ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (11,516)
  • Copernicus  (11,516)
  • 2010-2014  (11,516)
  • 1980-1984
  • Atmospheric Chemistry and Physics Discussions  (3,214)
  • Hydrology and Earth System Sciences  (1,274)
  • Geoscientific Model Development Discussions  (563)
  • Solid Earth  (188)
  • 102049
  • 133345
  • 19030
  • 33230
  • Geosciences  (11,516)
Collection
  • Articles  (11,516)
Publisher
  • Copernicus  (11,516)
Years
Year
Journal
Topic
  • 1
    Publication Date: 2013-09-06
    Description: Regional and local patterns in depth to water table, hydrochemistry and peat properties of bogs and their laggs in coastal British Columbia Hydrology and Earth System Sciences, 17, 3421-3435, 2013 Author(s): S. A. Howie and H. J. van Meerveld In restoration planning for damaged raised bogs, the lagg at the bog margin is often not given considerable weight and is sometimes disregarded entirely. However, the lagg is critical for the proper functioning of the bog, as it supports the water mound in the bog. In order to include the lagg in a restoration plan for a raised bog, it is necessary to understand the hydrological characteristics and functions of this rarely studied transition zone. We studied 13 coastal British Columbia (BC) bogs and identified two different gradients in depth to water table, hydrochemistry and peat properties: (1) a local bog expanse–bog margin gradient, and (2) a regional gradient related to climate and proximity to the ocean. Depth to water table generally increased across the transition from bog expanse to bog margin. In the bog expanse, pH was above 4.2 in the Pacific Oceanic wetland region (cooler and wetter climate) and below 4.3 in the Pacific Temperate wetland region (warmer and drier climate). Both pH and pH-corrected electrical conductivity increased significantly across the transition from bog expanse to bog margin, though not in all cases. Na + and Mg 2+ concentrations were generally highest in exposed, oceanic bogs and lower in inland bogs. Ash content in peat samples increased across the bog expanse–bog margin transition, and appears to be a useful abiotic indicator of the location of the bog margin. The observed variation in the hydrological and hydrochemical gradients across the bog expanse–bog margin transition highlights both local and regional diversity of bogs and their associated laggs.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-06
    Description: Bayesian networks modelling in support to cross-cutting analysis of water supply and sanitation in developing countries Hydrology and Earth System Sciences, 17, 3397-3419, 2013 Author(s): C. Dondeynaz, J. López Puga, and C. Carmona Moreno Despite the efforts made towards the Millennium Development Goals targets during the last decade, improved access to water supply or basic sanitation still remains unavailable for millions of people across the world. This paper proposes a set of models that use 25 key variables and country profiles from the WatSan4Dev data set involving water supply and sanitation (Dondeynaz et al., 2012). This paper suggests the use of Bayesian network modelling methods because they are more easily adapted to deal with non-normal distributions, and integrate a qualitative approach for data analysis. They also offer the advantage of integrating preliminary knowledge into the probabilistic models. The statistical performance of the proposed models ranges between 20 and 5% error rates, which are very satisfactory taking into account the strong heterogeneity of variables. Probabilistic scenarios run from the models allow an assessment of the relationships between human development, external support, governance aspects, economic activities and water supply and sanitation (WSS) access. According to models proposed in this paper, gaining a strong poverty reduction will require the WSS access to reach 75–76% through: (1) the management of ongoing urbanisation processes to avoid slums development; and (2) the improvement of health care, for instance for children. Improving governance, such as institutional efficiency, capacities to make and apply rules, or control of corruption is positively associated with WSS sustainable development. The first condition for an increment of the HDP (human development and poverty) remains of course an improvement of the economic conditions with higher household incomes. Moreover, a significant country commitment to the environment, associated with civil society freedom of expression constitutes a favourable setting for sustainable WSS services delivery. Intensive agriculture using irrigation practises also appears as a mean for sustainable WSS thanks to multi-uses and complementarities. With a WSS sector organised at national level, irrigation practices can support the structuring and efficiency of the agriculture sector. It may then induce rural development in areas where WSS access often is set back compared to urban areas 1 . External financial support, called Official Development Assistance (ODA CI), plays a role in WSS improvement but comes last in the sensitivity analyses of models. An overall 47% of the Official Development Assistance goes first to poor countries, and is associated to governance aspects: (1) political stability and (2) country commitment to the environment and civil society degree of freedom. These governance aspects constitute a good framework for aid implementation in recipient countries. Modelling is run with the five groups of countries as defined in Dondeynaz et al. (2012). Models for profile 4 (essential external support) and profile 5 (primary material consumption) are specifically detailed and analysed in this paper. For countries in profile 4, fighting against water scarcity and progressing desertification should be the priority. However, for countries in profile 5, efforts should first concentrate on consolidation of political stability while supporting diversification of the economic activities. Nevertheless, for both profiles, reduction of poverty should remain the first priority as previously indicated. 1 JMP statistics, 2004 http://www.wssinfo.org/data-estimates/table/ , last access: 22 July 2013.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-06
    Description: Technical Note: A comparison of model and empirical measures of catchment-scale effective energy and mass transfer Hydrology and Earth System Sciences, 17, 3389-3395, 2013 Author(s): C. Rasmussen and E. L. Gallo Recent work suggests that a coupled effective energy and mass transfer (EEMT) term, which includes the energy associated with effective precipitation and primary production, may serve as a robust prediction parameter of critical zone structure and function. However, the models used to estimate EEMT have been solely based on long-term climatological data with little validation using direct empirical measures of energy, water, and carbon balances. Here we compare catchment-scale EEMT estimates generated using two distinct approaches: (1) EEMT modeled using the established methodology based on estimates of monthly effective precipitation and net primary production derived from climatological data, and (2) empirical catchment-scale EEMT estimated using data from 86 catchments of the Model Parameter Estimation Experiment (MOPEX) and MOD17A3 annual net primary production (NPP) product derived from Moderate Resolution Imaging Spectroradiometer (MODIS). Results indicated positive and significant linear correspondence ( R 2 = 0.75; P 〈 0.001) between model and empirical measures with an average root mean square error (RMSE) of 4.86 MJ m −2 yr −1 . Modeled EEMT values were consistently greater than empirical measures of EEMT. Empirical catchment estimates of the energy associated with effective precipitation ( E PPT ) were calculated using a mass balance approach that accounts for water losses to quick surface runoff not accounted for in the climatologically modeled E PPT . Similarly, local controls on primary production such as solar radiation and nutrient limitation were not explicitly included in the climatologically based estimates of energy associated with primary production ( E BIO ), whereas these were captured in the remotely sensed MODIS NPP data. These differences likely explain the greater estimate of modeled EEMT relative to the empirical measures. There was significant positive correlation between catchment aridity and the fraction of EEMT partitioned into E BIO ( F BIO ), with an increase in F BIO as a fraction of the total as aridity increases and percentage of catchment woody plant cover decreases. In summary, the data indicated strong correspondence between model and empirical measures of EEMT with limited bias that agree well with other empirical measures of catchment energy and water partitioning and plant cover.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-10
    Description: Influence of microphysical schemes on atmospheric water in the Weather Research and Forecasting model Geoscientific Model Development Discussions, 6, 4563-4601, 2013 Author(s): F. Cossu and K. Hocke This study examines how different microphysical parameterization schemes influence orographically-induced precipitation and the distributions of hydrometeors and water vapour for mid-latitude summer conditions in the Weather Research and Forecasting (WRF) model. A high-resolution two-dimensional idealized simulation is used to assess the differences between the schemes in which a moist air flow is interacting with a bell-shaped 2 km high mountain. Periodic lateral boundary conditions are chosen to recirculate atmospheric water in the domain. It is found that the 13 selected microphysical schemes conserve the water in the model domain. The gain or loss of water is less than 0.81% over a simulation time interval of 61 days. The differences of the microphysical schemes in terms of the distributions of water vapour, hydrometeors and accumulated precipitation are presented and discussed. The Kessler scheme, the only scheme without ice-phase processes, shows final values of cloud liquid water 14 times greater than the other schemes. The differences among the other schemes are not as extreme, but still they differ up to 79% in water vapour, up to 10 times in hydrometeors and up to 64% in accumulated precipitation at the end of the simulation. The microphysical schemes also differ in the surface evaporation rate. The WRF single-moment 3-class scheme has the highest surface evaporation rate compensated by the highest precipitation rate. The different distributions of hydrometeors and water vapour of the microphysical schemes induce differences up to 49 W m −2 in the downwelling shortwave radiation and up to 33 W m −2 in the downwelling longwave radiation.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-09-11
    Description: The sensitivity of global climate to the episodicity of fire aerosol emissions Atmospheric Chemistry and Physics Discussions, 13, 23691-23717, 2013 Author(s): S. K. Clark, D. S. Ward, and N. M. Mahowald One of the major ways in which forest and grass fires have an impact on global climate is through the release of aerosols. Most studies focusing on calculating the radiative forcing and other climate impacts of fire aerosols use monthly mean emissions derived from the Global Fire Emissions Database that captures only the seasonal cycle of fire aerosol emissions. Here we present the results of a sensitivity study that investigates the climate response to the episodicity of the fires, based on the standard approach which releases emissions every day, and contrasts that to the response when fires are represented as intense pulses of emissions that occur only over 1–2 days on a monthly, yearly, or five-yearly basis. Overall we find that in the modified cases with increased levels of episodicity, the all sky direct effect radiative forcing increases, the clear sky direct effect radiative forcing remains relatively constant, and the magnitude of the indirect effect radiative forcing decreases by about 1 W m −2 (from −1.6 to −0.6 W m −2 ). In the long term, we find that an increase in aerosol emission episodicity leads to an asymmetric change in indirect radiative forcing in the Northern Hemisphere compared to the Southern Hemisphere contributes to a slight shift in the annual average position of the intertropical convergence zone (ITCZ). This shift is found to have a mixed effect on the overall performance of the model at predicting precipitation rates in the tropics. Given these results we conclude that future studies that look to assess the present day global climate impacts of fire aerosols should consider the need to accurately represent fire episodicity.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-09-12
    Description: A new data set of soil mineralogy for dust-cycle modeling Atmospheric Chemistry and Physics Discussions, 13, 23943-23993, 2013 Author(s): E. Journet, Y. Balkanski, and S. P. Harrison The mineralogy of airborne dust affects the impact of dust particles on direct and indirect radiative forcing, on atmospheric chemistry and on biogeochemical cycling. It is determined partly by the mineralogy of the dust-source regions and partly by size-dependent fractionation during erosion and transport. Here we present a data set that characterizes the clay and silt sized fractions of global soil units in terms of the abundance of 12 minerals that are important for dust-climate interactions: quartz, feldspars, illite, smectite, kaolinite, chlorite, vermiculite, mica, calcite, gypsum, hematite and goethite. The basic mineralogical information is derived from the literature, and is then expanded following explicit rules, in order to characterize as many soil units as possible. We present three alternative realisations of the mineralogical maps that account for the uncertainties in the mineralogical data. We examine the implications of the new database for calculations of the single scattering albedo of airborne dust and thus for dust radiative forcing.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-09-13
    Description: Growth of sulphuric acid nanoparticles under wet and dry conditions Atmospheric Chemistry and Physics Discussions, 13, 24087-24125, 2013 Author(s): L. Škrabalová, D. Brus, T. Anttila, V. Ždímal, and H. Lihavainen New particle formation, which greatly influences the number concentrations and size distributions of an atmospheric aerosol, is often followed by a rapid growth of freshly formed particles. The initial growth of a newly formed aerosol is the crucial process determining the fraction of nucleated particles growing into cloud condensation nuclei sizes, which have a significant influence on climate. In this study, we report the laboratory observations of the growth of nanoparticles produced by nucleation of H 2 SO 4 and water in a laminar flow tube at temperatures of 283, 293 and 303 K, under dry (a relative humidity of 1%) and wet conditions (relative humidity of 30%) and residence times of 30, 45, 60 and 90 s. The initial H 2 SO 4 concentration spans the range from 2 × 10 8 to 1.4 × 10 10 molecule cm −3 and the calculated wall losses of H 2 SO 4 were assumed to be diffusion limited. The detected particle number concentrations, measured by the Ultrafine Condensation Particle Counter (UCPC) and Differential Mobility Particle Sizer (DMPS), were found to depend strongly on the residence time. Hygroscopic particle growth, presented by growth factors, was found to be in good agreement with the previously reported studies. The experimental growth rates ranged from 20 nm h −1 to 890 nm h −1 at RH 1% and from 7 nm h −1 to 980 nm h −1 at RH 30% and were found to increase significantly with the increasing concentration of H 2 SO 4 . Increases in the nucleation temperature had a slight enhancing effect on the growth rates under dry conditions. The influence of relative humidity on growth was not consistent – at lower H 2 SO 4 concentrations, the growth rates were higher under dry conditions while at H 2 SO 4 concentrations greater than 1×10 9 molecule cm −3 the growth rates were higher under wet conditions. The growth rates show only a weak dependence on the residence time. The experimental observations were compared with predictions made using a numerical model, which investigates the growth of particles with three different extents of neutralization by the ammonia NH 3 : (1) pure H 2 SO 4 – H 2 O particles (2) particles formed by ammonium bisulphate, (NH 4 )HSO 4 (3) particles formed by ammonium sulphate, (NH 4 ) 2 SO 4 . The highest growth rates were found for ammonium sulphate particles. Since the model accounting for the initial H 2 SO 4 concentration predicted the experimental growth rates correctly, our results suggest that the commonly presumed diffusional wall losses of H 2 SO 4 are not so significant. We therefore assume that there are not only losses of H 2 SO 4 on the wall but also a flux of H 2 SO 4 molecules from the wall into the flow tube, the effect being more profound under dry conditions and at higher temperatures of the tube wall. Based on a comparison with the atmospheric observations, our results indicate that sulphuric acid alone can not explain the growth rates of particles formed in the atmosphere.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-09-13
    Description: Contribution of directly connected and isolated impervious areas to urban drainage network hydrographs Hydrology and Earth System Sciences, 17, 3473-3483, 2013 Author(s): Y. Seo, N.-J. Choi, and A. R. Schmidt This paper addresses the mass balance error observed in runoff hydrographs in urban watersheds by introducing assumptions regarding the contribution of infiltrated rainfall from pervious areas and isolated impervious area (IIA) to the runoff hydrograph. Rainfall infiltrating into pervious areas has been assumed not to contribute to the runoff hydrograph until Hortonian excess rainfall occurs. However, mass balance analysis in an urban watershed indicates that rainfall infiltrated to pervious areas can contribute directly to the runoff hydrograph, thereby offering an explanation for the long hydrograph tail commonly observed in runoff from urban storm sewers. In this study, a hydrologic analysis based on the width function is introduced, with two types of width functions obtained from both pervious and impervious areas, respectively. The width function can be regarded as the direct interpretation of the network response. These two width functions are derived to obtain distinct response functions for directly connected impervious areas (DCIA), IIA, and pervious areas. The results show significant improvement in the estimation of runoff hydrographs and suggest the need to consider the flow contribution from pervious areas to the runoff hydrograph. It also implies that additional contribution from flow paths through joints and cracks in sewer pipes needs to be taken into account to improve the estimation of runoff hydrographs in urban catchments.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-09-26
    Description: Impacts of different plant functional types on ambient ozone predictions in the Seoul Metropolitan Areas (SMA), Korea Atmospheric Chemistry and Physics Discussions, 13, 24925-24973, 2013 Author(s): H.-K. Kim, J.-H. Woo, R. S. Park, C. H. Song, J.-H. Kim, S.-J. Ban, and J.-H. Park Plant functional type (PFT) distributions affect the results of biogenic emission modeling as well as O 3 and PM simulations using chemistry-transport models (CTMs). This paper analyzes the variations of both surface biogenic VOC emissions and O 3 concentrations due to changes in the PFT distributions in the Seoul Metropolitan Areas, Korea. Also, this paper attempts to provide important implications for biogenic emissions modeling studies for CTM simulations. MM5-MEGAN-SMOKE-CMAQ model simulations were implemented over the Seoul Metropolitan Areas in Korea to predict surface O 3 concentrations for the period of 1 May to 31 June 2008. Starting from MEGAN biogenic emissions analysis with three different sources of PFT input data, US EPA CMAQ O 3 simulation results were evaluated by surface O 3 monitoring datasets and further considered on the basis of geospatial and statistical analyses. The three PFT datasets considered were "(1)KORPFT", developed with a region specific vegetation database; (2) CDP, adopted from US NCAR; and (3) MODIS, reclassified from the NASA Terra and Aqua combined land cover products. Comparisons of MEGAN biogenic emission results with the three different PFT data showed that broadleaf trees (BT) are the most significant contributor, followed by needleleaf trees (NT), shrub (SB), and herbaceous plants (HB) to the total biogenic volatile organic compounds (BVOCs). In addition, isoprene from BT and terpene from NT were recognized as significant primary and secondary BVOC species in terms of BVOC emissions distributions and O 3 -forming potentials in the study domain. Multiple regression analyses with the different PFT data (δO 3 vs. δPFTs) suggest that KORPFT can provide reasonable information to the framework of MEGAN biogenic emissions modeling and CTM O 3 predictions. Analyses of the CMAQ performance statistics suggest that deviations of BT areas can significantly affect CMAQ isoprene and O 3 predictions. From further evaluations of the isoprene and O 3 prediction results, we explored the PFT area-loss artifact that occurs due to geographical disparity between the PFT and leaf area index distributions, and can cause increased bias in CMAQ O 3 . Thus, the PFT-loss artifact must be a source of limitation in the MEGAN biogenic emission modeling and the CTM O 3 simulation results. Time changes of CMAQ O 3 distributions with the different PFT scenarios suggest that hourly and local impacts from the different PFT distributions on occasional inter-deviations of O 3 are quite noticeable, reaching up to 10 ppb. Exponentially diverging hourly BVOC emissions and O 3 concentrations with increasing ambient temperature suggest that the use of representative PFT distributions becomes more critical for O 3 air quality modeling (or forecasting) in support of air quality decision-making and human health studies.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-09-26
    Description: Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements Atmospheric Chemistry and Physics Discussions, 13, 24975-25012, 2013 Author(s): Z. Ulanowski, P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier The knowledge of properties of ice crystals such as size, shape, concavity and roughness is critical in the context of radiative properties of ice and mixed phase clouds. Limitations of current cloud probes to measure these properties can be circumvented by acquiring two-dimensional light scattering patterns instead of particle images. Such patterns were obtained in situ for the first time using the Small Ice Detector 3 (SID-3) probe during several flights in a variety of mid-latitude mixed phase and cirrus clouds. The patterns are analyzed using several measures of pattern texture, selected to reveal the magnitude of particle roughness or complexity. The retrieved roughness is compared to values obtained from a range of well-characterized test particles in the laboratory. It is found that typical in situ roughness corresponds to that found in the rougher subset of the test particles, and sometimes even extends beyond the most extreme values found in the laboratory. In this study we do not differentiate between small-scale, fine surface roughness and large-scale crystal complexity. Instead, we argue that both can have similar manifestations in terms of light scattering properties and also similar causes. Overall, the in situ data is consistent with ice particles with highly irregular or rough surfaces being dominant. Similar magnitudes of roughness were found in growth and sublimation zones of cirrus. The roughness was found to be negatively correlated with the halo ratio, but not with other thermodynamic or microphysical properties found in situ. Slightly higher roughness was observed in cirrus forming in clean oceanic airmasses than in a continental, polluted one. Overall, the roughness and complexity is expected to lead to increased shortwave cloud reflectivity, in comparison with cirrus composed of more regular, smooth ice crystal shapes. These findings put into question suggestions that climate could be modified through aerosol seeding to reduce cirrus cover and optical depth, as the seeding may result in decreased shortwave reflectivity.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-10-01
    Description: Factors controlling pollutant plume length downwind of major roadways in nocturnal surface inversions Atmospheric Chemistry and Physics Discussions, 13, 25253-25290, 2013 Author(s): W. Choi, A. M. Winer, and S. E. Paulson A curve fit method using a Gaussian dispersion model solution was successfully applied to obtain both dispersion coefficients and a particle number emission factor (PNEF) directly from ultrafine particle (UFP) concentration profiles observed downwind of major roadways in California's South Coast Air Basin (SoCAB). The Briggs' formulation for the vertical dispersion parameter σ z was adopted in this study due to its better performance in describing the observed profiles compared to other formulations examined. The two dispersion coefficients in Briggs' formulation, α and β, ranged from 0.02 to 0.07 and from −0.5 × 10 −3 to 2.8 × 10 −3 , respectively, for the four freeway transects studied and are significantly different for freeways passing over vs. under the street on which measurements of the freeway plume were made. These ranges are wider than literature values for α and β under stable conditions. The dispersion coefficients derived from observations showed strong correlations with both surface meteorology (wind speed/direction, temperature, and air stability) and differences in concentrations between the background and plume peak. The relationships were applied to predict freeway plume transport using a multivariate regression, and produced excellent agreement with observed UFP concentration profiles. The mean PNEF for a mixed vehicle fleet on the four freeways was estimated as 1.2 × 10 14 particles mi −1 vehicle −1 , which is about 15% of the value estimated in 2001 for the I-405 freeway, implying significant reductions in UFP emissions over the past decade in the SoCAB.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-10-01
    Description: Summer Sea Ice Albedo in the Arctic in CMIP5 models Atmospheric Chemistry and Physics Discussions, 13, 25219-25251, 2013 Author(s): T. Koenigk, A. Devasthale, and K.-G. Karlsson Spatial and temporal variations of summer sea ice albedo over the Arctic are analyzed using an ensemble of historical CMIP5 model simulations. The results are compared to the CLARA-SAL product that is based on long-term satellite observations. The summer sea ice albedo varies substantially among CMIP5 models and many models show large biases compared to the CLARA-SAL product. Single summer months show an extreme spread of ice albedo among models; July-values vary between 0.3 and 0.7 for individual models. The CMIP5 ensemble mean, however, agrees relatively well in the Central Arctic but shows too high ice albedo near the ice edges and coasts. In most models, the ice albedo is spatially too uniformly distributed. The summer to summer variations seem to be underestimated in many global models and almost no model is able to fully reproduce the temporal evolution of ice albedo throughout the summer. While the satellite observations indicate the lowest ice albedos during August, the models show minimum values in July and substantially higher values in August. Instead, the June values are often lower in the models than in the satellite observations. This is probably due to too high surface temperatures in June, leading to an early start of the melt season and too cold temperatures in August causing an earlier refreezing in the models. The summer sea ice albedo in the CMIP5 models is strongly governed by surface temperature and snow conditions, particularly during the period of melt onset in early summer and refreezing in late summer. The summer surface net solar radiation of the ice covered Arctic areas is highly related to the ice albedo in the CMIP5 models. However, the impact of the ice albedo on the sea ice conditions in the CMIP5 models is not clearly visible. This indicates the importance of other Arctic and large scale processes for the sea ice conditions.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-09-29
    Description: Intercontinental transport and deposition patterns of atmospheric mercury from anthropogenic emissions Atmospheric Chemistry and Physics Discussions, 13, 25185-25218, 2013 Author(s): L. Chen, H.-H. Wang, J.-F. Liu, W. Zhang, D. Hu, C. Chen, and X.-J. Wang Global policies that regulate anthropogenic mercury emissions to the environment require quantitative and comprehensive source–receptor relationships for mercury emissions, transport and deposition among major continental regions. In this study, we use the GEOS-Chem model to establish source–receptor relationships among eleven major continental regions worldwide. Source–receptor relationships for surface mercury concentrations (SMC) show that some regions (e.g. East Asia, the Indian subcontinent and Europe) should be responsible for their local surface Hg(II) and Hg(P) concentrations because of near-field transport and deposition contributions from their local anthropogenic emissions (up to 64% and 71% for Hg(II) and Hg(P), respectively, over East Asia). We define region of primary influence (RPI) and region of secondary influence (RSI) to establish intercontinental influence patterns. Results indicate that East Asia is SMC RPI for almost all other regions, while Europe, Russia and the Indian subcontinent also make some contributions to SMC over some receptor regions because they are dominant RSI source regions. Source–receptor relationships for mercury deposition show that approximately 16% and 17% of dry and wet deposition, respectively, over North America originate from East Asia, indicating that trans-pacific transport of East Asian emissions is the major foreign source of mercury deposition in North America. Europe, Southeast Asia and the Indian subcontinent are also important mercury deposition sources for some receptor regions because they are dominant RSI. We also quantify seasonal variation on mercury deposition contributions over other regions from East Asia. Results show that mercury deposition (including dry and wet) contributions from East Asia over the Northern Hemisphere receptor regions (e.g. North America, Europe, Russia, Middle East and Middle Asia) vary seasonally, with the maximum values in summer and minimum values in winter. The opposite seasonal pattern occurs on mercury dry deposition contributions over Southeast Asia and the Indian subcontinent.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-10-01
    Description: An original interpretation of the wet edge of the surface temperature–albedo space to estimate crop evapotranspiration (SEB-1S), and its validation over an irrigated area in northwestern Mexico Hydrology and Earth System Sciences, 17, 3623-3637, 2013 Author(s): O. Merlin The space defined by the pair surface temperature ( T ) and surface albedo (α), and the space defined by the pair T and fractional green vegetation cover ( f vg ) have been extensively used to estimate evaporative fraction (EF) from solar/thermal remote sensing data. In both space-based approaches, evapotranspiration (ET) is estimated as remotely sensed EF times the available energy. For a given data point in the T -α space or in the T - f vg space, EF is derived as the ratio of the distance separating the point from the line identified as the dry edge to the distance separating the dry edge and the line identified as the wet edge. The dry and wet edges are classically defined as the upper and lower limit of the spaces, respectively. When investigating side by side the T -α and the T - f vg spaces, one observes that the range covered by T values on the (classically determined) wet edge is different for both spaces. In addition, when extending the wet and dry lines of the T -α space, both lines cross at α ≈ 0.4 although the wet and dry edges of the T - f vg space never cross for 0 ≤ f vg 〈 1. In this paper, a new ET (EF) model (SEB-1S) is derived by revisiting the classical physical interpretation of the T -α space to make its wet edge consistent with that of the T - f vg space. SEB-1S is tested over a 16 km by 10 km irrigated area in northwestern Mexico during the 2007–2008 agricultural season. The classical T -α space-based model is implemented as benchmark to evaluate the performance of SEB-1S. Input data are composed of ASTER (Advanced Spaceborne Thermal Emission and Reflection radiometer) thermal infrared, Formosat-2 shortwave, and station-based meteorological data. The fluxes simulated by SEB-1S and the classical T -α space-based model are compared on seven ASTER overpass dates with the in situ measurements collected at six locations within the study domain. The ET simulated by SEB-1S is significantly more accurate and robust than that predicted by the classical T -α space-based model. The correlation coefficient and slope of the linear regression between simulated and observed ET is improved from 0.82 to 0.93, and from 0.63 to 0.90, respectively. Moreover, constraining the wet edge using air temperature data improves the slope of the linear regression between simulated and observed ET.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-10-01
    Description: On an improved sub-regional water resources management representation for integration into earth system models Hydrology and Earth System Sciences, 17, 3605-3622, 2013 Author(s): N. Voisin, H. Li, D. Ward, M. Huang, M. Wigmosta, and L. R. Leung Human influence on the hydrologic cycle includes regulation and storage, consumptive use and overall redistribution of water resources in space and time. Representing these processes is essential for applications of earth system models in hydrologic and climate predictions, as well as impact studies at regional to global scales. Emerging large-scale research reservoir models use generic operating rules that are flexible for coupling with earth system models. Those generic operating rules have been successful in reproducing the overall regulated flow at large basin scales. This study investigates the uncertainties of the reservoir models from different implementations of the generic operating rules using the complex multi-objective Columbia River Regulation System in northwestern United States as an example to understand their effects on not only regulated flow but also reservoir storage and fraction of the demand that is met. Numerical experiments are designed to test new generic operating rules that combine storage and releases targets for multi-purpose reservoirs and to compare the use of reservoir usage priorities and predictors (withdrawals vs. consumptive demands, as well as natural vs. regulated mean flow) for configuring operating rules. Overall the best performing implementation is with combined priorities rules (flood control storage targets and irrigation release targets) set up with mean annual natural flow and mean monthly withdrawals. The options of not accounting for groundwater withdrawals, or on the contrary, of assuming that all remaining demand is met through groundwater extractions, are discussed.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-10-01
    Description: On selection of the optimal data time interval for real-time hydrological forecasting Hydrology and Earth System Sciences, 17, 3639-3659, 2013 Author(s): J. Liu and D. Han With the advancement in modern telemetry and communication technologies, hydrological data can be collected with an increasingly higher sampling rate. An important issue deserving attention from the hydrological community is which suitable time interval of the model input data should be chosen in hydrological forecasting. Such a problem has long been recognised in the control engineering community but is a largely ignored topic in operational applications of hydrological forecasting. In this study, the intrinsic properties of rainfall–runoff data with different time intervals are first investigated from the perspectives of the sampling theorem and the information loss using the discrete wavelet transform tool. It is found that rainfall signals with very high sampling rates may not always improve the accuracy of rainfall–runoff modelling due to the catchment low-pass-filtering effect. To further investigate the impact of a data time interval in real-time forecasting, a real-time forecasting system is constructed by incorporating the probability distributed model (PDM) with a real-time updating scheme, the autoregressive moving-average (ARMA) model. Case studies are then carried out on four UK catchments with different concentration times for real-time flow forecasting using data with different time intervals of 15, 30, 45, 60, 90 and 120 min. A positive relation is found between the forecast lead time and the optimal choice of the data time interval, which is also highly dependent on the catchment concentration time. Finally, based on the conclusions from the case studies, a hypothetical pattern is proposed in three-dimensional coordinates to describe the general impact of the data time interval and to provide implications of the selection of the optimal time interval in real-time hydrological forecasting. Although nowadays most operational hydrological systems still have low data sampling rates (daily or hourly), the future is that higher sampling rates will become more widespread, and there is an urgent need for hydrologists both in academia and in the field to realise the significance of the data time interval issue. It is important that more case studies in different catchments with various hydrological forecasting systems are explored in the future to further verify and improve the proposed hypothetical pattern.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-10-02
    Description: Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis Hydrology and Earth System Sciences, 17, 3707-3720, 2013 Author(s): B. Mueller, M. Hirschi, C. Jimenez, P. Ciais, P. A. Dirmeyer, A. J. Dolman, J. B. Fisher, M. Jung, F. Ludwig, F. Maignan, D. G. Miralles, M. F. McCabe, M. Reichstein, J. Sheffield, K. Wang, E. F. Wood, Y. Zhang, and S. I. Seneviratne Land evapotranspiration (ET) estimates are available from several global data sets. Here, monthly global land ET synthesis products, merged from these individual data sets over the time periods 1989–1995 (7 yr) and 1989–2005 (17 yr), are presented. The merged synthesis products over the shorter period are based on a total of 40 distinct data sets while those over the longer period are based on a total of 14 data sets. In the individual data sets, ET is derived from satellite and/or in situ observations (diagnostic data sets) or calculated via land-surface models (LSMs) driven with observations-based forcing or output from atmospheric reanalyses. Statistics for four merged synthesis products are provided, one including all data sets and three including only data sets from one category each (diagnostic, LSMs, and reanalyses). The multi-annual variations of ET in the merged synthesis products display realistic responses. They are also consistent with previous findings of a global increase in ET between 1989 and 1997 (0.13 mm yr −2 in our merged product) followed by a significant decrease in this trend (−0.18 mm yr −2 ), although these trends are relatively small compared to the uncertainty of absolute ET values. The global mean ET from the merged synthesis products (based on all data sets) is 493 mm yr −1 (1.35 mm d −1 ) for both the 1989–1995 and 1989–2005 products, which is relatively low compared to previously published estimates. We estimate global runoff (precipitation minus ET) to 263 mm yr −1 (34 406 km 3 yr −1 ) for a total land area of 130 922 000 km 2 . Precipitation, being an important driving factor and input to most simulated ET data sets, presents uncertainties between single data sets as large as those in the ET estimates. In order to reduce uncertainties in current ET products, improving the accuracy of the input variables, especially precipitation, as well as the parameterizations of ET, are crucial.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-10-02
    Description: Spatial patterns in timing of the diurnal temperature cycle Hydrology and Earth System Sciences, 17, 3695-3706, 2013 Author(s): T. R. H. Holmes, W. T. Crow, and C. Hain This paper investigates the structural difference in timing of the diurnal temperature cycle (DTC) over land resulting from choice of measuring device or model framework. It is shown that the timing can be reliably estimated from temporally sparse observations acquired from a constellation of low Earth-orbiting satellites given record lengths of at least three months. Based on a year of data, the spatial patterns of mean DTC timing are compared between temperature estimates from microwave Ka-band, geostationary thermal infrared (TIR), and numerical weather prediction model output from the Global Modeling and Assimilation Office (GMAO). It is found that the spatial patterns can be explained by vegetation effects, sensing depth differences and more speculatively the orientation of orographic relief features. In absolute terms, the GMAO model puts the peak of the DTC on average at 12:50 local solar time, 23 min before TIR with a peak temperature at 13:13 (both averaged over Africa and Europe). Since TIR is the shallowest observation of the land surface, this small difference represents a structural error that possibly affects the model's ability to assimilate observations that are closely tied to the DTC. The equivalent average timing for Ka-band is 13:44, which is influenced by the effect of increased sensing depth in desert areas. For non-desert areas, the Ka-band observations lag the TIR observations by only 15 min, which is in agreement with their respective theoretical sensing depth. The results of this comparison provide insights into the structural differences between temperature measurements and models, and can be used as a first step to account for these differences in a coherent way.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-10-03
    Description: Balloon-borne match measurements of mid-latitude cirrus clouds Atmospheric Chemistry and Physics Discussions, 13, 25417-25479, 2013 Author(s): A. Cirisan, B. P. Luo, I. Engel, F. G. Wienhold, U. K. Krieger, U. Weers, G. Romanens, G. Levrat, P. Jeannet, D. Ruffieux, R. Philipona, B. Calpini, P. Spichtinger, and T. Peter Observations of persistent high supersaturations with respect to ice inside cirrus clouds are challenging our understanding of cloud microphysics and of climate feedback processes in the upper troposphere. Single measurements of a cloudy air mass provide only a snapshot from which the persistence of ice supersaturation cannot be judged. We introduce here the "cirrus match technique" to obtain information of the evolution of clouds and their saturation ratio. The aim of these coordinated balloon soundings is to analyze the same air mass twice. To this end the standard radiosonde equipment is complemented by a frost point hygrometer "SnowWhite" and a particle backscatter detector "COBALD" (Compact Optical Backscatter Aerosol Detector). Extensive trajectory calculations based on regional weather model COSMO forecasts are performed for flight planning and COSMO analyses are used as basis for comprehensive microphysical box modeling (with grid scale 2 km and 7 km, respectively). Here we present the results of matching a cirrus cloud to within 2–15 km, realized on 8 June 2010 over Payerne, Switzerland, and a location 120 km downstream close to Zurich. A thick cirrus was detected over both measurement sites. We show that in order to quantitatively reproduce the measured particle backscatter ratios, the small-scale temperature fluctuations not resolved by COSMO must be superimposed on the trajectories. The stochastic nature of the fluctuations is captured by ensemble calculations. Possibilities for further improvements in the agreement with the measured backscatter data are investigated by assuming a very slow mass accommodation of water on ice, the presence of heterogeneous ice nuclei, or a wide span of (spheroidal) particle shapes. However, the resulting improvements from microphysical refinements are moderate and comparable in magnitude with changes caused by assuming different regimes of temperature fluctuations for clear sky or cloudy sky conditions, highlighting the importance of a proper treatment of subscale fluctuations. The model yields good agreement with the measured backscatter over both sites and reproduces the measured saturation ratios with respect to ice over Payerne. Conversely, the 30% in-cloud supersaturation measured in a massive, 4-km thick cloud layer over Zurich cannot be reproduced, irrespective of the choice of meteorological or microphysical model parameters. The measured supersaturation can only be explained by either resorting to an unknown physical process, which prevents the ice particles from consuming the excess humidity, or – much more likely – by a measurement error, such as a contamination of the sensor housing of the SnowWhite hygrometer by a precipitation drop from a mixed phase cloud just below the cirrus layer or from some very slight rain in the boundary layer. This uncertainty calls for in-flight checks or calibrations of hygrometers under the extreme humidity conditions in the upper troposphere.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-10-03
    Description: Integrated hydrological modeling of the North China Plain and implications for sustainable water management Hydrology and Earth System Sciences, 17, 3759-3778, 2013 Author(s): H. Qin, G. Cao, M. Kristensen, J. C. Refsgaard, M. O. Rasmussen, X. He, J. Liu, Y. Shu, and C. Zheng Groundwater overdraft has caused fast water level decline in the North China Plain (NCP) since the 1980s. Although many hydrological models have been developed for the NCP in the past few decades, most of them deal only with the groundwater component or only at local scales. In the present study, a coupled surface water–groundwater model using the MIKE SHE code has been developed for the entire alluvial plain of the NCP. All the major processes in the land phase of the hydrological cycle are considered in the integrated modeling approach. The most important parameters of the model are first identified by a sensitivity analysis process and then calibrated for the period 2000–2005. The calibrated model is validated for the period 2006–2008 against daily observations of groundwater heads. The simulation results compare well with the observations where acceptable values of root mean square error (RMSE) (most values lie below 4 m) and correlation coefficient ( R ) (0.36–0.97) are obtained. The simulated evapotranspiration (ET) is then compared with the remote sensing (RS)-based ET data to further validate the model simulation. The comparison result with a R 2 value of 0.93 between the monthly averaged values of simulated actual evapotranspiration (AET) and RS AET for the entire NCP shows a good performance of the model. The water balance results indicate that more than 70% of water leaving the flow system is attributed to the ET component, of which about 0.25% is taken from the saturated zone (SZ); about 29% comes from pumping, including irrigation pumping and non-irrigation pumping (net pumping). Sustainable water management analysis of the NCP is conducted using the simulation results obtained from the integrated model. An effective approach to improve water use efficiency in the NCP is by reducing the actual ET, e.g. by introducing water-saving technologies and changes in cropping.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-10-03
    Description: An explicit study of aerosol mass conversion and its parameterization in warm rain formation of cumulus clouds Atmospheric Chemistry and Physics Discussions, 13, 25481-25536, 2013 Author(s): J. Sun, J. Fen, and R. K. Ungar The life time of atmospheric aerosols is highly affected by in-cloud scavenging processes. Aerosol mass conversion from aerosols embedded in cloud droplets into aerosols embedded in raindrops is a pivotal pathway for wet removal of aerosols in clouds. The aerosol mass conversion rate in the bulk microphysics parameterizations is always assumed to be linearly related to the precipitation production rate, which includes the cloud water autoconversion rate and the cloud water accretion rate. The ratio of the aerosol mass concentration conversion rate to the cloud aerosol mass concentration has typically been considered to be the same as the ratio of the precipitation production rate to the cloud droplet mass concentration. However, the mass of an aerosol embedded in a cloud droplet is not linearly proportional to the mass of the cloud droplet. A simple linear relationship cannot be drawn between the precipitation production rate and the aerosol mass concentration conversion rate. In this paper, we studied the evolution of aerosol mass concentration conversion rates in a warm rain formation process with a 1.5-dimensional non-hydrostatic convective cloud and aerosol interaction model in the bin microphysics. We found that the ratio of the aerosol mass conversion rate to the cloud aerosol mass concentration can be statistically expressed by the ratio of the precipitation production rate to the cloud droplet mass concentration with an exponential function. We further gave some regression equations to determine aerosol conversions in the warm rain formation under different threshold radii of raindrops and different aerosol size distributions.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-10-03
    Description: Simulation of a persistent medium-term precipitation event over the western Iberian Peninsula Hydrology and Earth System Sciences, 17, 3741-3758, 2013 Author(s): S. C. Pereira, A. C. Carvalho, J. Ferreira, J. P. Nunes, J. J. Keizer, and A. Rocha This study evaluated the performance of the WRF-ARW (Weather Research and Forecasting with Advanced Research) weather prediction model in simulating the spatial and temporal patterns of an extreme rainfall period over a complex orographic region in north-central Portugal. The analysis was performed during the rainy season and, more specifically, the month of December 2009. In this period, the region of interest was under the influence of a sequential passage of low-pressure systems associated with frontal surfaces. These synoptic weather patterns were responsible for long periods of rainfall, resulting in a high monthly precipitation. The WRF model results during the study period were furthermore evaluated with the specific objective to complement gaps in the precipitation recordings of a reference meteorological station (located in Pousadas), the data of which are fundamental for hydrological studies in nearby experimental catchments. Three distinct WRF model runs were forced with initial fields and boundary conditions obtained from a global domain model: (1) a reference experiment with no nudging (RunRef); (2) observational nudging for a specific location, i.e. the above-mentioned Pousadas reference station (RunObsN); and (3) nudging to the analysed field (RunGridN). Model performance was evaluated, using several statistical parameters, against a dataset of 27 rainfall stations that were grouped by elevation. The three model runs had similar performances, even though RunGridN resulted in a slight improvement. Regarding the other two experiments, this improvement justifies its use for complementing the surface measurements at the Pousadas reference station. Overall model accuracy, expressed in root mean square error (RMSE), of the three runs was comparable for the stations of the different elevations classes. Even so, it was slightly better for stations in the lowlands than the highlands. Furthermore, model predictions tended to be less accurate for stations located in rough terrain and deep valleys.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2013-09-07
    Description: Investigating the spatio-temporal variability in groundwater and surface water interactions: a multi-technique approach Hydrology and Earth System Sciences, 17, 3437-3453, 2013 Author(s): N. P. Unland, I. Cartwright, M. S. Andersen, G. C. Rau, J. Reed, B. S. Gilfedder, A. P. Atkinson, and H. Hofmann The interaction between groundwater and surface water along the Tambo and Nicholson rivers, southeast Australia, was investigated using 222 Rn, Cl, differential flow gauging, head gradients, electrical conductivity (EC) and temperature profiles. Head gradients, temperature profiles, Cl concentrations and 222 Rn activities all indicate higher groundwater fluxes to the Tambo River in areas of increased topographic variation where the potential to form large groundwater–surface water gradients is greater. Groundwater discharge to the Tambo River calculated by Cl mass balance was significantly lower (1.48 × 10 4 to 1.41 × 10 3 m 3 day −1 ) than discharge estimated by 222 Rn mass balance (5.35 × 10 5 to 9.56 × 10 3 m 3 day −1 ) and differential flow gauging (5.41 × 10 5 to 6.30 × 10 3 m 3 day −1 ) due to bank return waters. While groundwater sampling from the bank of the Tambo River was intended to account for changes in groundwater chemistry associated with bank infiltration, variations in bank infiltration between sample sites remain unaccounted for, limiting the use of Cl as an effective tracer. Groundwater discharge to both the Tambo and Nicholson rivers was the highest under high-flow conditions in the days to weeks following significant rainfall, indicating that the rivers are well connected to a groundwater system that is responsive to rainfall. Groundwater constituted the lowest proportion of river discharge during times of increased rainfall that followed dry periods, while groundwater constituted the highest proportion of river discharge under baseflow conditions (21.4% of the Tambo in April 2010 and 18.9% of the Nicholson in September 2010).
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-09-10
    Description: Global and regional impacts of HONO on the chemical composition of clouds and aerosols Atmospheric Chemistry and Physics Discussions, 13, 23599-23638, 2013 Author(s): Y. F. Elshorban, P. J. Crutzen, B. Steil, A. Pozzer, H. Tost, and J. Lelieveld Nitrous acid (HONO) photolysis can significantly increase HO x (OH+HO 2 ) radical formation, enhancing organic and inorganic oxidation products in polluted regions, especially during winter. It has been reported that chemistry-transport models underestimate sulphate concentrations, mostly during winter. Here we show that HONO can significantly enhance aerosol sulphate (S(VI)), mainly due to the increased formation of H 2 SO 4 . Even though in-cloud aqueous phase oxidation of dissolved SO 2 (S(IV)) is the main source of S(VI), it appears that HONO related enhancement of H 2 O 2 does not significantly affect sulphate because of the predominantly S(IV) limited conditions, except over eastern Asia. Nitrate is also increased via enhanced gaseous HNO 3 formation and N 2 O 5 hydrolysis on aerosol particles. Ammonium nitrate is enhanced in ammonia-rich regions but not under ammonia-limited conditions. Furthermore, particle number concentrations are also higher, accompanied by the transfer from hydrophobic to hydrophilic aerosol modes. This implies a significant impact on the particle lifetime and cloud nucleating properties. The HONO induced enhancements of all species studied are relatively strong in winter though negligible in summer. Simulating realistic HONO levels is found to improve the model-measurement agreement of sulphate aerosols, most apparent over the US. Our results underscore the importance of HONO for the atmospheric oxidizing capacity and the central role of cloud chemical processing in aerosol formation.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-09-10
    Description: Resolving structural errors in a spatially distributed hydrologic model using ensemble Kalman filter state updates Hydrology and Earth System Sciences, 17, 3455-3472, 2013 Author(s): J. H. Spaaks and W. Bouten In hydrological modeling, model structures are developed in an iterative cycle as more and different types of measurements become available and our understanding of the hillslope or watershed improves. However, with increasing complexity of the model, it becomes more and more difficult to detect which parts of the model are deficient, or which processes should also be incorporated into the model during the next development step. In this study, we first compare two methods (the Shuffled Complex Evolution Metropolis algorithm (SCEM-UA) and the Simultaneous parameter Optimization and Data Assimilation algorithm (SODA)) to calibrate a purposely deficient 3-D hillslope-scale model to error-free, artificially generated measurements. We use a multi-objective approach based on distributed pressure head at the soil–bedrock interface and hillslope-scale discharge and water balance. For these idealized circumstances, SODA's usefulness as a diagnostic methodology is demonstrated by its ability to identify the timing and location of processes that are missing in the model. We show that SODA's state updates provide information that could readily be incorporated into an improved model structure, and that this type of information cannot be gained from parameter estimation methods such as SCEM-UA. We then expand on the SODA result by performing yet another calibration, in which we investigate whether SODA's state updating patterns are still capable of providing insight into model structure deficiencies when there are fewer measurements, which are moreover subject to measurement noise. We conclude that SODA can help guide the discussion between experimentalists and modelers by providing accurate and detailed information on how to improve spatially distributed hydrologic models.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-09-11
    Description: Injection heights of springtime biomass burning plumes over the Peninsular Southeast Asia and their impacts on pollutant long-range transport Atmospheric Chemistry and Physics Discussions, 13, 23781-23816, 2013 Author(s): Y. Jian and T.-M. Fu We analyzed observations from the Multi-angle Imaging SpectroRadiometer (MISR) to determine the injection heights of biomass burning smoke plumes over the Peninsular Southeast Asia (PSEA) in spring, with the goal of evaluating the impacts on pollutant long-range transport. We retrieved the heights of twenty-two thousand MISR smoke pixels from 607 smoke plumes over the PSEA during February to April of the years 2001–2010. Forty-five percent of the analyzed smoke pixels were above the local mean boundary layer (1 km) at MISR overpass time (10:30 a.m. local time). We used the GEOS-Chem model to simulate the transport of PSEA biomass burning pollutants in March 2001. We found that the direct injection of 40% of the PSEA biomass burning emissions had little impact on the long-range transport of CO to downwind regions, compared to a control simulation where all biomass burning emissions were released in the boundary layer. This was because CO at the surface over the PSEA was efficiently lifted into the free troposphere by deep convection associated with synoptic-scale weather systems. For pollutants with lifetimes shorter than the synoptic timescale, such as black carbon aerosol (BC), their long-range transport was much more sensitive to the initial plume injection height. The direct injection of NO x from PSEA biomass burning into the free troposphere drove increased formation and transport of PAN, which in turn led to significant increases of ozone over downwind southern China and northwestern Pacific. The Pacific subtropical high transported PSEA biomass burning pollutants to the marine boundary layer over the tropical northwestern Pacific. We compared our model results to aircraft measurements over the northwestern Pacific during the TRACE-P campaign (March 2001). The direct injection of 40% of the PSEA biomass burning pollutants in the free troposphere in the model led to a more pronounced BC peak at 3 km over the northwestern Pacific, which was in better agreement with the aircraft observations compared to the control simulation. Our analyses highlighted the point that the injection heights of smoke plumes pose large uncertainty to the interpretation of BC measurements downwind of biomass burning regions.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-09-11
    Description: Influence of surface morphology on the immersion mode ice nucleation efficiency of hematite particles Atmospheric Chemistry and Physics Discussions, 13, 23757-23780, 2013 Author(s): N. Hiranuma, N. Hoffmann, A. Kiselev, A. Dreyer, K. Zhang, G. Kulkarni, T. Koop, and O. Möhler In this paper, the effect of the morphological modification of aerosol particles with respect to heterogeneous ice nucleation is comprehensively investigated for laboratory-generated hematite particles as a model substrate for atmospheric dust particles. The surface area-scaled ice nucleation efficiencies of monodisperse cubic hematite particles and milled hematite particles were measured with a series of expansion cooling experiments using the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud simulation chamber. Complementary off-line characterization of physico-chemical properties of both hematite subsets were also carried out with scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, dynamic light scattering (DLS), and an electro-kinetic particle charge detector to further constrain droplet-freezing measurements of hematite particles. Additionally, an empirical parameterization derived from our laboratory measurements was implemented in the single-column version of the Community Atmospheric Model version 5 (CAM5) to investigate the model sensitivity in simulated ice crystal number concentration on different ice nucleation efficiencies. From an experimental perspective, our results show that the immersion mode ice nucleation efficiency of milled hematite particles is almost an order of magnitude higher at −35.2 °C 〈 T 〈 −33.5 °C than that of the cubic hematite particles, indicating a substantial effect of morphological irregularities on immersion mode freezing. Our modeling results similarly show that the increased droplet-freezing rates of milled hematite particles lead to about one order magnitude higher ice crystal number in the upper troposphere than cubic hematite particles. Overall, our results suggest that the surface irregularities and associated active sites lead to greater ice activation through droplet-freezing.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-09-11
    Description: Study of the unknown HONO daytime source at an European suburban site during the MEGAPOLI summer and winter field campaigns Atmospheric Chemistry and Physics Discussions, 13, 23639-23690, 2013 Author(s): V. Michoud, A. Colomb, A. Borbon, K. Miet, M. Beekmann, M. Camredon, B. Aumont, S. Perrier, P. Zapf, G. Siour, W. Ait-Helal, C. Afif, A. Kukui, M. Furger, J. C. Dupont, M. Haeffelin, and J. F. Doussin Nitrous acid measurements were carried out during the MEGAPOLI summer and winter field campaigns at SIRTA observatory in Paris surroundings. Highly variable HONO levels were observed during the campaigns, ranging from 10 ppt to 500 ppt in summer and from 10 ppt to 1.7 ppb in winter. Significant HONO mixing ratios have also been measured during daytime hours, comprised between some tenth of ppt and 200 ppt for the summer campaign and between few ppt and 1 ppb for the winter campaign. Ancillary measurements, such as NO x , O 3 , photolysis frequencies, meteorological parameters (pressure, temperature, relative humidity, wind speed and wind direction), black carbon concentration, total aerosol surface area, boundary layer height and soil moisture, were conducted during both campaigns. In addition, for the summer period, OH radical measurements were made with a CIMS (Chemical Ionisation Mass Spectrometer). This large dataset has been used to investigate the HONO budget in a suburban environment. To do so, calculations of HONO concentrations using PhotoStationary State (PSS) approach have been performed, for daytime hours. The comparison of these calculations with measured HONO concentrations revealed an underestimation of the calculations making evident a missing source term for both campaigns. This unknown HONO source exhibits a bell shaped like average diurnal profile with a maximum around noon of approximately 0.7 ppb h −1 and 0.25 ppb h −1 , during summer and winter respectively. This source is the main HONO source during daytime hours for both campaigns. In both cases, this source shows a slight positive correlation with J (NO 2 ) and the product between J (NO 2 ) and soil moisture. This original approach had, thus, indicated that this missing source is photolytic and might be heterogeneous occurring on ground surface and involving water content available at the ground.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-09-12
    Description: Relationship between Amazon biomass burning aerosols and rainfall over La Plata Basin Atmospheric Chemistry and Physics Discussions, 13, 23995-24021, 2013 Author(s): G. Camponogara, M. A. F. Silva Dias, and G. G. Carrió High aerosol loads are discharged into the atmosphere by biomass burning in Amazon and Central Brazil during the dry season. These particles can interact with clouds as cloud condensation nuclei (CCN) changing cloud microphysics and radiative properties and, thereby, affecting the radiative budget of the region. Furthermore, the biomass burning aerosols can be transported by the low level jet (LLJ) to La Plata Basin where many mesoscale convective systems (MCS) are observed during spring and summer. This work proposes to investigate whether the aerosols from biomass burning may affect the MCS in terms of rainfall over La Plata Basin during spring. Since the aerosol effect is very difficult to isolate because convective clouds are very sensitive to small environment disturbances, detailed analyses using different techniques are used. The binplot, 2D histograms and combined empirical orthogonal function (EOF) methods are used to separate certain environment conditions with the possible effects of aerosol loading. Reanalysis 2, TRMM-3B42 and AERONET data are used from 1999 up to 2012 during September-December. The results show that there are two patterns associated to rainfall-aerosol interaction in La Plata Basin: one in which the dynamic conditions are more important than aerosols to generate rain; and a second one where the aerosol particles have a role in rain formation, acting mainly to suppress rainfall over La Plata Basin.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-09-12
    Description: Size-resolved aerosol composition and link to hygroscopicity at a forested site in Colorado Atmospheric Chemistry and Physics Discussions, 13, 23817-23843, 2013 Author(s): E. J. T. Levin, A. J. Prenni, B. Palm, D. Day, P. Campuzano-Jost, P. M. Winkler, S. M. Kreidenweis, P. J. DeMott, J. Jimenez, and J. N. Smith Aerosol hygroscopicity describes the ability of a particle to take up water and form a cloud droplet. Modeling studies have shown sensitivity of precipitation-producing cloud systems to the availability of aerosol particles capable of serving as cloud condensation nuclei (CCN), and hygroscopicity is a key parameter controlling the number of available CCN. Continental aerosol is typically assumed to have a representative hygroscopicity parameter, κ, of 0.3; however, in remote locations this value can be lower due to relatively large mass fractions of organic components. To further our understanding of aerosol properties in remote areas, we measured size-resolved aerosol chemical composition and hygroscopicity in a forested, mountainous site in Colorado during the six-week BEACHON-RoMBAS campaign. This campaign followed a year-long measurement period at this site, and results from the intensive campaign shed light on the previously reported seasonal cycle in aerosol hygroscopicity. New particle formation events were observed routinely at this site and nucleation mode composition measurements indicated that the newly formed particles were predominantly organic. These events likely contribute to the dominance of organic species at smaller sizes, where aerosol organic mass fractions of non-refractory components were between 70–90%. Corresponding aerosol hygroscopicity was observed to range from κ = 0.15–0.22, with hygroscopicity increasing with particle size. Aerosol chemical composition measured by an Aerosol Mass Spectrometer and calculated from hygroscopicity measurements agreed very well during the intensive study with an assumed value of κ org = 0.13 resulting in the best agreement.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-09-13
    Description: Atmospheric parameters in a subtropical cloud regime transition derived by AIRS+MODIS – observed statistical variability compared to ERA-Interim Atmospheric Chemistry and Physics Discussions, 13, 24051-24085, 2013 Author(s): M. M. Schreier, B. H. Kahn, K. Sušelj, J. Karlsson, S. C. Ou, Q. Yue, and S. L. Nasiri Cloud occurrence, microphysical and optical properties and atmospheric profiles within a subtropical cloud regime transition in the northeastern Pacific Ocean are obtained from a synergistic combination of the Atmospheric Infrared Sounder (AIRS) and the MODerate resolution Imaging Spectroradiometer (MODIS). The observed cloud parameters and atmospheric thermodynamic profile retrievals are binned by cloud type and analyzed based on their probability density functions (PDFs). Comparison of the PDFs to data from the European Center for Medium Range Weather Forecasting Re-analysis (ERA-Interim) shows a strong difference in the occurrence of the different cloud types compared to clear sky. An increasing non-Gaussian behavior is observed in cloud optical thickness (τ c ), effective radius ( r e ) and cloud top temperature ( T c ) distributions from Stratocumulus to Trade Cumulus, while decreasing values of lower tropospheric stability are seen. However, variations in the mean, width and shape of the distributions are found. The AIRS potential temperature (θ) and water vapor ( q ) profiles in the presence of varying marine boundary layer (MBL) cloud types show overall similarities to the ERA-Interim in the mean profiles, but differences arise in the higher moments at some altitudes. The differences between the PDFs from AIRS+MODIS and ERA-Interim make it possible to pinpoint systematic errors in both systems and helps to understand joint PDFs of cloud properties and coincident thermodynamic profiles from satellite observations.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-09-14
    Description: AnaWEGE: a weather generator based on analogues of atmospheric circulation Geoscientific Model Development Discussions, 6, 4745-4774, 2013 Author(s): P. Yiou This paper presents a stochastic weather generator based on analogues of circulation (AnaWEGE). Analogues of circulation have been a promising paradigm to analyse climate variability and its extremes. The weather generator uses precomputed analogues of sea-level pressure over the North Atlantic. The stochastic rules of the generator constrain the continuity in time of the simulations. The generator then simulates spatially coherent time series of a climate variable, drawn from meteorological observations. The weather generator is tested for European temperatures, and for winter and summer seasons. The biases in temperature quantiles and autocorrelation are rather small compared to observed variability. The ability of simulating extremely hot summers and cold winters is also assessed.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-09-14
    Description: Methodological aspects of a pattern-scaling approach to produce global fields of monthly means of daily maximum and minimum temperature Geoscientific Model Development Discussions, 6, 4833-4882, 2013 Author(s): S. Kremser, G. E. Bodeker, and J. Lewis A Climate Pattern-Scaling Model (CPSM) that simulates global patterns of climate change, for a prescribed emissions scenario, is described. A CPSM works by quantitatively establishing the statistical relationship between a climate variable at a specific location (e.g. daily maximum surface temperature, T max ) and one or more predictor time series (e.g. global mean surface temperature, T global ) – referred to as the "training" of the CPSM. This training uses a regression model to derive fit-coefficients that describe the statistical relationship between the predictor time series and the target climate variable time series. Once that relationship has been determined, and given the predictor time series for any greenhouse gas (GHG) emissions scenario, the change in the climate variable of interest can be reconstructed – referred to as the "application" of the CPSM. The advantage of using a CPSM rather than a typical atmosphere-ocean global climate model (AOGCM) is that the predictor time series required by the CPSM can usually be generated quickly using a simple climate model (SCM) for any prescribed GHG emissions scenario and then applied to generate global fields of the climate variable of interest. The training can be performed either on historical measurements or on output from an AOGCM. Using model output from 21st century simulations has the advantage that the climate change signal is more pronounced than in historical data and therefore a more robust statistical relationship is obtained. The disadvantage of using AOGCM output is that the CPSM training might be compromised by any AOGCM inadequacies. For the purposes of exploring the various methodological aspects of the CPSM approach, AOGCM output was used in this study to train the CPSM. These investigations of the CPSM methodology focus on monthly mean fields of daily temperature extremes ( T max and T min ). Key conclusions are: (1) overall, the CPSM trained on simulations based on the Representative Concentration Pathway (RCP) 8.5 emissions scenario is able to reproduce AOGCM simulations of T max and T min based on predictor time series from an RCP 4.5 emissions scenario; (2) access to hemisphere average land and ocean temperatures as predictors improves the variance that can be explained, particularly over the oceans; (3) regression model fit-coefficients derived from individual simulations based on the RCP 2.6, 4.5 and 8.5 emissions scenarios agree well over most regions of the globe (the Arctic is the exception); (4) training the CPSM on concatenated time series from an ensemble of simulations does not result in fit-coefficients that explain significantly more of the variance than an approach that weights results based on single simulation fits; and (5) the inclusion of a linear time dependence in the regression model fit-coefficients improves the variance explained, primarily over the oceans.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-09-17
    Description: Establishing the contribution of lawn mowing to atmospheric aerosol levels in American suburbs Atmospheric Chemistry and Physics Discussions, 13, 24435-24480, 2013 Author(s): R. M. Harvey, J. Zahardis, and G. A. Petrucci Green leaf volatiles (GLVs) are a class of wound-induced volatile organic compounds emitted by several plant species. Turfgrasses emit a complex profile of GLVs upon mowing, as evidenced by the "freshly cut grass" smell, some of which are readily oxidized in the atmosphere to contribute to secondary organic aerosol (SOA). The contribution of lawn mowing-induced SOA production may be especially impactful at the urban/suburban interface, where urban hubs provide a source of anthropogenic oxidants and SOA while suburban neighborhoods have the potential to emit large quantities of reactive, mow-induced GLVs. This interface provides a unique opportunity to study aerosol formation in a multi-component system and at a regionally relevant scale. Freshly cut grass was collected from a study site in Essex Junction, Vermont and was placed inside a 775 L Teflon experimental chamber. Thermal desorption gas chromatography mass spectrometry (TD-GC/MS) was used to characterize the emitted GLV profile. Ozone was introduced to the experimental chamber and TD-GC/MS was used to monitor the consumption of these GLVs and the subsequent evolution of gas phase products while a scanning mobility particle sizer was used to continuously measure aerosol size distributions and mass loadings as a result of grass clipping ozonolysis. Freshly cut grass found to emit a complex mixture of GLVs, dominated by cis -3-hexenyl acetate and cis -3-hexenol, which were released at an initial rate of 1.8 (±0.5) μg and 0.07 (±0.03) μg per square meter of lawn mowed with each mowing. Chamber studies using pure standards of cis -3-hexenyl acetate (CHA) and cis -3-hexenol (HXL) were found to have aerosol yields of 1.2 (±1.1)% and 3.3 (±3.1)%, respectively. Using these aerosol yields and the emission rate of these CHA and HXL by grass, SOA evolution by ozonolysis of grass clippings was predicted. However, the measured SOA mass produced from the ozonolysis of grass clippings exceeded the predicted amount, by upwards of ~ 150%. The ozonolysis of a mixture of CHA and HXL representative of environmental mixing ratios also failed to accurately model the SOA mass produced by grass clippings. Aerial photographs and geospatial analysis were used to determine the turfgrass coverage in a suburban neighborhood, which was then used along with measured SOA production as a function of grass mowed to determine that lawn mowing has the potential to contribute 47 μg m −2 SOA to the atmosphere per mowing event by ozonolysis, which cannot be modeled solely by the ozonolysis of CHA, HXL or a representative mixture of the two.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-09-17
    Description: Global distributions and trends of atmospheric ammonia (NH 3 ) from IASI satellite observations Atmospheric Chemistry and Physics Discussions, 13, 24301-24342, 2013 Author(s): M. Van Damme, L. Clarisse, C. L. Heald, D. Hurtmans, Y. Ngadi, C. Clerbaux, A. J. Dolman, J. W. Erisman, and P. F. Coheur Ammonia (NH 3 ) emissions in the atmosphere have strongly increased in the past decades, largely because of the intensive livestock production and use of fertilizers. As a short-lived species, NH 3 is highly variable in the atmosphere and its concentration is generally small, except in and close to local source areas. While ground-based measurements are possible, they are challenging and sparse. Advanced infrared sounders in orbit have recently demonstrated their capability to measure NH 3 , offering a new tool to refine global and regional budgets. In this paper we describe an improved retrieval scheme of NH 3 total columns from the measurements of the Infrared Atmospheric Sounding Interferometer (IASI). It exploits the hyperspectral character of this instrument by using an extended spectral range (800–1200 cm −1 ) where NH 3 is optically active. This scheme consists of the calculation of a dimensionless spectral index from the IASI level1C radiances, which is subsequently converted to a total NH 3 column using look-up-tables built from forward radiative transfer model simulations. We show how to retrieve the NH 3 total columns from IASI quasi-globally and twice daily, above both land and sea, without large computational resources and with an improved detection limit. The retrieval also provides error characterization on the retrieved columns. Five years of IASI measurements (1 November 2007 to 31 October 2012) have been processed to acquire the first global and multiple-year dataset of NH 3 total columns, which are evaluated and compared to similar products from other retrieval methods. Spatial distributions from the five years dataset are provided and analyzed at global and regional scales. We show in particular the ability of this method to identify smaller emission sources than those reported previously, as well as transport patterns above sea. The five year time series is further examined in terms of seasonality and inter-annual variability (in particular as a function of fire activity) separately for the Northern and Southern Hemispheres.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-09-17
    Description: Modeling different freeze/thaw processes in heterogeneous landscapes of the Arctic polygonal tundra using an ecosystem model Geoscientific Model Development Discussions, 6, 4883-4932, 2013 Author(s): given_name prefix surname suffix, S. Yi, K. Wischnewski, M. Langer, S. Muster, and J. Boike Freeze/thaw (F/T) processes can be quite different under the various land surface types found in the heterogeneous polygonal tundra of the Arctic. Proper simulation of these different processes is essential for accurate prediction of the release of greenhouse gases under a warming climate scenario. In this study we have modified the dynamic organic soil version of the Terrestrial Ecosystem Model (DOS-TEM) to simulate F/T processes beneath the polygon rims, polygon centers (with and without water), and lakes that are common features in Arctic lowland regions. We first verified the F/T algorithm in the DOS-TEM against analytical solutions, and then compared the results with in situ measurements from Samoylov Island, Siberia. In the final stage, we examined the different responses of the F/T processes for different water levels at the various land surface types. The simulations revealed that (1) the DOS-TEM was very efficient and its results compared very well with analytical solutions for idealized cases, (2) the simulations compared reasonably well with in situ measurements although there were a number of model limitations and uncertainties, (3) the DOS-TEM was able to successfully simulate the differences in F/T dynamics under different land surface types, and (4) permafrost beneath water bodies was found to respond highly sensitive to changes in water depths between 1 and 2 m. Our results indicate that water is very important in the thermal processes simulated by the DOS-TEM; the heterogeneous nature of the landscape and different water depths therefore need to be taken into account when simulating methane emission responses to a warming climate.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-09-18
    Description: Aircraft measurements of polar organic tracer compounds in tropospheric particles (PM 10 ) over Central China Atmospheric Chemistry and Physics Discussions, 13, 24481-24516, 2013 Author(s): P. Q. Fu, K. Kawamura, Y. F. Cheng, S. Hatakeyama, A. Takami, H. Li, and W. Wang Atmospheric aerosol samples were collected by aircraft at low to middle altitudes (0.8–3.5 km a.g.l.) over Central East to West China during summer 2003 and spring 2004. The samples were analyzed for polar organic compounds using a technique of solvent extraction/BSTFA derivatization/gas chromatography-mass spectrometry. Biogenic secondary organic aerosol (SOA) tracers from the oxidation of isoprene were found to be more abundant in summer (3.3–138 ng m −3 , mean 39 ng m −3 ) than in spring (3.2–42 ng m −3 , 15 ng m −3 ), while α/β-pinene and β-caryophyllene SOA tracers showed similar abundance between these two seasons. A strong positive correlation ( R 2 =0.83) between levoglucosan and β-caryophyllinic acid was found in the spring samples versus a weak correlation ( R 2 =0.17) in the summer samples, implying substantial contributions from biomass burning to the β-caryophyllinic acid production in spring. Two organic nitrogen species (oxamic acid and carbamide) were detected in the aircraft aerosol samples and their concentrations were comparable to those of biogenic SOA tracers. Most of the POA and SOA tracers were less abundant at higher altitudes, suggesting they are of ground surface origin, either being directly emitted from anthropogenic/natural sources on the ground surface, or rapidly formed through photooxidation of their precursors emitted from the ground surface and then diluted during uplifting into the troposphere. This study demonstrates that primary biological aerosols, biogenic SOA, and organic nitrogen species are important components of organic aerosols in the troposphere over Central China.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-09-24
    Description: Black carbon emissions from in-use ships: a California regional assessment Atmospheric Chemistry and Physics Discussions, 13, 24675-24712, 2013 Author(s): G. M. Buffaloe, D. A. Lack, E. J. Williams, D. Coffman, K. L. Hayden, B. M. Lerner, S-M. Li, I. Nuaaman, P. Massoli, T. B. Onasch, P. K. Quinn, and C. D. Cappa Black carbon (BC) mass emission factors (EF BC ; g-BC (kg-fuel) −1 ) from a variety of ocean going vessels have been determined from measurements of BC and carbon dioxide (CO 2 ) concentrations in ship plumes intercepted by the R/V Atlantis during the 2010 California Nexus (CalNex) campaign. The ships encountered were all operating within 24 nautical miles of the California coast and were utilizing relatively low sulphur fuels. Black carbon concentrations within the plumes, from which EF BC values are determined, were measured using four independent instruments: a photoacoustic spectrometer and a particle soot absorption photometer, which measure light absorption, and a single particle soot photometer and soot particle aerosol mass spectrometer, which measure the mass concentration of refractory BC directly. The measured EF BC have been divided into vessel type categories and engine type categories, from which averages have been determined. The geometric average EF BC , determined from over 71 vessels and 135 plumes encountered, was 0.31 g-BC (kg-fuel) −1 . The most frequent engine type encountered was the slow speed diesel (SSD), and the most frequent SSD vessel type was the cargo ship sub-category. Average and median EF BC values from the SSD category are compared with previous observations from the Texas Air Quality Study (TexAQS) in 2006, during which the ships encountered were predominately operating on high sulphur fuels. There is a statistically significant difference between the EF BC values from CalNex and TexAQS for SSD vessels and for the cargo and tanker ship types within this engine category. The CalNex EF BC values are lower than those from TexAQS, suggesting that operation on lower sulphur fuels is associated with smaller EF BC values.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-09-24
    Description: A case study into the measurement of ship emissions from plume intercepts of the NOAA Ship Miller Freeman Atmospheric Chemistry and Physics Discussions, 13, 24635-24674, 2013 Author(s): C. D. Cappa, E. J. Williams, D. A. Lack, G. M. Buffaloe, D. Coffman, K. L. Hayden, S. C. Herndon, B. M. Lerner, S-M. Li, P. Massoli, R. McLaren, I. Nuaaman, T. B. Onasch, and P. K. Quinn Emissions factors (EFs) for gas and sub-micron particle-phase species were measured in intercepted plumes as a function of vessel speed from an underway research vessel, the NOAA Ship Miller Freeman , operating a medium-speed diesel engine on low-sulfur marine gas oil. For many of the particle-phase species, EFs were determined using multiple measurement methodologies, allowing for an assessment of how well EFs from different techniques agree. The total sub-micron PM (PM 1 ) was dominated by particulate black carbon (BC) and particulate organic matter (POM), with an average POM / BC ratio of 1.3. Consideration of the POM / BC ratios observed here with literature studies suggests that laboratory and in-stack measurement methods may over-estimate primary POM EFs relative to those observed in emitted plumes. Comparison of four different methods for black carbon measurement indicates that careful attention must be paid to instrument limitations and biases when assessing EF BC . Particulate sulfate (SO 4 2− ) EFs were extremely small and the particles emitted by Miller Freeman were inefficient as cloud condensation nuclei (CCN), even at high super saturations, consistent with the use of very low sulfur fuel and the overall small emitted particle sizes. All measurement methodologies consistently demonstrate that the measured EFs (fuel mass basis) for PM 1 mass, BC and POM decreased as the ship slowed. Particle number EFs were approximately constant across the speed change, with a shift towards smaller particles being emitted at slower speeds. Emissions factors for gas-phase CO and formaldehyde (HCHO) both increased as the vessel slowed, while EFs for NO x decreased and SO 2 EFs were approximately constant.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-09-25
    Description: Heterogeneous reaction of N 2 O 5 with illite and Arizona Test Dust particles Atmospheric Chemistry and Physics Discussions, 13, 24855-24884, 2013 Author(s): M. J. Tang, G. Schuster, and J. N. Crowley The heterogeneous reaction of N 2 O 5 with airborne illite and Arizona Test Dust particles was investigated at room temperature and at different relative humidities using an atmospheric pressure aerosol flow tube. N 2 O 5 at concentrations in the range 8 to 24×10 12 molecule cm −3 was monitored using thermal-dissociation cavity ring-down spectroscopy at 662 nm. At zero relative humidity a large uptake coefficient of N 2 O 5 to illite was obtained, γ(N 2 O 5 ) = 0.09, which decreased to 0.04 as relative humidity was increased to 67%. In contrast, the uptake coefficient derived for ATD is much lower (~ 0.006) and, within experimental uncertainty, independent of relative humidity (0–67%). Potential explanations are given for the significant differences between the uptake behaviour for ATD and illite and the results are compared with uptake coefficients for N 2 O 5 on other mineral surfaces.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-09-25
    Description: A case study of sea breeze blocking regulated by sea surface temperature along the English south coast Atmospheric Chemistry and Physics Discussions, 13, 24785-24807, 2013 Author(s): J. K. Sweeney, J. M. Chagnon, and S. L. Gray The sensitivity of sea breeze structure to sea surface temperature (SST) and coastal orography is investigated in convection-permitting Met Office Unified Model simulations of a case study along the south coast of England. Changes in SST of 1 K are shown to significantly modify the structure of the sea breeze. On the day of the case study the sea breeze was partially blocked by coastal orography, particularly within Lyme Bay. The extent to which the flow is blocked depends strongly on the static stability of the marine boundary layer. In experiments with colder SST, the marine boundary layer is more stable, and the degree of blocking is more pronounced. The implications of prescribing fixed SST from climatology in numerical weather prediction model forecasts of the sea breeze are discussed.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-09-25
    Description: Using a WRF simulation to examine regions where convection impacts the Asian summer monsoon anticyclone Atmospheric Chemistry and Physics Discussions, 13, 24809-24853, 2013 Author(s): N. K. Heath and H. E. Fuelberg The Asian summer monsoon is a prominent feature of the global circulation that is associated with an upper-level anticyclone (ULAC) that stands out vividly in satellite observations of trace gases. The ULAC also is an important region of troposphere-to-stratosphere transport. We ran the Weather Research and Forecasting (WRF) model at convective-permitting scales (4 km grid spacing) between 10–20 August 2012 to understand the role of convection in transporting boundary layer air into the upper-level anticyclone. Such high-resolution modeling of the Asian ULAC previously has not been documented in the literature. Comparison of our WRF simulation with reanalysis and satellite observations showed that WRF simulated the atmosphere sufficiently well to be used to study convective transport into the ULAC. A back-trajectory analysis based on hourly WRF output showed that 〉 90% of convectively influenced parcels reaching the ULAC came from the Tibetan Plateau (TP) and the southern slope (SS) of the Himalayas. A distinct diurnal cycle is seen in the convective trajectories, with their greatest impact occurring between 1600–2300 local solar time. This finding highlights the role of "everyday" diurnal convection in transporting boundary layer air into the ULAC. WRF output at 15 min intervals was produced for 16 August to examine the convection in greater detail. This high-temporal output revealed that the weakest convection in the study area occurred over the TP. However, because the TP is at 3000–5000 m a.m.s.l., its convection does not have to be as strong to reach the ULAC as in lower altitude regions. In addition, because the TP's elevated heat source is a major cause of the ULAC, we propose that convection over the TP and the neighboring SS is ideally situated geographically to impact the ULAC. The vertical mass flux of water vapor into the ULAC also was calculated. Results show that the TP and SS regions dominate other Asian regions in transporting moisture vertically into the ULAC. Because convection reaching the ULAC is more widespread over the TP than nearby, we propose that the abundant convection partially explains the TP's dominant water vapor fluxes. In addition, greater outgoing longwave radiation reaches the upper levels of the TP due to its elevated terrain. This creates a warmer ambient upper level environment, allowing parcels with greater saturation mixing ratios to enter the ULAC. Lakes in the Tibetan Plateau are shown to provide favorable conditions for deep convection during the night.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-09-24
    Description: A standard test case suite for two-dimensional linear transport on the sphere: results from a collection of state-of-the-art schemes Geoscientific Model Development Discussions, 6, 4983-5076, 2013 Author(s): P. H. Lauritzen, P. A. Ullrich, C. Jablonowski, P. A. Bosler, D. Calhoun, A. J. Conley, T. Enomoto, L. Dong, S. Dubey, O. Guba, A. B. Hansen, E. Kaas, J. Kent, J.-F. Lamarque, M. J. Prather, D. Reinert, V. V. Shashkin, W. C. Skamarock, B. Sørensen, M. A. Taylor, and M. A. Tolstykh Recently, a standard test case suite for 2-D linear transport on the sphere was proposed to assess important aspects of accuracy in geophysical fluid dynamics with a "minimal" set of idealized model configurations/runs/diagnostics. Here we present results from 19 state-of-the-art transport scheme formulations based on finite-difference/finite-volume methods as well as emerging (in the context of atmospheric/oceanographic sciences) Galerkin methods. Discretization grids range from traditional regular latitude-longitude grids to more isotropic domain discretizations such as icosahedral and cubed-sphere tessellations of the sphere. The schemes are evaluated using a wide range of diagnostics in idealized flow environments. Accuracy is assessed in single- and two-tracer configurations using conventional error norms as well as novel diagnostics designed for climate and climate-chemistry applications. In addition, algorithmic considerations that may be important for computational efficiency are reported on. The latter is inevitably computing platform dependent, The ensemble of results from a wide variety of schemes presented here helps shed light on the ability of the test case suite diagnostics and flow settings to discriminate between algorithms and provide insights into accuracy in the context of global atmospheric/ocean modeling. A library of benchmark results is provided to facilitate scheme intercomparison and model development. Simple software and data-sets are made available to facilitate the process of model evaluation and scheme intercomparison.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-09-24
    Description: Spatial and seasonal variations in evapotranspiration over Canada's landmass Hydrology and Earth System Sciences, 17, 3561-3575, 2013 Author(s): S. Wang, Y. Yang, Y. Luo, and A. Rivera A 30 yr (1979–2008) dataset of actual evapotranspiration (ET) at 1 km resolution was generated over Canada's landmass by integrating remote sensing land surface data and gridded climate data using the EALCO model run at a 30 min time step. This long-term high-resolution dataset was used to characterize the spatiotemporal variations in ET across Canada. The results show that annual ET varied from 600 mm yr −1 over several regions in the south to less than 100 mm yr −1 in the northern Arctic. Nationally, ET in summer (i.e., June to August) comprised 65% of the annual total amount. ET in the cold season remained mostly below 10 mm month −1 over the country. Negative monthly ET was obtained over the Arctic region in winter, indicating EALCO simulated a larger amount of condensation than ET. Overall, the mean ET over the entire Canadian landmass for the 30 yr was 239 mm yr −1 , or 44% of its corresponding precipitation. Comparisons of available ET studies in Canada revealed large uncertainties in ET estimates associated with using different approaches. The scarcity of ET measurements for the diverse ecosystems in Canada remains a significant challenge for reducing the uncertainties; this gap needs to be addressed in future studies to improve capabilities in climate/weather modeling and water resource management.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-09-26
    Description: On the analytic approximation of bulk collision rates of non-spherical hydrometeors Geoscientific Model Development Discussions, 6, 5077-5116, 2013 Author(s): A. Seifert, U. Blahak, and R. Buhr Analytic approximations of the binary collision rates of hydrometeors are derived for use in bulk microphysical parameterizations. Special attention is given to non-spherical hydrometeors like raindrops and snowflakes. The terminal fall velocity of these particles cannot be sufficiently well approximated by power law relations which are used in most microphysical parameterizations and therefore an improved formulation is needed. The analytic approximations of the bulk collision rates given in this paper are an alternative to look-up tables and can replace the Wisner approximation which is used in many atmospheric models.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-09-27
    Description: An assessment of the performance of the Monitor for AeRosols and GAses in ambient air (MARGA): a semi-continuous method for soluble compounds Atmospheric Chemistry and Physics Discussions, 13, 25067-25124, 2013 Author(s): I. C. Rumsey, K. A. Cowen, J. T. Walker, T. J. Kelly, E. A. Hanft, K. Mishoe, C. Rogers, R. Proost, G. M. Beachley, G. Lear, T. Frelink, and R. P. Otjes Ambient air monitoring as part of the US Environmental Protection Agency's (US EPA's) Clean Air Status and Trends Network (CASTNet) currently uses filter packs to measure weekly integrated concentrations. The US EPA is interested in supplementing CASTNet with semi-continuous monitoring systems at select sites to characterize atmospheric chemistry and deposition of nitrogen and sulfur compounds at higher time resolution than the filter pack. The Monitor for AeRosols and GAses in ambient air (MARGA) measures water-soluble gases and aerosols at hourly temporal resolution. The performance of the MARGA was assessed under the US EPA Environmental Technology Verification (ETV) program. The assessment was conducted in Research Triangle Park, North Carolina from 8 September–8 October 2010 and focused on gaseous SO 2 , HNO 3 and NH 3 and aerosol SO 4 − , NO 3 − and NH 4 + . Precision of the MARGA was evaluated by calculating the median absolute relative percent difference (MARPD) between paired hourly results from duplicate MARGA units (MUs), with a performance goal of
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-09-28
    Description: Post-processing rainfall forecasts from numerical weather prediction models for short-term streamflow forecasting Hydrology and Earth System Sciences, 17, 3587-3603, 2013 Author(s): D. E. Robertson, D. L. Shrestha, and Q. J. Wang Sub-daily ensemble rainfall forecasts that are bias free and reliably quantify forecast uncertainty are critical for flood and short-term ensemble streamflow forecasting. Post-processing of rainfall predictions from numerical weather prediction models is typically required to provide rainfall forecasts with these properties. In this paper, a new approach to generate ensemble rainfall forecasts by post-processing raw numerical weather prediction (NWP) rainfall predictions is introduced. The approach uses a simplified version of the Bayesian joint probability modelling approach to produce forecast probability distributions for individual locations and forecast lead times. Ensemble forecasts with appropriate spatial and temporal correlations are then generated by linking samples from the forecast probability distributions using the Schaake shuffle. The new approach is evaluated by applying it to post-process predictions from the ACCESS-R numerical weather prediction model at rain gauge locations in the Ovens catchment in southern Australia. The joint distribution of NWP predicted and observed rainfall is shown to be well described by the assumed log-sinh transformed bivariate normal distribution. Ensemble forecasts produced using the approach are shown to be more skilful than the raw NWP predictions both for individual forecast lead times and for cumulative totals throughout all forecast lead times. Skill increases result from the correction of not only the mean bias, but also biases conditional on the magnitude of the NWP rainfall prediction. The post-processed forecast ensembles are demonstrated to successfully discriminate between events and non-events for both small and large rainfall occurrences, and reliably quantify the forecast uncertainty. Future work will assess the efficacy of the post-processing method for a wider range of climatic conditions and also investigate the benefits of using post-processed rainfall forecasts for flood and short-term streamflow forecasting.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-10-01
    Description: Comparison of climate change signals in CMIP3 and CMIP5 multi-model ensembles and implications for Central Asian glaciers Hydrology and Earth System Sciences, 17, 3661-3677, 2013 Author(s): A. F. Lutz, W. W. Immerzeel, A. Gobiet, F. Pellicciotti, and M. F. P. Bierkens Central Asian water resources largely depend on melt water generated in the Pamir and Tien Shan mountain ranges. To estimate future water availability in this region, it is necessary to use climate projections to estimate the future glacier extent and volume. In this study, we evaluate the impact of uncertainty in climate change projections on the future glacier extent in the Amu and Syr Darya river basins. To this end we use the latest climate change projections generated for the upcoming IPCC report (CMIP5) and, for comparison, projections used in the fourth IPCC assessment (CMIP3). With these projections we force a regionalized glacier mass balance model, and estimate changes in the basins' glacier extent as a function of the glacier size distribution in the basins and projected temperature and precipitation. This glacier mass balance model is specifically developed for implementation in large scale hydrological models, where the spatial resolution does not allow for simulating individual glaciers and data scarcity is an issue. Although the CMIP5 ensemble results in greater regional warming than the CMIP3 ensemble and the range in projections for temperature as well as precipitation is wider for the CMIP5 than for the CMIP3, the spread in projections of future glacier extent in Central Asia is similar for both ensembles. This is because differences in temperature rise are small during periods of maximum melt (July–September) while differences in precipitation change are small during the period of maximum accumulation (October–February). However, the model uncertainty due to parameter uncertainty is high, and has roughly the same importance as uncertainty in the climate projections. Uncertainty about the size of the decline in glacier extent remains large, making estimates of future Central Asian glacier evolution and downstream water availability uncertain.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-10-02
    Description: Prediction of dissolved reactive phosphorus losses from small agricultural catchments: calibration and validation of a parsimonious model Hydrology and Earth System Sciences, 17, 3679-3693, 2013 Author(s): C. Hahn, V. Prasuhn, C. Stamm, P. Lazzarotto, M. W. H. Evangelou, and R. Schulin Eutrophication of surface waters due to diffuse phosphorus (P) losses continues to be a severe water quality problem worldwide, causing the loss of ecosystem functions of the respective water bodies. Phosphorus in runoff often originates from a small fraction of a catchment only. Targeting mitigation measures to these critical source areas (CSAs) is expected to be most efficient and cost-effective, but requires suitable tools. Here we investigated the capability of the parsimonious Rainfall-Runoff-Phosphorus (RRP) model to identify CSAs in grassland-dominated catchments based on readily available soil and topographic data. After simultaneous calibration on runoff data from four small hilly catchments on the Swiss Plateau, the model was validated on a different catchment in the same region without further calibration. The RRP model adequately simulated the discharge and dissolved reactive P (DRP) export from the validation catchment. Sensitivity analysis showed that the model predictions were robust with respect to the classification of soils into "poorly drained" and "well drained", based on the available soil map. Comparing spatial hydrological model predictions with field data from the validation catchment provided further evidence that the assumptions underlying the model are valid and that the model adequately accounts for the dominant P export processes in the target region. Thus, the parsimonious RRP model is a valuable tool that can be used to determine CSAs. Despite the considerable predictive uncertainty regarding the spatial extent of CSAs, the RRP can provide guidance for the implementation of mitigation measures. The model helps to identify those parts of a catchment where high DRP losses are expected or can be excluded with high confidence. Legacy P was predicted to be the dominant source for DRP losses and thus, in combination with hydrologic active areas, a high risk for water quality.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-10-02
    Description: Sensitivity of simulated climate to latitudinal distribution of solar insolation reduction in SRM geoengineering methods Atmospheric Chemistry and Physics Discussions, 13, 25387-25415, 2013 Author(s): A. Modak and G. Bala Solar radiation management (SRM) geoengineering has been proposed as a potential option to counteract climate change. We perform a set of idealized geoengineering simulations to understand the global hydrological implications of varying the latitudinal distribution of solar insolation reduction in SRM methods. We find that for a fixed total mass of sulfate aerosols (12.6 Mt of SO 4 ), relative to a uniform distribution which mitigates changes in global mean temperature, global mean radiative forcing is larger when aerosol concentration is maximum at the poles leading to a warmer global mean climate and consequently an intensified hydrological cycle. Opposite changes are simulated when aerosol concentration is maximized in the tropics. We obtain a range of 1 K in global mean temperature and 3% in precipitation changes by varying the distribution pattern: this range is about 50% of the climate change from a doubling of CO 2 . Hence, our study demonstrates that a range of global mean climate states, determined by the global mean radiative forcing, are possible for a fixed total amount of aerosols but with differing latitudinal distribution, highlighting the need for a careful evaluation of SRM proposals.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-10-02
    Description: Source apportionment of PM 10 in a North-Western Europe regional urban background site (Lens, France) using Positive Matrix Factorization and including primary biogenic emissions Atmospheric Chemistry and Physics Discussions, 13, 25325-25385, 2013 Author(s): A. Waked, O. Favez, L. Y. Alleman, C. Piot, J.-E. Petit, T. Delaunay, E. Verlinden, B. Golly, J.-L. Besombes, J.-L. Jaffrezo, and E. Leoz-Garziandia In this work, the source of ambient particulate matter (PM 10 ) collected over a one year period at an urban background site in Lens (France) were determined and investigated using a~Positive Matrix Factorization receptor model (US EPA PMF v3.0). In addition, a Potential Source Contribution Function (PSCF) was performed by means of the Hysplit v4.9 model to assess prevailing geographical origins of the identified sources. A selective iteration process was followed for the qualification of the more robust and meaningful PMF solution. Components measured and used in the PMF include inorganic and organic species: soluble ionic species, trace elements, elemental carbon (EC), sugars alcohols, sugar anhydride, and organic carbon (OC). The mean PM 10 concentration measured from March 2011 to March 2012 was about 21 μg m −3 with typically OM, nitrate and sulfate contributing to most of the mass and accounting respectively for 5.8, 4.5 and 2.3 μg m −3 on a yearly basis. Accordingly, PMF outputs showed that the main emission sources were (in a decreasing order of contribution): secondary inorganic aerosols (28% of the total PM 10 mass), aged marine emissions (19%), with probably predominant contribution of shipping activities, biomass burning (13%), mineral dust (13%), primary biogenic emissions (9%), fresh sea salts (8%), primary traffic emissions (6%) and heavy oil combustion (4%). Significant temporal variations were observed for most of the identified sources. In particular, biomass burning emissions were negligible in summer but responsible for about 25% of total PM 10 and 50% of total OC at wintertime. Conversely, primary biogenic emissions were found to be negligible in winter but to represent about 20% of total PM 10 and 40% of total OC in summer. The latter result calls for more investigations of primary biogenic aerosols using source apportionment studies, which quite usually disregards this type of sources. This study furthermore underlines the major influence of secondary processes during daily threshold exceedances. Finally, apparent discrepancies that could be generally observed between filter-based studies (such as the present one) and Aerosol Mass Spectrometer-based PMF analyses (organic fractions) are also discussed here.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-10-02
    Description: Wind extraction potential from 4D-Var assimilation of O 3 , N 2 O, and H 2 O using a global shallow water model Atmospheric Chemistry and Physics Discussions, 13, 25291-25323, 2013 Author(s): D. R. Allen, K. W. Hoppel, and D. D. Kuhl The wind extraction due to assimilation of trace gas (tracer) data is examined using a 4D-Var data assimilation system based on the shallow water equations coupled to the tracer continuity equation. The procedure is outlined as follows. First, a Nature Run is created, simulating middle stratospheric winter conditions. Second, ozone (O 3 ), nitrous oxide (N 2 O), and water vapor (H 2 O) (treated in this study as passive tracers) are initialized using Microwave Limb Sounder (MLS) mixing ratios at 850 K potential temperature and advected by the Nature Run winds. Third, the initial dynamical conditions are perturbed by using a 6 h offset. Fourth, observations based on the simulated tracer data are then assimilated with a 4D-Var system in which the tracer and winds are coupled via the adjoint of the tracer continuity equation. Finally, the wind extraction potential (WEP) is calculated as the reduction of the Root Mean Square (RMS) vector wind error due to tracer assimilation relative to the total possible reduction from the initial perturbed conditions. For a single 6 h assimilation cycle of "perfect" tracer (unbiased and no imposed random errors), WEP values are 70% for O 3 , 49% for N 2 O and 16% for H 2 O. O 3 and N 2 O provide more wind information than H 2 O due to stronger background gradients relative to the tracer precisions. 10 day multi-cycle simulations with "perfect" tracer result in WEP of 98% for O 3 , 97% for N 2 O, and 90% for H 2 O. There is therefore sufficient information in these fields to nearly completely specify the dynamics, even without assimilation of dynamical information. For assimilation of tracer observations with realistic random noise (based on MLS precision at 10 hPa), the WEP after 10 days decreases to 57% for O 3 , 42% for N 2 O, and 28% for H 2 O. The root-mean-square (RMS) wind errors level out at ~ 1–2 m s −1 for these runs, suggesting a limit to which realistic tracers could constrain the winds, given complete global coverage. With higher observation noise levels, the WEP values decrease further, with negative WEP occurring in cases of very large errors for H 2 O, indicating that assimilation of very noisy observations may worsen the wind fields.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-10-03
    Description: Ensemble initialization of the oceanic component of a coupled model through bred vectors at seasonal-to-interannual time scales Geoscientific Model Development Discussions, 6, 5189-5214, 2013 Author(s): J. Baehr and R. Piontek We evaluate the ensemble spread at seasonal-to-interannual time scales for two perturbation techniques implemented into the ocean component of a coupled model: (1) lagged initial conditions as commonly used for decadal predictions, (2) bred vectors as commonly used for weather and seasonal forecasting. We show that relative to an uninitialized reference simulation the implementation for bred vectors can improve the ensemble spread compared to lagged initialization at time scales from one months up to three years. As bred vectors have so far mostly been used at short time scales, we initially focus on the implementation of the bred vectors into the ocean component. We introduce a depth-dependent vertical rescaling norm, accounting for the vertical dependence of the variability, and extending the commonly used upper-ocean rescaling norm to the full water column. We further show that it is sufficient for the (sub-surface) ocean to breed temperature and salinity (i.e., scalar quantities), and rely on the governing physics to carry the temperature and salinity perturbations to the flow field. Using these bred vectors with a rescaling interval of 12 months, we initialize hindcast simulations and compare them to hindcast simulations initialized with lagged initial conditions. We quantify the ensemble spread by analyzing Talagrand diagrams and spread-error ratios. For both temperature and salinity, the lagged initialized ensemble is particularly under-dispersive for the first few months of predictable lead time. The ensemble initialized with bred vectors improves the spread for temperature and salinity for the 0–700 m and 1000–3500 m means, compared to the lagged ensemble at lead times of several months to one year. As the lead time increases to years, the differences between the two ensemble initialization techniques becomes more difficult to discern. While the results need to be confirmed in an initialized framework, the present analysis represents a first step towards an improved ensemble generation at the transition from seasonal-to-interannual time scales, in particular at lead times up to one year.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-10-03
    Description: Understanding the performance of the FLake model over the African Great Lakes Geoscientific Model Development Discussions, 6, 5141-5187, 2013 Author(s): W. Thiery, A. Martynov, F. Darchambeau, J.-P. Descy, P.-D. Plisnier, L. Sushama, and N. P. M. van Lipzig The ability of the one-dimensional lake model FLake to represent the mixolimnion temperatures for tropical conditions was tested for three locations in East Africa: Lake Kivu, Lake Tanganyika's northern and southern basins. Meteorological observations from surrounding Automatic Weather Stations were corrected and used to drive FLake, whereas a comprehensive set of water temperature profiles served to evaluate the model at each site. Careful forcing data correction and model configuration allowed to reproduce the observed mixed layer seasonality at Lake Kivu and Lake Tanganyika (northern and southern basins), with correct representation of both the mixed layer depth and temperature structure. At Lake Kivu, mixolimnion temperatures predicted by FLake were found sensitive both to minimal variations in the external parameters (lake depth and water transparency) as to small changes in the meteorological driving data, in particular wind velocity. In each case, small modifications may already lead to a regime switch from the correctly represented seasonal mixed layer deepening to either completely mixed (down to the model lake bottom) or permanently stratified (from ~10 m downwards) conditions. In contrast, model temperatures are found robust close to the surface, with acceptable predictions of near-surface water temperatures even when the seasonal mixing regime is not reproduced. FLake can thus be a suitable tool to parameterize tropical lake water surface temperatures within atmospheric prediction models, but may be less appropriate, in its current form, to study complex limnological processes within tropical lakes. Furthermore, a study of different initial conditions showed that for tropical lakes lacking reliable initial data, a fully mixed, artificially warm initialisation is to be preferred, but only if the model is allowed to spin up until convergence is reached. Finally, FLake was used to attribute the seasonal mixing cycle at Lake Kivu to variations in the near-surface meteorological conditions. It was found that the annual mixing down to 60 m during the main dry season is primarily due to enhanced lake evaporation and secondarily due to the decreased incoming long wave radiation, both causing a significant heat loss from the lake surface and associated mixolimnion cooling.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-10-03
    Description: High-resolution Med-CORDEX regional climate model simulations for hydrological impact studies: a first evaluation of the ALADIN-Climate model in Morocco Hydrology and Earth System Sciences, 17, 3721-3739, 2013 Author(s): Y. Tramblay, D. Ruelland, S. Somot, R. Bouaicha, and E. Servat In the framework of the international CORDEX program, new regional climate model (RCM) simulations at high spatial resolutions are becoming available for the Mediterranean region (Med-CORDEX initiative). This study provides the first evaluation for hydrological impact studies of one of these high-resolution simulations in a 1800 km 2 catchment located in North Morocco. Different approaches are compared to analyze the climate change impacts on the hydrology of this catchment using a high-resolution RCM (ALADIN-Climate) from the Med-CORDEX initiative at two different spatial resolutions (50 and 12 km) and for two different Radiative Concentration Pathway scenarios (RCP4.5 and RCP8.5). The main issues addressed in the present study are: (i) what is the impact of increased RCM resolution on present-climate hydrological simulations and on future projections? (ii) Are the bias-correction of the RCM model and the parameters of the hydrological model stationary and transferable to different climatic conditions? (iii) What is the climate and hydrological change signal based on the new Radiative Concentration Pathways scenarios (RCP4.5 and RCP8.5)? Results indicate that high resolution simulations at 12 km better reproduce the seasonal patterns, the seasonal distributions and the extreme events of precipitation. The parameters of the hydrological model, calibrated to reproduce runoff at the monthly time step over the 1984–2010 period, do not show a strong variability between dry and wet calibration periods in a differential split-sample test. However the bias correction of precipitation by quantile-matching does not give satisfactory results in validation using the same differential split-sample testing method. Therefore a quantile-perturbation method that does not rely on any stationarity assumption and produces ensembles of perturbed series of precipitation was introduced. The climate change signal under scenarios 4.5 and 8.5 indicates a decrease of respectively −30 to −57% in surface runoff for the mid-term (2041–2062), when for the same period the projections for precipitation are ranging between −15 and −19% and for temperature between +1.3 and +1.9 °C.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-06-08
    Description: The simulations of sulfuric acid concentration and new particle formation in an urban atmosphere in China Atmospheric Chemistry and Physics Discussions, 13, 14977-15005, 2013 Author(s): Z. B. Wang, M. Hu, D. Mogensen, D. L. Yue, J. Zheng, R. Y. Zhang, Y. Liu, B. Yuan, X. Li, M. Shao, L. Zhou, Z. J. Wu, A. Wiedensohler, and M. Boy Simulations of sulfuric acid concentration and new particle formation are performed by using the zero-dimensional version of the model MALTE (Model to predict new Aerosol formation in the Lower TropospherE) and measurements from the Campaign of Air Quality Research in Beijing and Surrounding areas (CAREBeijing) in 2008. Chemical reactions from the Master Chemical Mechanism Version 3.2 (MCM v3.2) are used in the model. High correlation (slope = 0.72, R = 0.74) between the modelled and observed sulfuric acid concentrations is found during daytime (06:00–18:00). The aerosol dynamics are simulated by the University of Helsinki Multicomponent Aerosol (UHMA) model including several nucleation mechanisms. The results indicate that the model is able to predict the on- and offset of new particle formation in an urban atmosphere in China. In addition, the number concentrations of newly formed particles in kinetic-type nucleation including homogenous homomolecular ( J=K [H 2 SO 4 ] 2 ) and homogenous heteromolecular nucleation involving organic vapours ( J=K het [H 2 SO 4 ][Org]) are in satisfactory agreement with the observations. However, the specific organic compounds possibly participate in the nucleation process should be investigated in further studies.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-06-08
    Description: Errors in climate model daily precipitation and temperature output: time invariance and implications for bias correction Hydrology and Earth System Sciences, 17, 2147-2159, 2013 Author(s): E. P. Maurer, T. Das, and D. R. Cayan When correcting for biases in general circulation model (GCM) output, for example when statistically downscaling for regional and local impacts studies, a common assumption is that the GCM biases can be characterized by comparing model simulations and observations for a historical period. We demonstrate some complications in this assumption, with GCM biases varying between mean and extreme values and for different sets of historical years. Daily precipitation and maximum and minimum temperature from late 20th century simulations by four GCMs over the United States were compared to gridded observations. Using random years from the historical record we select a "base" set and a 10 yr independent "projected" set. We compare differences in biases between these sets at median and extreme percentiles. On average a base set with as few as 4 randomly-selected years is often adequate to characterize the biases in daily GCM precipitation and temperature, at both median and extreme values; 12 yr provided higher confidence that bias correction would be successful. This suggests that some of the GCM bias is time invariant. When characterizing bias with a set of consecutive years, the set must be long enough to accommodate regional low frequency variability, since the bias also exhibits this variability. Newer climate models included in the Intergovernmental Panel on Climate Change fifth assessment will allow extending this study for a longer observational period and to finer scales.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-06-08
    Description: Characterization of groundwater dynamics in landslides in varved clays Hydrology and Earth System Sciences, 17, 2171-2183, 2013 Author(s): J. E. van der Spek, T. A. Bogaard, and M. Bakker Groundwater dynamics may play a significant role in landslides. A detailed model is developed of the groundwater dynamics in landslides in varved clays in the Trièves area in the French Alps. The varved clays consist of a sequence of alternating silt and clay layers, covered by a colluvium layer and intersected by fissures. The hydraulic conductivity of the clay layers is negligible compared to the silt layers. It is conceptualized that fissures form a hydraulic connection between the colluvium and the varved clays. Groundwater recharge flows through the colluvium into the fissures, where water is exchanged horizontally between the fissure and the silt layers of the varved clays. Groundwater flow in the colluvium is simulated with the Boussinesq equation, while flow in the silt layers of the varved clays is simulated with the Richards equation. Longitudinal outflow from the fissure is simulated with a linear-reservoir model. Scattered data of relatively short monitoring periods is available for several landslides in the region. A good similarity between observed and simulated heads is obtained, especially when considering the lack of important physical parameters such as the fissure width and the distance between the monitoring point and the fissure. A simulation for the period 1959–2004 showed some correlation between peaks in the simulated heads and the recorded occurrence of landslides, while the bottom of the varved clays remained saturated during the entire simulation period.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-06-11
    Description: Reductions in aircraft particulate emissions due to the use of Fischer–Tropsch fuels Atmospheric Chemistry and Physics Discussions, 13, 15105-15139, 2013 Author(s): A. J. Beyersdorf, M. T. Timko, L. D. Ziemba, D. Bulzan, E. Corporan, S. C. Herndon, R. Howard, R. Miake-Lye, K. L. Thornhill, E. Winstead, C. Wey, Z. Yu, and B. E. Anderson The use of alternative fuels for aviation is likely to increase due to concerns over fuel security, price stability and the sustainability of fuel sources. Concurrent reductions in particulate emissions from these alternative fuels are expected because of changes in fuel composition including reduced sulfur and aromatic content. The NASA Alternative Aviation Fuel Experiment (AAFEX) was conducted in January–February 2009 to investigate the effects of synthetic fuels on gas-phase and particulate emissions. Standard petroleum JP-8 fuel, pure synthetic fuels produced from natural gas and coal feedstocks using the Fischer–Tropsch (FT) process, and 50% blends of both fuels were tested in the CFM-56 engines on a DC-8 aircraft. To examine plume chemistry and particle evolution with time, samples were drawn from inlet probes positioned 1, 30, and 145 m downstream of the aircraft engines. No significant alteration to engine performance was measured when burning the alternative fuels. However, leaks in the aircraft fuel system were detected when operated with the pure FT fuels as a result of the absence of aromatic compounds in the fuel. Dramatic reductions in soot emissions were measured for both the pure FT fuels (reductions of 84% averaged over all powers) and blended fuels (64%) relative to the JP-8 baseline with the largest reductions at idle conditions. The alternative fuels also produced smaller soot (e.g. at 85% power, volume mean diameters were reduced from 78 nm for JP-8 to 51 nm for the FT fuel), which may reduce their ability to act as cloud condensation nuclei (CCN). The reductions in particulate emissions are expected for all alternative fuels with similar reductions in fuel sulfur and aromatic content regardless of the feedstock. As the plume cools downwind of the engine, nucleation-mode aerosols form. For the pure FT fuels, reductions (94% averaged over all powers) in downwind particle number emissions were similar to those measured at the exhaust plane (84%). However, the blended fuels had less of a reduction (reductions of 30–44%) than initially measured (64%). The likely explanation is that the reduced soot emissions in the blended fuel exhaust plume results in promotion of new particle formation microphysics, rather than coating on pre-existing soot particles, which is dominant in the JP-8 exhaust plume. Downwind particle volume emissions were reduced for both the pure (79 and 86% reductions) and blended FT fuels (36 and 46%) due to the large reductions in soot emissions. In addition, the alternative fuels had reduced particulate sulfate production (near-zero for FT fuels) due to decreased fuel sulfur content. To study the formation of volatile aerosols (defined as any aerosol formed as the plume ages) in more detail, tests were performed at varying ambient temperatures (−4 to 20 °C). At idle, particle number and volume emissions were reduced linearly with increasing ambient temperature, with best fit slopes corresponding to −1.2 × 10 6 # (kg fuel) −1 °C −1 for particle number emissions and −9.7 mm 3 (kg fuel) −1 °C −1 for particle volume emissions. The temperature dependence of aerosol formation can have large effects on local air quality surrounding airports in cold regions. Aircraft produced aerosols in these regions will be much larger than levels expected based solely on measurements made directly at the engine exit plane. The majority (90% at idle) of the volatile aerosol mass formed as nucleation-mode aerosols with a smaller fraction as a soot coating. Conversion efficiencies of up to 3.8% were measured for the partitioning of gas-phase precursors (unburned hydrocarbons and SO 2 ) to form volatile aerosols. Highest conversion efficiencies were measured at 45% power.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-06-11
    Description: Assessing the hydrological effect of the check dams in the Loess Plateau, China, by model simulations Hydrology and Earth System Sciences, 17, 2185-2193, 2013 Author(s): Y. D. Xu, B. J. Fu, and C. S. He Check dams are commonly used for soil conservation. In the Loess Plateau of China, check dams have been widely constructed as the principal means to retain floodwater and intercept soil sediments since the 1970s. For instance, there are more than 6572 check dams in the Yanhe watershed with an area of 7725 km 2 in the Loess Plateau. However, little research has been done to quantify the hydrological effects of the check dams. In this research, the SWAT model (Soil and Water Assessment Tool) was applied to simulate the runoff and sediment in the Yanhe watershed. We treated the 1950s to 1960s as the reference period since there were very few check dams during the period. The model was firstly calibrated and validated in the reference period. The calibrated model was then used in the later periods to simulate the hydrological effects of the check dams. The results showed that the check dams had a regulation effect on runoff and a retention effect on sediment. From 1984 to 1987, the runoff in rainy season (from May to October) decreased by 1.54 m 3 s −1 (14.7%) to 3.13 m 3 s −1 (25.9%) due to the check dams; while in dry season (from November to the following April), runoff increased by 1.46 m 3 s −1 (60.5%) to 1.95 m 3 s −1 (101.2%); the sediment in rainy season decreased by 2.49 × 10 6 ton (34.6%) to 4.35 × 10 6 ton (48.0%). From 2006 to 2008, the runoff in rainy season decreased by 0.79 m 3 s −1 (15.5%) to 1.75 m 3 s −1 (28.9%), and the runoff in dry season increased by 0.51 m 3 s −1 (20.1%) to 0.97 m 3 s −1 (46.4%); the sediment in rainy season decreased by 2.03 × 10 6 ton (79.4%) to 3.12 × 10 6 ton (85.5%). Construction of the large number of check dams in the Loess Plateau has enhanced the region's capacity to control the runoff and sediment. In the Yanhe watershed, the annual runoff was reduced by less than 14.3% due to the check dams; and the sediment in rainy season was blocked by up to 85.5%. Thus, check dams are effective measures for soil erosion control in the Loess Plateau.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-06-12
    Description: Undisturbed and disturbed above canopy ponderosa pine emissions: PTR-TOF-MS measurements and MEGAN 2.1 model results Atmospheric Chemistry and Physics Discussions, 13, 15333-15375, 2013 Author(s): L. Kaser, T. Karl, A. Guenther, M. Graus, R. Schnitzhofer, A. Turnipseed, L. Fischer, P. Harley, M. Madronich, D. Gochis, F. N. Keutsch, and A. Hansel We present the first eddy covariance flux measurements of volatile organic compounds (VOCs) using a proton-transfer-reaction time-of-flight mass-spectrometer (PTR-TOF-MS) above a ponderosa pine forest in Colorado, USA. The high mass resolution of the PTR-TOF-MS enabled the identification of chemical sum formulas. During a 30 day measurement period in August and September 2010, 649 different ion mass peaks were detected in the ambient air mass spectrum (including primary ions and mass calibration compounds). Eddy covariance with the vertical wind speed was calculated for all ion mass peaks. On a typical day, 17 ion mass peaks including protonated parent compounds, their fragments and isotopes as well as VOC-H + -water clusters showed a significant flux with daytime average emissions above a reliable flux threshold of 0.1 mg compound m −2 h −1 . These ion mass peaks could be assigned to seven compound classes. The main flux contributions during daytime (10:00–18:00 LT) are attributed to the sum of 2-methyl-3-buten-2-ol (MBO) and isoprene (50%), methanol (12%), the sum of acetic acid and glycolaldehyde (10%) and the sum of monoterpenes (10%). The total MBO + isoprene flux was composed of 10% isoprene and 90% MBO. There was good agreement between the light and temperature dependency of the sum of MBO and isoprene observed for this work and those of earlier studies. The above canopy flux measurements of the sum of MBO and isoprene and the sum of monoterpenes were compared to emissions calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN 2.1). The best agreement between MEGAN 2.1 and measurements was reached using emission factors determined from site specific leaf cuvette measurements. While the modelled and measured MBO + isoprene fluxes agree well the emissions of the sum of monoterpenes is underestimated by MEGAN 2.1. This is expected as some factors impacting monoterpene emissions, such as physical damage of needles and branches due to storms, are not included in MEGAN 2.1. After a severe hailstorm event, 22 ion mass peaks (attributed to six compound classes plus some unknown compounds) showed an elevated flux for the two following days. The sum of monoterpene emissions was 4–23 times higher compared to emissions prior to the hailstorm while MBO emissions remained unchanged. If one heavy storm occurs at this site every month we calculate that the monthly monoterpene emissions (in mg compound m −2 ) would be underestimated by 40% if this disturbance source is not considered.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-06-12
    Description: Aerosol variability and atmospheric transport in the Himalayan region from CALIOP 2007–2010 observations Atmospheric Chemistry and Physics Discussions, 13, 15271-15299, 2013 Author(s): S. Bucci, C. Cagnazzo, F. Cairo, L. Di Liberto, and F. Fierli Himalayan Plateau is surrounded by regions with high natural and anthropogenic aerosol emissions that have a strong impact on regional climate. This is particularly critical for the Himalayan glaciers whose equilibrium is also largely influenced by radiative direct and indirect effects induced by aerosol burden. This work focuses on the spatial and vertical distribution of different aerosol types, their seasonal variability and sources. The analysis of the 2007–2010 yr of CALIPSO vertically resolved satellite data allows the identification of spatial patterns of desert dust and carbonaceous particles in different atmospheric layers. Clusters of Lagrangian back-trajectories highlight the transport pathways from source regions during the dusty spring season. The analysis shows a prevalence of dust; at low heights they are distributed mainly north (with a main contribution from the Gobi and Taklamakan deserts) and west of the Tibetan Plateau (originating from the deserts of South-West Asia and advected by the westerlies). Above the Himalayas the dust amount is minor but still not negligible (detectable in around 20% of the measurements), and transport from more distant deserts (Sahara and Arabian Peninsula) is important. Smoke aerosol, produced mainly in North India and East China, is subject to shorter range transport and is indeed observed closer to the sources while there is a limited amount reaching the top of the plateau. Data analysis reveals a clear seasonal variability in the frequencies of occurrence for the main aerosol types; dust is regulated principally by the monsoon dynamics, with maxima of occurrence in spring. The study also highlights relevant interannual differences, showing a larger presence of aerosol in the region during 2007 and 2008 yr.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-06-13
    Description: Quantifying aerosol mixing state with entropy and diversity measures Atmospheric Chemistry and Physics Discussions, 13, 15615-15662, 2013 Author(s): N. Riemer and M. West This paper presents the first quantitative metric for aerosol population mixing state, defined as the distribution of per-particle chemical species composition. This new metric, the mixing state index χ, is an affine ratio of the average per-particle species diversity D α and the bulk population species diversity D γ , both of which are based on information-theoretic entropy measures. The mixing state index χ enables the first rigorous definition of the spectrum of mixing states from so-called external mixture to internal mixture, which is significant for aerosol climate impacts, including aerosol optical properties and cloud condensation nuclei activity. We illustrate the usefulness of this new mixing state framework with model results from the stochastic particle-resolved model PartMC-MOSAIC. These results demonstrate how the mixing state metrics evolve with time for several archetypal cases, each of which isolates a specific process such as coagulation, emission, or condensation. Further, we present an analysis of the mixing state evolution for a complex urban plume case, for which these processes occur simultaneously. We additionally derive theoretical properties of the mixing state index and present a family of generalized mixing state indexes that vary in the importance assigned to low-mass-fraction species.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-06-06
    Description: Long-term observations of positive cluster ion concentration, sources and sinks at the high altitude site of the Puy de Dôme Atmospheric Chemistry and Physics Discussions, 13, 14927-14975, 2013 Author(s): C. Rose, J. Boulon, M. Hervo, H. Holmgren, E. Asmi, M. Ramonet, P. Laj, and K. Sellegri Cluster particles (0.8–1.9 nm) are key entities involved in nucleation and new particle formation processes in the atmosphere. Cluster ions were characterized in clear sky conditions at the Puy de Dôme station (1465 m a.s.l). The studied dataset spread over five years (February 2007–February 2012), which provided a unique chance to catch seasonal variations of cluster ion properties at high altitude. Statistical values of the cluster ion concentration and diameter are reported for both positive and negative polarities. Cluster ions were found to be ubiquitous at the Puy de Dôme and displayed an annual variation with lower concentrations in spring. Positive cluster ions were less numerous than negative ones but were larger in diameters. Negative cluster ion properties seemed insensitive to the occurrence of a new particle formation (NPF) event while positive cluster ions appeared to be significantly more numerous and larger on event days. The parameters of the balance equation for the positive cluster concentration are reported, separately for the different seasons and for the NPF event days and non-event days. The steady state assumption suggests that the ionization rate is balanced with two sinks which are the ion recombination and the attachment on aerosol particles, referred as "aerosol ion sink". The aerosol ion sink was found to be higher during the warm season and dominated the loss of ions. The positive ionization rates derived from the balance equation were well correlated with the ionization rates obtained from radon measurement, and they were on average higher in summer and fall compared to winter and spring. Neither the aerosol ion sink nor the ionization rate were found to be significantly different on event days compared to non-event days, and thus they were not able to explain the different positive cluster concentrations between event and non-event days. Hence, the excess of positive small ions on event days may derive from an additional source of ions coupled with the fact that the steady state was not verified on event days.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-06-06
    Description: Review and uncertainty assessment of size-resolved scavenging coefficient formulations for snow scavenging of atmospheric aerosols Atmospheric Chemistry and Physics Discussions, 13, 14823-14869, 2013 Author(s): L. Zhang, X. Wang, M. D. Moran, and J. Feng Theoretical parameterizations for the size-resolved scavenging coefficient for atmospheric aerosol particles scavenged by snow (Λ snow ) need assumptions regarding (i) snow particle–aerosol particle collection efficiency E , (ii) snow particle size distribution N ( D p ), (iii) snow particle terminal velocity V D , and (iv) snow particle cross-sectional area A . Existing formulas for these parameters are reviewed in the present study and uncertainties in Λ snow caused by various combinations of these parameters are assessed. Different formulations of E can cause uncertainties in Λ snow of more than one order of magnitude for all aerosol sizes for typical snowfall intensities. E is the largest source of uncertainty among all the input parameters, similar to rain scavenging of atmospheric aerosols (Λ rain ) as was found in a previous study by Wang et al. (2010). However, other parameters can also cause significant uncertainties in Λ snow , and the uncertainties from these parameters are much larger than for Λ rain . Specifically, different N ( D p ) formulations can cause one-order-of-magnitude uncertainties in Λ snow for all aerosol sizes, as is also the case for a combination of uncertainties from both V D and A . In comparison, uncertainties in Λ rain from N ( D p ) are smaller than a factor of 5 and those from V D are smaller than a factor of 2. Λ snow estimated from one empirical formula generated from field measurements falls in the upper range of, or is slightly higher than, theoretically estimated values. The predicted aerosol concentrations obtained using different Λ snow formulas can differ by a factor of two for just a one-centimeter snowfall (liquid water equivalent of approximately 1 mm). It is likely that, for typical rain and snow event the removal of atmospheric aerosol particles by snow is more effective than removal by rain for equivalent precipitation amounts, although a firm conclusion requires much more evidence.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-06-06
    Description: Atmospheric waves as scaling, turbulent phenomena Atmospheric Chemistry and Physics Discussions, 13, 14797-14822, 2013 Author(s): J. Pinel and S. Lovejoy It is paradoxical that while atmospheric dynamics are highly nonlinear and turbulent that atmospheric waves are commonly modelled by linear or weakly nonlinear theories. We postulate that the laws governing atmospheric waves are on the contrary high Reynold's number ( Re ), emergent laws so that – in common with the emergent high Re turbulent laws – they are also constrained by scaling symmetries. We propose an effective turbulence – wave propagator which corresponds to a fractional and anisotropic extension of the classical wave equation propagator with dispersion relations similar to those of inertial gravity waves (and Kelvin waves) yet with an anomalous (fractional) order H wav /2. Using geostationary IR radiances, we estimate the parameters finding that H wav /2 ≈ 0.17 ± 0.04 (the classical value = 2).
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-06-06
    Description: Optimizing Saharan dust CALIPSO retrievals Atmospheric Chemistry and Physics Discussions, 13, 14749-14795, 2013 Author(s): V. Amiridis, U. Wandinger, E. Marinou, E. Giannakaki, A. Tsekeri, S. Basart, S. Kazadzis, A. Gkikas, M. Taylor, J. Baldasano, and A. Ansmann We demonstrate improvements in CALIPSO dust extinction retrievals over North Africa and Europe when corrections are applied regarding the Saharan dust lidar ratio assumption, the separation of dust portion in detected dust mixtures, and the averaging scheme introduced in the Level 3 CALIPSO product. First, a universal, spatially constant lidar ratio of 58 sr instead of 40 sr is applied to individual Level 2 dust-related backscatter products. The resulting aerosol optical depths show an improvement compared with synchronous and co-located AERONET measurements. An absolute bias of the order of −0.03 has been found, improving on the statistically significant biases of the order of −0.10 reported in the literature for the original CALIPSO product. When compared with the MODIS co-located AOD product, the CALIPSO negative bias is even less for the lidar ratio of 58 sr. After introducing the new lidar ratio for the domain studied, we examine potential improvements to the climatological CALIPSO Level 3 extinction product: (1) by introducing a new methodology for the calculation of pure dust extinction from dust mixtures and (2) by applying an averaging scheme that includes zero extinction values for the non-dust aerosol types detected. The scheme is applied at a horizontal spatial resolution of 1° × 1° for ease of comparison with the instantaneous and co-located dust extinction profiles simulated by the BSC-DREAM8b dust model. Comparisons show that the extinction profiles retrieved with the proposed methodology reproduce the well-known model biases per sub-region examined. The very good agreement of the proposed CALIPSO extinction product with respect to AERONET, MODIS and the BSC-DREAM8b dust model, makes this dataset an ideal candidate for the provision of an accurate and robust multi-year dust climatology over North Africa and Europe.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-06-06
    Description: Climatology of pure Tropospheric profiles and column contents of ozone and carbon monoxide using MOZAIC in the mid-northern latitudes (24° N to 50° N) from 1994 to 2009 Atmospheric Chemistry and Physics Discussions, 13, 14695-14747, 2013 Author(s): R. M. Zbinden, V. Thouret, P. Ricaud, F. Carminati, J.-P. Cammas, and P. Nédélec The objective of this paper is to deliver the most accurate ozone (O 3 ) and carbon monoxide (CO) climatology for the pure troposphere only, i.e. exclusively from the ground to the dynamical tropopause on an individual profile basis. The results (profiles and columns) are derived solely from the M easurements of OZ one and water vapour by in-service AI rbus air C raft programme (MOZAIC) over fifteen years (1994–2009). The study, focused on the northern mid-latitudes [24° N–50° N] and [120° W–140° E], includes more than 40 000 profiles over 11 sites to give a quasi-global zonal picture. Considering all the sites, the pure tropospheric column peak-to-peak seasonal cycle ranges are 23.7–43.2 DU for O 3 and 1.7–6.9 × 10 18 mol cm −2 for CO. The maxima of the seasonal cycles are not in phase, occurring in February–April for CO and May–July for O 3 . The phase shift is related to the photochemistry and OH removal efficiencies. The purely tropospheric seasonal profiles are characterized by a typical autumn-winter/spring-summer O 3 dichotomy, (except in Los Angeles, Eastmed – a cluster of Cairo and Tel Aviv – and the regions impacted by the summer monsoon) and a summer-autumn/winter-spring CO dichotomy. We revisit the boundary-layer, mid-tropospheric (MT) and upper-tropospheric (UT) partial columns, using a new monthly-varying MT ceiling. Interestingly, the seasonal cycle maximum of the UT partial columns is shifted from summer to spring for O 3 and to very early spring for CO. Conversely, the MT maximum is shifted from spring to summer and is associated with a summer (winter) MT thickening (thinning). Lastly, the pure tropospheric seasonal cycles derived from our analysis are consistent with the cycles derived from spaceborne measurements, the correlation coefficients being r = 0.6–0.9 for O 3 , and r 〉 0.9 for CO. The cycles observed from space are nevertheless greater than MOZAIC for O 3 (by 9–18 DU) and smaller for CO (up to 1 × 10 18 mol cm −2 ). The larger winter O 3 difference between the two data sets suggests probable stratospheric contamination in satellite data due to the tropopause position. The study underlines the importance of rigorously discriminating between the stratospheric and tropospheric reservoirs and avoiding use of a monthly-averaged tropopause position without this strict discrimination, in order to assess the pure O 3 and CO tropospheric trends.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-06-06
    Description: A climatology of formation conditions for aerodynamic contrails Atmospheric Chemistry and Physics Discussions, 13, 14667-14693, 2013 Author(s): K. Gierens and F. Dilger Aerodynamic contrails are defined in this paper as line shaped ice clouds caused by aerodynamically triggered cooling over the wings of an aircraft in cruise which become visible immediately at the trailing edge of the wing or close to it. Effects at low altitudes like condensation to liquid droplets and their potential heterogeneous freezing are excluded from our definition. We study atmospheric conditions that allow formation of aerodynamic contrails. These conditions are stated and then applied to atmospheric data, first to a special case where an aerodynamic contrail was actually observed and then to a full year of global reanalysis data. We show where, when (seasonal variation), and how frequently (probability) aerodynamic contrails can form, and how this relates to actual patterns of air traffic. We study the formation of persistent aerodynamic contrails as well. Finally we check whether aerodynamic and exhaust contrails can coexist in the atmosphere. We show that visible aerodynamic contrails are possible only in an altitude range between roughly 540 and 250 hPa, and that the ambient temperature is the most important parameter, not the relative humidity. Finally we give an argument for our believe that currently aerodynamic contrails have a much smaller climate effect than exhaust contrails, which may however change in future with more air traffic in the tropics.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-06-06
    Description: Expansion of global drylands under a warming climate Atmospheric Chemistry and Physics Discussions, 13, 14637-14665, 2013 Author(s): S. Feng and Q. Fu Global drylands encompassing hyper-arid, arid, semiarid, and dry subhumid areas cover about 41% of the earth's terrestrial surface and are home to more than a third of the world's population. By analyzing observations for 1948–2008 and climate model simulations for 1948–2100, we show that global drylands have expanded in last sixty years and will continue to expand in the 21st century. By the end of this century, the world's drylands under a high greenhouse gas emission scenario are projected to be 5.8 × 10 6 km 2 (or 10%) larger than in the 1961–1990 climatology. The major expansion of arid regions will occur over southwest North America, the northern fringe of Africa, southern Africa, and Australia, while major expansions of semiarid regions will occur over the north side of the Mediterranean, southern Africa, and North and South America. The global dryland expansions will increase the population affected by water scarcity and land degradations.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-06-06
    Description: The role of horizontal model resolution in assessing the transport of CO in a middle latitude cyclone using WRF-Chem Atmospheric Chemistry and Physics Discussions, 13, 14871-14925, 2013 Author(s): C. A. Klich and H. E. Fuelberg We use the Weather Research and Forecasting with Chemistry (WRF-Chem) online chemical transport model to simulate a middle latitude cyclone in East Asia at three different horizontal resolutions (45, 15, and 5 km grid spacing). The cyclone contains a typical warm conveyor belt (WCB) with an embedded squall line that passes through an area having large surface concentrations (〉400 ppbv) of carbon monoxide (CO). Model output from WRF-Chem is used to compare differences between the large-scale CO vertical transport by the WCB (the 45 km simulation) with the smaller-scale transport due to its convection (the 5 km simulation). Forward trajectories are calculated from WRF-Chem output using HYSPLIT. At 45 km grid spacing, the WCB exhibits gradual ascent, lofting surface CO to 6–7 km. Upon reaching the warm front, the WCB and associated CO ascend more rapidly and later turn eastward over the Pacific Ocean. Convective transport at 5 km resolution with explicitly resolved convection occurs much more rapidly, with surface CO lofted to altitudes greater than 10 km in 1 h or less. We also compute CO vertical mass fluxes to compare differences in transport due to the different grid spacings. Upward CO flux exceeds 110 000 t h −1 in the domain with explicit convection when the squall line is at peak intensity, while fluxes from the two coarser resolutions are an order of magnitude smaller. Specific areas of interest within the 5 km domain are defined to compare the magnitude of convective transport to that within the entire 5 km region. Although convection encompasses only a small portion of the 5 km domain, it is responsible for ~40% of the upward CO transport. We also examine the vertical transport due to a short wave trough and its associated area of convection, not related to the cyclone, that lofts CO to the upper troposphere. Results indicate that fine-scale resolution with explicitly resolved convection is important when assessing the vertical transport of surface emissions in areas of deep convection.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-06-11
    Description: A Lagrangian view of ozone production tendency in North American outflow in summers 2009 and 2010 Atmospheric Chemistry and Physics Discussions, 13, 15141-15190, 2013 Author(s): B. Zhang, R. C. Owen, J. A. Perlinger, A. Kumar, S. Wu, M. Val Martin, L. Kramer, D. Helmig, and R. E. Honrath The Pico Mountain Observatory, located at 2225 m a.s.l. in the Azores Islands, was established in 2001 to observe long-range transport from North America to the central North Atlantic. In previous research conducted at the Observatory, ozone enhancement (〉55 ppbv) in North American outflows was observed, and efficient ozone production in these outflows was postulated. This study is focused on determining the causes for high d [O 3 ]/ d [CO] values (~1 ppbv ppbv −1 ) observed in summers of 2009 and 2010. The folded retroplume technique, developed by Owen and Honrath (2009), was applied to combine upwind FLEXPART transport pathways with GEOS-Chem chemical fields. This folded result provides a semi-Lagrangian view of polluted North American outflow in terms of physical properties and chemical processes, including production/loss rate of ozone and NO x produced by lightning and thermal decomposition of PAN. Two transport events from North America were identified for detailed analysis. High d [O 3 ]/ d [CO] was observed in both events, but due to differing transport mechanisms, ozone production tendency differed between the two. A layer of net ozone production was found at 2 km a.s.l. over the Azores in the first event plume, apparently driven by PAN decomposition during subsidence of air mass in the Azores-Bermuda High. In the second event, net ozone loss occurred during transport in the lower free troposphere, yet observed d [O 3 ]/ d [CO] was high. We estimate that in both events, CO loss through oxidation contributed significantly to d [O 3 ]/ d [CO] enhancement. Thus, CO is not appropriately used as a passive tracer of pollution in these events. In general, use of d [O 3 ]/ d [CO] as an indicator of net ozone production/loss may be invalid for any situation in which oxidants are elevated. Based on our analysis, use of d [O 3 ]/ d [CO] to diagnose ozone enhancement without verifying the assumption of negligible CO loss is not advisable.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-06-12
    Description: Free troposphere ozone and carbon monoxide over the North Atlantic for 2001–2011 Atmospheric Chemistry and Physics Discussions, 13, 15377-15407, 2013 Author(s): A. Kumar, S. Wu, M. F. Weise, R. Honrath, R. C. Owen, D. Helmig, L. Kramer, M. Val Martin, and Q. Li In-situ measurements of carbon monoxide (CO) and ozone (O 3 ) at the Pico Mountain Observatory (PMO) located in the Azores, Portugal are analyzed together with results from atmospheric chemical transport modeling (GEOS-Chem) and satellite remote sensing (AIRS for CO and TES for O 3 ) to examine the evolution of free-troposphere CO and O 3 over the North Atlantic for 2001–2011. GEOS-Chem captured the seasonal cycles for CO and O 3 well but significantly underestimated the mixing ratios of CO, particularly in spring. Statistically significant (using a significance level of 0.05) decreasing trends were found for both CO and O 3 based on harmonic regression analysis of the measurement data. The best estimates of the trend for CO and O 3 measurements are −0.31 ± 0.30 (2-σ) ppbv yr −1 and −0.21 ± 0.11 (2-σ) ppbv yr −1 , respectively. Similar decreasing trends for both species were obtained with GEOS-Chem simulation results. The major factor contributing to the reported decrease in CO and O 3 mixing ratios at PMO over the past decade is the decline in anthropogenic CO and O 3 -precursor emissions in regions such as North America and Europe. The increase in Asian emissions does not seem to outweigh the impact of these declines resulting in overall decreasing trends for both CO and O 3 . For O 3 , however, increase in atmospheric water vapor content associated with climate change also appears to be a contributing factor causing enhanced destruction of the O 3 during transport from source regions. These hypotheses are supported by results from the GEOS-Chem tagged CO and tagged O 3 simulations.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-06-12
    Description: Mesoscale modeling of smoke transport over the Southeast Asian Maritime Continent: coupling of smoke direct radiative feedbacks below and above the low-level clouds Atmospheric Chemistry and Physics Discussions, 13, 15443-15492, 2013 Author(s): C. Ge, J. Wang, and J. S. Reid The online-coupled Weather Research and Forecasting model with Chemistry (WRF-Chem) is used to simulate the direct and semi-direct radiative impacts of smoke particles over the Southeast Asian Marine Continents (MC, 10° S–10° N, 90° E–150° E) during October 2006 when a significant El Nino event caused the highest biomass burning activity since 1997. With the use of OC (Organic Carbon)/BC (Black Carbon) ratio of 10 in the smoke emission inventory, the baseline simulation shows that the low-level clouds amplifying effect on smoke absorption led to a warming effect at the top-of-atmosphere (TOA) with a domain/monthly average forcing value of ~20 W m −2 over the islands of Borneo and Sumatra. The smoke-induced monthly average daytime heating (0.3 K) that is largely confined above the low-level clouds results in the local convergence over the smoke source region. This heating-induced convergence coupled with daytime planetary boundary layer turbulent mixing, transports more smoke particles above the planetary boundary layer height (PBLH), hence rendering a positive feedback. This positive feedback contrasts with the decrease of cloud fraction resulted from the combined effects of smoke heating within the cloud layer and the more stability in the boundary layer; the latter can be considered as a negative feedback in which decrease of cloud fraction weakens the heating by smoke particles above the clouds. During nighttime, the elevated smoke layer (above clouds in daytime) is decoupled from boundary layer, and the reduction of PBLH due to the residual surface cooling from the daytime lead to the accumulation of smoke particles near the surface. Because of smoke radiative extinction, on monthly basis, the amount of the solar input at the surface is reduced as large as 60 W m −2 , which lead to the decrease of sensible heat, latent heat, 2 m air temperature, and PBLH by a maximum of 20 W m −2 , 20 W m −2 , 1 K, 120 m, respectively. The decrease of boundary layer mixing and the generation of convergence above the PBL also results in a reduction of precipitable water 1–2 km above the PBLH and more precipitable water near the surface and in upper part of the middle troposphere with changes around 0.1 mm. Overall, there is less of a change of column water vapor over the land, and an increase of water vapor amount over the Karimata Strait. The cloud changes over continents are mostly occurred over the islands of Sumatra and Borneo during the daytime, where the low-level cloud fraction decreases more than 10%. However, the change of local wind (include sea breeze) induced by the smoke radiative feedback leads to more convergence over Karimata Strait and south coastal area of Kalimantan during both daytime and night time; consequently, cloud fraction is increased there up to 20%. The sensitivities with different OC/BC ratio show the importance of the smoke single scattering albedo for the smoke semi-direct effects. A case study on 31 October 2006 further demonstrated a much larger (more than twice of the monthly average) feedback induced by smoke aerosols. The decreased sea breeze during big events can lead to prominent increase (40%) of low-level cloud over coastal water. Lastly, the direct and semi-direct radiative impact of smoke particles over the Southeast Asian Marine Continents is summarized as a conceptual model.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-06-12
    Description: Global carbon monoxide products from combined AIRS, TES and MLS measurements on A-train satellites Atmospheric Chemistry and Physics Discussions, 13, 15409-15441, 2013 Author(s): J. X. Warner, R. Yang, Z. Wei, F. Carminati, A. Tangborn, Z. Sun, W. Lahoz, J.-L. Attié, L. El Amraoui, and B. Duncan This study tests a novel methodology to add value to satellite datasets. This methodology, data fusion, is similar to data assimilation, except that the background model-based field is replaced by a satellite dataset, in this case AIRS (Atmospheric Infrared Sounder) carbon monoxide (CO) measurements. The observational information comes from CO measurements with lower spatial coverage than AIRS, namely, from TES (Tropospheric Emission Spectrometer) and MLS (Microwave Limb Sounder). We show that combining these datasets with data fusion uses the higher spectral resolution of TES to extend AIRS CO observational sensitivity to the lower troposphere, a region especially important for air quality studies. We also show that combined CO measurements from AIRS and MLS provide enhanced information in the UTLS (upper troposphere/lower stratosphere) region compared to each product individually. The combined AIRS/TES and AIRS/MLS CO products are validated against DACOM (differential absorption mid-IR diode laser spectrometer) in situ CO measurements from the INTEX-B (Intercontinental Chemical Transport Experiment: MILAGRO and Pacific phases) field campaign and in situ data from HIPPO (HIAPER Pole-to-Pole Observations) flights. The data fusion results show improved sensitivities in the lower and upper troposphere (20–30% and above 20%, respectively) as compared with AIRS-only retrievals, and improved coverage compared with TES and MLS CO data.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-06-13
    Description: An inverse modeling method to assess the source term of the Fukushima nuclear power plant accident using gamma dose rate observations Atmospheric Chemistry and Physics Discussions, 13, 15567-15614, 2013 Author(s): O. Saunier, A. Mathieu, D. Didier, M. Tombette, D. Quélo, V. Winiarek, and M. Bocquet The Chernobyl nuclear accident and more recently the Fukushima accident highlighted that the largest source of error on consequences assessment is the source term including the time evolution of the release rate and its distribution between radioisotopes. Inverse modeling methods, which combine environmental measurements and atmospheric dispersion models, have proven efficient in assessing source term due to an accidental situation (Gudiksen, 1989; Krysta and Bocquet, 2007; Stohl et al., 2012a; Winiarek et al., 2012). Most existing approaches are designed to use air sampling measurements (Winiarek et al., 2012) and some of them also use deposition measurements (Stohl et al., 2012a; Winiarek et al., 2013) but none of them uses dose rate measurements. However, it is the most widespread measurement system, and in the event of a nuclear accident, these data constitute the main source of measurements of the plume and radioactive fallout during releases. This paper proposes a method to use dose rate measurements as part of an inverse modeling approach to assess source terms. The method is proven efficient and reliable when applied to the accident at the Fukushima Daiichi nuclear power plant (FD-NPP). The emissions for the eight main isotopes 133 Xe, 134 Cs, 136 Cs, 137 Cs, 137m Ba, 131 I, 132 I and 132 Te have been assessed. Accordingly, 103 PBq of 131 I, 35.5 PBq of 132 I, 15.5 PBq of 137 Cs and 12 100 PBq of noble gases were released. The events at FD-NPP (such as venting, explosions, etc.) known to have caused atmospheric releases are well identified in the retrieved source term. The estimated source term is validated by comparing simulations of atmospheric dispersion and deposition with environmental observations. The result is that the model-measurement agreement for all of the monitoring locations is correct for 80% of simulated dose rates that are within a factor of 2 of the observed values. Changes in dose rates over time have been overall properly reconstructed, especially in the most contaminated areas to the northwest and south of the FD-NPP. A comparison with observed atmospheric activity concentration and surface deposition shows that the emissions of caesiums and 131 I are realistic but that 132 I and 132 Te are probably underestimated and noble gases are likely overestimated. Finally, an important outcome of this study is that the method proved to be perfectly suited to emergency management and could contribute to improve emergency response in the event of a nuclear accident.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-06-08
    Description: Determining spatial variability of dry spells: a Markov-based method, applied to the Makanya catchment, Tanzania Hydrology and Earth System Sciences, 17, 2161-2170, 2013 Author(s): B. M. C. Fischer, M. L. Mul, and H. H. G. Savenije With a growing world population and a trend towards more resource-intensive diets, pressure on land and water resources for food production will continue to increase in the coming decades. Large parts of the world rely on rainfed agriculture for their food security. In Africa, 90% of the food production is from rainfed agriculture, generally with low yields and a high risk of crop failure. One of the main reasons for crop failure is the occurrence of dry spells during the growing season. Key indicators are the critical dry spell duration and the probability of dry spell occurrence. In this paper a new Markov-based framework is presented to spatially map the length of dry spells for fixed probabilities of non-exceedance. The framework makes use of spatially varying Markov coefficients that are correlated to readily available spatial information such as elevation and distance to the sea. The dry spell map thus obtained is compared to the spatially variable critical dry spell duration, based on soil properties and crop water requirements, to assess the probability of crop failure in different locations. The results show that in the Makanya catchment the length of dry spell occurrence is highly variable in space, even over relatively short distances. In certain areas the probability of crop failure reaches levels that make rainfed agricultural unsustainable, even close to areas where currently rainfed agriculture is successfully being practised. This method can be used to identify regions that are vulnerable to dry spells and, subsequently, to develop strategies for supplementary irrigation or rainwater harvesting.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-06-11
    Description: Forcing of stratospheric chemistry and dynamics during the Dalton Minimum Atmospheric Chemistry and Physics Discussions, 13, 15061-15104, 2013 Author(s): J. G. Anet, S. Muthers, E. Rozanov, C. C. Raible, T. Peter, A. Stenke, A. I. Shapiro, J. Beer, F. Steinhilber, S. Brönnimann, F. Arfeuille, Y. Brugnara, and W. Schmutz The response of atmospheric chemistry and climate to volcanic eruptions and a decrease in solar activity during the Dalton Minimum is investigated with the fully coupled atmosphere-ocean-chemistry general circulation model SOCOL-MPIOM covering the time period 1780 to 1840 AD. We carried out several sensitivity ensemble experiments to separate the effects of (i) reduced solar ultra-violet (UV) irradiance, (ii) reduced solar visible and near infrared irradiance, (iii) enhanced galactic cosmic ray intensity as well as less intensive solar energetic proton events and auroral electron precipitation, and (iv) volcanic aerosols. The introduced changes of UV irradiance and volcanic aerosols significantly influence stratospheric climate in the early 19th century, whereas changes in the visible part of the spectrum and energetic particles have smaller effects. A reduction of UV irradiance by 15% causes global ozone decrease below the stratopause reaching 8% in the midlatitudes at 5 hPa and a significant stratospheric cooling of up to 2 °C in the midstratosphere and to 6 °C in the lower mesosphere. Changes in energetic particle precipitation lead only to minor changes in the yearly averaged temperature fields in the stratosphere. Volcanic aerosols heat the tropical lower stratosphere allowing more water vapor to enter the tropical stratosphere, which, via HO x reactions, decreases upper stratospheric and mesospheric ozone by roughly 4%. Conversely, heterogeneous chemistry on aerosols reduces stratospheric NO x leading to a 12% ozone increase in the tropics, whereas a decrease in ozone of up to 5% is found over Antarctica in boreal winter. The linear superposition of the different contributions is not equivalent to the response obtained in a simulation when all forcing factors are applied during the DM – this effect is especially well visible for NO x /NO y . Thus, this study highlights the non-linear behavior of the coupled chemistry-climate system. Finally, we conclude that especially UV and volcanic eruptions dominate the changes in the ozone, temperature and dynamics while the NO x field is dominated by the EPP. Visible radiation changes have only very minor effects on both stratospheric dynamics and chemistry.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-06-11
    Description: Estimation of aerosol water and chemical composition from AERONET at Cabauw, the Netherlands Atmospheric Chemistry and Physics Discussions, 13, 15191-15232, 2013 Author(s): A. J. van Beelen, G. J. H. Roelofs, O. P. Hasekamp, J. S. Henzing, and T. Röckmann Remote sensing of aerosols provides important information on the atmospheric aerosol abundance. However, due to the hygroscopic nature of aerosol particles observed aerosol optical properties are influenced by atmospheric humidity, and the measurements do not unambiguously characterize the aerosol dry mass and composition which complicates the comparison with aerosol models. In this study we derive aerosol water and chemical composition by a modeling approach that combines individual measurements of remotely sensed aerosol properties (e.g. optical thickness, single scattering albedo, refractive index and size distribution) from an AERONET (Aerosol Robotic Network) sun-photometer with radiosonde measurements of relative humidity. The model simulates water uptake by aerosols based on the chemical composition and size distribution. A minimization method is used to calculate aerosol composition and concentration, which are then compared to in situ measurements from the Intensive Measurement Campaign At the Cabauw Tower (IMPACT, May 2008, the Netherlands). Computed concentrations show reasonable agreement with surface observations and follow the day-to-day variability in observations. Total dry mass (33 ± 12 μg m −3 ) and black carbon concentrations (0.7 ± 0.3 μg m −3 ) are generally accurately computed. The uncertainty in the AERONET (real) refractive index (0.025–0.05) introduces larger uncertainty in the modeled aerosol composition (e.g. sulfates, ammonium nitrate or organic matter) and leads to an uncertainty of 0.1–0.25 in aerosol water volume fraction. Water volume fraction is highly variable depending on composition, up to 〉0.5 at 70–80% and
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2013-04-11
    Description: Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis Hydrology and Earth System Sciences, 17, 1331-1363, 2013 Author(s): T. A. McMahon, M. C. Peel, L. Lowe, R. Srikanthan, and T. R. McVicar This guide to estimating daily and monthly actual, potential, reference crop and pan evaporation covers topics that are of interest to researchers, consulting hydrologists and practicing engineers. Topics include estimating actual evaporation from deep lakes and from farm dams and for catchment water balance studies, estimating potential evaporation as input to rainfall-runoff models, and reference crop evapotranspiration for small irrigation areas, and for irrigation within large irrigation districts. Inspiration for this guide arose in response to the authors' experiences in reviewing research papers and consulting reports where estimation of the actual evaporation component in catchment and water balance studies was often inadequately handled. Practical guides using consistent terminology that cover both theory and practice are not readily available. Here we provide such a guide, which is divided into three parts. The first part provides background theory and an outline of the conceptual models of potential evaporation of Penman, Penman–Monteith and Priestley–Taylor, as well as discussions of reference crop evapotranspiration and Class-A pan evaporation. The last two sub-sections in this first part include techniques to estimate actual evaporation from (i) open-surface water and (ii) landscapes and catchments (Morton and the advection-aridity models). The second part addresses topics confronting a practicing hydrologist, e.g. estimating actual evaporation for deep lakes, shallow lakes and farm dams, lakes covered with vegetation, catchments, irrigation areas and bare soil. The third part addresses six related issues: (i) automatic (hard wired) calculation of evaporation estimates in commercial weather stations, (ii) evaporation estimates without wind data, (iii) at-site meteorological data, (iv) dealing with evaporation in a climate change environment, (v) 24 h versus day-light hour estimation of meteorological variables, and (vi) uncertainty in evaporation estimates. This paper is supported by a Supplement that includes 21 sections enhancing the material in the text, worked examples of many procedures discussed in the paper, a program listing (Fortran 90) of Morton's WREVAP evaporation models along with tables of monthly Class-A pan coefficients for 68 locations across Australia and other information.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-04-03
    Description: Evaluation of various methods to measure particulate bound mercury and associated artifacts Atmospheric Chemistry and Physics Discussions, 13, 8585-8614, 2013 Author(s): S. Wang, T. M. Holsen, J. Huang, and Y.-J. Han This study was performed to determine how sampling artifacts associated with various sampling methods including open faced filter (OFF) pack, micro orifice uniform deposit impactor (MOUDI), and Tekran speciation system (TekSpec) impact particulate bound mercury (PBM) measurements. PBM measured by the MOUDI for 48 h was statistically lower than that measured with the TekSpec every 2 h, indicating that negative artifacts were significant for long sampling durations. Negative artifacts were also identified in lab experiments as the Hg 0 and HgCl 2 concentrations associated with particulate matter on the filter significantly decreased when the filter was exposed to zero air. Positive artifacts were also investigated. The OFF sampling for 48 h, which is likely to be associated with both positive and negative artifacts, measured a significantly lower PBM concentration than the TekSpec while the OFF and MOUDI (48 h sampling – minimal positive artifacts) showed similar results, suggesting that positive artifacts were minor under the rural condition encountered (low atmospheric gaseous oxidized mercury and typical oxidants concentrations). The Hg speciation associated with particles varied with atmospheric temperature, with the contribution of less volatile species including HgO and HgS increasing and more volatile Hg 0 and HgCl 2 decreasing as atmospheric temperature increased. There was significant correlation for PBM larger than 2.5 μm between TekSpec frit and MOUDI in this study, indicating that TekSpec frit is a good alternative sampler for measuring the concentration of coarse PBM.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-04-03
    Description: Aerosol and precipitation chemistry in the southwestern United States: spatiotemporal trends and interrelationships Atmospheric Chemistry and Physics Discussions, 13, 8615-8662, 2013 Author(s): A. Sorooshian, T. Shingler, A. Harpold, C. W. Feagles, T. Meixner, and P. D. Brooks This study characterizes the spatial and temporal patterns of aerosol and precipitation composition at six sites across the United States Southwest between 1995 and 2010. Precipitation accumulation occurs mostly during the wintertime (December–February) and during the monsoon season (July–September). Rain and snow pH levels are usually between 5–6, with crustal-derived species playing a major role in acid neutralization. These species (Ca 2+ , Mg 2+ , K + ,Na + ) exhibit their highest concentrations between March and June in both PM 2.5 and precipitation due mostly to dust. Crustal-derived species concentrations in precipitation exhibit positive relationships with SO 4 2− , NO 3 − , and Cl − , suggesting that acidic gases likely react with and partition to either crustal particles or hydrometeors enriched with crustal constituents. Concentrations of particulate SO 4 2− show a statistically significant correlation with rain SO 4 2− unlike snow SO 4 2− , which may be related to some combination of the vertical distribution of SO 4 2− (and precursors) and the varying degree to which SO 4 2− -enriched particles act as cloud condensation nuclei versus ice nuclei in the region. The coarse : fine aerosol mass ratio was correlated with crustal species concentrations in snow unlike rain, suggestive of a preferential role of coarse particles (mainly dust) as ice nuclei in the region. Precipitation NO 3 − : SO 4 2− ratios exhibit the following features with potential explanations discussed: (i) they are higher in precipitation as compared to PM 2.5 ; (ii) they exhibit the opposite annual cycle compared to particulate NO 3 − : SO 4 2− ratios; and (iii) they are higher in snow relative to rain during the wintertime. Long-term trend analysis for the monsoon season shows that the NO 3 − : SO 4 2− ratio in rain decreased at the majority of sites due mostly to air pollution regulations of SO 4 2− precursors.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-04-05
    Description: Effects of relative humidity on aerosol light scattering: results from different European sites Atmospheric Chemistry and Physics Discussions, 13, 8939-8984, 2013 Author(s): P. Zieger, R. Fierz-Schmidhauser, E. Weingartner, and U. Baltensperger The effect of aerosol water uptake on the aerosol particle light scattering coefficient (σ sp ) is described in this study by comparing measurements from five European sites: the Jungfraujoch, located in the Swiss Alps at 3580 m a.s.l., Ny-Ålesund, located on Spitsbergen in the Arctic, Mace Head, a coastal site in Ireland, Cabauw, a rural site in the Netherlands and Melpitz, a regional background site in Eastern Germany. These sites were selected according to the aerosol type usually encountered at that location. The scattering enhancement factor f (RH,λ) is the key parameter to describe the effect of water uptake on the particle light scattering. It is defined as the σ sp (RH) at a certain relative humidity (RH) and wavelength λ divided by its dry value. f (RH) largely varied at the five sites starting from very low values of f (RH = 85%,λ = 550 nm) around 1.28 for mineral dust to 3.41 for Arctic aerosol. Hysteresis behavior was observed at all sites except at the Jungfraujoch due to the absence of sea salt. Closure studies and Mie simulations showed that both size and chemical composition determine the magnitude of f (RH). Both parameters are also needed to successfully predict f (RH). Finally, the measurement results were compared to the widely used aerosol model OPAC (Hess et al., 1998). Significant discrepancies were seen especially at intermediate RH ranges, which were mainly attributed to inappropriate implemented hygroscopic growth within OPAC. Replacement of the hygroscopic growth with recent literature values showed a clear improvement of the OPAC model.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-04-06
    Description: Spectro-microscopic measurements of carbonaceous aerosol aging in Central California Atmospheric Chemistry and Physics Discussions, 13, 9179-9216, 2013 Author(s): R. C. Moffet, T. C. Rödel, S. T. Kelly, X. Y. Yu, G. T. Carroll, J. Fast, R. A. Zaveri, A. Laskin, and M. K. Gilles Carbonaceous aerosols are responsible for large uncertainties in climate models, degraded visibility, and adverse health effects. The Carbonaceous Aerosols and Radiative Effects Study (CARES) was designed to study carbonaceous aerosols in the natural environment of Central Valley, California, and learn more about their atmospheric formation and aging. This paper presents results from spectro-microscopic measurements of carbonaceous particles collected during CARES at the time of pollution accumulation event (27–29 June 2010), when in situ measurements indicated an increase in the organic carbon content of aerosols as the Sacramento urban plume aged. Computer controlled scanning electron microscopy coupled with an energy dispersive X-ray detector (CCSEM/EDX) and scanning transmission X-ray microscopy coupled with near edge X-ray absorption spectroscopy (STXM/NEXAFS) were used to probe the chemical composition and morphology of individual particles. It was found that the mass of organic carbon on individual particles increased through condensation of secondary organic aerosol. STXM/NEXAFS indicated that the number fraction of homogenous organic particles lacking inorganic inclusions (greater than ~50 nm diameter) increased with plume age as did the organic mass per particle. Comparison of the CARES spectro-microscopic data set with a similar dataset obtained in Mexico City during the MILAGRO campaign showed that individual particles in Mexico City contained twice as much carbon as those sampled during CARES. The number fraction of soot particles at the Mexico City urban site (30%) was larger than at the CARES urban site (10%) and the most aged samples from CARES contained less carbon-carbon double bonds. Differences between carbonaceous particles in Mexico City and California result from different sources, photochemical conditions, gas phase reactants, and secondary organic aerosol precursors. The detailed results provided by these spectro-microscopic measurements will allow for a comprehensive evaluation of aerosol process models used in climate research.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-04-06
    Description: Corrigendum to "Calibration of aerodynamic roughness over the Tibetan Plateau with Ensemble Kalman Filter analysed heat flux" published in Hydrol. Earth Syst. Sci., 16, 4291–4302, 2012 Hydrology and Earth System Sciences, 17, 1309-1310, 2013 Author(s): J. H. Lee, J. Timmermans, Z. Su, and M. Mancini No abstract available.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-04-09
    Description: Structural break or long memory: an empirical survey on daily rainfall data sets across Malaysia Hydrology and Earth System Sciences, 17, 1311-1318, 2013 Author(s): F. Yusof, I. L. Kane, and Z. Yusop A short memory process that encounters occasional structural breaks in mean can show a slower rate of decay in the autocorrelation function and other properties of fractional integrated I (d) processes. In this paper we employed a procedure for estimating the fractional differencing parameter in semiparametric contexts proposed by Geweke and Porter-Hudak (1983) to analyse nine daily rainfall data sets across Malaysia. The results indicate that all the data sets exhibit long memory. Furthermore, an empirical fluctuation process using the ordinary least square (OLS)-based cumulative sum (CUSUM) test for the break date was applied. Break dates were detected in all data sets. The data sets were partitioned according to their respective break date, and a further test for long memory was applied for all subseries. Results show that all subseries follows the same pattern as the original series. The estimate of the fractional parameters d 1 and d 2 on the subseries obtained by splitting the original series at the break date confirms that there is a long memory in the data generating process (DGP). Therefore this evidence shows a true long memory not due to structural break.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-04-03
    Description: Laboratory studies of immersion and deposition mode ice nucleation of ozone aged mineral dust particles Atmospheric Chemistry and Physics Discussions, 13, 8701-8767, 2013 Author(s): Z. A. Kanji, A. Welti, C. Chou, O. Stetzer, and U. Lohmann Ice nucleation in the atmosphere is central to the understanding the microphysical properties of mixed-phase and cirrus clouds. Ambient conditions such as temperature ( T ) and relative humidity (RH), as well as aerosol properties such as chemical composition and mixing state play an important role in predicting ice formation in the troposphere. Previous field studies have reported the absence of sulphate and organic compounds on mineral dust ice crystal residuals sampled at mountain top stations or aircraft based measurements despite the long range transport mineral dust is subjected to. We present laboratory studies of ice nucleation for immersion and deposition mode on ozone aged mineral dust particles for 233 〈 T 〈 263 K that will represent ageing but not internal mixing with in(organic) compounds. Heterogeneous ice nucleation of untreated kaolinite (Ka) and Arizona Test Dust (ATD) particles is compared to corresponding aged particles that are subjected to ozone exposures of 0.4–4.3 ppmv in a stainless steel aerosol tank. The portable ice nucleation counter (PINC) and immersion chamber combined with the Zurich ice nucleation chamber (IMCA – ZINC) are used to conduct deposition and immersion mode measurements respectively. Ice active fractions as well as ice active surface site densities ( n s ) are reported and observed to increase as a function of temperature. We present first results that demonstrate enhancement of the ice nucleation ability of aged mineral dust particles in both the deposition and immersion mode due to ageing. Additionally, these are also the first results to show a suppression of heterogeneous ice nucleation without the condensation of a coating of (in)organic material. In immersion mode, low exposure Ka particles showed enhanced ice activity requiring a median freezing temperature of 1.5 K warmer than that of untreated Ka whereas high exposure ATD particles showed suppressed ice nucleation requiring a median freezing temperature of 3 K colder than that of untreated ATD. In deposition mode, low exposure Ka had ice active fractions of an order of magnitude higher than untreated Ka, where as high exposure ATD had ice active fractions up to a factor of 4 lower than untreated ATD. Based on our results, we present parameterizations in terms of n s ( T ) that can represent ice nucleation of atmospherically aged and non-aged particles for both immersion and deposition mode. We find excellent agreement (to within less than a factor of 2) with field measurements when parameterizations derived from our results are used to predict ice nuclei concentrations in the troposphere.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-04-03
    Description: Retrieval of the Eyjafjallajökull volcanic aerosol optical and microphysical properties from POLDER/PARASOL measurements Atmospheric Chemistry and Physics Discussions, 13, 8663-8699, 2013 Total and polarized radiances provided by the Polarization and Directionality of Earth Reflectances (POLDER) satellite sensor are used to retrieve the microphysical and optical properties of the volcanic plume observed during the Eyjafjallajökull volcano eruption in 2010, over cloud-free and cloudy ocean scenes. We selected two plume conditions, fresh aerosols near the sources (three cases) and a downwind volcanic plume observed over the North Sea 30 h after its injection into the atmosphere (aged aerosols). In the near-source conditions, the aerosol properties depend on the distance to the plume. Within the plume, aerosols are mainly non-spherical and in the coarse mode with an effective radius equal to 1.50 (± 0.15) μm and an Ångström Exponent (AE) close to 0.0. Far from the plume, in addition to the coarse mode, there are smaller particles retrieved in the accumulation mode suggesting a mixture of sulfate aerosols and volcanic dust, resulting in an AE around 0.8. The properties of the aerosols also depend on whether the plume is fresh or aged. For the downwind (aged) plume, if non-spherical coarse particles as well as some fine mode particles are still retrieved, the AE is smaller, around ~ 0.4. In addition, the real refractive index (RR) values are larger for the downwind plume (1.42 〈 RR 〈 1.58) than for the near-source plume (1.38 〈 RR 〈 1.48). The mean Single Scattering Albedo (SSA) retrieved at 0.865 μm was estimated at 0.97 over some parts of the downwind and near-source plumes; despite the low accuracy of our retrievals, the derived SSA values suggest that the ash particles are rather absorbing. To consider the particle shape, a combination of spheroid models is used. Although the employed model enabled accurate modeling of the POLDER signal in case of non-spherical ash, our approach failed to model the signal over the optically thickest parts of the near-source plume. The most probable reason for this is speculated to be the presence of ice crystals within the plume. For the Aerosol Above Clouds (AAC) scenes, polarized measurements allowed the retrieval of the Optical Thickness (OT) and the AE of optically thin volcanic ash. We found that all the cloud parameters retrieved by passive sensors were biased due to the presence of the elevated volcanic plumes. Finally, thermal infrared measurements were used to identify the type of multi-layer scene (i.e. cirrus clouds or volcanic dust above liquid clouds) and the retrieval method also provided the OT of thin cirrus layers above the clouds near Iceland.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-04-03
    Description: Snow glacier melt estimation in tropical Andean glaciers using artificial neural networks Hydrology and Earth System Sciences, 17, 1265-1280, 2013 Author(s): V. Moya Quiroga, A. Mano, Y. Asaoka, S. Kure, K. Udo, and J. Mendoza Snow and glacier melt (SGM) estimation plays an important role in water resources management. Although melting process can be modelled by energy balance methods, such studies require detailed data, which is rarely available. Hence, new and simpler approaches are needed for SGM estimations. The present study aims at developing an artificial neural networks (ANN) based technique for estimating the energy available for melt (EAM) and SGM rates using available and easy to obtain data such as temperature, short-wave radiation and relative humidity. Several ANN and multiple linear regression models (MLR) were developed to represent the energy fluxes and estimate the EAM. The models were trained using measured data from the Zongo glacier located in the outer tropics and validated against measured data from the Antizana glacier located in the inner tropics. It was found that ANN models provide a better generalisation when applied to other data sets. The performance of the models was improved by including Antizana data into the training set, as it was proved to provide better results than other techniques like the use of a prior logarithmic transformation. The final model was validated against measured data from the Alpine glaciers Argentière and Saint-Sorlin. Then, the models were applied for the estimation of SGM at Condoriri glacier. The estimated SGM was compared with SGM estimated by an enhanced temperature method and proved to have the same behaviour considering temperature sensibility. Moreover, the ANN models have the advantage of direct application, while the temperature method requires calibration of empirical coefficients.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-04-03
    Description: Assessment of shallow subsurface characterisation with non-invasive geophysical methods at the intermediate hill-slope scale Hydrology and Earth System Sciences, 17, 1297-1307, 2013 Author(s): S. Popp, D. Altdorff, and P. Dietrich Hill-slopes of several hectares in size represent a difficult scale for subsurface characterisation, as these landscape units are well beyond the scope of traditional point-scale techniques. By means of electromagnetic induction (EMI) and gamma-ray spectroscopy, spatially distributed soil proxy data were collected from a heterogeneous hill-slope site. Results of EMI mapping using the EM38DD showed that soil electrical conductivity (ECa) is highly variable at both temporal and spatial scales. Calibration of the integral ECa signal to a specific target like soil moisture is hampered by the ambiguous response of EMI to the clay-rich hill-slope underground. Gamma-ray results were obtained during a single survey, along with EMI measurements and selected soil sampling. In contrast to ECa, a noticeable correlation between Total Count and K emission data and soil-water content seemed to be present. Relevant proxy variables from both methods were used for k means clustering in order to distinguish between hill-slope areas with different soil conditions. As a result, we obtained a suitable partition of hill-slope that was comparable with a previously obtained zonation model based on ecological factors.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-04-03
    Description: Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation Hydrology and Earth System Sciences, 17, 1281-1296, 2013 Author(s): B. Gräler, M. J. van den Berg, S. Vandenberghe, A. Petroselli, S. Grimaldi, B. De Baets, and N. E. C. Verhoest Most of the hydrological and hydraulic studies refer to the notion of a return period to quantify design variables. When dealing with multiple design variables, the well-known univariate statistical analysis is no longer satisfactory, and several issues challenge the practitioner. How should one incorporate the dependence between variables? How should a multivariate return period be defined and applied in order to yield a proper design event? In this study an overview of the state of the art for estimating multivariate design events is given and the different approaches are compared. The construction of multivariate distribution functions is done through the use of copulas, given their practicality in multivariate frequency analyses and their ability to model numerous types of dependence structures in a flexible way. A synthetic case study is used to generate a large data set of simulated discharges that is used for illustrating the effect of different modelling choices on the design events. Based on different uni- and multivariate approaches, the design hydrograph characteristics of a 3-D phenomenon composed of annual maximum peak discharge, its volume, and duration are derived. These approaches are based on regression analysis, bivariate conditional distributions, bivariate joint distributions and Kendall distribution functions, highlighting theoretical and practical issues of multivariate frequency analysis. Also an ensemble-based approach is presented. For a given design return period, the approach chosen clearly affects the calculated design event, and much attention should be given to the choice of the approach used as this depends on the real-world problem at hand.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-04-06
    Description: Present and future nitrogen deposition to national parks in the United States: critical load exceedances Atmospheric Chemistry and Physics Discussions, 13, 9151-9178, 2013 Author(s): R. A. Ellis, D. J. Jacob, M. Payer, L. Zhang, C. D. Holmes, B. A. Schichtel, T. Blett, E. Porter, L. H. Pardo, and J. A. Lynch National parks in the United States are protected areas wherein the natural habitat is to be conserved for future generations. Deposition of anthropogenic nitrogen (N) transported from areas of human activity (fuel combustion, agriculture) may affect these natural habitats if it exceeds an ecosystem-dependent critical load (CL). We quantify and interpret the deposition to Class I US national parks for present-day and future (2050) conditions using the GEOS-Chem global chemical transport model with 1/2° × 2/3° horizontal resolution over North America. We estimate CL values in the range 2.5–5 kg N ha −1 yr −1 for the different parks with the goal of protecting the most sensitive ecosystem receptors. For present-day conditions, we find 24 out of 45 parks to be in CL exceedance and 14 more to be marginally so. Many of these are in remote areas of the West. Most (40–85%) of the deposition originates from NO x emissions (fuel combustion). We then project future changes in N deposition using the Representative Concentration Pathway (RCP) emission scenarios for 2050. These feature 52–73% declines in US NO x emissions relative to present but 19–50% increases in US ammonia (NH 3 ) emissions. Nitrogen deposition at US national parks then becomes dominated by domestic NH 3 emissions. While deposition decreases in the East relative to present, there is little progress in the West and increases in some regions. We find that 17–25 US national parks will have CL exceedances in 2050 based on the RCP scenarios. Even in total absence of anthropogenic NO x emissions, 14–18 parks would still have a CL exceedance. Returning all parks to N deposition below CL by 2050 will require at least a 55% decrease in anthropogenic NH 3 emissions relative to RCP-projected 2050 levels.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-04-06
    Description: Redox activity of naphthalene secondary organic aerosol Atmospheric Chemistry and Physics Discussions, 13, 9107-9149, 2013 Author(s): R. D. McWhinney, S. Zhou, and J. P. D. Abbatt Chamber secondary organic aerosol (SOA) from low-NO x photooxidation of naphthalene by hydroxyl radical was examined with respect to its redox cycling behaviour using the dithiothreitol (DTT) assay. Naphthalene SOA was highly redox active, consuming DTT at an average rate of 118 ± 14 pmol per minute per μg of SOA material. Measured particle-phase masses of the major previously identified redox active products, 1,2- and 1,4-naphthoquinone, accounted for only 21 ± 3% of the observed redox cycling activity. The redox-active 5-hydroxy-1,4-naphthoquinone was identified as a new minor product of naphthalene oxidation, and including this species in redox activity predictions increased the predicted DTT reactivity to 30 ± 5% of observations. Similar attempts to predict redox behaviour of oxidised two-stroke engine exhaust particles by measuring 1,2-naphthoquinone, 1,4-naphthoquinone and 9,10-phenanthrenequinone predicted DTT decay rates only 4.9 ± 2.5% of those observed. Together, these results suggest that there are substantial unidentified redox-active SOA constituents beyond the small quinones that may be important toxic components of these particles. A gas-to-SOA particle partitioning coefficient was calculated to be (7.0 ± 2.5) × 10 −4 m 3 μg −1 for 1,4-naphthoquinone at 25 °C. This value suggests that under typical warm conditions, 1,4-naphthoquinone is unlikely to contribute strongly to redox behaviour of ambient particles, although further work is needed to determine the potential impact under conditions such as low temperatures where partitioning to the particle is more favourable. As well, higher order oxidation products that likely account for a substantial fraction of the redox cycling capability of the naphthalene SOA are likely to partition much more strongly to the particle phase.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-04-10
    Description: The mid-Pliocene climate simulated by FGOALS-g2 Geoscientific Model Development Discussions, 6, 2403-2428, 2013 Author(s): W. Zheng, Z. Zhang, L. Chen, and Y. Yu Within the framework of Pliocene Model Intercomparison Project (PlioMIP), the mid-Pliocene (3.264–3.025 Ma) climate simulated by the Flexible Global Ocean-Atmosphere-Land System model grid-point version 2 (FGOALS-g2) are analyzed in this study. Results show that the model reproduces the large-scale features of the global warming over the land and ocean. The simulated mid-Pliocene global annual mean surface air temperature (TAS) and sea surface temperature (SST) are 4.17 and 2.62°C warmer than the pre-Industrial simulation, respectively. In particular, the feature of larger warming over mid-high latitudes is well captured. In the simulated warm mid-Pliocene climate, the Atlantic Meridional Overturning Circulation (AMOC) and El Niño-Southern Oscillation (ENSO) become weaker.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-04-10
    Description: The potential of an observational data set for calibration of a computationally expensive computer model Geoscientific Model Development Discussions, 6, 2369-2401, 2013 Author(s): D. J. McNeall, P. G. Challenor, J. R. Gattiker, and E. J. Stone We measure the potential of an observational data set to constrain a set of inputs to a complex and computationally expensive computer model. We use each member in turn of an ensemble of output from a computationally expensive model, corresponding to some observable part of a modelled system, as a proxy for an observational data set. We argue that our ability to constrain uncertain parameter inputs to a model using its own output as data, provides a maximum bound for our ability to constrain the model inputs using observations of the real system. The ensemble provides a set of known parameter input and model output pairs, which we use to build a computationally efficient statistical proxy for the full computer model, termed an emulator. We use the emulator to find and rule out ''implausible" values for the inputs of held-out ensemble members, given the computer model output. As we know the true values of the inputs for the ensemble, we can compare our constraint of the model inputs with the true value of the input for any ensemble member. Measures of the quality of constraint have the potential to inform strategy for data collection campaigns, before any real-world data is collected, as well as acting as an effective sensitivity analysis. We use an ensemble of the ice sheet model Glimmer to demonstrate our measures of quality of constraint. The ensemble has 250 model runs with 5 uncertain input parameters, and an output variable representing the pattern of the thickness of ice over Greenland. We have an observation of historical ice sheet thickness that directly matches the output variable, and offers an opportunity to constrain the model. We show that different ways of summarising our output variable (ice volume, ice surface area and maximum ice thickness) offer different potential constraints on individual input parameters. We show that combining the observational data gives increased power to constrain the model. We investigate the impact of uncertainty in observations or in model biases on our measures, showing that even a modest uncertainty can seriously degrade the potential of the observational data to constrain the model.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-04-11
    Description: Derivation of RCM-driven potential evapotranspiration for hydrological climate change impact analysis in Great Britain: a comparison of methods and associated uncertainty in future projections Hydrology and Earth System Sciences, 17, 1365-1377, 2013 Author(s): C. Prudhomme and J. Williamson Potential evapotranspiration (PET) is the water that would be lost by plants through evaporation and transpiration if water was not limited in the soil, and it is commonly used in conceptual hydrological modelling in the calculation of runoff production and hence river discharge. Future changes of PET are likely to be as important as changes in precipitation patterns in determining changes in river flows. However PET is not calculated routinely by climate models so it must be derived independently when the impact of climate change on river flow is to be assessed. This paper compares PET estimates from 12 equations of different complexity, driven by the Hadley Centre's HadRM3-Q0 model outputs representative of 1961–1990, with MORECS PET, a product used as reference PET in Great Britain. The results show that the FAO56 version of the Penman–Monteith equations reproduces best the spatial and seasonal variability of MORECS PET across GB when driven by HadRM3-Q0 estimates of relative humidity, total cloud, wind speed and linearly bias-corrected mean surface temperature. This suggests that potential biases in HadRM3-Q0 climate do not result in significant biases when the physically based FAO56 equations are used. Percentage changes in PET between the 1961–1990 and 2041–2070 time slices were also calculated for each of the 12 PET equations from HadRM3-Q0. Results show a large variation in the magnitude (and sometimes direction) of changes estimated from different PET equations, with Turc, Jensen–Haise and calibrated Blaney–Criddle methods systematically projecting the largest increases across GB for all months and Priestley–Taylor, Makkink, and Thornthwaite showing the smallest changes. We recommend the use of the FAO56 equation as, when driven by HadRM3-Q0 climate data, this best reproduces the reference MORECS PET across Great Britain for the reference period of 1961–1990. Further, the future changes of PET estimated by FAO56 are within the range of uncertainty defined by the ensemble of 12 PET equations. The changes show a clear northwest–southeast gradient of PET increase with largest (smallest) changes in the northwest in January (July and October) respectively. However, the range in magnitude of PET changes due to the choice of PET method shown in this study for Great Britain suggests that PET uncertainty is a challenge facing the assessment of climate change impact on hydrology mostly ignored up to now.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-09-07
    Description: Factors that influence surface PM 2.5 values inferred from satellite observations: perspective gained for the Baltimore-Washington Area during DISCOVER-AQ Atmospheric Chemistry and Physics Discussions, 13, 23421-23459, 2013 Author(s): S. Crumeyrolle, G. Chen, L. Ziemba, A. Beyersdorf, L. Thornhill, E. Winstead, R. Moore, M. A. Shook, and B. Anderson During the NASA DISCOVER-AQ campaign over the Washington D.C., - Baltimore, MD, metropolitan region in July 2011, the NASA P-3B aircraft performed extensive profiling of aerosol optical, chemical, and microphysical properties. These in-situ profiles were coincident with ground based remote sensing (AERONET) and in-situ (PM 2.5 ) measurements. Here, we use this data set to study the correlation between the PM 2.5 observations at the surface and the column integrated measurements. Aerosol optical depth (AOD) calculated with the extinction (532 nm) measured during the in-situ profiles was found to be strongly correlated with the volume of aerosols present in the boundary layer (BL). Despite the strong correlation, some variability remains, and we find that the presence of aerosol layers above the BL (in the buffer layer – BuL) introduces a significant uncertainties in PM 2.5 estimates based on column-integrated measurements. This motivates the use of active remote sensing techniques to dramatically improve air quality retrievals. Since more than a quarter of the AOD values observed during DISCOVER-AQ are dominated by aerosol water uptake, the f (RH) amb (obtained from two nephelometers at different relative humidities – RHs) is used to study the impact of the aerosol hygroscopicity. The results indicate that PM 2.5 can be predicted within a factor of 1.6 even when the vertical variability of the f (RH) amb is assumed to be negligible.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2013-09-07
    Description: On clocks and clouds Atmospheric Chemistry and Physics Discussions, 13, 23461-23490, 2013 Author(s): M. K. Witte, P. Y. Chuang, and G. Feingold Cumulus clouds exhibit a life cycle that consists of: (a) the growth phase (increasing size, most notably in the vertical direction); (b) the mature phase (growth ceases; any precipitation that develops is strongest during this period); and (c) the dissipation phase (cloud dissipates because of precipitation and/or entrainment; no more dynamical support). Although radar can track clouds over time and give some sense of the age of a cloud, most aircraft in situ measurements lack temporal context. We use large eddy simulations of trade wind cumulus cloud fields from cases during the Barbados Oceanographic and Meteorological Experiment (BOMEX) and Rain In Cumulus over the Ocean (RICO) campaigns to demonstrate a potential cumulus cloud "clock". We find that the volume-averaged total water mixing ratio r t is a useful cloud clock for the 12 clouds studied. A cloud's initial r t is set by the subcloud mixed-layer mean r t and decreases monotonically from the initial value due primarily to entrainment. The clock is insensitive to aerosol loading, environmental sounding and extrinsic cloud properties such as lifetime and volume. In some cases (more commonly for larger clouds), multiple pulses of buoyancy occur, which complicate the cumulus clock by replenishing r t . The clock is most effectively used to classify clouds by life phase.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-09-06
    Description: On searching for optimized set of physical parameterization schemes in a multi-physics land surface process model Geoscientific Model Development Discussions, 6, 4511-4530, 2013 Author(s): S. Hong, X. Yu, S. K. Park, Y.-S. Choi, and B. Myoung Optimization of land surface models has been very challenging due to the increasing complexity of such models. Typical parameter calibration techniques often limit the solution of the spatiotemporal discrepancy in the modeling performance levels especially for regional applications. Thus, in this study, an attempt was made to perform scheme-based model optimization by designing a framework for coupling a micro-genetic algorithm (micro-GA) with the Noah land surface model that has multiple physics options (Noah-MP). Micro-GA controls the scheme selections in 10 different land surface parameterization fields in Noah-MP in order to extract the optimal scheme combination for a certain region. This coupling framework was successfully applied to the optimization of the surface water partitioning in the Korean Peninsula, promising not only the effectiveness of the scheme-based optimization but also model diagnosis capability by exploring the scheme sensitivity during the micro-GA evolution process. Then, the method was applied to four different regions in East Asia that have different climatic characteristics. The results indicate that (1) the optimal scheme combinations vary with the regions, (2) schemes related to the surface water partitioning are important for the modeling accuracy, and (3) specialized post-parameter optimization for each region may be required.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2013-09-07
    Description: Atmospheric inverse modeling with known physical bounds: an example from trace gas emissions Geoscientific Model Development Discussions, 6, 4531-4562, 2013 Author(s): S. M. Miller, A. M. Michalak, and P. J. Levi Many inverse problems in the atmospheric sciences involve parameters with known physical constraints. Examples include non-negativity (e.g., emissions of some urban air pollutants) or upward limits implied by reaction or solubility constants. However, probabilistic inverse modeling approaches based on Gaussian assumptions cannot incorporate such bounds and thus often produce unrealistic results. The atmospheric literature lacks consensus on the best means to overcome this problem, and existing atmospheric studies rely on a limited number of the possible methods with little examination of the relative merits of each. This paper investigates the applicability of several approaches to bounded inverse problems and is also the first application of Markov chain Monte Carlo (MCMC) to estimation of atmospheric trace gas fluxes. The approaches discussed here are broadly applicable. A common method of data transformations is found to unrealistically skew estimates for the examined example application. The method of Lagrange multipliers and two MCMC methods yield more realistic and accurate results. In general, the examined MCMC approaches produce the most realistic result but can require substantial computational time. Lagrange multipliers offer an appealing alternative for large, computationally intensive problems when exact uncertainty bounds are less central to the analysis. A synthetic data inversion of US anthropogenic methane emissions illustrates the strengths and weaknesses of each approach.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...