter of 1783/1784 yields circulation analogues in 2009/2010. Our analysis suggests that it is unlikely that the Laki eruption was responsible for the cold winter of 1783/1784, of the relatively short memory of the atmospheric circulation.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-09-07
    Description: Seasonal changes in glacial polynya activity inferred from Weddell Sea varves Climate of the Past Discussions, 9, 5123-5156, 2013 Author(s): D. Sprenk, M. E. Weber, G. Kuhn, V. Wennrich, T. Hartmann, and K. Seelos The Weddell Sea and the associated Filchner-Rønne Ice Shelf constitute key regions for global bottom-water production today. However, little is known about bottom-water production under different climate and ice-sheet conditions. Therefore, we studied core PS1795, which consists primarily of fine-grained siliciclastic varves that were deposited on contourite ridges in the southeastern Weddell Sea during the Last Glacial Maximum (LGM). We conducted high-resolution X-ray fluorescence (XRF) analysis and grain-size measurements with the RADIUS tool (Seelos and Sirocko, 2005) using thin sections to characterize the two seasonal components of the varves at sub-mm resolution to distinguish the seasonal components of the varves. Bright layers contain coarser grains that can mainly be identified as quartz in the medium to coarse silt grain size. They also contain higher amounts of Si, Zr, Ca, and Sr, as well as more ice-rafted debris (IRD). Dark layers, on the other hand, contain finer particles such as mica and clay minerals from the chlorite and illite groups. In addition, chemical elements, Fe, Ti, Rb, and K are elevated as well. Based on these findings as well as on previous analyses on neighbouring cores, we propose a model of glacially enhanced thermohaline convection in front of a grounded ice sheet that is supported by seasonally variable coastal polynya activity. Accordingly, katabatic (i.e. offshore blowing) winds removed sea ice from the ice edge, leading to coastal polynya formation. We suggest that glacial processes were similar to today with stronger katabatic winds and enhanced coastal polynya activity during the winter season. If this is correct, silty layers are likely glacial winter deposits, when brine rejection was increased, leading to enhanced bottom water formation and increased sediment transport. Vice versa, finer-grained clayey layers were then deposited during summer, when coastal polynya activity was likely reduced.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-09-11
    Description: Is blue intensity ready to replace maximum latewood density as a strong temperature proxy? A tree-ring case study on Scots pine from northern Sweden Climate of the Past Discussions, 9, 5227-5261, 2013 Author(s): J. A. Björklund, B. E. Gunnarson, K. Seftigen, J. Esper, and H. W. Linderholm At high latitudes, where low temperatures mainly limit tree-growth, measurements of wood density (e.g. Maximum Latewood Density, MXD) using the X-Ray methodology provide a temperature proxy that is superior to that of TRW. Density measurements are however costly and time consuming and have lead to experimentation with optical flatbed scanners to produce Maximum Blue Intensity (BI max ). BI max is an excellent proxy for density on annual scale but very limited in skill on centennial scale. Discolouration between samples is limiting BI max where specific brightnesses can have different densities. To overcome this, the new un-exploited parameter Δ blue intensity (ΔBI) was constructed by using the brightness in the earlywood (BI EW ) as background, (BI max − BI EW = ΔBI). This parameter was tested on X-Ray material (MXD − earlywood density = ΔMXD) and showed great potential both as a quality control and as a booster of climate signals. Unfortunately since the relationship between grey scale and density is not linear, and between-sample brightness can differ tremendously for similar densities, ΔBI cannot fully match ΔMXD in skill as climate proxy on centennial scale. For ΔBI to stand alone, the range of brightness/density offset must be reduced. Further studies are needed to evaluate this possibility, and solutions might include heavier sample treatment (reflux with chemicals) or image-data treatment (digitally manipulating base-line levels of brightness).
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-09-14
    Description: AnaWEGE: a weather generator based on analogues of atmospheric circulation Geoscientific Model Development Discussions, 6, 4745-4774, 2013 Author(s): P. Yiou This paper presents a stochastic weather generator based on analogues of circulation (AnaWEGE). Analogues of circulation have been a promising paradigm to analyse climate variability and its extremes. The weather generator uses precomputed analogues of sea-level pressure over the North Atlantic. The stochastic rules of the generator constrain the continuity in time of the simulations. The generator then simulates spatially coherent time series of a climate variable, drawn from meteorological observations. The weather generator is tested for European temperatures, and for winter and summer seasons. The biases in temperature quantiles and autocorrelation are rather small compared to observed variability. The ability of simulating extremely hot summers and cold winters is also assessed.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-09-14
    Description: Methodological aspects of a pattern-scaling approach to produce global fields of monthly means of daily maximum and minimum temperature Geoscientific Model Development Discussions, 6, 4833-4882, 2013 Author(s): S. Kremser, G. E. Bodeker, and J. Lewis A Climate Pattern-Scaling Model (CPSM) that simulates global patterns of climate change, for a prescribed emissions scenario, is described. A CPSM works by quantitatively establishing the statistical relationship between a climate variable at a specific location (e.g. daily maximum surface temperature, T max ) and one or more predictor time series (e.g. global mean surface temperature, T global ) – referred to as the "training" of the CPSM. This training uses a regression model to derive fit-coefficients that describe the statistical relationship between the predictor time series and the target climate variable time series. Once that relationship has been determined, and given the predictor time series for any greenhouse gas (GHG) emissions scenario, the change in the climate variable of interest can be reconstructed – referred to as the "application" of the CPSM. The advantage of using a CPSM rather than a typical atmosphere-ocean global climate model (AOGCM) is that the predictor time series required by the CPSM can usually be generated quickly using a simple climate model (SCM) for any prescribed GHG emissions scenario and then applied to generate global fields of the climate variable of interest. The training can be performed either on historical measurements or on output from an AOGCM. Using model output from 21st century simulations has the advantage that the climate change signal is more pronounced than in historical data and therefore a more robust statistical relationship is obtained. The disadvantage of using AOGCM output is that the CPSM training might be compromised by any AOGCM inadequacies. For the purposes of exploring the various methodological aspects of the CPSM approach, AOGCM output was used in this study to train the CPSM. These investigations of the CPSM methodology focus on monthly mean fields of daily temperature extremes ( T max and T min ). Key conclusions are: (1) overall, the CPSM trained on simulations based on the Representative Concentration Pathway (RCP) 8.5 emissions scenario is able to reproduce AOGCM simulations of T max and T min based on predictor time series from an RCP 4.5 emissions scenario; (2) access to hemisphere average land and ocean temperatures as predictors improves the variance that can be explained, particularly over the oceans; (3) regression model fit-coefficients derived from individual simulations based on the RCP 2.6, 4.5 and 8.5 emissions scenarios agree well over most regions of the globe (the Arctic is the exception); (4) training the CPSM on concatenated time series from an ensemble of simulations does not result in fit-coefficients that explain significantly more of the variance than an approach that weights results based on single simulation fits; and (5) the inclusion of a linear time dependence in the regression model fit-coefficients improves the variance explained, primarily over the oceans.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-09-17
    Description: Modeling different freeze/thaw processes in heterogeneous landscapes of the Arctic polygonal tundra using an ecosystem model Geoscientific Model Development Discussions, 6, 4883-4932, 2013 Author(s): given_name prefix surname suffix, S. Yi, K. Wischnewski, M. Langer, S. Muster, and J. Boike Freeze/thaw (F/T) processes can be quite different under the various land surface types found in the heterogeneous polygonal tundra of the Arctic. Proper simulation of these different processes is essential for accurate prediction of the release of greenhouse gases under a warming climate scenario. In this study we have modified the dynamic organic soil version of the Terrestrial Ecosystem Model (DOS-TEM) to simulate F/T processes beneath the polygon rims, polygon centers (with and without water), and lakes that are common features in Arctic lowland regions. We first verified the F/T algorithm in the DOS-TEM against analytical solutions, and then compared the results with in situ measurements from Samoylov Island, Siberia. In the final stage, we examined the different responses of the F/T processes for different water levels at the various land surface types. The simulations revealed that (1) the DOS-TEM was very efficient and its results compared very well with analytical solutions for idealized cases, (2) the simulations compared reasonably well with in situ measurements although there were a number of model limitations and uncertainties, (3) the DOS-TEM was able to successfully simulate the differences in F/T dynamics under different land surface types, and (4) permafrost beneath water bodies was found to respond highly sensitive to changes in water depths between 1 and 2 m. Our results indicate that water is very important in the thermal processes simulated by the DOS-TEM; the heterogeneous nature of the landscape and different water depths therefore need to be taken into account when simulating methane emission responses to a warming climate.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-09-24
    Description: A standard test case suite for two-dimensional linear transport on the sphere: results from a collection of state-of-the-art schemes Geoscientific Model Development Discussions, 6, 4983-5076, 2013 Author(s): P. H. Lauritzen, P. A. Ullrich, C. Jablonowski, P. A. Bosler, D. Calhoun, A. J. Conley, T. Enomoto, L. Dong, S. Dubey, O. Guba, A. B. Hansen, E. Kaas, J. Kent, J.-F. Lamarque, M. J. Prather, D. Reinert, V. V. Shashkin, W. C. Skamarock, B. Sørensen, M. A. Taylor, and M. A. Tolstykh Recently, a standard test case suite for 2-D linear transport on the sphere was proposed to assess important aspects of accuracy in geophysical fluid dynamics with a "minimal" set of idealized model configurations/runs/diagnostics. Here we present results from 19 state-of-the-art transport scheme formulations based on finite-difference/finite-volume methods as well as emerging (in the context of atmospheric/oceanographic sciences) Galerkin methods. Discretization grids range from traditional regular latitude-longitude grids to more isotropic domain discretizations such as icosahedral and cubed-sphere tessellations of the sphere. The schemes are evaluated using a wide range of diagnostics in idealized flow environments. Accuracy is assessed in single- and two-tracer configurations using conventional error norms as well as novel diagnostics designed for climate and climate-chemistry applications. In addition, algorithmic considerations that may be important for computational efficiency are reported on. The latter is inevitably computing platform dependent, The ensemble of results from a wide variety of schemes presented here helps shed light on the ability of the test case suite diagnostics and flow settings to discriminate between algorithms and provide insights into accuracy in the context of global atmospheric/ocean modeling. A library of benchmark results is provided to facilitate scheme intercomparison and model development. Simple software and data-sets are made available to facilitate the process of model evaluation and scheme intercomparison.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-09-26
    Description: On the analytic approximation of bulk collision rates of non-spherical hydrometeors Geoscientific Model Development Discussions, 6, 5077-5116, 2013 Author(s): A. Seifert, U. Blahak, and R. Buhr Analytic approximations of the binary collision rates of hydrometeors are derived for use in bulk microphysical parameterizations. Special attention is given to non-spherical hydrometeors like raindrops and snowflakes. The terminal fall velocity of these particles cannot be sufficiently well approximated by power law relations which are used in most microphysical parameterizations and therefore an improved formulation is needed. The analytic approximations of the bulk collision rates given in this paper are an alternative to look-up tables and can replace the Wisner approximation which is used in many atmospheric models.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-10-01
    Description: Migrating subtropical front and Agulhas Return Current affect the southwestern Indian Ocean during the late Quaternary Climate of the Past Discussions, 9, 5521-5551, 2013 Author(s): D. K. Naik, R. Saraswat, N. Khare, A. C. Pandey, and R. Nigam The position of sub-tropical front (STF), Agulhas Current (AC) and Agulhas Return Current (ARC) controls the hydrography of southwestern Indian Ocean. Although, equator-ward migration of STF and reduction in Agulhas leakage has been reported during the last glacial period, the fate of ARC during the last glacial–interglacial cycle is not clear. Therefore, in order to understand changes in the position and strength of ARC during the last glacial–interglacial cycle, here we reconstruct hydrographic changes in the southwestern Indian Ocean from temporal variation in planktic foraminiferal abundance, stable isotopic ratio (δ 18 O) and trace metal ratio (Mg / Ca) of planktic foraminifera Globigerina bulloides in a core collected from the Agulhas Retroflection Region (ARR) in the southwestern Indian Ocean. Increased abundance of G. bulloides suggests that the productivity in the southwestern Indian Ocean increased during glacial period which confirms previous reports of high glacial productivity in the Southern Ocean. The increased productivity was likely driven by a combination of equator-ward migration of subtropical front and westerlies. Increase in relative abundance of Neogloboquadrina pachyderma Dextral suggests warming of ARR leading to strong thermocline in the southwestern Indian Ocean during the last glacial period. We suggest that the warming of Agulhas Retroflection Region was driven by strengthened ARC which shifted to the east of its present location, thus bringing warmer and saltier water to the southwestern Indian Ocean. Therefore, it is inferred that over the last glacial–interglacial cycle, the hydrography of southwestern Indian Ocean was driven by an eastward shift of retroflection region as well as migrating subtropical front.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-10-01
    Description: The response of the Peruvian Upwelling Ecosystem to centennial-scale global change during the last two millennia Climate of the Past Discussions, 9, 5479-5519, 2013 Author(s): R. Salvatteci, D. Gutiérrez, D. Field, A. Sifeddine, L. Ortlieb, I. Bouloubassi, M. Boussafir, H. Boucher, and F. Cetin The Tropical Pacific ocean-atmosphere system influences global climate on interannual, decadal, as well as at longer timescales. Given the uncertainties in the response of the Tropical Pacific to the ongoing greenhouse effect, it is important to assess the natural range of the Tropical Pacific climate variability in response to global natural changes, and to understand the underlying mechanisms. The Peruvian Upwelling Ecosystem (PUE) represents an ideal area to reconstruct past changes in ocean-atmosphere systems because productivity and subsurface oxygenation are strongly linked to changes in the strength of the Walker circulation. Throughout the last 2000 yr, warmer (the Roman Warm Period [RWP], the Medieval Climate Anomaly [MCA] and the Current Warm Period [CWP]), and colder (the Dark Ages Cold Period [DACP] and Little Ice Age [LIA]) intervals occurred with considerable changes around the globe. In order to reconstruct the PUE response to these climatic periods and reveal the underlying mechanisms, we use a multi-proxy approach including organic and inorganic proxies in finely laminated sediments retrieved off Pisco (~ 14° S), Peru. Our results indicate that the PUE exhibited a La Niña-like mean state during the warm periods, characterized by an intense OMZ and high marine productivity. During cold periods the PUE exhibited an El Niño-like mean state, characterized by a weak OMZ and low marine productivity. Comparing our results with other relevant paleoclimatic reconstructions revealed that changes in the strength of the Walker circulation and the expansion/contraction of the South Pacific Sub-tropical High controlled productivity and subsurface oxygenation in the PUE during the last two millennia. This indicate that large scale circulation changes are the driving forces in maintaining productivity and subsurface oxygenation off Peru at centennial time scales during the past two millennia.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-10-03
    Description: Cumulated insolation: a simple explanation of Milankovitch's forcing on climate changes Climate of the Past Discussions, 9, 5553-5568, 2013 Author(s): F. Marra The occurrence of the sudden melting of the ice sheets during the glacial terminations is explained in this paper as the consequence of the combined role of the minima and the maxima of mean summer insolation on the Northern Hemisphere, providing a new contribution to understand the mechanisms ruling glacial forcing. Indeed, no satisfactory answer has been provided so far to the question why one specific maximum, after a series of consecutive maxima of insolation, has the potentiality to trigger a deglaciation. The explanation proposed in this paper accounts for a pre-conditioning factor, represented by "mild" (warmer) minimum, followed by a sufficiently warm maximum as the conditions that cause the end of a glacial cycle. These conditions are realized whenever the sum of the values of each consecutive minima and maxima ("cumulated insolation") on the curve of mean summer insolation at 65° N exceeds 742 Watt m −2 . The comparison of the succession of these cumulated insolation values with the astronomically tuned Oxygen isotopes record provides a satisfactory match with the occurrence of all the glacial terminations in the last 800 ka.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-10-03
    Description: Ensemble initialization of the oceanic component of a coupled model through bred vectors at seasonal-to-interannual time scales Geoscientific Model Development Discussions, 6, 5189-5214, 2013 Author(s): J. Baehr and R. Piontek We evaluate the ensemble spread at seasonal-to-interannual time scales for two perturbation techniques implemented into the ocean component of a coupled model: (1) lagged initial conditions as commonly used for decadal predictions, (2) bred vectors as commonly used for weather and seasonal forecasting. We show that relative to an uninitialized reference simulation the implementation for bred vectors can improve the ensemble spread compared to lagged initialization at time scales from one months up to three years. As bred vectors have so far mostly been used at short time scales, we initially focus on the implementation of the bred vectors into the ocean component. We introduce a depth-dependent vertical rescaling norm, accounting for the vertical dependence of the variability, and extending the commonly used upper-ocean rescaling norm to the full water column. We further show that it is sufficient for the (sub-surface) ocean to breed temperature and salinity (i.e., scalar quantities), and rely on the governing physics to carry the temperature and salinity perturbations to the flow field. Using these bred vectors with a rescaling interval of 12 months, we initialize hindcast simulations and compare them to hindcast simulations initialized with lagged initial conditions. We quantify the ensemble spread by analyzing Talagrand diagrams and spread-error ratios. For both temperature and salinity, the lagged initialized ensemble is particularly under-dispersive for the first few months of predictable lead time. The ensemble initialized with bred vectors improves the spread for temperature and salinity for the 0–700 m and 1000–3500 m means, compared to the lagged ensemble at lead times of several months to one year. As the lead time increases to years, the differences between the two ensemble initialization techniques becomes more difficult to discern. While the results need to be confirmed in an initialized framework, the present analysis represents a first step towards an improved ensemble generation at the transition from seasonal-to-interannual time scales, in particular at lead times up to one year.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-10-03
    Description: Understanding the performance of the FLake model over the African Great Lakes Geoscientific Model Development Discussions, 6, 5141-5187, 2013 Author(s): W. Thiery, A. Martynov, F. Darchambeau, J.-P. Descy, P.-D. Plisnier, L. Sushama, and N. P. M. van Lipzig The ability of the one-dimensional lake model FLake to represent the mixolimnion temperatures for tropical conditions was tested for three locations in East Africa: Lake Kivu, Lake Tanganyika's northern and southern basins. Meteorological observations from surrounding Automatic Weather Stations were corrected and used to drive FLake, whereas a comprehensive set of water temperature profiles served to evaluate the model at each site. Careful forcing data correction and model configuration allowed to reproduce the observed mixed layer seasonality at Lake Kivu and Lake Tanganyika (northern and southern basins), with correct representation of both the mixed layer depth and temperature structure. At Lake Kivu, mixolimnion temperatures predicted by FLake were found sensitive both to minimal variations in the external parameters (lake depth and water transparency) as to small changes in the meteorological driving data, in particular wind velocity. In each case, small modifications may already lead to a regime switch from the correctly represented seasonal mixed layer deepening to either completely mixed (down to the model lake bottom) or permanently stratified (from ~10 m downwards) conditions. In contrast, model temperatures are found robust close to the surface, with acceptable predictions of near-surface water temperatures even when the seasonal mixing regime is not reproduced. FLake can thus be a suitable tool to parameterize tropical lake water surface temperatures within atmospheric prediction models, but may be less appropriate, in its current form, to study complex limnological processes within tropical lakes. Furthermore, a study of different initial conditions showed that for tropical lakes lacking reliable initial data, a fully mixed, artificially warm initialisation is to be preferred, but only if the model is allowed to spin up until convergence is reached. Finally, FLake was used to attribute the seasonal mixing cycle at Lake Kivu to variations in the near-surface meteorological conditions. It was found that the annual mixing down to 60 m during the main dry season is primarily due to enhanced lake evaporation and secondarily due to the decreased incoming long wave radiation, both causing a significant heat loss from the lake surface and associated mixolimnion cooling.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2013-06-08
    Description: Chronology of Lake El'gygytgyn sediments Climate of the Past Discussions, 9, 3061-3102, 2013 Author(s): N. R. Nowaczyk, E. M. Haltia, D. Ulbricht, V. Wennrich, M. A. Sauerbrey, P. Rosén, H. Vogel, A. Francke, C. Meyer-Jacob, A. A. Andreev, and A. V. Lozhkin A 318 m long sedimentary profile drilled by the International Continental Scientific Drilling Program (ICDP) at Site 5011-1 in Lake El'gygytgyn, Far East Russian Arctic, has been analysed for its sedimentologic response to global climate modes by chrono-stratigraphic methods. The 12 km wide lake is sited in an 18 km large crater that was created by the impact of a meteorite 3.58 Ma ago. Since then sediments have been continuously deposited. For establishing their chronology, major reversals of the Earth's magnetic field provided initial tie points for the age model, confirming that the impact occurred in the earliest Gauss chron. Various stratigraphic parameters, reflecting redox conditions at the lake floor and climatic conditions in the catchment were tuned synchronously to Northern Hemisphere insolation variations and the marine oxygen isotope stack, respectively. Thus, a robust age model comprising more than 600 tie points could be defined. It could be shown that deposition of sediments in Lake El'gygytgyn occurred in concert with global climatic cycles. The upper ~160 m of sediments represent the past 3.3 Ma, equivalent to sedimentation rates of 4 to 5 cm ka −1 , whereas the lower 160 m represent just the first 0.3 Ma after the impact, equivalent to sedimentation rates in the order of 45 cm ka −1 .
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-03-22
    Description: Late Cenozoic continuous aridification in the western Qaidam Basin: evidence from sporopollen records Climate of the Past Discussions, 9, 1485-1508, 2013 Author(s): Y. F. Miao, X. M. Fang, F. L. Wu, M. T. Cai, C. H. Song, Q. Q. Meng, and L. Xu Cenozoic climate changes in inner Asia provide a basis for understanding linkages between global cooling, the Tibetan Plateau uplift, and possibly the development of the East Asian monsoon. Based on the compiled palynological results from the western Qaidam Basin, this study reconstructed an 18 Ma record of changing vegetation and paleoclimates since the middle Miocene. Thermophilic taxa percentages were highest between 18 and 14 Ma and decreased after 14 Ma, corresponding closely with the Middle Miocene Climatic Optimum (MMCO) between 18 and 14 Ma and the following global climatic cooling. After 3.6 Ma, the thermophilic taxa percentages further decreased, showing the inevitable relations with the ice-sheets enlargement in the North Hemisphere. During the same period of time, the increase in xerophytic taxa percentages and decrease in conifers percentages imply aridification in both the basin and surrounding mountains since 18 Ma. These results indicate that global cooling mainly controlled the climate change from a relative warm-wet stage to a cold-dry stage during the late Cenozoic at the western Qaidam Basin, and that the Tibetan Plateau uplift also contributed in contrast to the East Asian summer monsoon.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-04-03
    Description: Post-Pliocene establishment of the present monsoonal climate in SW China: evidence from the late Pliocene Longmen megaflora Climate of the Past Discussions, 9, 1675-1701, 2013 Author(s): T. Su, F. M. B. Jacques, R. A. Spicer, Y.-S. Liu, Y.-J. Huang, Y.-W. Xing, and Z.-K. Zhou The paleoclimate of the late Pliocene Longmen flora from Yongping County located at the southeastern boundary of the Qinghai-Tibet Plateau was reconstructed using two leaf physiognomy based methods, i.e. Leaf Margin Analysis (LMA) and Climate Leaf Analysis Multivariate Program (CLAMP), to understand the paleoclimate condition and geographical pattern of monsoonal climate in southwestern China during the late Pliocene. The mean annual temperatures (MATs) estimated by LMA and CLAMP are 17.4 ± 3.3 °C and 17.4 ± 1.3 °C, respectively, compared with 15.9 °C at present. Meanwhile, the growing season precipitation (GSP) estimated by CLAMP is 1735.5 ± 217.7 mm in the Longmen flora, compared with 986.9 mm nowadays. The calculated monsoon index (MSI) of the Longmen flora is significantly lower than that of today. These results appear consistent with previous studies based on the coexistence approach (CA), and further suggest that there was a slightly warmer and much wetter climate during the late Pliocene than the present climate in western Yunnan. We conclude that the significant change of the monsoonal climate might have been resulted from the continuous uplift of mountains in western Yunnan, as well as the intensification of eastern Asian winter monsoon, both occurring concurrently in the post-Pliocene period.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-04-06
    Description: Holocene vegetation and climate changes in central Mediterranean inferred from a high-resolution marine pollen record (Adriatic Sea) Climate of the Past Discussions, 9, 1969-2014, 2013 Author(s): N. Combourieu-Nebout, O. Peyron, V. Bout-Roumazeilles, S. Goring, I. Dormoy, S. Joannin, L. Sadori, G. Siani, and M. Magny To understand the effects of future climate change on the ecology of the central Mediterranean we can look to the impacts of long-term, millennial to centennial-scale climatic variability on vegetation in the basin. Pollen data from the Adriatic Marine core MD 90-917 allows us to reconstruct vegetation and regional climate changes over the south central Mediterranean during the Holocene. Clay mineral ratios from the same core reflect the relative contributions of riverine (illite and smectite) and eolian (kaolinite) contributions to the site, and thus act as an additional proxy with which to test precipitation changes in the Holocene. Vegetation reconstruction shows vegetation responses to the late-Glacial Preboreal oscillation, most likely driven by changes in seasonal precipitation. Pollen-inferred temperature declines during the early-mid Holocene, but increases during the mid-late Holocene, similar to southern-western Mediterranean climatic patterns during the Holocene. Several short climatic events appear in the record, indicating the sensitivity of vegetation in the region to millennial-scale variability. Reconstructed summer precipitation shows a regional maximum between 8000 and 7000 cal yr BP similar to the general pattern across southern Europe. Two important shifts in vegetation occur at 7700 and between 7500 and 7000 yr. These vegetation shifts are linked to changes in seasonal precipitation and are correlated to increased river inputs respectively from the north (7700 event) and from the central Adriatic borderlands (7500–7000 event). These results reinforce the strengths of multi-proxy analysis and provide a deeper understanding of the role of precipitation and particularly the seasonality of precipitation in mediating vegetation change in the central Mediterranean during the Holocene.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-04-06
    Description: Southern Hemisphere orbital forcing and its effects on CO 2 and tropical Pacific climate Climate of the Past Discussions, 9, 1869-1900, 2013 Author(s): K. Tachikawa, A. Timmermann, L. Vidal, C. Sonzogni, and O. E. Timm The western Pacific warm pool (WPWP) is an important heat source for the atmospheric circulation and influences climate conditions worldwide. Understanding its sensitivity to past radiative perturbations may help better contextualize the magnitudes and patterns of current and projected tropical climate change. Here we present a new Mg/Ca-based sea surface temperature (SST) reconstruction over the past 400 kyr from the Bismarck Sea, off Papua New Guinea, along with results from a transient earth system model simulation. Our results document the primary influence of CO 2 forcing on glacial/interglacial WPWP SSTs and secondary effects due to changes in wind-driven tropical boundary currents. In addition to the SST, deep ocean temperature reconstructions from this core are linked with Southern Ocean temperature and sea-ice variations on timescales of ~ 23 kyr. It is proposed that Southern Hemisphere insolation changes serve as pacemaker for sea-ice variations in the Southern Ocean, which in turn modulate windstress curl-driven upwelling of carbon-rich waters, hence controlling atmospheric CO 2 and tropical WPWP temperatures.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-04-06
    Description: A regional climate palaeosimulation for Europe in the period 1500–1990 – Part 1: Model validation Climate of the Past Discussions, 9, 1803-1839, 2013 Author(s): J. J. Gómez-Navarro, J. P. Montávez, S. Wagner, and E. Zorita We present and analyse a high-resolution regional climate palaeosimulation encompassing the European region for the period 1500–1990. We use the regional model MM5 coupled to the global model ECHO-G. Both models were driven by reconstructions of three external factors: greenhouse gas concentrations, Total Solar Irradiance and volcanic activity. The simulation has been assessed in a recent period by comparing the model results with the Climate Research Unit (CRU) database. The results show that although the regional model is tightly driven by the boundary conditions, it is able to improve the reliability of the simulations, narrowing the differences to the observations, especially in areas of complex topography. Additionally, the evolution of the spatial distributions of temperature and precipitation through the last five centuries has been analysed. The mean values of temperature reflects the influence of the external forcings but, contrary to the results obtained under climate change scenario conditions, we found that higher-order momenta of the probability distribution of seasonal temperature and precipitation are hardly affected by changes in the external forcings
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2013-04-06
    Description: North–south palaeohydrological contrasts in the central Mediterranean during the Holocene: tentative synthesis and working hypotheses Climate of the Past Discussions, 9, 1901-1967, 2013 Author(s): M. Magny, N. Combourieu Nebout, J. L. de Beaulieu, V. Bout-Roumazeilles, D. Colombaroli, S. Desprat, A. Francke, S. Joannin, O. Peyron, M. Revel, L. Sadori, G. Siani, M. A. Sicre, S. Samartin, A. Simonneau, W. Tinner, B. Vannière, B. Wagner, G. Zanchetta, F. Anselmetti, E. Brugiapaglia, E. Chapron, M. Debret, M. Desmet, J. Didier, L. Essallami, D. Galop, A. Gilli, J. N. Haas, N. Kallel, L. Millet, A. Stock, J. L. Turon, and S. Wirth On the basis of a multi-proxy approach and a strategy combining lacustrine and marine records along a north–south transect, data collected in the Central Mediterranean within the framework of a collaborative project have led to reconstruction of high-resolution and well-dated palaeohydrological records and to assessment of their spatial and temporal coherency. Contrasting patterns of palaeohydrological changes have been evidenced in the Central Mediterranean: south (north) of around 40° N of latitude, the middle part of the Holocene was characterised by lake-level maxima (minima), during an interval dated to ca. 10 300–4500 cal BP to the south and 9000–4500 cal BP to the north. Available data suggest that these contrasting palaeohydrological patterns operated throughout the Holocene, both on millennial and centennial scales. Regarding precipitation seasonality, maximum humidity in the Central Mediterranean during the middle part of the Holocene was characterised by humid winters and dry summers north of ca. 40° N, and humid winters and summers south of ca. 40° N. This may explain an apparent conflict between palaeoclimatic records depending on the proxies used for reconstruction as well as the synchronous expansion of tree species taxa with contrasting climatic requirements. In addition, south of ca. 40° N, the first millennium of the Holocene was characterised by very dry climatic conditions not only in the Eastern, but also in the Central and the Western Mediterranean zones as reflected by low lake levels and delayed reforestation. These results suggest that, in addition to the influence of the Nile discharge reinforced by the African monsoon, the deposition of Sapropel 1 has been favoured (1) by an increase in winter precipitation in the northern Mediterranean borderlands, and (2) by an increase in winter and summer precipitation in the southern Mediterranean area. The climate reversal following the Holocene climate optimum appears to have been punctuated by two major climate changes around 7500 and 4500 cal BP. In the Central Mediterranean, the Holocene palaeohydrological changes developed in response to a combination of orbital, ice-sheet and solar forcing factors. The maximum humidity interval in the south-central Mediterranean started at ca. 10 300 cal BP, in correlation with the decline (1) of the possible blocking effects of the North Atlantic anticyclone linked to maximum insolation, and/or (2) of the influence of the remnant ice sheets and fresh water forcing in the North Atlantic Ocean. In the north-central Mediterranean, the lake-level minimum interval began only around 9000 cal BP when the Fennoscandian ice-sheet disappeared and a prevailing positive NAO-type circulation developed in the North Atlantic area. The major palaeohydrological oscillation around 4500–4000 cal BP may be a non-linear response to the gradual decrease, with additional key seasonal and interhemispherical changes, in insolation. On a centennial scale, the successive climatic events which punctuated the entire Holocene in the central Mediterranean coincided with cooling events associated with deglacial outbursts in the North Atlantic area and decreases in solar activity during the interval 11 700–7000 cal BP, and to a possible combination of NAO-type circulation and solar forcing since ca. 7000 cal BP onwards. Thus, regarding the centennial-scale climatic oscillations, the Mediterranean Basin appears to have been strongly linked to the North Atlantic area and affected by solar activity over the entire Holocene. In addition to model experiments, a better understanding of forcing factors and past atmospheric circulation patterns behind the Holocene palaeohydrological changes in the Mediterranean area will require further investigation to establish additional high-resolution and well-dated records in selected locations around the Mediterranean Basin and in adjacent regions. Special attention should be paid to greater precision in the reconstruction, on millennial and centennial time scales, of changes in the latitudinal location of the limit between the northern and southern palaeohydrological Mediterranean sectors, depending on (1) the intensity and/or characteristics of climatic periods/oscillations (e.g. Holocene thermal maximum versus Neoglacial, as well as, for instance, the 8.2 ka event versus the 4 ka event or the Little Ice Age), and (2) on varying geographical conditions from the western to the eastern Mediterranean areas (longitudinal gradients).
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-04-09
    Description: The last 7 millennia of vegetation and climate changes at Lago di Pergusa (central Sicily, Italy) Climate of the Past Discussions, 9, 2059-2094, 2013 Author(s): L. Sadori, E. Ortu, O. Peyron, G. Zanchetta, B. Vannière, M. Desmet, and M. Magny The aim of this study is to investigate climate changes and human activities under the lens of palynology. Based on a new high-resolution pollen sequence (PG2) from Lago di Pergusa (667 m a.s.l., central Sicily, Italy) covering the last 6700 yr, we propose a reconstruction of climate and landscape changes over the recent past in central Sicily. Compared to former studies from Lago di Pergusa (Sadori and Narcisi, 2001), this work provides a reconstruction of the evolution of vegetation and climate over the last millennia in central Sicily, indeed completing previous results with new data which is particularly detailed on the last 3000 yr. Joint actions of increasing dryness, climate oscillations, and human impact shaped the landscape of this privileged site. Lago di Pergusa, in fact, besides being the main inland lake of Sicily, is very sensitive to climate change and its territory was inhabited and exploited continuously since the prehistory. The lake sediments turned out to be a good observatory for the natural phenomena occurred in the last thousands of years. Results of the pollen-based study are integrated with changes in magnetic susceptibility and a tephra layer characterization. The tephra layer was shown to be related to the Sicanians' event, radiocarbon dated at 3055 ± 75 yr BP (Sadori and Narcisi, 2001). We performed palaeoclimate reconstructions by MAT and WA-PLS. Palaeoclimate reconstructions based on the core show important climate fluctuations throughout the Holocene. Climate reconstruction points out four phases of cooling and enhanced wetness in the last three millennia (2600–2000, 1650–1100, 850–550, 400–200 cal BP). This appears to be the evidence of local responses to global climate oscillations during the recent past.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-04-10
    Description: The mid-Pliocene climate simulated by FGOALS-g2 Geoscientific Model Development Discussions, 6, 2403-2428, 2013 Author(s): W. Zheng, Z. Zhang, L. Chen, and Y. Yu Within the framework of Pliocene Model Intercomparison Project (PlioMIP), the mid-Pliocene (3.264–3.025 Ma) climate simulated by the Flexible Global Ocean-Atmosphere-Land System model grid-point version 2 (FGOALS-g2) are analyzed in this study. Results show that the model reproduces the large-scale features of the global warming over the land and ocean. The simulated mid-Pliocene global annual mean surface air temperature (TAS) and sea surface temperature (SST) are 4.17 and 2.62°C warmer than the pre-Industrial simulation, respectively. In particular, the feature of larger warming over mid-high latitudes is well captured. In the simulated warm mid-Pliocene climate, the Atlantic Meridional Overturning Circulation (AMOC) and El Niño-Southern Oscillation (ENSO) become weaker.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-04-10
    Description: The potential of an observational data set for calibration of a computationally expensive computer model Geoscientific Model Development Discussions, 6, 2369-2401, 2013 Author(s): D. J. McNeall, P. G. Challenor, J. R. Gattiker, and E. J. Stone We measure the potential of an observational data set to constrain a set of inputs to a complex and computationally expensive computer model. We use each member in turn of an ensemble of output from a computationally expensive model, corresponding to some observable part of a modelled system, as a proxy for an observational data set. We argue that our ability to constrain uncertain parameter inputs to a model using its own output as data, provides a maximum bound for our ability to constrain the model inputs using observations of the real system. The ensemble provides a set of known parameter input and model output pairs, which we use to build a computationally efficient statistical proxy for the full computer model, termed an emulator. We use the emulator to find and rule out ''implausible" values for the inputs of held-out ensemble members, given the computer model output. As we know the true values of the inputs for the ensemble, we can compare our constraint of the model inputs with the true value of the input for any ensemble member. Measures of the quality of constraint have the potential to inform strategy for data collection campaigns, before any real-world data is collected, as well as acting as an effective sensitivity analysis. We use an ensemble of the ice sheet model Glimmer to demonstrate our measures of quality of constraint. The ensemble has 250 model runs with 5 uncertain input parameters, and an output variable representing the pattern of the thickness of ice over Greenland. We have an observation of historical ice sheet thickness that directly matches the output variable, and offers an opportunity to constrain the model. We show that different ways of summarising our output variable (ice volume, ice surface area and maximum ice thickness) offer different potential constraints on individual input parameters. We show that combining the observational data gives increased power to constrain the model. We investigate the impact of uncertainty in observations or in model biases on our measures, showing that even a modest uncertainty can seriously degrade the potential of the observational data to constrain the model.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-04-06
    Description: Dust and associated trace element fluxes in a firn core from the coastal East Antarctica and its linkages with the Southern Hemisphere climate variability over the last ~ 50 yr Climate of the Past Discussions, 9, 1841-1867, 2013 Author(s): C. M. Laluraj, M. Thamban, and K. Satheesan High-resolution records of dust and trace element fluxes were studied in a firn core from the coastal Dronning Maud Land (cDML) in East Antarctica to identify the influence of climate variability on accumulation of these components over the past ~ 50 yr. A doubling of dust deposition was observed since 1985, coinciding with a shift in the Southern Annular Mode (SAM) index to positive values and associated increase in the wind speed. Back-trajectories showed that an increase in dust deposition is associated with the air parcels originating from north-west of the site, possibly indicating its origin from the Patagonian region. Our results suggest that while multiple processes could have influenced the increased dust formation, shift in SAM had a dominant influence on its transport. It is observed that since the 1985s the strength of easterlies increased significantly over the cDML region, which could sink air and dust material to the region that were brought by the westerlies through mass compensation. The correlation between the dust flux and δ 18 O records further suggest that enhanced dust flux in the firn core occurred during periods of colder atmospheric temperature, which reduced the moisture content and increased dust fall. Interestingly, the timing and amplitude of the insoluble dust peaks matched remarkably well with the fluxes of Ba, Cr, Cu, and Zn confirming that dust was the main carrier/source of atmospheric trace elements to East Antarctica during the recent past.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-09-06
    Description: On searching for optimized set of physical parameterization schemes in a multi-physics land surface process model Geoscientific Model Development Discussions, 6, 4511-4530, 2013 Author(s): S. Hong, X. Yu, S. K. Park, Y.-S. Choi, and B. Myoung Optimization of land surface models has been very challenging due to the increasing complexity of such models. Typical parameter calibration techniques often limit the solution of the spatiotemporal discrepancy in the modeling performance levels especially for regional applications. Thus, in this study, an attempt was made to perform scheme-based model optimization by designing a framework for coupling a micro-genetic algorithm (micro-GA) with the Noah land surface model that has multiple physics options (Noah-MP). Micro-GA controls the scheme selections in 10 different land surface parameterization fields in Noah-MP in order to extract the optimal scheme combination for a certain region. This coupling framework was successfully applied to the optimization of the surface water partitioning in the Korean Peninsula, promising not only the effectiveness of the scheme-based optimization but also model diagnosis capability by exploring the scheme sensitivity during the micro-GA evolution process. Then, the method was applied to four different regions in East Asia that have different climatic characteristics. The results indicate that (1) the optimal scheme combinations vary with the regions, (2) schemes related to the surface water partitioning are important for the modeling accuracy, and (3) specialized post-parameter optimization for each region may be required.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-09-07
    Description: Atmospheric inverse modeling with known physical bounds: an example from trace gas emissions Geoscientific Model Development Discussions, 6, 4531-4562, 2013 Author(s): S. M. Miller, A. M. Michalak, and P. J. Levi Many inverse problems in the atmospheric sciences involve parameters with known physical constraints. Examples include non-negativity (e.g., emissions of some urban air pollutants) or upward limits implied by reaction or solubility constants. However, probabilistic inverse modeling approaches based on Gaussian assumptions cannot incorporate such bounds and thus often produce unrealistic results. The atmospheric literature lacks consensus on the best means to overcome this problem, and existing atmospheric studies rely on a limited number of the possible methods with little examination of the relative merits of each. This paper investigates the applicability of several approaches to bounded inverse problems and is also the first application of Markov chain Monte Carlo (MCMC) to estimation of atmospheric trace gas fluxes. The approaches discussed here are broadly applicable. A common method of data transformations is found to unrealistically skew estimates for the examined example application. The method of Lagrange multipliers and two MCMC methods yield more realistic and accurate results. In general, the examined MCMC approaches produce the most realistic result but can require substantial computational time. Lagrange multipliers offer an appealing alternative for large, computationally intensive problems when exact uncertainty bounds are less central to the analysis. A synthetic data inversion of US anthropogenic methane emissions illustrates the strengths and weaknesses of each approach.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-09-10
    Description: A database and tool for boundary conditions for regional air quality modeling: description and evaluation Geoscientific Model Development Discussions, 6, 4665-4704, 2013 Author(s): B. H. Henderson, F. Akhtar, H. O. T. Pye, S. L. Napelenok, and W. T. Hutzell Transported air pollutants receive increasing attention as regulations tighten and global concentrations increase. The need to represent international transport in regional air quality assessments requires improved representation of boundary concentrations. Currently available observations are too sparse vertically to provide boundary information, particularly for ozone precursors, but global simulations can be used to generate spatially and temporally varying Lateral Boundary Conditions (LBC). This study presents a public database of global simulations designed and evaluated for use as LBC for air quality models (AQMs). The database covers the contiguous United States (CONUS) for the years 2000–2010 and contains hourly varying concentrations of ozone, aerosols, and their precursors. The database is complimented by a tool for configuring the global results as inputs to regional scale models (e.g., Community Multiscale Air Quality or Comprehensive Air quality Model with extensions). This study also presents an example application based on the CONUS domain, which is evaluated against satellite retrieved ozone vertical profiles. The results show performance is largely within uncertainty estimates for the Tropospheric Emission Spectrometer (TES) with some exceptions. The major difference shows a high bias in the upper troposphere along the southern boundary in January. This publication documents the global simulation database, the tool for conversion to LBC, and the fidelity of concentrations on the boundaries. This documentation is intended to support applications that require representation of long-range transport of air pollutants.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-09-10
    Description: Effects of vegetation structure on biomass accumulation in a Balanced Optimality Structure Vegetation Model (BOSVM v1.0) Geoscientific Model Development Discussions, 6, 4603-4663, 2013 Author(s): Z. Yin, S. C. Dekker, B. J. J. M. van den Hurk, and H. A. Dijkstra A myriad of interactions exist between vegetation and local climate for arid and semi-arid regions. Vegetation function, structure and individual behavior have large impacts on carbon-water-energy balances, which consequently influence local climate variability that, in turn, feeds back to the vegetation. In this study, a conceptual vegetation structure scheme is formulated and tested in a new carbon-water-energy coupled model to explore the importance of vegetation structure and vegetation adaptation to water stress on equilibrium biomass states. Surface energy, water and carbon fluxes are simulated for a range of vegetation structures across a precipitation gradient in West Africa and optimal vegetation structures that maximizes biomass for each precipitation regime are determined. Two different strategies of vegetation adaptation to water stress are included. Under dry conditions vegetation tries to maximize the Water Use Efficiency and Leaf Area Index as it tries to maximize carbon gain. However, an important negative feedback mechanism is found as the vegetation also tries to minimize its cover to optimize the surrounding bare ground area from which water can be extracted, thereby forming patches of vertical vegetation. Under larger precipitation, a positive feedback mechanism is found in which vegetation tries to maximize its cover as it then can reduce water loss from bare soil while having maximum carbon gain due to a large Leaf Area Index. The competition between vegetation and bare soil determines a transition between a "survival" state to a "growing" state.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-09-11
    Description: An inter-laboratory investigation of the Arctic sea ice biomarker proxy IP 25 in marine sediments: key outcomes and recommendations Climate of the Past Discussions, 9, 5263-5298, 2013 Author(s): S. T. Belt, T. A. Brown, L. Ampel, P. Cabedo-Sanz, K. Fahl, J. J. Kocis, G. Massé, A. Navarro-Rodriguez, J. Ruan, and Y. Xu We describe the results of an inter-laboratory investigation into the identification and quantification of the Arctic sea ice biomarker proxy IP 25 in marine sediments. 7 laboratories took part in the study, which consisted of the analysis of IP 25 in a series of sediment samples from different regions of the Arctic, sub-Arctic and Antarctic, additional sediment extracts and purified standards. The results obtained allowed 4 key outcomes to be determined. First, IP 25 was identified by all laboratories in sediments from the Canadian Arctic with inter-laboratory variation in IP 25 concentration being substantially larger than within individual laboratories. This greater variation between laboratories was attributed to the difficulty in accurately determining instrumental response factors for IP 25 , despite provision of appropriate standards. Second, the identification of IP 25 by 3 laboratories in sediment from SW Iceland that was believed to represent a blank, was interpreted as representing a better limit of detection or quantification for such laboratories, contamination or mis-identification. These alternatives could not be distinguished conclusively with the data available, although it is noted that the precision of these data was significantly poorer compared with the other IP 25 concentration measurements. Third, 3 laboratories reported the occurrence of IP 25 in a sediment sample from the Antarctic Peninsula even though this biomarker is believed to be absent from the Southern Ocean. This anomaly is attributed to a combined chromatographic and mass spectrometric interference that results from the presence of a di-unsaturated highly branched isoprenoid (HBI) pseudo-homologue of IP 25 that occurs in Antarctic sediments. Finally, data are presented that suggest that extraction of IP 25 is consistent between Automated Solvent Extraction (ASE) and sonication methods and that IP 25 concentrations based on 7-hexylnonadecane as an internal standard are comparable using these methods. Recoveries of some more unsaturated HBIs and the internal standard 9-octylheptadecene, however, were lower with the ASE procedure, possibly due to partial degradation of these more reactive chemicals as a result of higher temperatures employed with this method. For future measurements, we recommend the use of reference sediment material with known concentration(s) of IP 25 for determining and routinely monitoring instrumental response factors. Given the significance placed on the presence (or otherwise) of IP 25 in marine sediments, some further recommendations pertaining to quality control are made that should also enable the two main anomalies identified here to be addressed.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-09-11
    Description: Expressions of climate perturbations in western Ugandan crater lake sediment records during the last 1000 yr Climate of the Past Discussions, 9, 5183-5226, 2013 Author(s): K. Mills, D. B. Ryves, N. J. Anderson, C. L. Bryant, and J. J. Tyler Equatorial East Africa has a complex, regional patchwork of climate regimes, with multiple interacting drivers. Recent studies have focussed on large lakes and reveal signals that are smoothed in both space and time, and, whilst useful at a continental scale, are of less relevance when understanding short-term, abrupt or immediate impacts of climate and environmental changes. Smaller-scale studies have highlighted spatial complexity and regional heterogeneity of tropical palaeoenvironments in terms of responses to climatic forcing (e.g. the Little Ice Age [LIA]) and questions remain over the spatial extent and synchroneity of climatic changes seen in East African records. Sediment cores from paired crater lakes in western Uganda were examined to assess ecosystem response to long-term climate and environmental change as well as testing responses to multiple drivers using redundancy analysis. These archives provide annual to sub-decadal records of environmental change. The records from the two lakes demonstrate an individualistic response to external (e.g. climatic) drivers, however, some of the broader patterns observed across East Africa suggest that the lakes are indeed sensitive to climatic perturbations such as a dry Mediaeval Climate Anomaly (MCA; 1000–1200 AD) and a relatively drier climate during the main phase of the LIA (1500–1800 AD); though lake levels in western Uganda do fluctuate. The relationship of Ugandan lakes to regional climate drivers breaks down c. 1800 AD, when major changes in the ecosystems appear to be a response to sediment and nutrient influxes as a result of increasing cultural impacts within the lake catchments. The data highlight the complexity of individual lake response to climate forcing, indicating shifting drivers through time. This research also highlights the importance of using multi-lake studies within a landscape to allow for rigorous testing of climate reconstructions, forcing and ecosystem response.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-09-13
    Description: A distributed computing approach to improve the performance of the Parallel Ocean Program (v2.1) Geoscientific Model Development Discussions, 6, 4705-4744, 2013 Author(s): B. van Werkhoven, J. Maassen, M. Kliphuis, H. A. Dijkstra, S. E. Brunnabend, M. van Meersbergen, F. J. Seinstra, and H. E. Bal The Parallel Ocean Program (POP) is used in many strongly eddying ocean circulation simulations. Ideally one would like to do thousand-year long simulations, but the current performance of POP prohibits this type of simulations. In this work, using a new distributed computing approach, two innovations to improve the performance of POP are presented. The first is a new block partitioning scheme for the optimization of the load balancing of POP such that it can be run efficiently in a multi-platform setting. The second is an implementation of part of the POP model code on Graphics Processing Units. We show that the combination of both innovations leads to a substantial performance increase also when running POP simultaneously over multiple computational platforms.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-09-14
    Description: Inherently mass-conservative version of the semi-Lagrangian Absolute Vorticity (SL-AV) atmospheric model dynamical core Geoscientific Model Development Discussions, 6, 4809-4832, 2013 Author(s): V. V. Shashkin and M. A. Tolstykh The semi-Lagrangian Absolute Vorticity (SL-AV) atmospheric model is the global semi-Lagrangian hydrostatic model used for operational medium-range and seasonal forecasts at Hydrometeorological centre of Russia. The distinct feature of SL-AV dynamical core is the semi-implicit semi-Lagrangian vorticity-divergence formulation on the unstaggered grid. Semi-implicit semi-Lagrangian approach allows for long time steps while violates the global and local mass-conservation. In particular, the total mass in simulations with semi-Lagrangian models can drift significantly if no aposteriori mass-fixing algorithms are applied. However, the global mass-fixing algorithms degrade the local mass conservation. The inherently mass-conservative version of SL-AV model dynamical core presented in the article ensures global and local mass conservation without mass-fixing algorithms. The mass conservation is achieved with the introduction of the finite-volume semi-Lagrangian discretization for continuity equation based on the 3-D extension of the conservative cascade semi-Lagrangian transport scheme (CCS). The numerical experiments show that the presented new version of SL-AV dynamical core combines the accuracy and stability of the standard SL-AV dynamical core with the mass-conservation properties. The results of the mountain induced Rossby wave test and baroclinic instability test for mass-conservative dynamical core are found to be in agreement with the results available in literature.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-09-14
    Description: A fast input/output library for high resolution climate models Geoscientific Model Development Discussions, 6, 4775-4807, 2013 Author(s): X. Huang, W. Wang, H. Fu, G. Yang, B. Wang, and C. Zhang We describe the design and implementation of Climate Fast Input/Output (CFIO), a fast input/output (I/O) library for high resolution climate models. CFIO provides a simple method for modelers to overlap the I/O phase with the computing phase automatically, so as to shorten the running time of numerical simulations. To minimize the code modifications required for porting, CFIO provides similar interfaces and features to Parallel network Common Data Form (PnetCDF), which is one of the most widely used I/O libraries in climate models. We deployed CFIO in three high resolution climate models, including two ocean models (POP and LICOM) and one sea ice model (CICE). The experimental results show that CFIO improves the performance of climate models significantly versus the original serial I/O approach. When running with CFIO at 0.1° resolution with about 1000 CPU cores, we managed to reduce the running time by factors of 7.9, 4.6 and 2.0 for POP, CICE, and LICOM respectively. We also compared the performance of CFIO against PnetCDF in different scenarios. For scenarios with both data output operations and computations, CFIO decreases the I/O overhead by a factor of 5.1 compared to PnetCDF.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-09-17
    Description: Application and evaluation of McICA scheme with new radiation code in BCC_AGCM2.0.1 Geoscientific Model Development Discussions, 6, 4933-4982, 2013 Author(s): given_name prefix surname suffix, H. Zhang, X. Jing, and J. Li This research incorporates the Monte Carlo Independent Column Approximation (McICA) scheme with the correlated k-distribution BCC-RAD radiation model into the climate model BCC_AGCM2.0.1 and examines the impacts on modeled climate through several simulations with variations in cloud structures. Results from experiments with consistent sub-grid cloud structures show that both clear-sky radiation fluxes and cloud radiative forcings (CRFs) calculated by the new scheme are mostly improved relative to those calculated from the original one. The modeled atmospheric temperature and specific humidity are also improved due to changes in the radiative heating rates. The vertical overlap of fractional clouds and horizontal distribution of cloud condensation are important for computing CRFs. The maximum changes in seasonal CRF using the general overlap assumption (GenO) with different decorrelation depths ( L cf ) are larger than 10 and 20 Wm 2 for longwave (LW) CRF and shortwave (SW) CRF, respectively, mostly located in the Tropics and mid-latitude storm tracks. Larger (smaller) L cf in the Tropics (mid-latitude storm tracks) yield better cloud fraction and CRF compared with observations. The inclusion of an observation-based horizontal inhomogeneity of cloud condensation has a distinct impact on LW CRF and SW CRF, with global means of ∼1.2 Wm −2 and ∼3.7 Wm −2 at the top of atmosphere, respectively, making these much closer to observations. These results prove the reliability of the new model configuration to be used in BCC_AGCM2.0.1 for climate simulations, and also indicate that more detailed real-world information on cloud structures should be obtained to constrain cloud settings in McICA in the future.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-09-18
    Description: Evaluation of seasonal climates of the Mediterranean and nothern Africa in the CMIP5 simulations Climate of the Past Discussions, 9, 5347-5389, 2013 Author(s): A. Perez-Sanz, G. Li, P. González-Sampériz, and S. P. Harrison We analyze the spatial expression of seasonal climates of the Mediterranean and northern Africa in pre-Industrial ( piControl ) and mid-Holocene ( midHolocene , 6 ka) simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Modern observations show four distinct precipitation regimes characterized by differences in the seasonal distribution and total amount of precipitation: an equatorial band characterized by a double peak in rainfall, the monsoon zone characterized by summer rainfall, the desert characterized by low seasonality and total precipitation, and the Mediterranean zone characterized by summer drought. Most models correctly simulate the position of the Mediterranean and the equatorial climates in the piControl simulations, but over-estimate the extent of monsoon influence and underestimate the extent of desert. However, most models fail to reproduce the amount of precipitation in each zone. Model biases in the simulated magnitude of precipitation are unrelated to whether the models reproduce the correct spatial patterns of each regime. In the midHolocene , the models simulate a reduction in winter rainfall in the equatorial zone, and a northward expansion of the monsoon with a significant increase in summer and autumn rainfall. Precipitation is slightly increased in the desert, mainly in summer and autumn, with northward expansion of the monsoon. Changes in the Mediterranean are small, although there is an increase in spring precipitation consistent with palaeo-observations of increased growing-season rainfall. Comparison with reconstructions shows that most models under-estimate the mid-Holocene changes in annual precipitation, except in the equatorial zone. Biases in the piControl have only a limited influence on midHolocene anomalies in ocean-atmosphere models; carbon-cycle models show no relationship between piControl bias and midHolocene anomalies. Biases in the prediction of the midHolocene monsoon expansion are unrelated to how well the models simulate changes in Mediterranean climate.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-09-24
    Description: Orbital and millennial-scale environmental changes between 64 and 25 ka BP recorded in Black Sea sediments Climate of the Past Discussions, 9, 5439-5477, 2013 Author(s): L. S. Shumilovskikh, D. Fleitmann, N. R. Nowaczyk, H. Behling, F. Marret, A. Wegwerth, and H. W. Arz High-resolution pollen and dinoflagellate cyst records from marine sediment core 25-GC1 were used to reconstruct vegetation dynamics in Northern Anatolia and surface conditions of the Black Sea between 64 and 25 ka BP. During this period, the dominance of Artemisia in the pollen record indicates a steppe landscape and arid climate conditions. However, the presence of temperate and warm-temperate arboreal pollen suggests the existence of glacial refugia in Northern Anatolia. A general cooling trend towards 25 ka BP is evidenced by the decrease of Quercus and increase of Pinus . There is evidence of orbital-driven vegetation dynamics in Northern Anatolia during 64–25 ka BP with spread of steppe during precession minima (insolation maxima) and development of forests during precession maxima (insolation minima). Dansgaard–Oeschger (D–O) events are characterized by a marked increase in temperate tree pollen, indicating a spread of forests due to warm and wet conditions in Northern Anatolia. The dominance of Pyxidinopsis psilata and Spiniferites cruciformis in the dinocyst record indicates a rather brackish Black Sea during the last glacial period. The decrease of marine indicators (marine dinocysts, acritachs) at ~ 54 ka BP and increase of freshwater algae ( Pediastrum, Botryococcus ) from 32 to 25 ka BP reveals freshening of the Black Sea surface water, related to orbital-driven arid/humid phases in the region, influencing hydrology and level changes of the Black Sea. D–O interstadials are characterized by high dinocyst concentrations and calcium carbonate content, as a result of an increase in primary productivity in the Black Sea. Heinrich events show a similar impact on the environment in Northern Anatolia/Black Sea region as D–O stadials.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-09-25
    Description: Extreme extension across Seram and Ambon, eastern Indonesia: evidence for Banda slab rollback Solid Earth, 4, 277-314, 2013 Author(s): J. M. Pownall, R. Hall, and I. M. Watkinson The island of Seram, which lies in the northern part of the 180°-curved Banda Arc, has previously been interpreted as a fold-and-thrust belt formed during arc-continent collision, which incorporates ophiolites intruded by granites thought to have been produced by anatexis within a metamorphic sole. However, new geological mapping and a re-examination of the field relations cause us to question this model. We instead propose that there is evidence for recent and rapid N–S extension that has caused the high-temperature exhumation of lherzolites beneath low-angle lithospheric detachment faults that induced high-temperature metamorphism and melting in overlying crustal rocks. These "Kobipoto Complex" migmatites include highly residual Al–Mg-rich garnet + cordierite + sillimanite + spinel + corundum granulites (exposed in the Kobipoto Mountains) which contain coexisting spinel + quartz, indicating that peak metamorphic temperatures likely approached 900 °C. Associated with these residual granulites are voluminous Mio-Pliocene granitic diatexites, or "cordierite granites", which crop out on Ambon, western Seram, and in the Kobipoto Mountains and incorporate abundant schlieren of spinel- and sillimanite-bearing residuum. Quaternary "ambonites" (cordierite + garnet dacites) emplaced on Ambon were also evidently sourced from the Kobipoto Complex migmatites as demonstrated by granulite-inherited xenoliths. Exhumation of the hot peridotites and granulite-facies Kobipoto Complex migmatites to shallower structural levels caused greenschist- to lower-amphibolite facies metapelites and amphibolites of the Tehoru Formation to be overprinted by sillimanite-grade metamorphism, migmatisation, and limited localised anatexis to form the Taunusa Complex. The extreme extension required to have driven Kobipoto Complex exhumation evidently occurred throughout Seram and along much of the northern Banda Arc. The lherzolites must have been juxtaposed against the crust at typical lithospheric mantle temperatures in order to account for such high-temperature metamorphism and therefore could not have been part of a cooled ophiolite. In central Seram, lenses of peridotites are incorporated with a major left-lateral strike-slip shear zone (the "Kawa Shear Zone"), demonstrating that strike-slip motions likely initiated shortly after the mantle had been partly exhumed by detachment faulting and that the main strike-slip faults may themselves be reactivated and steepened low-angle detachments. The geodynamic driver for mantle exhumation along the detachment faults and strike-slip faulting in central Seram is very likely the same; we interpret the extreme extension to be the result of eastward slab rollback into the Banda Embayment as outlined by the latest plate reconstructions for Banda Arc evolution.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-09-26
    Description: A regional climate modelling projection ensemble experiment – NARCliM Geoscientific Model Development Discussions, 6, 5117-5139, 2013 Author(s): J. P. Evans, F. Ji, C. Lee, P. Smith, D. Argüeso, and L. Fita Including the impacts of climate change in decision making and planning processes is a challenge facing many regional governments including the New South Wales (NSW) and Australian Capital Territory (ACT) governments in Australia. NARCliM (NSW/ACT Regional Climate Modelling project) is a regional climate modelling project that aims to provide a comprehensive and consistent set of climate projections that can be used by all relevant government departments when considering climate change. To maximise end user engagement and ensure outputs are relevant to the planning process, a series of stakeholder workshops were run to define key aspects of the model experiment including spatial resolution, time slices, and output variables. As with all such experiments, practical considerations limit the number of ensembles members that can be simulated such that choices must be made concerning which Global Climate Models (GCMs) to downscale from, and which Regional Climate Models (RCMs) to downscale with. Here a methodology for making these choices is proposed that aims to sample the uncertainty in both GCMs and RCMs, as well as spanning the range of future climate projections present in the full GCM ensemble. The created ensemble provides a more robust view of future regional climate changes.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-01-16
    Description: Vegetation responses to interglacial warming in the Arctic, examples from Lake El'gygytgyn, northeast Siberia Climate of the Past Discussions, 9, 245-267, 2013 Author(s): A. V. Lozhkin and P. M. Anderson Palynological data from Lake El'gygytgyn reveal responses of plant communities to a range of climatic conditions that can help assess the possible impact of global warming on arctoboreal ecosystems. Vegetation associated with climatic optima suggests two types of interglacial responses: one is dominated by deciduous taxa (the postglacial thermal maximum (PGTM) and marine isotope stage (MIS5)) and the second by evergreen conifers (MIS11, MIS31). The MIS11 forests show a similarity to Picea-Larix-Betula-Alnus forests of Siberia. While dark coniferous forest also characterizes MIS31, the pollen taxa show an affinity to the modern boreal forest of the lower Amur valley in the Russian Far East. Despite vegetation differences during the thermal maxima, all four glacial-interglacial transitions are alike, being dominated by deciduous woody taxa. Initially Betula shrub tundra established and was replaced by tundra with tree-sized shrubs (PGTM), Betula woodland (MIS5), or Betula-Larix (MIS11, MIS31) forest. The consistent occurrence of deciduous forest and/or high shrub tundra in all interglaciations as they approach or achieve maximum warmth underscores the significance of this biome for modeling efforts. The El'gygytgyn data also suggest the possible elimination or massive reduction of arctic plant communities under extreme warm-earth scenarios.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-01-18
    Description: The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids – Part 1: Formulation and performance of the baseline version Geoscientific Model Development Discussions, 6, 59-119, 2013 Author(s): H. Wan, M. A. Giorgetta, G. Zängl, M. Restelli, D. Majewski, L. Bonaventura, K. Fröhlich, D. Reinert, P. Rípodas, and L. Kornblueh A hydrostatic atmospheric dynamical core is developed for the purpose of global climate modelling. The model applies finite-difference methods to discretize the primitive equations on spherical icosahedral grids, using C-type staggering with triangles as control volumes for mass. This paper documents the numerical methods employed in the baseline version of the model, discusses their properties, and presents results from various idealized test cases. The evaluation shows that the new dynamical core is able to correctly represent the evolution of baroclinic eddies in the atmosphere as well as their role in heat and momentum transport. The simulations compare well with the reference solutions, and show a clear trend of convergence as the horizontal resolution increases. First results from two aqua-planet simulations are also presented, in which the equatorial wave spectra derived from tropical precipitation agree well with those simulated by a spectral transform model. The new dynamical core thus provides a good basis for further model development. Certain aspects of the model formulation that need further investigation and improvement are also pointed out.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-01-18
    Description: The effect of precipitation seasonality on Eemian ice core isotope records from Greenland Climate of the Past Discussions, 9, 269-296, 2013 Author(s): W. J. van de Berg, M. R. van den Broeke, E. van Meijgaard, and F. Kaspar The previous interglacial (Eemian, 130–114 kyr BP) had a mean sea level highstand 4 to 7 m above the current level, and, according to climate proxies, a 2 to 6 K warmer Arctic summer climate. Greenland ice cores extending back into the Eemian show a reduced depletion in δ 18 O of about 3‰ for this period, which suggests a significant warming of several degrees over the Greenland ice sheet. Since the depletion in δ 18 O depends, among other factors, on the condensation temperature of the precipitation, we analyze climatological processes other than mean temperature changes that influence condensation temperature, using output of the regional climate model RACMO2. This model is driven by ERA-40 reanalysis and ECHO-G GCM boundaries for present-day, preindustrial and Eemian climate. The processes that affect the condensation temperature of the precipitation are analyzed using 6-hourly model output. Our results show that changes in precipitation seasonality can cause significant changes of up to 2 K in the condensation temperature that are unrelated to changes in mean temperature.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2013-02-21
    Description: Why could ice ages be unpredictable? Climate of the Past Discussions, 9, 1053-1098, 2013 Author(s): M. Crucifix It is commonly accepted that the variations of Earth's orbit and obliquity control the timing of Pleistocene glacial-interglacial cycles. Evidence comes from power spectrum analysis of palaeoclimate records and from inspection of the timing of glacial and deglacial transitions. However, we do not know how tight this control is. Is it, for example, conceivable that random climatic fluctuations could cause a delay in deglaciation, bad enough to skip a full precession or obliquity cycle and subsequently modify the sequence of ice ages? To address this question, seven previously published conceptual models of ice ages are analysed by reference to the notion of generalised synchronisation. Insight is being gained by comparing the effects of the astronomical forcing with idealised forcings composed of only one or two periodic components. In general, the richness of the astronomical forcing allows for synchronisation over a wider range of parameters, compared to periodic forcing. Hence, glacial cycles may conceivably have remained paced by the astronomical forcing throughout the Pleistocene. However, all the models examined here also show a range of parameters for which the structural stability of the ice age dynamics is weak. This means that small variations in parameters or random fluctuations may cause significant shifts in the succession of ice ages if the system were effectively in that parameter range. Whether or not the system has strong structural stability depends on the amplitude of the effects associated with the astronomical forcing, which significantly differ across the different models studied here. The possibility of synchronisation on eccentricity is also discussed and it is shown that a high Rayleigh number on eccentricity, as recently found in observations, is no guarantee of reliable synchronisation.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-02-21
    Description: The GREENROOF module (v7.3) for modelling green roof hydrological and energetic performances within TEB Geoscientific Model Development Discussions, 6, 1127-1172, 2013 Author(s): C. S. de Munck, A. Lemonsu, R. Bouzouidja, V. Masson, and R. Claverie The need to prepare cities for climate change adaptation requests the urban modeller community to implement within their models sustainable adaptation strategies to be tested against specific city morphologies and scenarios. Greening city roofs is part of these strategies. In this context, a GREENROOF module for TEB (Town Energy Balance) has been developed to model the interactions between buildings and green roof systems at the scale of the city. This module allows one to describe an extensive green roof composed of four functional layers (vegetation – grasses or sedums, substrate, retention/drainage layers and artificial roof layers) and to model vegetation-atmosphere fluxes of heat, water and momentum, as well as the hydrological and thermal fluxes throughout the substrate and the drainage layers, and the thermal coupling with the structural building envelope. TEB-GREENROOF (v7.3) is therefore able to represent the impact of climate forcings on the functioning of the green roof vegetation and, conversely, the influence of the green roof on the local climate. A calibration exercise to adjust the model to the peculiar hydrological characteristics of the substrates and drainage layers commonly found on green roofs is performed for a case study located in Nancy (France) which consists of an extensive green roof with sedums. Model results for the optimum hydrological calibration show a good dynamics for the substrate water content which is nevertheless under-estimated but without impacting too much the green roof temperatures since they present a good agreement with observations. These results are encouraging with regard to modelling the impact of green roofs on thermal indoor comfort and energy consumption at the scale of cities, for which GREENROOF will be running with the building energy version of TEB, TEB-BEM. Moreover, the green roof studied for GREENROOF evaluation being a city-widespread type of extensive green roof, the hydrological characteristics derived through the evaluation exercise will be used as the standard configuration to model extensive green roofs at the scale of cities.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-02-22
    Description: The chemistry CATT–BRAMS model (CCATT–BRAMS 4.5): a regional atmospheric model system for integrated air quality and weather forecasting and research Geoscientific Model Development Discussions, 6, 1173-1222, 2013 Author(s): K. M. Longo, S. R. Freitas, M. Pirre, V. Marécal, L. F. Rodrigues, J. Panetta, M. F. Alonso, N. E. Rosário, D. S. Moreira, M. S. Gácita, J. Arteta, R. Fonseca, R. Stockler, D. M. Katsurayama, A. Fazenda, and M. Bela The Coupled Chemistry Aerosol-Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CCATT–BRAMS, version 4.5) is an online regional chemical transport model designed for local and regional studies of atmospheric chemistry from surface to the lower stratosphere suitable both for operational and research purposes. It includes gaseous/aqueous chemistry, photochemistry, scavenging and dry deposition. The CCATT–BRAMS model takes advantages of the BRAMS specific development for the tropics/subtropics and of the recent availability of preprocessing tools for chemical mechanisms and of fast codes for photolysis rates. BRAMS includes state-of-the-art physical parameterizations and dynamic formulations to simulate atmospheric circulations of scales down to meters. The online coupling between meteorology and chemistry allows the system to be used for simultaneous atmospheric weather and chemical composition forecasts as well as potential feedbacks between them. The entire system comprises three preprocessing software tools for chemical mechanism (which are user defined), aerosol and trace gases emission fields and atmospheric and chemistry fields for initial and boundary conditions. In this paper, the model description is provided along evaluations performed using observational data obtained from ground-based stations, instruments aboard of aircrafts and retrieval from space remote sensing. The evaluation takes into account model application on different scales from megacities and Amazon Basin up to intercontinental region of the Southern Hemisphere.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-02-23
    Description: Parallel algorithms for planar and spherical Delaunay construction with an application to centroidal Voronoi tessellations Geoscientific Model Development Discussions, 6, 1427-1466, 2013 Author(s): D. W. Jacobsen, M. Gunzburger, T. Ringler, J. Burkardt, and J. Peterson A new algorithm, featuring overlapping domain decompositions, for the parallel construction of Delaunay and Voronoi tessellations is developed. Overlapping allows for the seamless stitching of the partial Delaunay tessellations constructed by individual processors. The algorithm is then modified, by the addition of stereographic projections, to handle the parallel construction of spherical Delaunay and Voronoi tessellations. The algorithms are then embedded into algorithms for the parallel construction of planar and spherical centroidal Voronoi tessellations that require multiple constructions of Delaunay tessellations. Computational tests are used to demonstrate the efficiency and scalability of the algorithms for spherical Delaunay and centroidal Voronoi tessellations. Compared to serial versions of the algorithm and to the STRIPACK-based approaches, the new parallel algorithm results in significant speedups for the construction of spherical centroidal Voronoi tessellations.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-03-01
    Description: East Asian monsoon climate simulated in the PlioMIP Climate of the Past Discussions, 9, 1135-1164, 2013 Author(s): R. Zhang, Q. Yan, Z. S. Zhang, D. Jiang, B. L. Otto-Bliesner, A. M. Haywood, D. J. Hill, A. M. Dolan, C. Stepanek, G. Lohmann, C. Contoux, F. Bragg, W.-L. Chan, M. A. Chandler, A. Jost, Y. Kamae, A. Abe-Ouchi, G. Ramstein, N. A. Rosenbloom, L. Sohl, and H. Ueda Based on the simulations with fifteen climate models in the Pliocene Model Intercomparison Project (PlioMIP), the regional climate of East Asia (focusing on China) during the mid-Pliocene is investigated in this study. Compared to the pre-industrial, the multi-model ensemble mean (MMM) of all models shows the East Asian summer wind (EASW) largely strengthens in monsoon China, and the East Asian winter wind (EAWW) strengthens in south monsoon China but slightly weakens in north monsoon China in mid-Pliocene. The MMM of all models also illustrates a warmer and wetter mid-Pliocene climate in China. The simulated weakened mid-Pliocene EAWW in north monsoon China and intensified EASW in monsoon China agree well with geological reconstructions. However, the model-model discrepancy in simulating mid-Pliocene East Asian monsoon climate, in particular EAWW, should be further addressed in the future work of PlioMIP.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-03-02
    Description: A reconstruction of radiocarbon production and total solar irradiance from the Holocene 14 C and CO 2 records: implications of data and model uncertainties Climate of the Past Discussions, 9, 1165-1235, 2013 Author(s): R. Roth and F. Joos Past atmospheric CO 2 concentrations reconstructed from polar ice cores combined with its Δ 14 C signature as conserved in tree-rings provide important information both on the cycling of carbon as well as the production of radiocarbon ( Q ) in the atmosphere. The latter is modulated by changes in the strength of the magnetic field enclosed in the solar wind and is a proxy for past changes in solar activity. We perform transient carbon-cycle simulations spanning the past 21 kyr using Bern3D-LPX, a fully featured Earth System Model of Intermediate Complexity (EMIC) with a 3-D ocean, sediment and a dynamic vegetation model. Using the latest atmospheric IntCal09/SHCal04 radiocarbon records, we reconstruct the Holocene radiocarbon fluxes and the total production rate. Our carbon-cycle based modern estimate of Q ≈ 1.7 atoms cm −2 s −1 is lower than previously reported by Masarik and Beer (2009) and more in line with Kovaltsov et al. (2012). Q is then translated into the solar modulation potential (Φ) using the latest geomagnetic field reconstruction and linked to a recent reanalysis of early instrumental data. In contrast to earlier reconstructions, our record suggests that periods of high solar activity (〉600 MeV) were quite common not only in recent millennia but throughout the Holocene. Solar activity in our decadally-smoothed record is during 28% of the time higher than the modern average of 650 MeV during the past 9 ka. But due to considerable uncertainties in the normalization of Φ to instrumental data, the absolute value of Φ remains weakly constrained. Further, our simulations with a spatially resolved model (taking the interhemispheric Δ 14 C gradient into account) show that reconstructions that rely on the Northern Hemisphere 14 C record only are biased towards low values during the Holocene. Notable deviations on decadal-to-centennial time scales are also found in comparison with earlier reconstructions. In a last step, past total solar irradiance (TSI) is quantified using a recently published Φ-TSI relationship yielding small changes in Holocene TSI of order 1 W m −2 with a Maunder Minimum irradiance reduction of 0.85 ± 0.17 W m −2 . Future extension of TSI using autoregressive modeling suggest a declining solar activity in the next decades towards average Holocene conditions. Past TSI changes are finally translated into changes in surfaces atmospheric temperature (SAT) by forcing the Bern3D-LPX model with our new TSI record, yielding SAT anomalies of less than 0.1 K.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-03-05
    Description: Northward advection of Atlantic water in the eastern Nordic Seas over the last 3000 yr: a coccolith investigation of volume transport and surface water changes Climate of the Past Discussions, 9, 1259-1295, 2013 Author(s): C. V. Dylmer, J. Giraudeau, F. Eynaud, K. Husum, and A. De Vernal Three marine sediment cores distributed along the Norwegian (MD95-2011), Barents Sea (JM09-KA11-GC), and Svalbard (HH11-134-BC) continental margins have been investigated in order to reconstruct changes in the poleward flow of Atlantic Waters (AW) and in the nature of upper surface water masses within the eastern Nordic Seas over the last 3000 yr. These reconstructions are based on a limited set of coccolith proxies: the abundance ratio between Emiliania huxleyi and Coccolithus pelagicus , an index of Atlantic vs. Polar-Arctic surface water masses; and Gephyrocapsa muellerae , a drifted coccolith species from the temperate North Atlantic, whose abundance changes are related to variations in the volume transport of the North Atlantic Current and its northernmost extension (the West Spitsbergen Current – WSC) off western Svalbard. The entire investigated area, from 66 to 77° N, was affected by an overall increase in volume flow of AW from 3000 cal yr BP to Present. The long-term modulation of westerlies strength and location which are essentially driven by the dominant mode of the North Atlantic Oscillation (NAO), is thought to explain the observed dynamics of poleward AW flow. The same mechanism also reconciles the recorded opposite zonal shifts in the location of the Arctic Front between the area off western Norway and the Barents Sea-eastern Fram Strait region. The Little Ice Age was governed by deteriorating conditions, with Arctic/Polar waters dominating in the surface off western Svalbard and western Barents Sea, possibly associated with both severe sea-ice conditions and a strongly reduced AW volume flow. A sudden short pulse of resumed high WSC flow interrupted this cold spell in eastern Fram Strait from 330 to 410 cal yr BP, with a a magnitude only surpassed by the one which characterizes the Modern Period. Our dataset not only confirms the high amplitude warming of surface waters at the turn of the 19th century off western Svalbard, it also shows that such a warming was primarily induced by an excess volume flow of AW which stands as unprecedented over the last 3000 yr.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-03-05
    Description: On the Milankovitch sensitivity of the Quaternary deep-sea record Climate of the Past Discussions, 9, 1237-1257, 2013 Author(s): W. H. Berger The response of the climate system to external forcing has become an item of prime interest in the context of global warming, especially with respect to the rate of melting land-based ice masses. The deep-sea record of ice-age climate change has been useful in assessing the sensitivity of the climate system to such forcing, notably to orbital forcing, which is well-known for the last several million years. When comparing response and forcing, one finds that sensitivity varies greatly through time, apparently in dependence on the state of the system. The changing stability of ice masses presumably is the underlying cause for the changing state of the system. A buildup of vulnerable ice masses within the latest Tertiary, when going into the ice ages, is conjectured to cause a stepwise increase of climate variability since the early Pliocene.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-03-05
    Description: PEATBOG: a biogeochemical model for analyzing coupled carbon and nitrogen dynamics in northern peatlands Geoscientific Model Development Discussions, 6, 1599-1688, 2013 Author(s): Y. Wu and C. Blodau Elevated nitrogen deposition and climate change alter the vegetation communities and carbon (C) and nitrogen (N) cycling in peatlands. To address this issue we developed a new process-oriented biogeochemical model (PEATBOG) for analyzing coupled carbon and nitrogen dynamics in northern peatlands. The model consists of four submodels, which simulate: (1) daily water table depth and depth profiles of soil moisture, temperature and oxygen levels; (2) competition among three plants functional types (PFTs), production and litter production of plants; (3) decomposition of peat; and (4) production, consumption, diffusion and export of dissolved C and N species in soil water. The model is novel in the integration of the C and N cycles, the explicit spatial resolution belowground, the consistent conceptualization of movement of water and solutes, the incorporation of stoichiometric controls on elemental fluxes and a consistent conceptualization of C and N reactivity in vegetation and soil organic matter. The model was evaluated for the Mer Bleue Bog, near Ottawa, Ontario, with regards to simulation of soil moisture and temperature and the most important processes in the C and N cycles. Model sensitivity was tested for nitrogen input, precipitation, and temperature, and the choices of the most uncertain parameters were justified. A simulation of nitrogen deposition over 40 yr demonstrates the advantages of the PEATBOG model in tracking biogeochemical effects and vegetation change in the ecosystem.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-03-05
    Description: δ 18 O water isotope in the i LOVECLIM model (version 1.0) – Part 3: A paleoperspective based on present-day data-model comparison for oxygen stable isotopes in carbonates Geoscientific Model Development Discussions, 6, 1527-1558, 2013 Author(s): T. Caley and D. M. Roche Oxygen stable isotopes ( 18 O) are among the most usual tools in paleoclimatology/paleoceanography. Simulation of oxygen stable isotopes allows testing how the past variability of these isotopes in water can be interpreted. By modelling the proxy directly in the model, the results can also be directly compared with the data. Water isotopes have been implemented in the global three-dimensional model of intermediate complexity i LOVECLIM allowing fully coupled atmosphere-ocean simulations. In this study, we present the validation of the model results for present day climate against global database for oxygen stable isotopes in carbonates. The limitation of the model together with the processes operating in the natural environment reveal the complexity of use the continental calcite 18 O signal of speleothems for a data-model comparison exercise. On the contrary, the reconstructed surface ocean calcite δ 18 O signal in i LOVECLIM does show a very good agreement with late Holocene database (foraminifers) at the global and regional scales. Our results indicate that temperature and the isotopic composition of the seawater are the main control on the fossil δ 18 O signal recorded in foraminifer shells and that depth habitat and seasonality play a role but have secondary importance. We argue that a data-model comparison for surface ocean calcite δ 18 O in past climate, such as the last glacial maximum (≈21 000 yr), could constitute an interesting tool for mapping the potential shifts of the frontal systems and circulation changes throughout time. Similarly, the potential changes in intermediate oceanic circulation systems in the past could be documented by a data (benthic foraminifers)-model comparison exercise whereas future investigations are necessary in order to quantitatively compare the results with data for the deep ocean.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-03-05
    Description: δ 18 O water isotope in the i LOVECLIM model (version 1.0) – Part 2: Evaluation of model results against observed δ 18 O in water samples Geoscientific Model Development Discussions, 6, 1495-1525, 2013 Author(s): D. M. Roche and T. Caley The H 2 18 O stable isotope was previously introduced in the three coupled components of the Earth System Model i LOVECLIM: atmosphere, ocean and vegetation. The results of a long (5000 yr) pre-industrial equilibrium simulation are presented and evaluated against measurement of H 2 18 O abundance in present-day water for the atmospheric and oceanic components. For the atmosphere, it is found that the model reproduces the observed spatial distribution and relationships to climate variables with some merit, though limitations following our approach are highlighted. Indeed, we obtain the main gradients with a robust representation of the Rayleigh distillation but caveats appear in Antarctica and around the Mediterranean region due to model limitation. For the oceanic component, the agreement between the modelled and observed distribution of water δ 18 O is found to be very good. Mean ocean surface latitudinal gradients are faithfully reproduced as well as the mark of the main intermediate and deep water masses. This opens large prospects for the applications in paleoclimatic context.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-03-05
    Description: δ 18 O water isotope in the i LOVECLIM model (version 1.0) – Part 1: Implementation and verification Geoscientific Model Development Discussions, 6, 1467-1494, 2013 Author(s): D. M. Roche A new 18 O stable water isotope scheme is developed for three components of the i LOVECLIM coupled climate model: atmospheric, oceanic and land surface. The equations required to reproduce the fractionation of stable water isotopes in the simplified atmospheric model ECBilt are developed consistently with the moisture scheme. Simplifications in the processes are made to account for the simplified vertical structure including only one moist layer. Implementation of these equations together with a passive tracer scheme for the ocean and a equilibrium fractionation scheme for the land surface leads to the closure of the (isotopic-)water budget in our climate system. Following the implementation, verification of the existence of usual δ 18 O to climatic relationships are performed for the Rayleigh distillation, the Dansgaard relationship and the δ 18 O–salinity relationship. Advantages and caveats of the approach taken are outlined.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-03-05
    Description: Capabilities and performance of Elmer/Ice, a new generation ice-sheet model Geoscientific Model Development Discussions, 6, 1689-1741, 2013 Author(s): O. Gagliardini, T. Zwinger, F. Gillet-Chaulet, G. Durand, L. Favier, B. de Fleurian, R. Greve, M. Malinen, C. Martín, P. Råback, J. Ruokolainen, M. Sacchettini, M. Schäfer, H. Seddik, and J. Thies The Fourth IPCC Assessment Report concluded that ice-sheet flow models are unable to forecast the current increase of polar ice sheet discharge and the associated contribution to sea-level rise. Since then, the glaciological community has undertaken a huge effort to develop and improve a new generation of ice-flow models, and as a result, a significant number of new ice-sheet models have emerged. Among them is the parallel finite-element model Elmer/Ice, based on the open-source multi-physics code Elmer. It was one of the first full-Stokes models used to make projections for the evolution of the whole Greenland ice sheet for the coming two centuries. Originally developed to solve local ice flow problems of high mechanical and physical complexity, Elmer/Ice has today reached the maturity to solve larger scale problems, earning the status of an ice-sheet model. Here, we summarise almost 10 yr of development performed by different groups. We present the components already included in Elmer/Ice, its numerical performance, selected applications, as well as developments planned for the future.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-03-05
    Description: WRFv3.2-SPAv2: development and validation of a coupled ecosystem-atmosphere model, scaling from surface fluxes of CO 2 and energy to atmospheric profiles Geoscientific Model Development Discussions, 6, 1559-1598, 2013 Author(s): T. L. Smallman, J. B. Moncrieff, and M. Williams The Weather Research & Forecasting meteorological (WRF) model has been coupled to the Soil Plant Atmosphere (SPA) terrestrial ecosystem model, to produce WRF-SPA. SPA generates realistic land-atmosphere exchanges through fully coupled hydrological, carbon and energy cycles. The addition of a land surface model (SPA) capable of modelling biospheric CO 2 exchange allows WRF-SPA to be used for investigating the feedbacks between biosphere carbon balance, meteorology and land management/land use change. We have extensively validated WRF-SPA using multi-annual observations of air temperature, turbulent fluxes, net radiation and net ecosystem exchange of CO 2 at three sites, representing the dominant vegetation types in Scotland (forest, managed grassland and arable agriculture). WRF-SPA generates more realistic seasonal behaviour at the site level compared to an unmodified version of WRF, and produces realistic CO 2 exchanges. WRF-SPA is also able to realistically model atmospheric profiles of CO 2 over Scotland, spanning a 3 yr period (2004–2006), capturing both profile structure, indicating realistic transport, and magnitude indicating appropriate source sink distribution and CO 2 exchange. WRF-SPA makes use of CO 2 tracer pools and can therefore identify and quantify land surface contributions to the modelled atmospheric CO 2 signal at a specified location.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-02-07
    Description: Sensitivities and uncertainties of modeled ground temperatures in mountain environments Geoscientific Model Development Discussions, 6, 791-840, 2013 Author(s): S. Gubler, S. Endrizzi, S. Gruber, and R. S. Purves Before operational use or for decision making, models must be validated, and the degree of trust in model outputs should be quantified. Often, model validation is performed at single locations due to the lack of spatially-distributed data. Since the analysis of parametric model uncertainties can be performed independently of observations, it is a suitable method to test the influence of environmental variability on model evaluation. In this study, the sensitivities and uncertainty of a physically-based mountain permafrost model are quantified within an artificial topography consisting of different elevations and exposures combined with six ground types characterized by their hydraulic properties. The analyses performed for all combinations of topographic factors and ground types allowed to quantify the variability of model sensitivity and uncertainty within mountain regions. We found that modeled snow duration considerably influences the mean annual ground temperature (MAGT). The melt-out day of snow (MD) is determined by processes determining snow accumulation and melting. Parameters such as the temperature and precipitation lapse rate and the snow correction factor have therefore a great impact on modeled MAGT. Ground albedo changes MAGT from 0.5 to 4°C in dependence of the elevation, the aspect and the ground type. South-exposed inclined locations are more sensitive to changes in ground albedo than north-exposed slopes since they receive more solar radiation. The sensitivity to ground albedo increases with decreasing elevation due to shorter snow cover. Snow albedo and other parameters determining the amount of reflected solar radiation are important, changing MAGT at different depths by more than 1°C. Parameters influencing the turbulent fluxes as the roughness length or the dew temperature are more sensitive at low elevation sites due to higher air temperatures and decreased solar radiation. Modeling the individual terms of the energy balance correctly is hence crucial in any physically-based permafrost model, and a separate evaluation of the energy fluxes could substantially improve the results of permafrost models. The sensitivity in the hydraulic properties change considerably for different ground types: rock or clay for instance are not sensitive while gravel or peat, accurate measurements of the hydraulic properties could significantly improve modeled ground temperatures. Further, the discretization of ground, snow and time have an impact on modeled MAGT that cannot be neglected (more than 1°C for several discretization parameters). We show that the temporal resolution should be at least one hour to ensure errors less than 0.2°C in modeled MAGT, and the uppermost ground layer should at most be 20 mm thick. Within the topographic setting, the total parametric output uncertainties expressed as the standard deviation of the Monte Carlo model simulations range from 0.1 to 0.5°C for clay, silt and rock, and from 0.1 to 0.8°C for peat, sand and gravel. These uncertainties are comparable to the variability of ground surface temperatures measured within 10 m × 10 m grids in Switzerland. The increased uncertainties for sand, peat and gravel is largely due to the high hydraulic conductivity.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-02-07
    Description: One-dimensional simulation of fire injection heights in contrasted meteorological scenarios with PRM and Meso-NH models Geoscientific Model Development Discussions, 6, 721-790, 2013 Author(s): S. Strada, S. R. Freitas, C. Mari, K. M. Longo, and R. Paugam Wild-fires release huge amounts of aerosol and hazardous trace gases in the atmosphere. The residence time and the dispersion of fire pollutants in the atmosphere can range from hours to days and from local to continental scales. These various scenarios highly depend on the injection height of smoke plumes. The altitude at which fire products are injected in the atmosphere is controlled by fire characteristics and meteorological conditions. Injection height however is still poorly accounted in chemistry transport models for which fires are sub-grid scale processes which need to be parametrised. Only recently, physically-based approaches for estimating the fire injection heights have been developed which consider both the convective updrafts induced by the release of fire sensible heat and the impact of background meteorological environment on the fire convection dynamics. In this work, two different models are used to simulate fire injection heights in contrasted meteorological scenarios: a Mediterranean arson fire and two Amazonian deforestation fires. A Eddy-Diffusivity/Mass-Flux approach, formerly developed to reproduce convective boundary layer in the non-hydrostatic meteorological model Meso-NH, is compared to the 1-D Plume Rise Model. For both models, radiosonde data and re-analyses from the European Center for Medium-Range Weather Forecasts (ECMWF) have been used as initial conditions to explore the sensitivity of the models responses to different meteorological forcings. The two models predict injection heights for the Mediterranean fire between 1.7 and 3.3 km with the Meso-NH/EDMF model systematically higher than the 1-D PRM model. Both models show a limited sensitivity to the meteorological forcings with a 20–30% difference in the injection height between radiosondes and ECMWF data for this case. Injection heights calculated for the two Amazonian fires ranges from 5 to 6.5 km for the 1-D PRM model and from 2 to 4 km for the Meso-NH/EDMF model. The difference of smoke plume heights between the two models can reach 3–4 km. A large difference is obtained for the windy-wet Amazonian fire by the 1-D PRM model with a injection height 1.5 km higher when ECMWF re-analyses are used compared to the run with the radiosonde forcing. For the Mediterranean case, both models forecast a plume injection height above the boundary layer, although there are evidences that this particular fire propagated near the surface, highlighting the current limitations of the two approaches.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-02-08
    Description: Simulation of the Indian monsoon and its variability during the last millennium Climate of the Past Discussions, 9, 703-740, 2013 Author(s): S. Polanski, B. Fallah, S. Prasad, and U. Cubasch The general circulation model ECHAM5 has been used to simulate the Indian monsoon and its variability during the Medieval Warm Period (MWP; 900–1100 AD), the Little Ice Age (LIA; 1515–1715 AD) and for recent climate (REC; 1800–2000 AD). The focus is on the analysis of external drivers and internal feedbacks leading to extreme rainfall events over India from interannual to multidecadal time scale. An evaluation of spatiotemporal monsoon patterns with present-day observation data is in agreement with other state-of-the-art monsoon modeling studies. The simulated monsoon intensity on multidecadal time scale is weakened (enhanced) in summer (winter) due to colder (warmer) SSTs in the Indian Ocean. Variations in solar insolation are the main drivers for these SST anomalies, verified by very strong temporal anticorrelations between Total Solar Irradiance and All-India-Monsoon-Rainfall in summer monsoon months. The external solar forcing is coupled and overlain by internal climate modes of the ocean (ENSO and IOD) with asynchronous intensities and lengths of periods. In addition, the model simulations have been compared with a relative moisture index derived from paleoclimatic reconstructions based on various proxies and archives in India. In this context, the Lonar record in Central India has been highlighted and evaluated the first time. The simulated relative annual rainfall anomalies in comparison to present-day climate are in agreement (disagreement) with the reconstructed moisture index for MWP (LIA) climate. In order to investigate the interannual monsoon variability with respect to monsoon failures, dry summer monsoon composites for 30-yr-long periods of MWP, LIA and REC have been further analysed. Within dry years of LIA, the summer rainfall over India and surrounding oceans is less than in MWP indicating stronger drying conditions due to a stronger summer solar insolation forcing coupled with variations in ENSO. To quantify the ECHAM5 simulated long-term drought conditions within Monsoon Asia, the Palmer Drought Severity Index has been additionally estimated for recent climate showing strong pattern correlation between global SST anomalies and EOF variability signal of the drought index, whereas the temporal relationship is weak.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-02-08
    Description: Representation of nucleation mode microphysics in global aerosol microphysics models Geoscientific Model Development Discussions, 6, 893-924, 2013 Author(s): Y. H. Lee, J. R. Pierce, and P. J. Adams In models, nucleation mode (1 nm 〈 D p 〈 10 nm) particle microphysics can be represented explicitly with aerosol microphysical processes or can be parameterized to obtain the growth and survival of nuclei to the model's lower size boundary. This study investigates how the representation of nucleation mode microphysics impacts aerosol number predictions in the TwO-Moment Aerosol Sectional (TOMAS) aerosol microphysics model running with the GISS GCM II-prime by varying its lowest diameter boundary: 1 nm, 3 nm, and 10 nm. The model with the 1 nm boundary simulates the nucleation mode particles with fully resolved microphysical processes, while the model with the 10 nm and 3 nm boundaries uses a nucleation mode dynamics parameterization to account for the growth of nucleated particles to 10 nm and 3 nm, respectively. We also investigate the impact of the time step for aerosol microphysical processes (a 10-min versus a 1-h time step) to aerosol number predictions in the TOMAS models with explicit dynamics for the nucleation mode particles (i.e. 3 nm and 1 nm boundary). The model with the explicit microphysics (i.e. 1 nm boundary) with the 10-min time step is used as a numerical benchmark simulation to estimate biases caused by varying the lower size cutoff and the time step. Different representations of the nucleation mode have a significant effect on the formation rate of particles larger than 10 nm from nucleated particles ( J 10 ) and the burdens and lifetimes of ultrafine mode (10 nm 〈 D p 〈 70 nm) particles but have less impact on the burdens and lifetimes of CCN-sized particles. The models using parameterized microphysics (i.e. 10 nm and 3 nm boundaries) result in higher J 10 and shorter coagulation lifetimes of ultrafine mode particles than the model with explicit dynamics (i.e. 1 nm boundary). The spatial distributions of CN10 ( D p 〉 10 nm) and CCN(0.2%) (i.e. CCN concentrations at 0.2% supersaturation) are moderately affected, especially CN10 predictions above ~ 700 hPa where nucleation contributes most strongly to CN10 concentrations. The lowermost layer CN10 is substantially improved with the 3 nm boundary (compared to 10 nm) in most areas. The overprediction in CN10 with the 3 nm and 10 nm boundaries can be explained by the overprediction of J 10 or J 3 with the parameterized microphysics possibly due to the instantaneous growth rate assumption in the survival and growth parameterization. The errors in CN10 predictions are sensitive to the choice of the lower size boundary but not to the choice of the time step applied to the microphysical processes. The spatial distribution of CCN(0.2%) with the 3 nm boundary is almost identical to that with the 1 nm boundary, but that with the 10 nm boundary can differ more than 10–40% in some areas. We found that the deviation in the 10 nm simulations is partly due to the longer time step (i.e. 1-h time step used in the 10 nm simulations compared to 10-min time step used in the benchmark simulations) but, even with the same time step, the 10 nm cutoff showed noticeably higher errors than the 3 nm cutoff. In conclusion, we generally recommend using a lower diameter boundary of 3 nm for studies focused on aerosol indirect effects but down to 1 nm boundary for studies focused on CN10 predictions or nucleation.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-02-12
    Description: An optimally tuned ensemble of the "eb_go_gs" configuration of GENIE: parameter sensitivity and bifurcations in the Atlantic overturning circulation Geoscientific Model Development Discussions, 6, 925-956, 2013 Author(s): R. Marsh, A. Sóbester, E. E. Hart, K. I. C. Oliver, N. R. Edwards, and S. J. Cox The key physical parameters of the "eb_go_gs" configuration of GENIE, an Earth system Model of Intermediate Complexity (EMIC), are tuned using a multi-objective genetic algorithm. An ensemble of 90 parameter sets is tuned using two ocean and two atmospheric state variables as targets. These are "Pareto-optimal", representing a range of trade-offs between the four tuning targets. For the leading five parameter sets, simulations are further evaluated alongside a simulation with untuned "default" parameters, comparing selected variables and diagnostics that describe the state of the atmosphere, ocean and sea ice. One of these parameter sets is selected for further analysis of the objective function (error) landscape in the vicinity of its tuned values. "Cliffs" along some dimensions motivate closer inspection of corresponding variations in the Atlantic meridional overturning circulation (AMOC). This reveals that bifurcations in the AMOC are highly sensitive to parameters that are not commonly associated with MOC stability. Specifically, the state of the AMOC is sensitive to parameters governing the wind-driven circulation and atmospheric heat transport. Five optimal parameter sets are recommended for future use of GENIE in the configuration presented here.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-02-14
    Description: Peak glacial 14 C ventilation ages suggest major draw-down of carbon into the abyssal ocean Climate of the Past Discussions, 9, 925-965, 2013 Author(s): M. Sarnthein, B. Schneider, and P. M. Grootes Ice core records demonstrate a glacial-interglacial atmospheric CO 2 increase of ~ 100 ppm. A transfer of ~ 530 Gt C is required to produce the deglacial rise of carbon in the atmosphere and terrestrial biosphere. This amount is usually ascribed to oceanic carbon release, although the actual mechanisms remained elusive, since an adequately old and carbon-enriched deep-ocean reservoir seemed unlikely. Here we present a new, though still fragmentary, ocean-wide 14 C dataset showing that during the Last Glacial Maximum (LGM) and Heinrich Stadial 1 (HS-1) the 14 C age difference between ocean deep waters and the atmosphere exceeded the modern values by up to 1500 14 C yr, in the extreme reaching 5100 yr. Below 2000 m depth the 14 C ventilation age of modern ocean waters is directly linked to the concentration of dissolved inorganic carbon (DIC). We assume that the range of regression slopes of DIC vs. Δ 14 C remained constant for LGM times, which implies that an average LGM aging by ~ 600 14 C yr corresponded to a global rise by ~ 85–115 μmol DIC kg −1 in the deep ocean. Thus, the prolonged residence time of ocean deep waters indeed made it possible to absorb an additional ~ 730–980 Gt DIC, ~ 1/3 of which transferred from intermediate waters. We infer that LGM deep-water O 2 dropped to suboxic values of 〈 10 μmol kg −1 in the Atlantic sector of the Southern ocean, possibly also in the subpolar North Pacific. The transfer of aged deep-ocean carbon to the atmosphere and the ocean-atmosphere exchange are sufficient to account for the 190-‰ drop in atmospheric 14 C during the so-called HS-1 "Mystery Interval".
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-02-15
    Description: Volcanic forcing for climate modeling: a new microphysics-based dataset covering years 1600–present Climate of the Past Discussions, 9, 967-1012, 2013 Author(s): F. Arfeuille, D. Weisenstein, H. Mack, E. Rozanov, T. Peter, and S. Brönnimann As the understanding and representation of the impacts of volcanic eruptions on climate have improved in the last decades, uncertainties in the stratospheric aerosol forcing from large eruptions are now not only linked to visible optical depth estimates on a global scale but also to details on the size, latitude and altitude distributions of the stratospheric aerosols. Based on our understanding of these uncertainties, we propose a new model-based approach to generating a volcanic forcing for General-Circulation-Model (GCM) and Chemistry-Climate-Model (CCM) simulations. This new volcanic forcing, covering the 1600–present period, uses an aerosol microphysical model to provide a realistic, physically consistent treatment of the stratospheric sulfate aerosols. Twenty-six eruptions were modeled individually using the latest available ice cores aerosol mass estimates and historical data on the latitude and date of eruptions. The evolution of aerosol spatial and size distribution after the sulfur dioxide discharge are hence characterized for each volcanic eruption. Large variations are seen in hemispheric partitioning and size distributions in relation to location/date of eruptions and injected SO 2 masses. Results for recent eruptions are in good agreement with observations. By providing accurate amplitude and spatial distributions of shortwave and longwave radiative perturbations by volcanic sulfate aerosols, we argue that this volcanic forcing may help refine the climate model responses to the large volcanic eruptions since 1600. The final dataset consists of 3-D values (with constant longitude) of spectrally resolved extinction coefficients, single scattering albedos and asymmetry factors calculated for different wavelength bands upon request. Surface area densities for heterogeneous chemistry are also provided.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-02-08
    Description: Inter-annual tropical Pacific climate variability in an isotope-enabled CGCM: implications for interpreting coral stable oxygen isotope records of ENSO Climate of the Past Discussions, 9, 741-773, 2013 Author(s): T. Russon, A. W. Tudhope, G. C. Hegerl, M. Collins, and J. Tindall Water isotope-enabled coupled atmosphere/ocean climate models allow for exploration of the relative contributions to coral stable oxygen isotope (δ 18 O coral ) variability arising from Sea Surface Temperature (SST) and the isotopic composition of seawater (δ 18 O sw ). The unforced behaviour of the isotope-enabled HadCM3 Coupled General Circulation Model affirms that the extent to which inter-annual δ 18 O sw variability contributes to that in model δ 18 O coral is strongly spatially dependent, ranging from being negligible in the eastern equatorial Pacific to accounting for 50% of δ 18 O coral variance in parts of the western Pacific. In these latter cases, a significant component of the inter-annual δ 18 O sw variability is correlated to that in SST, meaning that local calibrations of the effective local δ 18 O coral –SST relationships are likely to be essential. Furthermore, the relationship between δ 18 O sw and SST in the central and western equatorial Pacific is non-linear, such that the interpretation of model δ 18 O coral in the context of a linear dependence on SST alone may lead to overestimation (by up to 20%) of the SST anomalies associated with large El-Niño events. Intra-model evaluation of a salinity-based pseudo-coral approach shows that such an approach captures the first-order features of the model δ 18 O sw behaviour. However, the utility of the pseudo-corals is limited by the extent of spatial variability seen within the modelled slopes of the temporal salinity–δ 18 O sw relationship.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-02-12
    Description: Using paleo-climate comparisons to constrain future projections in CMIP5 Climate of the Past Discussions, 9, 775-835, 2013 Author(s): G. A. Schmidt, J. D. Annan, P. J. Bartlein, B. I. Cook, E. Guilyardi, J. C. Hargreaves, S. P. Harrison, M. Kageyama, A. N. LeGrande, B. Konecky, S. Lovejoy, M. E. Mann, V. Masson-Delmotte, C. Risi, D. Thompson, A. Timmermann, L.-B. Tremblay, and P. Yiou We present a description of the theoretical framework and "best practice" for using the paleo-climate model component of the Coupled Model Intercomparison Project (Phase 5) (CMIP5) to constrain future projections of climate using the same models. The constraints arise from measures of skill in hindcasting paleo-climate changes from the present over 3 periods: the Last Glacial Maximum (LGM) (21 thousand years before present, ka), the mid-Holocene (MH) (6 ka) and the Last Millennium (LM) (850–1850 CE). The skill measures may be used to validate robust patterns of climate change across scenarios or to distinguish between models that have differing outcomes in future scenarios. We find that the multi-model ensemble of paleo-simulations is adequate for addressing at least some of these issues. For example, selected benchmarks for the LGM and MH are correlated to the rank of future projections of precipitation/temperature or sea ice extent to indicate that models that produce the best agreement with paleoclimate information give demonstrably different future results than the rest of the models. We also find that some comparisons, for instance associated with model variability, are strongly dependent on uncertain forcing timeseries, or show time dependent behaviour, making direct inferences for the future problematic. Overall, we demonstrate that there is a strong potential for the paleo-climate simulations to help inform the future projections and urge all the modeling groups to complete this subset of the CMIP5 runs.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-02-13
    Description: Global and regional sea surface temperature trends during Marine Isotope Stage 11 Climate of the Past Discussions, 9, 837-890, 2013 Author(s): Y. Milker, R. Rachmayani, M. Weinkauf, M. Prange, M. Raitzsch, M. Schulz, and M. Kučera The Marine Isotope Stage (MIS) 11 (424–374 ka) was characterized by a protracted deglaciation and an unusually long climatic optimum. It remains unclear to what degree the climate development during this interglacial reflects the unusually weak orbital forcing or greenhouse gas trends. Previously, arguments about the duration and timing of the MIS11 climatic optimum and about the pace of the deglacial warming were based on a small number of key records, which appear to show regional differences. In order to obtain a global signal of climate evolution during MIS11, we compiled a database of 78 sea surface temperature (SST) records from 57 sites spanning MIS11, aligned these individually on the basis of benthic ( N = 28) or planktonic ( N = 31) stable oxygen isotope curves to a common time-frame and subjected 48 of them to an Empirical Orthogonal Function (EOF) analysis. The analysis revealed a high commonality among all records, with the principal SST trend explaining almost 49% of the variability. This trend indicates that on the global scale, the surface ocean underwent rapid deglacial warming during Termination V, in pace with carbon dioxide rise, followed by a broad SST optimum centered at ~ 410 kyr. The second EOF, which explained 19% of the variability, revealed the existence of a different SST trend, characterized by a delayed onset of the temperature optimum during MIS11 at ~ 398 kyr, followed by a prolonged warm period lasting beyond 380 kyr. This trend is most consistently manifested in the mid-latitude North Atlantic and Mediterranean Sea and is here attributed to the strength of the Atlantic meridional overturning circulation. A sensitivity analysis indicates that these results are robust to record selection and to age-model uncertainties of up to 3–6 kyr, but more sensitive to SST seasonal attribution and SST uncertainties 〉 1 °C. In order to assess the effect of orbital forcing on MIS11 SST trends, the annual and seasonal SST anomalies recorded in a total of 74 proxy records were compared with CCSM3 (Community Climate System Model, version 3) runs for three time slices representing orbital configuration extremes during the peak interglacial of MIS11. The modeled SST anomalies are characterized by a significantly lower variance compared to the reconstructions. Nevertheless, significant correlations between proxy and model data are found in comparisons on the seasonal basis, indicating that the model captures part of the long-term variability induced by astronomical forcing, which appears to have left a detectable signature in SST trends.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-02-13
    Description: Large spatial variations in coastal 14 C reservoir age – a case study from the Baltic Sea Climate of the Past Discussions, 9, 891-923, 2013 Author(s): B. C. Lougheed, H. L. Filipsson, and I. Snowball Coastal locations are highly influenced by input from freshwater river runoff, including sources of terrestrial carbon, which can be expected to modify the 14 C reservoir age, or R(t) , associated with marine water. In this Baltic Sea case study, pre-bomb museum collection mollusc shells of known calendar age, from 30 locations across a strategic salinity transect of the Baltic Sea, were analysed for 14 C, δ 13 C and δ 18 O. R(t) was calculated for all 30 locations. Seven locations, of which six are within close proximity of the coast, were found to have relatively higher R(t) values, indicative of hard-water effects. δ 13 C aragonite values were found to be indicative of hard-water influence only for certain locations, suggesting the possibility of different sources of old carbon in different locations. Whenever possible, the Macoma genus of mollusc was selected from the museum collections, in order to exclude species specific reservoir age effects as much as possible. When the Macoma samples are exclusively considered, and samples from hard-water locations excluded, a statistically significant correlation between Macoma R(t) and average salinity is found, indicating a two end-member linear mixing model between 14 C marine and 14 C runoff . A map of Baltic Sea Macoma aragonite R(t) for the late 19th and early 20th centuries is produced. Such a map can provide an estimate for contemporary Baltic Sea Macoma R(t) , although one must exercise caution when applying such estimates back in time or to 14 C dates obtained from different sample material. A statistically significant correlation is also found between δ 18 O aragonite and Macoma R(t) , suggesting that δ 18 O aragonite can be used to estimate Macoma palaeo- R(t) . The results of this Baltic Sea case study, which show that R(t) is affected by hydrographic conditions and local carbon inputs, have important consequences for other coastal and estuarine locations, where R(t) is also likely to significantly vary on spatial and temporal bases.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-02-16
    Description: Seismic imaging of sandbox experiments – laboratory hardware setup and first reflection seismic sections Solid Earth, 4, 93-104, 2013 Author(s): C. M. Krawczyk, M.-L. Buddensiek, O. Oncken, and N. Kukowski With the study and technical development introduced here, we combine analogue sandbox simulation techniques with seismic physical modelling of sandbox models. For that purpose, we designed and developed a new mini-seismic facility for laboratory use, comprising a seismic tank, a PC-driven control unit, a positioning system, and piezoelectric transducers used here for the first time in an array mode. To assess the possibilities and limits of seismic imaging of small-scale structures in sandbox models, different geometry setups were tested in the first 2-D experiments that also tested the proper functioning of the device and studied the seismo-elastic properties of the granular media used. Simple two-layer models of different materials and layer thicknesses as well as a more complex model comprising channels and shear zones were tested using different acquisition geometries and signal properties. We suggest using well sorted and well rounded grains with little surface roughness (glass beads). Source receiver-offsets less than 14 cm for imaging structures as small as 2.0–1.5 mm size have proven feasible. This is the best compromise between wide beam and high energy output, and is applicable with a consistent waveform. Resolution of the interfaces of layers of granular materials depends on the interface preparation rather than on the material itself. Flat grading of interfaces and powder coverage yields the clearest interface reflections. Finally, sandbox seismic sections provide images of high quality showing constant thickness layers as well as predefined channel structures and indications of the fault traces from shear zones. Since these were artificially introduced in our test models, they can be regarded as zones of disturbance rather than tectonic shear zones characterized by decompaction. The multiple-offset surveying introduced here, improves the quality with respect to S / N ratio and source signature even more; the maximum depth penetration in glass-bead layers thereby amounts to 5 cm. Thus, the presented mini-seismic device is already able to resolve structures within simple models of saturated porous media, so that multiple-offset seismic imaging of shallow sandbox models, that are structurally evolving, is generally feasible.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-02-07
    Description: An efficient method to generate a perturbed parameter ensemble of a fully coupled AOGCM without flux-adjustment Geoscientific Model Development Discussions, 6, 841-892, 2013 Author(s): P. J. Irvine, L Gregoire, D. J. Lunt, and P. J. Valdes We present a simple method to generate a perturbed parameter ensemble (PPE) of a fully-coupled atmosphere-ocean general circulation model (AOGCM), HadCM3, without requiring flux-adjustment. The aim was to produce an ensemble that samples parametric uncertainty in some key variables and displays a similar range of behavior as seen in multi-model ensembles (MMEs). Six atmospheric parameters, a sea-ice parameter and an ocean parameter were jointly perturbed within a reasonable range to generate an initial group of 200 members. To screen out implausible ensemble members, 20 yr pre-industrial control simulations were run and members whose temperature response to the parameter perturbations was projected to be outside the range of 13.6 ± 2°C, i.e. near to the observed pre-industrial global mean, were discarded. 21 members, including the standard unperturbed model, were accepted, covering almost the entire span of the eight parameters, challenging the argument that without flux-adjustment parameter ranges would be unduly restricted. This ensemble was used in 3 experiments; a 800 yr pre-industrial, a 150 yr quadrupled CO 2 , and a 150 yr 1% CO 2 rise per annum simulation. The behavior of the PPE for the pre-industrial control compared well to the CMIP3 ensemble for a number of surface and atmospheric column variables with the exception of a few members in the Tropics. However, we find that members of the PPE with low values of the entrainment rate coefficient show very large increases in upper tropospheric and stratospheric water vapor concentrations in response to elevated CO 2 and some show implausibly high climate sensitivities, and as such some of these members will be excluded from future experiments with this ensemble. The outcome of this study is a PPE of a fully-coupled AOGCM which samples parametric uncertainty with a range of behavior similar to the CMIP3 ensemble and a simple methodology which would be applicable to other GCMs.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-02-14
    Description: Exhumation of (ultra-)high-pressure terranes: concepts and mechanisms Solid Earth, 4, 75-92, 2013 Author(s): C. J. Warren The formation and exhumation of high and ultra-high-pressure, (U)HP, rocks of crustal origin appears to be ubiquitous during Phanerozoic plate subduction and continental collision events. Exhumation of (U)HP material has been shown in some orogens to have occurred only once, during a single short-lived event; in other cases exhumation appears to have occurred multiple discrete times or during a single, long-lived, protracted event. It is becoming increasingly clear that no single exhumation mechanism dominates in any particular tectonic environment, and the mechanism may change in time and space within the same subduction zone. Subduction zone style and internal force balance change in both time and space, responding to changes in width, steepness, composition of subducting material and velocity of subduction. In order for continental crust, which is relatively buoyant compared to the mantle even when metamorphosed to (U)HP assemblages, to be subducted to (U)HP conditions, it must remain attached to a stronger and denser substrate. Buoyancy and external tectonic forces drive exhumation, although the changing spatial and temporal dominance of different driving forces still remains unclear. Exhumation may involve whole-scale detachment of the terrane from the subducting slab followed by exhumation within a subduction channel (perhaps during continued subduction) or a reversal in motion of the entire plate (eduction) following the removal of a lower part of the subducting slab. Weakening mechanisms that may be responsible for the detachment of deeply subducted crust from its stronger, denser substrate include strain weakening, hydration, melting, grain size reduction and the development of foliation. These may act locally to form narrow high-strain shear zones separating stronger, less-strained crust or may act on the bulk of the subducted material, allowing whole-scale flow. Metamorphic reactions, metastability and the composition of the subducted crust all affect buoyancy and overall strength. Future research directions include identifying temporal and spatial changes in exhumation mechanisms within different tectonic environments, and determining the factors that influence those changes.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-02-15
    Description: A cloud chemistry module for the 3-D cloud-resolving mesoscale model Meso-NH with application to idealized cases Geoscientific Model Development Discussions, 6, 957-1020, 2013 Author(s): M. Leriche, J.-P. Pinty, C. Mari, and D. Gazen A complete chemical module has been developed for use in the Meso-NH three-dimensional cloud resolving mesoscale model. This module includes gaseous and aqueous phase chemical reactions that are analysed by a pre-processor generating the Fortran90 code automatically. The kinetic solver is based on a Rosenbrock algorithm, which is robust and accurate for integrating stiff systems and especially multiphase chemistry. The exchange of chemical species between the gas phase and cloud droplets and raindrops is computed kinetically by mass transfers considering non-equilibrium between the gas and the condensed phases. Microphysical transfers of chemical species are considered for the various cloud microphysics schemes available, which are based on one-moment or two-moment schemes. The pH of the droplets and of the raindrops is diagnosed separately as the root of a high order polynomial equation. The chemical concentrations in the ice phase are modelled in a single phase encompassing the two categories of precipitating ice particles (snow and graupel) of the microphysical scheme. The only process transferring chemical species in ice is retention during freezing or riming of liquid hydrometeors. Three idealized simulations are reported, which highlight the sensitivity of scavenging efficiency to the choice of the microphysical scheme and the retention coefficient in the ice phase. A two-dimensional warm, shallow convection case is used to compare the impact of the microphysical schemes on the temporal evolution and rates of acid precipitation. Acid wet deposition rates are shown to be overestimated when a one-moment microphysics scheme is used compared to a two-moment scheme. The difference is induced by a better prediction of raindrop radius and raindrop number concentration in the latter scheme. A two-dimensional mixed-phase squall line and a three-dimensional mixed-phase supercell were simulated to test the sensitivity of cloud vertical transport to the retention efficiency of gases in the ice phase. The 2-D and 3-D simulations illustrate that the retention in ice of a moderately soluble gas such as formaldehyde substantially decreases its concentration in the upper troposphere. In these simulations, retention of highly soluble species in the ice phase significantly increased the wet deposition rates.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-02-16
    Description: The Irish famine of 1740–1741: causes and effects Climate of the Past Discussions, 9, 1013-1052, 2013 Author(s): S. Engler, J. Luterbacher, F. Mauelshagen, and J. Werner This paper advances the current debate on causes and effects of famines. Since Sen's food entitlement decline theory emerged in the 1980's, climate and environmental factors are widely excluded in famine analysis. Studying the causation and the processes of famines as well as the adaptations to it before the 20th century will enhance modern famine theories and lead to a rethinking of the role of climate/environmental aspects in current research. In our case study, the "Famine Vulnerability Analysis Model" (FVAM) serves as an explanatory model and will open up new perspectives on famines. Special emphasis will be put on the Europe-wide crises of 1740–1741, with a focus on the famine of the "great frost" in Ireland. The interaction of demographic, political, economic and environmental aspects is characteristic in this famine.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-02-16
    Description: GAPPARD: a computationally efficient method of approximating gap-scale disturbance in vegetation models Geoscientific Model Development Discussions, 6, 1021-1084, 2013 Author(s): M. Scherstjanoi, J. O. Kaplan, E. Thürig, and H. Lischke Models of vegetation dynamics that are designed for application at spatial scales larger than individual forest gaps suffer from several limitations. Typically, either a population average approximation is used that results in unrealistic tree allometry and forest stand structure, or models have a high computational demand because they need to simulate both a series of age-based cohorts and a number of replicate patches to account for stochastic gap-scale disturbances. The detail required by the latter method increases the number of calculations by two to three orders of magnitude compared to the less realistic population average approach. In an effort to increase the efficiency of dynamic vegetation models without sacrificing realism, and to explore patterns of spatial scaling in forests, we developed a new method for simulating stand-replacing disturbances that is both accurate and 10-50x faster than approaches that use replicate patches. The GAPPARD (approximating GAP model results with a Probabilistic Approach to account for stand Replacing Disturbances) method works by postprocessing the output of deterministic, undisturbed simulations of a cohort-based vegetation model by deriving the distribution of patch ages at any point in time on the basis of a disturbance probability. With this distribution, the expected value of any output variable can be calculated from the output values of the deterministic undisturbed run at the time corresponding to the patch age. To account for temporal changes in model forcing, e.g., as a result of climate change, GAPPARD performs a series of deterministic simulations and interpolates between the results in the postprocessing step. We integrated the GAPPARD method in the forest models LPJ-GUESS and TreeM-LPJ, and evaluated these in a series of simulations along an altitudinal transect of an inner-alpine valley. With GAPPARD applied to LPJ-GUESS results were insignificantly different from the output of the original model LPJ-GUESS using 100 replicate patches, but simulation time was reduced by approximately the factor 10. Our new method is therefore highly suited rapidly approximating LPJ-GUESS results, and provides the opportunity for future studies over large spatial domains, allows easier parameterization of tree species, faster identification of areas of interesting simulation results, and comparisons with large-scale datasets and forest models.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-02-19
    Description: A refined statistical cloud closure using double-Gaussian probability density functions Geoscientific Model Development Discussions, 6, 1085-1125, 2013 Author(s): A. K. Naumann, A. Seifert, and J. P. Mellado We introduce a probability density function (PDF) based scheme to parameterize cloud fraction, average liquid water and liquid water flux in large-scale models, that is developed from and tested against large-eddy simulations and observational data. Because the tails of the PDFs are crucial for an appropriate parameterization of cloud properties, we use a double-Gaussian distribution that is able to represent the observed, skewed PDFs properly. Introducing two closure equations, the resulting parameterization relies on the first three moments of the subgrid variability of temperature and moisture as input parameters. The parameterization is shown to be clearly superior to a single-Gaussian approach in diagnosing the cloud fraction and average liquid water profiles and improves existing double-Gaussian closures. We find that the error of the new parameterization is smallest for a horizontal resolution of about 5–20 km and also depends on the appearance of mesoscale structures that are accompanied by higher rain rates. In combination with simple autoconversion schemes that only depend on the liquid water, the error introduced by the new parameterization is orders of magnitude smaller than the difference between various autoconversion schemes. For the liquid water flux, we introduce a parameterization that is depending on the skewness of the subgrid variability of temperature and moisture and that reproduces the profiles of the liquid water flux well.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-01-19
    Description: A Last Glacial Maximum world-ocean simulation at eddy-permitting resolution – Part 1: Experimental design and basic evaluation Climate of the Past Discussions, 9, 297-328, 2013 Author(s): M. Ballarotta, L. Brodeau, J. Brandefelt, P. Lundberg, and K. Döös Most state-of-the-art climate models include a coarsely resolved oceanic component, which has difficulties in capturing detailed dynamics, and therefore eddy-permitting/eddy-resolving simulations have been developed to reproduce the observed World Ocean. In this study, an eddy-permitting numerical experiment is conducted to simulate the global ocean state for a period of the Last Glacial Maximum (LGM, ~ 26 500 to 19 000 yr ago) and to investigate the improvements due to taking into account these higher spatial scales. The ocean general circulation model is forced by a 49-yr sample of LGM atmospheric fields constructed from a quasi-equilibrated climate-model simulation. The initial state and the bottom boundary condition conform to the Paleoclimate Modelling Intercomparison Project (PMIP) recommendations. Before evaluating the model efficiency in representing the paleo-proxy reconstruction of the surface state, the LGM experiment is in this first part of the investigation, compared with a present-day eddy-permitting hindcast simulation as well as with the available PMIP results. It is shown that the LGM eddy-permitting simulation is consistent with the quasi-equilibrated climate-model simulation, but large discrepancies are found with the PMIP model analyses, probably due to the different equilibration states. The strongest meridional gradients of the sea-surface temperature are located near 40° N and S, this due to particularly large North-Atlantic and Southern-Ocean sea-ice covers. These also modify the locations of the convection sites (where deep-water forms) and most of the LGM Conveyor Belt circulation consequently takes place in a thinner layer than today. Despite some discrepancies with other LGM simulations, a glacial state is captured and the eddy-permitting simulation undertaken here yielded a useful set of data for comparisons with paleo-proxy reconstructions.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-01-19
    Description: Petrophysical characterization of the lacustrine sediment succession drilled in Lake El'gygytgyn, Far East Russian Arctic Climate of the Past Discussions, 9, 351-391, 2013 Author(s): A. C. Gebhardt, A. Francke, J. Kück, M. Sauerbrey, F. Niessen, V. Wennrich, and M. Melles Seismic profiles of Far East Russian Lake El'gygytgyn which was formed by a meteorite impact some 3.6 million years ago show a stratified sediment succession that can be separated into Subunits Ia and Ib at approximately 167 m below lake floor (= ∼ 3.17 Ma). The former is well-stratified, while the latter is acoustically more massive. The sediments are intercalated with frequent mass movement deposits mainly in the proximal parts, while the distal part is almost free of such deposits at least in the upper part. In spring 2009, a long core drilled in the lake center within the framework of the International Continental Scientific Drilling Program (ICDP) penetrated the entire lacustrine sediment succession down to ~ 320 m below lake floor and about 200 m further into the meteorite-impact related bedrock. Downhole logging data down to 390 m below lake floor show that the bedrock and the lacustrine part of the core differ largely in their petrophysical characteristics. The contact between the bedrock and the lacustrine sediments is not abrupt, but rather transitional with a mixture of impact-altered bedrock clasts in a lacustrine matrix with varying percentages. Physical and chemical proxies measured on the cores can be used to divide the lacustrine part into five different clusters. These can be plotted in a redox-condition vs. input type diagram with total organic carbon content and magnetic susceptibility values indicating anoxic or oxic conditions and with the Si/Ti ratio representing more clastic or more biogenic input. Plotting the clusters in this diagram allows identifying clusters that represent glacial phases (Cluster I), super interglacials (Cluster II), and interglacial phases (Clusters III and IV).
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-01-19
    Description: Evaluation of WRF-SFIRE performance with field observations from the FireFlux experiment Geoscientific Model Development Discussions, 6, 121-169, 2013 Author(s): A. K. Kochanski, M. A. Jenkins, J. Mandel, J. D. Beezley, C. B. Clements, and S. Krueger This study uses in-situ measurements collected during the FireFlux field experiment to evaluate and improve the performance of coupled atmosphere-fire model WRF-SFIRE. The simulation of the experimental burn shows that WRF-SFIRE is capable of providing realistic head fire rate-of-spread and the vertical temperature structure of the fire plume, and, up to 10 m above ground level, fire-induced surface flow and vertical velocities within the plume. The model captured the changes in wind speed and direction before, during, and after fire front passage, along with arrival times of wind speed, temperature, and updraft maximae, at the two instrumented flux towers used in FireFlux. The model overestimated vertical velocities and underestimated horizontal wind speeds measured at tower heights above the 10 m, and it is hypothesized that the limited model resolution over estimated the fire front depth, leading to too high a heat release and, subsequently, too strong an updraft. However, on the whole, WRF-SFIRE fire plume behavior is consistent with the interpretation of FireFlux observations. The study suggests optimal experimental pre-planning, design, and execution of future field campaigns that are needed for further coupled atmosphere-fire model development and evaluation.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2013-02-01
    Description: Segmentation of the Izu-Bonin and Mariana slabs based on the analysis of the Benioff seismicity distribution and regional tomography results Solid Earth, 4, 59-73, 2013 Author(s): K. Jaxybulatov, I. Koulakov, and N. L. Dobretsov We present a new model of P and S velocity anomalies in the mantle down to a depth of 1300 km beneath the Izu-Bonin and Mariana (IBM) arcs. This model is derived based on tomographic inversion of global travel time data from the revised ISC catalogue. The results of inversion are thoroughly verified using a series of different tests. The obtained model is generally consistent with previous studies by different authors. We also present the distribution of relocated deep events projected to the vertical surface along the IBM arc system. Unexpectedly, the seismicity forms elongated vertical clusters instead of horizontal zones indicating phase transitions in the slab. We propose that these vertical seismicity zones mark zones of intense deformation and boundaries between semi-autonomous segments of the subducting plate. The P and S seismic tomography models consistently display the slab as prominent high-velocity anomalies coinciding with the distribution of deep seismicity. We can distinguish at least four segments which subduct differently. The northernmost segment of the Izu-Bonin arc has the gentlest angle of dipping which is explained by backward displacement of the trench. In the second segment, the trench stayed at the same location, and we observe the accumulation of the slab material in the transition zone and its further descending to the lower mantle. In the third segment, the trench is moving forward causing the steepening of the slab. Finally, for the Mariana segment, despite the backward displacement of the arc, the subducting slab is nearly vertical. Between the Izu-Bonin and Mariana arcs we clearly observe a gap which can be traced down to about 400 km in depth. Based on joint consideration of the tomography results and the seismicity distribution, we propose two different scenarios of the subduction evolution in the IBM zone during the recent time, depending on the reference frame of plate displacements. In the first case, we consider the movements in respect to the Philippine Plate, and explain the different styles of the subduction by the relative backward and forward migrations of the trench. In the second case, all the elements of the subduction system move westward in respect to the stable Asia. Different subduction styles are explained by the "anchoring" of selected segments of the slab, different physical properties of the subducting plate and the existence of buoyant rigid blocks related to sea mount and igneous provinces.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-12-06
    Description: An improved non-iterative surface layer flux scheme for atmospheric stable stratification condition Geoscientific Model Development Discussions, 6, 6459-6492, 2013 Author(s): Y. Li, Z. Gao, D. Li, L. Wang, and H. Wang Parameterization of turbulent fluxes under stably stratified conditions has always been a challenge. Current surface fluxes calculation schemes either need iterations or suffer low accuracy. In this paper, a non-iteration scheme is proposed to approach the classic iterative computation results using multiple regressions. It can be applied to the full range of roughness status 10 ≤ z/z 0 ≤ 10 5 and −0.5 ≤ log( z 0 / z 0h ) ≤ 30 under stable conditions 0 〈 Ri B ≤ 2.5. The maximum (average) relative errors for the turbulent transfer coefficients for momentum and sensible heat are 12% (1%) and 9% (1%), respectively.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-12-07
    Description: A system of conservative regridding for ice/atmosphere coupling in a GCM Geoscientific Model Development Discussions, 6, 6493-6568, 2013 Author(s): R. Fischer, S. Nowicki, M. Kelley, and G. A. Schmidt The method of elevation classes has proven to be a useful way for a low-resolution general circulation model (GCM) to produce high-resolution downscaled surface mass balance fields, for use in one-way studies coupling GCMs and ice flow models. Past uses of elevation classes have been a cause of non-conservation of mass and energy, caused by inconsistency in regridding schemes chosen to regrid to the atmosphere vs. downscaling to the ice model. This causes problems for two-way coupling. A strategy that resolves this conservation issue has been designed and is presented here. The approach identifies three grids between which data must be regridded, and five transformations between those grids required by a typical coupled GCM–ice flow model. This paper shows how each of those transformations may be achieved in a consistent, conservative manner. These transformations are implemented in GLINT2, a library used to couple GCMs with ice models. Source code and documentation are available for download. Confounding real-world issues are discussed, including the use of projections for ice modeling, how to handle dynamically changing ice geometry, and modifications required for finite element ice models.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-12-07
    Description: A 24-variable low-order coupled ocean–atmosphere model: OA-QG-WS v2 Geoscientific Model Development Discussions, 6, 6569-6604, 2013 Author(s): S. Vannitsem and L. De Cruz A new low-order coupled ocean–atmosphere model for mid-latitudes is derived. It is based on quasi-geostrophic equations for both the ocean and the atmosphere, coupled through momentum transfer at the interface. The systematic reduction of the number of modes describing the dynamics leads to an atmospheric low-order component of 20 ordinary differential equations, already discussed in Reinhold and Pierrehumbert (1982), and an oceanic low-order component of 4 ordinary differential equations, as proposed by Pierini (2012). The coupling terms for both components are derived and all the coefficients of the ocean model are provided. Its dynamics is then briefly explored, through the analysis of its mean field, its variability and its instability properties. The wind-driven ocean displays a decadal variability induced by the atmospheric chaotic wind forcing. The chaotic behavior of the coupled system is highly sensitive to the ocean–atmosphere coupling, for low values of the thermal forcing affecting the atmosphere (corresponding to a weakly chaotic coupled system). But it is less sensitive for large values of the thermal forcing (corresponding to a highly chaotic coupled system). In all the cases explored, the number of positive exponents is increasing with the coupling. A Fortran code of the model integration is provided as Supplement.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-12-10
    Description: 3-D reflection seismic imaging of the Hontomín structure in the Basque–Cantabrian Basin (Spain) Solid Earth, 4, 481-496, 2013 Author(s): J. Alcalde, D. Martí, C. Juhlin, A. Malehmir, D. Sopher, E. Saura, I. Marzán, P. Ayarza, A. Calahorrano, A. Pérez-Estaún, and R. Carbonell The Basque–Cantabrian Basin of the northern Iberia Peninsula constitutes a unique example of a major deformation system, featuring a dome structure developed by extensional tectonics followed by compressional reactivation. The occurrence of natural resources in the area and the possibility of establishing a geological storage site for carbon dioxide motivated the acquisition of a 3-D seismic reflection survey in 2010, centered on the Jurassic Hontomín dome. The objectives of this survey were to obtain a geological model of the overall structure and to establish a baseline model for a possible geological CO 2 storage site. The 36 km 2 survey included approximately 5000 mixed (Vibroseis and explosives) source points recorded with a 25 m inline source and receiver spacing. The target reservoir is a saline aquifer, at approximately 1450 m depth, encased and sealed by carbonate formations. Acquisition and processing parameters were influenced by the rough topography and relatively complex geology. A strong near-surface velocity inversion is evident in the data, affecting the quality of the data. The resulting 3-D image provides constraints on the key features of the geologic model. The Hontomín structure is interpreted to consist of an approximately 10 7 m 2 large elongated dome with two major (W–E and NW–SE) striking faults bounding it. Preliminary capacity estimates indicate that about 1.2 Gt of CO 2 can be stored in the target reservoir.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-12-13
    Description: A variational data assimilation system for soil–atmosphere flux estimates for the Community Land Model (CLM3.5) Geoscientific Model Development Discussions, 6, 6605-6637, 2013 Author(s): C. M. Hoppe, H. Elbern, and J. Schwinger This article presents the development and implementation of a spatio–temporal variational data assimilation system (4D-var) for the soil–vegetation–atmosphere–transfer model "Community Land Model" (CLM3.5), along with the development of the adjoint code for the core soil-atmosphere transfer scheme of energy and soil moisture. The purpose of this work is to obtain an improved estimation technique for the energy fluxes (sensible and latent heat fluxes) between the soil and the atmosphere. Optimal assessments of these fluxes are neither available from model simulations nor measurements alone, while a 4D-var data assimilation has the potential to combine both information sources by a Best Linear Unbiased Estimate (BLUE). The 4D-var method requires the development of the adjoint model of the CLM which was established in this work. The new data assimilation algorithm is able to assimilate soil temperature and soil moisture measurements for one-dimensional columns of the model grid. Numerical experiments were first used to test the algorithm under idealised conditions. It was found that the analysis delivers improved results whenever there is a dependence between the initial values and the assimilated quantity. Furthermore, soil temperature and soil moisture from in situ field measurements were assimilated. These calculations demonstrate the improved performance of flux estimates, whenever soil property parameters are available of sufficient quality. Misspecifications could also be identified by the performance of the variational scheme.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-12-14
    Description: Vegetation and climate development on the North American Atlantic Coastal Plain from 33 to 13 million years ago (IODP Expedition 313) Climate of the Past Discussions, 9, 6551-6603, 2013 Author(s): U. Kotthoff, D. R. Greenwood, F. M. G. McCarthy, K. Müller-Navarra, and S. P. Hesselbo We have investigated the palynology of sediment cores from Sites M0027 and M0029 of IODP Expedition 313 on the New Jersey shallow shelf, east coast of North America, spanning an age range of 33 to 13 million years before present. Additionally, a pollen assemblage from the Pleistocene was examined. The palynological results were statistically analyzed and complemented with pollen-based quantitative climate reconstructions. Transport-related bias of the pollen assemblages was identified via analysis of the ratio of terrestrial to marine palynomorphs, and considered when interpreting palaeovegetation and palaeoclimate from the pollen data. Results indicate that from the early Oligocene to the middle Miocene, the hinterland vegetation of the New Jersey shelf was characterized by oak-hickory forests in the lowlands and conifer-dominated vegetation in the highlands. The Oligocene witnessed several expansions of conifer forest, probably related to cooling events. The pollen-based climate data imply an increase in annual temperatures from ~12 °C to more than 15 °C during the Oligocene. The Mi-1 cooling event at the onset of the Miocene is reflected by an expansion of conifers and an annual temperature decrease by almost 3 °C, from 15 °C to 12.5 °C around 23 million years before present. Particularly low annual temperatures are also recorded for an interval around ~20 million years before present, which probably reflects the Mi-1aa cooling event. Generally, the Miocene ecosystem and climate conditions were very similar to those of the Oligocene in the hinterland of the New Jersey shelf. Miocene grasslands, as known from other areas in the USA during that time period, are not evident for the hinterland of the New Jersey shelf. Surprisingly, the palaeovegetation data for the hinterland of the New Jersey shelf do not show extraordinary changes during the Mid-Miocene climatic optimum at ~15 million years before present, except for a minor increase in deciduous-evergreen mixed forest taxa and a decrease in swamp forest taxa. Pollen-based annual temperature reconstructions show average annual temperatures of ~14 °C during the Mid-Miocene climatic optimum. We conclude that vegetation and regional climate in the hinterland of the New Jersey shelf did not react as sensitively to Oligocene and Miocene climate changes as other regions in North America or Europe. An additional explanation for the relatively low regional temperatures reconstructed for the Mid-Miocene climatic optimum could be an uplift of the Appalachian Mountains during the Miocene. The Pleistocene pollen assemblage probably derives from the Marine Isotope Chron 7 or 5e and shows climate conditions similar to present-day.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-12-06
    Description: A novel model evaluation approach focussing on local and advected contributions to urban PM 2.5 levels – application to Paris, France Geoscientific Model Development Discussions, 6, 6391-6457, 2013 Author(s): H. Petetin, M. Beekmann, J. Sciare, M. Bressi, A. Rosso, O. Sanchez, and V. Ghersi Aerosol simulations in chemistry transport models (CTMs) still suffer from numerous uncertainties, and diagnostic evaluations are required to point out major error sources. This paper presents an original approach to evaluate CTMs based on local and imported contributions in a large megacity rather than urban background concentrations. The study is applied to the CHIMERE model in the Paris region (France) and considers the fine particulate matter (PM 2.5 ) and its main chemical constituents (elemental and organic carbon, nitrate, sulfate and ammonium), for which daily measurements are available during a whole year at various stations (PARTICULES project). Back-trajectory data are used to locate the upwind station, from which the concentration is identified as the import, the local production being deduced from the urban concentration by subtraction. Uncertainties on these contributions are quantified. Small biases in urban background PM 2.5 simulations (bias of +16%) hide significant error compensations between local and advected contributions, as well as in PM 2.5 chemical compounds. In particular, wintertime OM imports appear strongly underestimated while local OM and EC production are overestimated all along the year. Erroneous continental woodburning emissions and missing SOA pathways may explain errors on advected OM, while carbonaceous compounds overestimation is likely to be related to errors in emissions and dynamics. A statistically significant local formation of nitrate is also highlighted from observations, but missed by the model. Together with the overestimation of nitrate imports, it leads to a bias of +51% on the local PM 2.5 contribution. Such an evaluation finally gives more detailed insights on major gaps in current CTMs on which future efforts are needed.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-10-09
    Description: Adding a dynamical cryosphere into i LOVECLIM (version 1.0) – Part 1: Coupling with the GRISLI ice-sheet model Geoscientific Model Development Discussions, 6, 5215-5249, 2013 Author(s): D. M. Roche, C. Dumas, M. Bügelmayer, S. Charbit, and C. Ritz We present the coupling approach and the first results of the GRISLI ice-sheet model within the i LOVECLIM coupled climate model. The climate component is a relatively low resolution Earth System Model of Intermediate complexity, well suited for long-term integrations and thus for coupled climate–cryosphere studies. We describe the coupling procedure with emphasise on the downscaling scheme and the methods to compute the snow fraction from total precipitation fields. We then present results for the Northern Hemisphere ice sheet (Greenland) under pre-industrial climate conditions at the end of a 14 000 yr-long integration. The obtained simulated ice sheet presents a too large thickness in central Greenland owing to the overestimation of precipitation in the atmospheric component. We find that including downscaling procedures for temperature improves the temperature distributions over Greenland for both summer and annual mean temperatures. Overall, we find an ice-sheet areal extent in reasonnable agreement with the observed Greenland ice sheet given the simplicity of the chosen climate model.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-10-12
    Description: Two-dimensional numerical investigations on the termination of bilinear flow in fractures Solid Earth, 4, 331-345, 2013 Author(s): A. E. Ortiz R., R. Jung, and J. Renner Bilinear flow occurs when fluid is drained from a permeable matrix by producing it through an enclosed fracture of finite conductivity intersecting a well along its axis. The terminology reflects the combination of two approximately linear flow regimes: one in the matrix with flow essentially perpendicular to the fracture, and one along the fracture itself associated with the non-negligible pressure drop in it. We investigated the characteristics, in particular the termination, of bilinear flow by numerical modeling allowing for an examination of the entire flow field without prescribing the flow geometry in the matrix. Fracture storage capacity was neglected relying on previous findings that bilinear flow is associated with a quasi-steady flow in the fracture. Numerical results were generalized by dimensionless presentation. Definition of a dimensionless time that, other than in previous approaches, does not use geometrical parameters of the fracture permitted identifying the dimensionless well pressure for the infinitely long fracture as the master curve for type curves of all fractures with finite length from the beginning of bilinear flow up to fully developed radial flow. In log–log scale the master curve's logarithmic derivative initially follows a 1/4-slope straight line (characteristic for bilinear flow) and gradually bends into a horizontal line (characteristic for radial flow) for long times. During the bilinear flow period, isobars normalized to well pressure propagate with the fourth and second root of time in fracture and matrix, respectively. The width-to-length ratio of the pressure field increases proportional to the fourth root of time during the bilinear period, and starts to deviate from this relation close to the deviation of well pressure and its derivative from their fourth-root-of-time relations. At this time, isobars are already significantly inclined with respect to the fracture. The type curves of finite fractures all deviate counterclockwise from the master curve instead of clockwise or counterclockwise from the 1/4-slope straight line as previously proposed. The counterclockwise deviation from the master curve was identified as the arrival of a normalized isobar reflected at the fracture tip 16 times earlier. Nevertheless, two distinct regimes were found in regard to pressure at the fracture tip when bilinear flow ends. For dimensionless fracture conductivities T D 〈 1, a significant pressure increase is not observed at the fracture tip until bilinear flow is succeeded by radial flow at a fixed dimensionless time. For T D 〉 10, the pressure at the fracture tip has reached substantial fractions of the associated change in well pressure when the flow field transforms towards intermittent formation linear flow at times that scale inversely with the fourth power of dimensionless fracture conductivity. Our results suggest that semi-log plots of normalized well pressure provide a means for the determination of hydraulic parameters of fracture and matrix after shorter test duration than for conventional analysis.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-10-16
    Description: 10 Be in late deglacial climate simulated by ECHAM5-HAM – Part 2: Isolating the solar signal from 10 Be deposition Climate of the Past Discussions, 9, 5627-5657, 2013 Author(s): U. Heikkilä, X. Shi, S. J. Phipps, and A. M. Smith This study investigates the effect of deglacial climate on the deposition of the solar proxy 10 Be globally, and at two specific locations, the GRIP site at Summit, Central Greenland, and the Law Dome site in coastal Antarctica. The deglacial climate is represented by three 30 yr time slice simulations of 10 000 BP (years before present = 1950 CE), 11 000 BP and 12 000 BP, compared with a preindustrial control simulation. The model used is the ECHAM5-HAM atmospheric aerosol–climate model, driven with sea surface temperatures and sea ice cover simulated using the CSIRO Mk3L coupled climate system model. The focus is on isolating the 10 Be production signal, driven by solar variability, from the weather or climate driven noise in the 10 Be deposition flux during different stages of climate. The production signal varies on lower frequencies, dominated by the 11yr solar cycle within the 30 yr time scale of these experiments. The climatic noise is of higher frequencies. We first apply empirical orthogonal functions (EOF) analysis to global 10 Be deposition on the annual scale and find that the first principal component, consisting of the spatial pattern of mean 10 Be deposition and the temporally varying solar signal, explains 64% of the variability. The following principal components are closely related to those of precipitation. Then, we apply ensemble empirical decomposition (EEMD) analysis on the time series of 10 Be deposition at GRIP and at Law Dome, which is an effective method for adaptively decomposing the time series into different frequency components. The low frequency components and the long term trend represent production and have reduced noise compared to the entire frequency spectrum of the deposition. The high frequency components represent climate driven noise related to the seasonal cycle of e.g. precipitation and are closely connected to high frequencies of precipitation. These results firstly show that the 10 Be atmospheric production signal is preserved in the deposition flux to surface even during climates very different from today's both in global data and at two specific locations. Secondly, noise can be effectively reduced from 10 Be deposition data by simply applying the EOF analysis in the case of a reasonably large number of available data sets, or by decomposing the individual data sets to filter out high-frequency fluctuations.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-10-17
    Description: Testing long-term summer temperature reconstruction based on maximum density chronologies obtained by reanalysis of tree-ring datasets from northernmost Sweden and Finland Climate of the Past Discussions, 9, 5659-5700, 2013 Author(s): V. V. Matskovsky and S. Helama Here we analysed the maximum latewood density (MXD) chronologies of two published tree-ring datasets: from Torneträsk region in northernmost Sweden (TORN, Melvin et al., 2013) and from northern Fennoscandia (FENN, Esper et al., 2012). We paid particular attention to the MXD low-frequency variations to reconstruct long-term summer (June–August, JJA) temperature history. We used published methods of tree-ring standardization: regional curve (RC) standardization, combined with signal-free (SF) implementation. Comparisons with a single-RC (RC1) and multiple-RC (RC2) were also carried out. We develop a novel method of standardization, the correction (C) implementation to SF (hence, RC1SFC or RC2SFC), tailored for detection of pure low-frequency signal in tree-ring chronologies. In this method, the error in RC1SF (or RC2SF) chronology, is analytically assessed and extracted to produce a RC1SFC or RC2SFC chronology. In TORN, the RC1SF chronology shows higher correlation with summer temperature (JJA) than RC1SFC, whereas in FENN the temperature signals of RC1SF chronology is improved by correction implementation (RC1SFC). The highest correlation between differently standardized chronologies for two datasets is obtained using FENN-RC2SFC and TORN-RC1 chronologies. Focusing on lowest frequencies, the importance of correction becomes obvious as the chronologies become progressively more correlative with RC1SFC and RC2SFC implementations. Subsampling the FENN data (which presents a higher number of samples than TORN dataset) to the chronology sample size of TORN data shows that the chronologies consistently bifurcate during the 7th, 9th, 17th and 20th centuries. We used the two MXD datasets to reconstruct summer temperature variations over the period −48–2010 calendar years. Our new reconstruction shows multi-decadal to multi-centennial variability with changes in the amplitude of the summer temperature of 2.6 °C in average during the Common Era.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-10-16
    Description: An objective rationale for the choice of regularisation parameter with application to global multiple-frequency S -wave tomography Solid Earth, 4, 357-371, 2013 Author(s): C. Zaroli, M. Sambridge, J.-J. Lévêque, E. Debayle, and G. Nolet In a linear ill-posed inverse problem, the regularisation parameter (damping) controls the balance between minimising both the residual data misfit and the model norm. Poor knowledge of data uncertainties often makes the selection of damping rather arbitrary. To go beyond that subjectivity, an objective rationale for the choice of damping is presented, which is based on the coherency of delay-time estimates in different frequency bands. Our method is tailored to the problem of global multiple-frequency tomography (MFT), using a data set of 287 078 S -wave delay times measured in five frequency bands (10, 15, 22, 34, and 51 s central periods). Whereas for each ray path the delay-time estimates should vary coherently from one period to the other, the noise most likely is not coherent. Thus, the lack of coherency of the information in different frequency bands is exploited, using an analogy with the cross-validation method, to identify models dominated by noise. In addition, a sharp change of behaviour of the model ℓ ∞ -norm, as the damping becomes lower than a threshold value, is interpreted as the signature of data noise starting to significantly pollute at least one model component. Models with damping larger than this threshold are diagnosed as being constructed with poor data exploitation. Finally, a preferred model is selected from the remaining range of permitted model solutions. This choice is quasi-objective in terms of model interpretation, as the selected model shows a high degree of similarity with almost all other permitted models (correlation superior to 98% up to spherical harmonic degree 80). The obtained tomographic model is displayed in the mid lower-mantle (660–1910 km depth), and is shown to be compatible with three other recent global shear-velocity models. A wider application of the presented rationale should permit us to converge towards more objective seismic imaging of Earth's mantle.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-10-10
    Description: ADISM v.1.0: an adjoint of a thermomechanical ice-sheet model obtained using an algorithmic differentiation tool Geoscientific Model Development Discussions, 6, 5251-5288, 2013 Author(s): J. McGovern, I. Rutt, J. Utke, and T. Murray A number of problems in contemporary glaciology could benefit from the application of adjoint models. On a simple level, adjoint models can be used to calculate ice-sheet sensitivities with respect to spatially varying parameters such as the basal sliding coefficient. At a more sophisticated level, adjoint models may be used as components of variational data assimilation schemes, allowing problems of model initialization and data-constrained evolution to be tackled. Fundamentally, adjoint models calculate the sensitivity of a cost function to a suite of control parameters. Such model sensitivities can alternatively be obtained by running the model many times, perturbing each control parameter separately in turn, and calculating the resulting sensitivity in each case. For large numbers of control parameters, however, such as the case where a control parameter corresponds to each point in the model domain, the computational cost becomes prohibitive. The use of adjoint models allows sensitivities to be obtained more efficiently – adjoint model sensitivities are obtained in a single run – and more accurately, since the differentiation of the model is done with machine precision. We present a finite-difference shallow ice approximation (SIA), thermomechanical ice-sheet model (the forward model), and its adjoint, as generated by using the OpenAD algorithmic differentiation tool. We verify the ice-sheet model using standard SIA benchmark tests and check the consistency between derivatives computed by OpenAD and certain numerically approximated derivatives. Typical adjoint calculations are demonstrated by application to the Greenland ice sheet.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-10-11
    Description: Persistent decadal-scale rainfall variability in the tropical South Pacific Convergence Zone through the past six centuries Climate of the Past Discussions, 9, 5593-5625, 2013 Author(s): C. R. Maupin, J. W. Partin, C.-C. Shen, T. M. Quinn, K. Lin, F. W. Taylor, J. L. Banner, K. Thirumalai, and D. J. Sinclair Observations and reconstructions of decadal-scale climate variability are necessary to place predictions of future global climate change into temporal context (Goddard et al., 2012). This is especially true for decadal-scale climate variability that originates in the Pacific Ocean (Deser et al., 2004; Dong and Lu, 2013). We focus here on the western tropical Pacific (Solomon Islands; ~ 9.5° S, ~ 160° E), a region directly influenced by: the South Pacific Convergence Zone (SPCZ), the West Pacific Warm Pool (WPWP), the Pacific Walker Circulation (PWC), and the Hadley Circulation. We calibrate δ 18 O variations in a fast growing stalagmite to local rainfall amount and produce a 600 yr record of rainfall variability from the zonally oriented, tropical portion of the SPCZ. We present evidence for large (~ 1.5 m), persistent and decade(s)-long shifts in total annual rainfall amount in the Solomon Islands since 1416 ± 5 CE. The timing of the decadal changes in rainfall inferred from the 20th century portion of the stalagmite δ 18 O record coincide with previously identified decadal shifts in Pacific ocean-atmosphere behavior (Clement et al., 2011; Deser et al., 2004). The 600 yr Solomons stalagmite δ 18 O record indicates that decadal oscillations in rainfall are a robust characteristic of SPCZ-related climate variability, which has important implications to water resource management in this region.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-10-16
    Description: A workflow for building and calibrating 3-D geomechanical models &ndash a case study for a gas reservoir in the North German Basin Solid Earth, 4, 347-355, 2013 Author(s): K. Fischer and A. Henk The optimal use of conventional and unconventional hydrocarbon reservoirs depends, amongst other things, on the local tectonic stress field. For example, wellbore stability, orientation of hydraulically induced fractures and – especially in fractured reservoirs – permeability anisotropies are controlled by the present-day in situ stresses. Faults and lithological changes can lead to stress perturbations and produce local stresses that can significantly deviate from the regional stress field. Geomechanical reservoir models aim for a robust, ideally "pre-drilling" prediction of the local variations in stress magnitude and orientation. This requires a numerical modelling approach that is capable to incorporate the specific geometry and mechanical properties of the subsurface reservoir. The workflow presented in this paper can be used to build 3-D geomechanical models based on the finite element (FE) method and ranging from field-scale models to smaller, detailed submodels of individual fault blocks. The approach is successfully applied to an intensively faulted gas reservoir in the North German Basin. The in situ stresses predicted by the geomechanical FE model were calibrated against stress data actually observed, e.g. borehole breakouts and extended leak-off tests. Such a validated model can provide insights into the stress perturbations in the inter-well space and undrilled parts of the reservoir. In addition, the tendency of the existing fault network to slip or dilate in the present-day stress regime can be addressed.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-10-08
    Description: The influence of atmospheric circulation on the mid-Holocene climate of Europe: a data-model comparison Climate of the Past Discussions, 9, 5569-5592, 2013 Author(s): A. Mauri, B. A. S. Davis, P. M. Collins, and J. O. Kaplan The atmospheric circulation is a key area of uncertainty in climate model simulations of future climate change, especially in mid-latitude regions such as Europe where atmospheric dynamics have a significant role in climate variability. It has been proposed that the mid-Holocene was characterized in Europe by a stronger westerly circulation in winter comparable with a more positive AO/NAO, and a weaker westerly circulation in summer caused by anti-cyclonic blocking near Scandinavia. Model simulations indicate at best only a weakly positive AO/NAO, whilst changes in summer atmospheric circulation have not been widely investigated. Here we use a new pollen-based reconstruction of European mid-Holocene climate to investigate the role of atmospheric circulation in explaining the spatial pattern of seasonal temperature and precipitation anomalies. We find that the footprint of the anomalies is entirely consistent with those from modern analogue atmospheric circulation patterns associated with a strong westerly circulation in winter (positive AO/NAO) and a weak westerly circulation in summer (positive SCAND). We find little agreement between the reconstructed anomalies and those from a climate model simulation, which as with most model simulations shows a much greater sensitivity to local radiative forcing from top-of-the-atmosphere changes in solar insolation. Our findings are consistent with data-model comparisons on contemporary timescales that indicate that models underestimate the role of atmospheric circulation in climate change, whilst also highlighting the importance of atmospheric dynamics in explaining interglacial warming.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-10-12
    Description: The microstructural record of porphyroclasts and matrix of partly serpentinized peridotite mylonites – from brittle and crystal-plastic deformation to dissolution–precipitation creep Solid Earth, 4, 315-330, 2013 Author(s): J. Bial and C. A. Trepmann We present microfabrics in high-pressure, metamorphic, partly serpentinized peridotite mylonites from the Voltri Massif, in which porphyroclasts and matrix record independent deformation events. The microfabrics are analysed using polarization microscopy and electron microscopy (SEM/EBSD, EMP). The mylonites contain diopside and olivine porphyroclasts originating from the mantle protolith embedded in a fine-grained matrix consisting mainly of antigorite and minor olivine and pyroxene. The porphyroclasts record brittle and crystal-plastic deformation of the peridotite at upper-mantle conditions and differential stresses of a few hundred MPa. After the peridotites became serpentinized, deformation occurred mainly by dissolution–precipitation creep resulting in a pronounced foliation of the antigorite matrix, crenulation cleavages and newly precipitated olivine and pyroxene from the pore fluid at sites of dilation, i.e. in strain shadows next to porphyroclasts and folded fine-grained antigorite layers. Antigorite reveals a pronounced associated shape preferred orientation (SPO) and crystallographic preferred orientation (CPO) with the basal (001) cleavage plane oriented in the foliation plane. In monomineralic antigorite aggregates at sites of stress concentration around porphyroclasts, a characteristically reduced grain size and deflecting CPO as well as sutured grain boundaries indicate also some contribution of crystal-plastic deformation and grain-boundary migration of antigorite. In contrast, the absence of any intragranular deformation features in newly precipitated olivine in strain shadows reveals that stresses were not sufficiently high to allow for significant dislocation creep of olivine at conditions at which antigorite is stable. The porphyroclast microstructures are not associated with the microstructures of the mylonitic matrix, but are inherited from an independent earlier deformation. The porphyroclasts record a high-stress deformation of the peridotite with dislocation creep of olivine in the upper mantle probably related to rifting processes, whereas the serpentinite matrix records dominantly dissolution–precipitation creep and low stresses during subduction and exhumation.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-10-18
    Description: Environmental and climatic changes in Central Chilean Patagonia since the Late Glacial (Mallín El Embudo, 44° S) Climate of the Past Discussions, 9, 5747-5784, 2013 Author(s): M. E. de Porras, A. Maldonado, F. A. Quintana, A. Martel-Cea, O. Reyes, and C. Méndez Multi-millennial environmental and climatic changes in Central Chilean Patagonia (44–49° S) during the Last Glacial–Interglacial cycle have been of particular interest as changes in the position and strength of the Southern Westerlies are the major forcing factor conditioning the environmental dynamics. Recent attempts to reconstruct regional environmental and climatic signals from Central Chilean Patagonia reveal some discrepancies and unclear issues among the records. This paper presents the 13 ka pollen and charcoal records from Mallín El Embudo (44°40' S; 71°42' W) located in the deciduous Nothofagus forest in the middle Río Cisnes valley. The paper aims to (1) establish the timing and magnitude of local vegetation changes and fire activity since the Late Glacial and (2) integrate these results at the regional scale in order to discuss the discrepancies and depict the Central Chilean Patagonia environmental and climatic dynamics since Late Glacial. Open landscapes dominated by grasses associated with scattered Nothofagus forest patches dominated middle Río Cisnes valley between 13–11.2 ka suggesting low effective moisture but also reflecting that landscape configuration after glacial retreat was still ongoing. At 11.2 ka, a sudden development of an open and quite dynamic Nothofagus forest probably associated to the synchronous high fire activity occurred suggesting a rise in effective moisture. Since 9.5 ka, the record reflects the presence of a closed Nothofagus forest related to higher/similar effective moisture conditions than before but under an unmarked precipitation seasonality. The forest experienced a slight canopy opening since 5.7 ka, probably due to slightly drier conditions than before followed by a sudden change around 4.2 ka associated with fire and volcanic disturbances. The recovery of an open Nothofagus forest related to slight wetter conditions (similar to present) occurred around 2 ka and persisted under highly variable climatic conditions up to 0.1 ka when massive forest burning and logging due to European settlements occurred. Central Chilean Patagonian climatic and environmental changes at millennial-centennial time scales since Late Glacial were driven by changes in the Southern Westerlies latitudinal shift and/or intensity but during the Late Holocene fire, volcanism and humans arise as major forcings contributing to environmental dynamics.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-10-18
    Description: Uncertainties in the modelled CO 2 threshold for Antarctic glaciation Climate of the Past Discussions, 9, 5701-5745, 2013 Author(s): E. Gasson, D. J. Lunt, R. DeConto, A. Goldner, M. Heinemann, M. Huber, A. N. LeGrande, D. Pollard, N. Sagoo, M. Siddall, and A. Winguth A frequently cited atmospheric CO 2 threshold for the onset of Antarctic glaciation of ~ 780 ppmv is based on a study using an ice sheet model and the GENESIS climate model. Proxy records suggest that atmospheric CO 2 concentrations passed through this threshold across the Eocene–Oligocene transition ~ 34 Ma. However, atmospheric CO 2 concentrations may have been close to this threshold earlier than this transition, which is used by some to suggest the possibility of Antarctic ice sheets during the Eocene. Here we investigate the climate model dependency of the threshold for Antarctic glaciation by performing offline ice sheet model simulations using the climate from a number of different climate models (HadCM3L, CCSM3, CESM1.0, GENESIS, FAMOUS, ECHAM5 and GISS_ER). These climate simulations are sourced from a number of independent studies, as such the boundary conditions, which are poorly constrained during the Eocene, are not identical between simulations. The results of this study suggest that the atmospheric CO 2 threshold for Antarctic glaciation is highly dependent on the climate model used and the climate model configuration. A large discrepancy between the climate model and ice sheet model grids for some simulations leads to a strong sensitivity to the lapse rate parameter. However, with the exception of HadCM3L and its reduced complexity version FAMOUS, the simulations suggest the growth of an intermediate sized ice sheet (〉 25 m sea level equivalent) for atmospheric CO 2 concentrations in the range of 560–920 ppmv, which is consistent with previous studies.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2013-10-19
    Description: Can vesicle size distributions assess eruption intensity during volcanic activity? Solid Earth, 4, 373-380, 2013 Author(s): A. LaRue, D. R. Baker, M. Polacci, P. Allard, and N. Sodini We studied three-dimensional (3-D) vesicle size distributions by X-ray microtomography in scoria collected during the relatively quiescent Phase II of the April–May 2010 eruption at Eyjafjallajökull volcano, Iceland. Our goal was to compare cumulative vesicle size distributions (VSDs) measured in these samples with those found in Stromboli volcano, Italy. Stromboli was chosen because its VSDs are well-characterized and show a correlation with eruption intensity: typical Strombolian activity produces VSDs with power-law exponents near 1, whereas larger and more energetic vulcanian-type explosions and Plinian eruptions produce VSDs with power-law exponents near 1.5. The first hypothesis to be tested was whether or not the samples studied in this work would contain VSDs similar to normal Strombolian products, display higher power-law exponents, or be described by exponential functions. Before making this comparison, we tested a second hypothesis, which was that the magma–water interactions in the Eyjafjallajökull eruption might have a significant effect on the VSDs. We performed 1 bar bubble-growth experiments in which the samples were inundated with water and compared them to similar control experiments without water inundation. No significant differences between the VSDs of the two sets of experiments were found, and the second hypothesis is not supported by the experimental evidence. The Phase II Eyjafjallajökull VSDs are described by power-law exponents of ~0.8, typical of normal Strombolian eruptions, and support the first hypothesis. The comparable VSDs and behavior of Phase II of the Eyjafjallajökull 2010 eruption to Stromboli are interpreted to be a reflection of similar conduit systems in both volcanoes that are being constantly fed by the ascent of mingled/mixed magma from depth. Such behavior implies that continued activity during Phase II of the Eyjafjallajökull eruption could be expected and would have been predicted, had our VSDs been measured in real time during the eruption. However, the products studied show no peculiar feature that could herald the renewed eruption intensity observed in the following Phase III of the eruption.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...