ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4,202)
  • Copernicus  (4,202)
  • National Academy of Sciences
  • 2010-2014  (4,202)
  • 1980-1984
  • 1945-1949
  • 1925-1929
  • Hydrology and Earth System Sciences Discussions  (1,487)
  • Geoscientific Model Development  (452)
  • 102048
  • 54330
  • Geosciences  (4,202)
Collection
  • Articles  (4,202)
Publisher
  • Copernicus  (4,202)
  • National Academy of Sciences
Years
Year
Topic
  • 101
    Publication Date: 2014-12-03
    Description: Testing gridded land precipitation data and precipitation and runoff reanalyses (1982–2010) between 45° S and 45° N with Normalized Difference Vegetation Index data Hydrology and Earth System Sciences Discussions, 11, 13175-13205, 2014 Author(s): S. O. Los The realistic simulation of key components of the land-surface hydrological cycle – precipitation, runoff, evaporation and transpiration – in general circulation models of the atmosphere is crucial to assess adverse weather impacts on environment and society. Here, gridded precipitation data from observations and precipitation and runoff fields from reanalyses were tested with satellite-derived global vegetation index data for 1982–2010 and latitudes between 45° S and 45° N. Data were obtained from the Climate Research Unit (CRU), the Global Precipitation Climatology Project (GPCP) and Tropical Rainfall Monitoring Mission (TRMM; analysed for 1998–2010 only) and (precipitation and runoff) reanalyses were obtained from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR), the European Centre for Medium-Range Weather Forecasts (ECMWF) and the NASA Global Modelling and Assimilation Office (GMAO). Annual land-surface precipitation was converted to annual potential vegetation net primary productivity (NPP) and was compared to mean annual Normalized Difference Vegetation Index data measured by the Advanced Very High Resolution Radiometer (1982–1999) and MODIS (2001–2010). The effect of spatial resolution on the agreement between NPP and NDVI was investigated as well. The CRU and TRMM derived NPP agreed most closely with the NDVI data. The GPCP data showed weaker spatial agreement, largely because of their lower spatial resolution, but similar temporal agreement. MERRA Land and ERA Interim precipitation reanalyses showed similar spatial agreement as the GPCP data and good temporal agreement in semi-arid regions of the Americas, Asia, Australia and southern Africa. The NCEP/NCAR reanalysis showed the lowest spatial agreement which could only in part be explained by its lower spatial resolution. No reanalysis showed realistic interannual precipitation variations for northern tropical Africa. Inclusion of runoff in the NPP prediction resulted only in (marginally) better agreement for the MERRA Land reanalysis and worse agreement for the NCEP/NCAR and ERA Interim reanalyses.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2014-12-03
    Description: A global dataset of the extent of irrigated land from 1900 to 2005 Hydrology and Earth System Sciences Discussions, 11, 13207-13258, 2014 Author(s): S. Siebert, M. Kummu, M. Porkka, P. Döll, N. Ramankutty, and B. R. Scanlon Irrigation intensifies land use by increasing crop yield but also impacts water resources. It affects water and energy balances and consequently the microclimate in irrigated regions. Therefore, knowledge of the extent of irrigated land is important for hydrological and crop modelling, global change research, and assessments of resource use and management. Information on the historical evolution of irrigated lands is limited. The new global Historical Irrigation Dataset (HID) provides estimates of the temporal development of the area equipped for irrigation (AEI) between 1900 and 2005 at 5 arc-minute resolution. We collected subnational irrigation statistics from various sources and found that the global extent of AEI increased from 63 million ha (Mha) in 1900 to 112 Mha in 1950 and 306 Mha in 2005. We developed eight gridded versions of time series of AEI by combining subnational irrigation statistics with different data sets on the historical extent of cropland and pasture. Different rules were applied to maximize consistency of the gridded products to subnational irrigation statistics or to historical cropland and pasture data sets. The HID reflects very well the spatial patterns of irrigated land in the western United States as shown on historical maps. Mean aridity on irrigated land increased and river discharge decreased from 1900–1950 whereas aridity decreased from 1950–2005. The dataset and its documentation are made available in an open data repository at https://mygeohub.org/publications/8 (doi: 10.13019/M2MW2G ).
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2014-12-04
    Description: Evaluation of the ECHAM family radiation codes performance in the representation of the solar signal Geoscientific Model Development, 7, 2859-2866, 2014 Author(s): T. Sukhodolov, E. Rozanov, A. I. Shapiro, J. Anet, C. Cagnazzo, T. Peter, and W. Schmutz Solar radiation is the main source of energy for the Earth's atmosphere and in many respects defines its composition, photochemistry, temperature profile and dynamics. The magnitude of the solar irradiance variability strongly depends on the wavelength, making difficult its representation in climate models. Due to some deficiencies in the applied radiation codes, several models fail to show a clear response in middle stratospheric heating rates to solar spectral irradiance variability; therefore, it is important to evaluate model performance in this respect before doing multiple runs. In this work we evaluate the performance of three generations of ECHAM (4, 5 and 6) solar radiation schemes by a comparison with the reference high-resolution libRadtran code. We found that all original ECHAM radiation codes miss almost all solar signals in the heating rates in the mesosphere. In the stratosphere the two-band ECHAM4 code (E4) has an almost negligible radiative response to solar irradiance changes and the six-band ECHAM5 code (E5c) reproduces only about half of the reference signal, while representation in the ECHAM6 code (E6) is better – it misses a maximum of about 15% in the upper stratosphere. On the basis of the comparison results we suggest necessary improvements to the ECHAM family codes by the inclusion of available parameterizations of the heating rate due to absorption by oxygen (O 2 ) and ozone (O 3 ). Improvement is presented for E5c and E6, and both codes, with the introduced parameterizations, represent the heating rate response to the spectral solar irradiance variability simulated with libRadtran much better without a substantial increase in computer time. The suggested parameterizations are recommended to be applied in the middle-atmosphere version of the ECHAM-5 and 6 models for the study of the solar irradiance influence on climate.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2014-12-04
    Description: GEOtop 2.0: simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects Geoscientific Model Development, 7, 2831-2857, 2014 Author(s): S. Endrizzi, S. Gruber, M. Dall'Amico, and R. Rigon GEOtop is a fine-scale grid-based simulator that represents the heat and water budgets at and below the soil surface. It describes the three-dimensional water flow in the soil and the energy exchange with the atmosphere, considering the radiative and turbulent fluxes. Furthermore, it reproduces the highly non-linear interactions between the water and energy balance during soil freezing and thawing, and simulates the temporal evolution of the water and energy budgets in the snow cover and their effect on soil temperature. Here, we present the core components of GEOtop 2.0 and demonstrate its functioning. Based on a synthetic simulation, we show that the interaction of processes represented in GEOtop 2.0 can result in phenomena that are significant and relevant for applications involving permafrost and seasonally frozen soils, both in high altitude and latitude regions.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2014-12-06
    Description: The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project – Part 2: Environmental driver data Geoscientific Model Development, 7, 2875-2893, 2014 Author(s): Y. Wei, S. Liu, D. N. Huntzinger, A. M. Michalak, N. Viovy, W. M. Post, C. R. Schwalm, K. Schaefer, A. R. Jacobson, C. Lu, H. Tian, D. M. Ricciuto, R. B. Cook, J. Mao, and X. Shi Ecosystems are important and dynamic components of the global carbon cycle, and terrestrial biospheric models (TBMs) are crucial tools in further understanding of how terrestrial carbon is stored and exchanged with the atmosphere across a variety of spatial and temporal scales. Improving TBM skills, and quantifying and reducing their estimation uncertainties, pose significant challenges. The Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) is a formal multi-scale and multi-model intercomparison effort set up to tackle these challenges. The MsTMIP protocol prescribes standardized environmental driver data that are shared among model teams to facilitate model–model and model–observation comparisons. This paper describes the global and North American environmental driver data sets prepared for the MsTMIP activity to both support their use in MsTMIP and make these data, along with the processes used in selecting/processing these data, accessible to a broader audience. Based on project needs and lessons learned from past model intercomparison activities, we compiled climate, atmospheric CO 2 concentrations, nitrogen deposition, land use and land cover change (LULCC), C3 / C4 grasses fractions, major crops, phenology and soil data into a standard format for global (0.5° × 0.5° resolution) and regional (North American: 0.25° × 0.25° resolution) simulations. In order to meet the needs of MsTMIP, improvements were made to several of the original environmental data sets, by improving the quality, and/or changing their spatial and temporal coverage, and resolution. The resulting standardized model driver data sets are being used by over 20 different models participating in MsTMIP. The data are archived at the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC, http://daac.ornl.gov ) to provide long-term data management and distribution.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2011-02-24
    Description: Bayesian inverse modelling of in situ soil water dynamics: using prior information about the soil hydraulic properties Hydrology and Earth System Sciences Discussions, 8, 2019-2063, 2011 Author(s): B. Scharnagl, J. A. Vrugt, H. Vereecken, and M. Herbst In situ observations of soil water state variables under natural boundary conditions are often used to estimate field-scale soil hydraulic properties. However, many contributions to the soil hydrological literature have demonstrated that the information content of such data is insufficient to reliably estimate all the soil hydraulic parameters. In this case study, we tested whether prior information about the soil hydraulic properties could help improve the identifiability of the van Genuchten-Mualem (VGM) parameters. Three different prior distributions with increasing complexity were formulated using the ROSETTA pedotransfer function (PTF) with input data that constitutes basic soil information and is readily available in most vadose zone studies. The inverse problem was posed in a formal Bayesian framework and solved using Markov chain Monte Carlo (MCMC) simulation with the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm. Synthetic and real-world soil water content data were used to illustrate our approach. The results of this study corroborate and explicate findings previously reported in the literature. Indeed, soil water content data alone contained insufficient information to reasonably constrain all VGM parameters. The identifiability of these soil hydraulic parameters was substantially improved when an informative prior distribution was used with detailed knowledge of the correlation structure among the respective VGM parameters. A biased prior did not distort the results, which inspires confidence in the robustness and effectiveness of the presented method. The Bayesian framework presented in this study can be applied to a wide range of vadose zone studies and provides a blueprint for the use of prior information in inverse modelling of soil hydraulic properties at various spatial scales.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2011-05-06
    Description: Classification of thermal waters based on their inorganic fingerprint and hydrogeothermal modelling Hydrology and Earth System Sciences Discussions, 8, 4559-4581, 2011 Author(s): I. Delgado-Outeiriño, P. Araujo-Nespereira, J. A. Cid-Fernández, J. C. Mejuto, E. Martínez-Carballo, and J. Simal-Gándara Hydrothermal features in Galicia have been used since ancient times for therapeutic purposes. A characterization of these thermal waters was carried out in order to understand their behaviour based on inorganic pattern and water-rock interaction mechanisms. In this way 15 thermal water samples were collected in the same hydrographical system. The results of the hydrogeochemistry analysis showed one main water family of bicarbonate type sodium waters, typical in the post-orogenic basins of Galicia. Principal component analysis (PCA) and partial lest squared (PLS) clustered the selected thermal waters in two groups, regarding to their chemical composition. This classification agreed with the results obtained by the use of geothermometers and the hydrogeochemical modelling. The first included thermal samples that could be in contact with surface waters and therefore, their residence time in the reservoir and their water-rock interaction would be less important than for the thermal waters of the second group.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2011-05-06
    Description: The response of Iberian rivers to the North Atlantic Oscillation Hydrology and Earth System Sciences Discussions, 8, 4459-4493, 2011 Author(s): J. Lorenzo-Lacruz, S. M. Vicente-Serrano, J. I. López-Moreno, J. C. González-Hidalgo, and E. Morán-Tejeda In this study we analyzed the influence of the North Atlantic Oscillation (NAO) on the streamflow in 187 sub-basins of the Iberian Peninsula. Monthly and one-month lagged correlations were conducted to assess the spatio-temporal extent of the NAO influence on Iberian river discharges. Analysis of the persistence of the winter NAO throughout the year was also undertaken, together with analysis of streamflow anomalies during positive and negative NAO phases. Moving-window correlation analyses were conducted to assess potential changes in the temporal evolution of the NAO influence on Iberian streamflows. The results show that the NAO has a large impact on surface water resources throughout the Iberian Peninsula during winter, and in the Atlantic watershed during autumn. We showed that water resources management and snowmelt are causing the persistent dependence of streamflows on the previous winter NAO. We found that strongly positive streamflow anomalies occurred during winter, especially in the Atlantic watershed, and provide evidence of non-stationarity and spatial variability in the NAO influence on Iberian water resources.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2011-05-06
    Description: Catchment classification: empirical analysis of hydrologic similarity based on catchment function in the eastern USA Hydrology and Earth System Sciences Discussions, 8, 4495-4534, 2011 Author(s): K. Sawicz, T. Wagener, M. Sivapalan, P. A. Troch, and G. Carrillo Hydrologic similarity between catchments, derived from their similarity in how they respond to precipitation input, is the basis for classification, for transferability, for generalization and also for understanding the potential impacts of environmental change. An important question in this context is, in how far can widely available hydrologic information (precipitation-temperature-streamflow) be used to create a first order grouping of hydrologically similar catchments? We utilize a heterogeneous dataset of 280 catchments located in the Eastern US to understand hydrologic similarity in a 6-dimensional signature space across a region with strong environmental gradients. Signatures are defined as hydrologic response characteristics that provide some insight into the hydrologic function of catchments. A Bayesian clustering scheme is used to separate the catchments into 9 classes, which are subsequently analyzed with respect to their hydrologic, as well as climatic and landscape attributes. Based on the empirical results we hypothesize the following: (1) Streamflow elasticity with respect to precipitation is modified by the soil characteristics of a catchment. (2) Spatial proximity is a good first indicator of hydrologic similarity because of the strong control climate exerts on catchment function, and because it varies slowly in space.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2011-05-06
    Description: Improving confidence in deep drainage estimates, for arid and semi-arid areas using multiple linear regression with percent clay content and rainfall Hydrology and Earth System Sciences Discussions, 8, 4535-4557, 2011 Author(s): D. L. Wohling, F. W. Leaney, and R. S. Crosbie Deep drainage estimates are required for effective management of water resources. However, field measurements are time consuming and costly so simple empirical relationships are often used. Relationships developed between clay content of the surface soil and deep drainage have been used extensively in Australia to provide regional estimates of drainage but these relationships have been poorly justified and did not include rainfall in the relationships. Here we present a rigorous appraisal of clay content of soils and rainfall as predictors of drainage using an extensive database of field observations from across Australia. This study found that annual average rainfall and the clay content of the top 2 m of the soil are statistically significant predictors of drainage. Relationships have been defined for annual, perennial and tree type vegetation as a line of best fit along with 95 % confidence intervals. This allows the uncertainty in these drainage estimates to be assessed for the first time.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2011-05-07
    Description: The atmospheric chemistry box model CAABA/MECCA-3.0 Geoscientific Model Development, 4, 373-380, 2011 Author(s): R. Sander, A. Baumgaertner, S. Gromov, H. Harder, P. Jöckel, A. Kerkweg, D. Kubistin, E. Regelin, H. Riede, A. Sandu, D. Taraborrelli, H. Tost, and Z.-Q. Xie We present version 3.0 of the atmospheric chemistry box model CAABA/MECCA. In addition to a complete update of the rate coefficients to the most recent recommendations, a number of new features have been added: chemistry in multiple aerosol size bins; automatic multiple simulations reaching steady-state conditions; Monte-Carlo simulations with randomly varied rate coefficients within their experimental uncertainties; calculations along Lagrangian trajectories; mercury chemistry; more detailed isoprene chemistry; tagging of isotopically labeled species. Further changes have been implemented to make the code more user-friendly and to facilitate the analysis of the model results. Like earlier versions, CAABA/MECCA-3.0 is a community model published under the GNU General Public License.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2011-05-10
    Description: Catchment classification: hydrological analysis of catchment behavior through process-based modeling along a climate gradient Hydrology and Earth System Sciences Discussions, 8, 4583-4640, 2011 Author(s): G. Carrillo, P. A. Troch, M. Sivapalan, T. Wagener, C. Harman, and K. Sawicz Catchment classification is an efficient method to synthesize our understanding of how climate variability and catchment characteristics interact to define hydrological response. One way to accomplish catchment classification is to empirically relate climate and catchment characteristics to hydrologic behavior and to quantify the skill of predicting hydrologic response based on the combination of climate and catchment characteristics. Since there are important subsurface properties that cannot be readily measured, the skill of classification reflects (the lack of) the amount of cross-correlation between observable landscape features and unobservable subsurface features. The resulting empirical approach is also strongly controlled by the dataset used, and therefore lacks the power to generalize beyond the heterogeneity of characteristics found in the dataset. An alternative approach, that can partially alleviate the above-mentioned issue of observability, uses our current level of hydrological understanding, expressed in the form of a process-based model, to interrogate how climate and catchment characteristics interact to produce the observed hydrologic response. In this paper we present a general method of hydrologic analysis by means of a process-based model to support a bottom-up catchment classification system complementary to top-down classification methods. The model uses topographic, geomorphologic, soil and vegetation information at the catchment scale and conditions parameter values using readily available data on precipitation, temperature and streamflow. It is applicable to a wide range of catchments in different climate settings. We have developed a step-by-step procedure to analyze the observed hydrologic response and to assign parameter values related to specific components of the model. We applied this procedure to 12 catchments across a climate gradient east of the Rocky Mountains, USA. We show that the model is capable of reproducing the observed hydrologic behavior measured through hydrologic signatures chosen at different temporal scales. Next, we analyze the dominant time scales of catchment response and their dimensionless ratios with respect to climate and observable landscape features in an attempt to explain hydrologic partitioning. We find that only a limited number of model parameters can be related to observable landscape features. However, several climate-model time scales, and the associated dimensionless numbers, show scaling relationships with respect to the investigated hydrological signatures (runoff coefficient, baseflow index, and slope of the flow duration curve). Moreover, our analysis revealed systematic co-variation of climate, vegetation and soil related time scales along the climate gradient. If such co-variation can be shown to be robust across many catchments along different climate gradients, it opens perspective for model parameterization in ungauged catchments as well as prediction of hydrologic response in a rapidly changing environment.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2011-04-01
    Description: Insights from a joint analysis of Indian and Chinese monsoon rainfall data Hydrology and Earth System Sciences Discussions, 8, 3167-3187, 2011 Author(s): M. Zhou, F. Tian, U. Lall, and H. Hu Monsoon rainfall is of great importance for the agricultural production in both China and India. Understanding its rule and possibility of long term prediction is a challenge for research. This paper gives a joint analysis of Indian monsoon and Chinese monsoon, finds their teleconnection to Sea Surface Temperature anomaly (SSTa) and other climate indices individually and relationship in common. The results show that northern China garners less rainfall when whole Indian rainfall is below normal. Also, with cold SSTa over the Indonesia region, more rainfall would be distributed over India and South China.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2011-04-01
    Description: The within-day behaviour of 6 minute rainfall intensity in Australia Hydrology and Earth System Sciences Discussions, 8, 3189-3231, 2011 Author(s): A. W. Western, B. Anderson, L. Siriwardena, F. H. S. Chiew, A. Seed, and G. Blöschl The statistical behaviour and distribution of high-resolution (6 min) rainfall intensity within the wet part of rainy days (total rainfall depth 〉10 mm) is investigated for 42 stations across Australia. This paper compares nine theoretical distribution functions (TDFs) in representing these data. Two goodness-of-fit statistics are reported: the Root Mean Square Error (RMSE) between the fitted and observed within-day distribution; and the efficiency of prediction of the highest rainfall intensities (average intensity of the 5 highest intensity intervals). The three-parameter Generalised Pareto distribution was clearly the best performer. Good results were also obtained from Exponential, Gamma, and two-parameter Generalized Pareto distributions, each of which are two parameter functions, which may be advantageous when predicting parameter values. Results of different fitting methods are compared for different estimation techniques. The behaviour of the statistical properties of the within-day intensity distributions was also investigated and trends with latitude, Köppen climate zone (strongly related to latitude) and daily rainfall amount were identified. The latitudinal trends are likely related to a changing mix of rainfall generation mechanisms across the Australian continent.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2011-04-02
    Description: Water table fluctuation and its effects on vegetation in a semiarid environment Hydrology and Earth System Sciences Discussions, 8, 3271-3304, 2011 Author(s): L. Duan, T. Liu, X. Wang, Y. Luo, W. Wang, and X. Liu A good understanding of water table fluctuation effects on vegetation is crucial for sustaining fragile hydrology and ecology of semiarid areas such as the Horqin Sandy Land (HSL) in northern China, but such understanding is not well documented in literature. The objectives of this study were to examine spatio-temporal variations of water table and their effects on vegetation in a semiarid environment. A 9.71 km 2 area within the HSL was chosen and well-instrumented to continuously measure hydrometeorologic parameters (e.g., water table). The area comprises of meadow lands and sandy dunes as well as transitional zones in between. In addition to those measured data, this study also used Landsat TM and MODIS imageries and meteorological data at a station near the study area. The spatio-temporal variations were examined using visual plots and contour maps, while the effects on vegetation were determined by overlaying a water table depth map with a vegetation index map derived from the MODIS imageries. The results indicated that water table was mainly dependent on local topography, localized geological settings, and human activities (e.g., reclamation). At annual and monthly scales, water table was mainly a function of precipitation and potential evapotranspiration. A region within the study area where depth to water table was smaller tended to have better (i.e., more dense and productive) vegetation cover. Further, the results revealed that water table fluctuation was more sensitive for vegetations in the meadow lands than in the transitional zones, but it was least sensitive for vegetations in the sandy dunes.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2011-04-02
    Description: Comparison of catchment grouping methods for flow duration curve estimation at ungauged sites in France Hydrology and Earth System Sciences Discussions, 8, 3233-3269, 2011 Author(s): E. Sauquet and C. Catalogne The study aims at estimating flow duration curves (FDC) at ungauged sites in France and quantifying the associated uncertainties using a large dataset of 1080 FDCs. The interpolation procedure focuses here on 15 percentiles standardised by the mean annual flow, which is supposed to be known at each site. In particular, this paper discusses the relevance of different catchments grouping procedures on percentiles estimation by regional regression models. First, five parsimonious FDC parametric models were tested to approximate FDCs at gauged sites. The results show that the model based on Empirical Orthogonal Functions (EOF) expansion outperforms the other ones. In this model each FDC is interpreted as a linear combination of regional amplitude functions with weights – the parameters of the model – varying in space. Here, only one amplitude function was found sufficient to fit well most of the observed curves. Thus the considered model requires only two parameters to be estimated at ungauged locations. Second, homogeneous regions were derived according to hydrological response on one hand, and geological, climatic and topographic characteristics on the other hand. Hydrological similarity was assessed through two simple indicators: the concavity index ( IC ) that represents the shape of the standardized FDC and the seasonality ratio ( SR ) which is the ratio of summer and winter median flows. These variables were used as homogeneity criteria in three different methods for grouping catchments: (i) according to their membership in one of an a priori French classification into Hydro-Eco-Regions (HERs), (ii) by applying a regression tree clustering and (iii) by using hydrological neighbourhood obtained by canonical correlation analysis. Finally, regression models between physiographic and/or climatic variables and the two parameters of the EOF model were derived considering all the data and thereafter for each group obtained through the tested grouping techniques. Results on percentiles estimation in cross validation show a significant benefit to form homogeneous regions before developing regressions, particularly when grouping methods use hydrogeological information.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2011-04-02
    Description: Influences on flood frequency distributions in Irish river catchments Hydrology and Earth System Sciences Discussions, 8, 3305-3351, 2011 Author(s): S. Ahilan, J. J. O'Sullivan, and M. Bruen This study explores influences which result in shifts of flood frequency distributions in Irish rivers. Generalised Extreme Value (GEV) type I distributions are recommended in Ireland for estimating flood quantiles. This paper presents the findings of an investigation that identified the GEV statistical distributions that best fit the annual maximum (AM) data series extracted from 172 gauging stations of 126 rivers in Ireland. Of these 126 rivers, 25 have multiple gauging stations. Analysis of this data was undertaken to explore hydraulic and hydro-geological factors that influence flood frequency distributions and whether shifts in distributions occur in the down-river direction. The methodology involved determining the shape parameter of GEV distributions that were fitted to AM data at each site and to statistically test this shape parameter to determine whether a type I, type II or type III distribution was valid. The classification of these distributions was further supported by moment and L -moment diagrams and probability plots. Results indicated that of the 143 stations with flow records exceeding 25 yr, data for 92 was best represented by GEV type I distributions and that for another 12 and 39 stations followed type II and type III distributions respectively. The spatial, hydraulic and hydro-geological influences on flood frequency distributions were assessed by incorporating results on an Arc-GIS platform with individual layers showing karst features, flood attenuation polygons and lakes. This data reveals that type I distributions are spatially well represented throughout the country. The majority of type III distributions appear in four distinct clusters in well defined geographical areas where attenuation influences from floodplains and lakes appear to be influential. The majority of type II distributions appear to be in a single cluster in a region in the west of the country that is characterised by a karst landscape. The presence of karst in river catchments would be expected to provide additional subsurface storage and in this regard, type III distributions might be expected. The prevalence of type II distributions in this area reflects the finite nature of this storage and the effects, in extreme conditions, when the karst is saturated and further storage is no longer available. Results therefore indicate that in some instances assuming type I distributions is incorrect and may result in erroneous estimates of flood quantiles in these regions. Where actual data follows a type II distribution, flood quantiles may be underestimated and for type III distributions, overestimates may be expected.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2011-03-31
    Description: Quantifying flow and remediation zone uncertainties for partially opened wells in heterogeneous aquifers Hydrology and Earth System Sciences Discussions, 8, 3133-3166, 2011 Author(s): C.-F. Ni, C.-P. Lin, S.-G. Li, and J.-S. Chen This study presents a numerical first-order spectral model to quantify flow and remediation zone uncertainties for partially opened wells in heterogeneous aquifers. Taking advantages of spectral theories in solving unmodeled small-scale variability in hydraulic conductivity ( K ), the presented nonstationary spectral method (NSM) can efficiently estimate flow uncertainties, including hydraulic heads and Darcy velocities in r- and z profile in a cylindrical coordinate system. The velocity uncertainties associated with the particle backward tracking algorithm are then used to estimate stochastic remediation zones for scenarios with partially opened well screens. In this study the flow and remediation zone uncertainties obtained by NSM were first compared with those obtained by Monte Carlo simulations (MCS). A layered aquifer with different geometric mean of K and screen locations was then illustrated with the developed NSM. To compare NSM flow and remediation zone uncertainties with those of MCS, three different small-scale K variances and correlation lengths were considered for illustration purpose. The MCS remediation zones for different degrees of heterogeneity were presented with the uncertainty clouds obtained by 200 equally likely MCS realizations. Results of simulations reveal that the first-order NSM solutions agree well with those of MCS for partially opened wells. The flow uncertainties obtained by using NSM and MCS show identically for aquifers with small ln K variances and correlation lengths. Based on the test examples, the remediation zone uncertainties are not sensitive to the changes of small-scale ln K correlation lengths. However, the increases of remediation zone uncertainties are significant with the increases of small-scale ln K variances. The largest displacement uncertainties may have several meters of differences when the ln K variances increase from 0.1 to 1.0. Such results are also valid for the estimations of remediation zones in layered aquifers.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2011-03-31
    Description: Evaluating uncertainty estimates in hydrologic models: borrowing measures from the forecast verification community Hydrology and Earth System Sciences Discussions, 8, 3085-3131, 2011 Author(s): K. J. Franz and T. S. Hogue The hydrologic community is generally moving towards the use of probabilistic estimates of streamflow, primarily through the implementation of Ensemble Streamflow Prediction (ESP) systems, ensemble data assimilation methods, or multi-modeling platforms. However, evaluation of probabilistic outputs has not necessarily kept pace with ensemble generation. Much of the modeling community is still performing model evaluation using standard deterministic measures, such as error, correlation, or bias, typically applied to the ensemble mean or median. Probabilistic forecast verification methods have been well developed, particularly in the atmospheric sciences yet, few have been adopted for evaluating uncertainty estimates in hydrologic model simulations. In the current paper, we overview existing probabilistic forecast verification methods and apply the methods to evaluate and compare model ensembles produced from different parameter uncertainty estimation methods. The Generalized Uncertainty Likelihood Estimator (GLUE), a modified version of GLUE, and the Shuffle Complex Evolution Metropolis (SCEM) are used to generate model ensembles for the National Weather Service SACramento Soil Moisture Accounting (SAC-SMA) model for 12 forecast basins located in the Southeastern United States. We evaluate the model ensembles using relevant metrics in the following categories: distribution, correlation, accuracy, conditional statistics, and categorical statistics. We show that the probabilistic metrics are easily adapted to model simulation ensembles and provide a robust analysis of parameter uncertainty, one that is commensurate with the dimension of the ensembles themselves. Application of these methods requires no information in addition to what is already available as part of traditional model validation methodology and considers the entire ensemble or uncertainty range in the approach.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2011-05-10
    Description: A structure generator for modelling the initial sediment distribution of an artificial hydrologic catchment Hydrology and Earth System Sciences Discussions, 8, 4641-4699, 2011 Author(s): T. Maurer, A. Schneider, and H. H. Gerke Artificially-created hydrological catchments are characterized by sediment structures from technological construction processes that can potentially be important for modelling of flow and transport and for understanding initial soil and ecosystem development. The subsurface spatial structures of such catchments have not yet been sufficiently explored and described. Our objective was to develop a structure generator programme for modelling the 3-D spatial sediment distribution patterns depending on the technical earth-moving and deposition processes. For the development, the artificially-constructed hydrological catchment "Chicken Creek" located in Lower Lusatia, Germany, served as an example. The structure generator describes 3-D technological sediment distributions at two scales: (i) for a 2-D-vertical cross-section, texture and bulk density distributions are generated within individual spoil cones that result from mass dumping, particle segregation, and compaction and (ii) for the whole catchment area, the spoil cones are horizontally arranged along trajectories of mass dumping controlled by the belt stacker-machine relative to the catchment's clay layer topography. The generated 3-D texture and bulk density distributions are interpolated and visualized as a gridded 3-D-volume body using 3-D computer-aided design software. The generated subsurface sediment distribution for the Chicken Creek catchment was found to correspond to observed patterns although still without any calibration. Spatial aggregation and interpolation in the gridded volume body modified the generated distributions towards more uniform (unimodal) distributions and lower values of the standard deviations. After incorporating variations and pedotransfer approaches, generated sediment distributions can be used for deriving realizations of the 3-D hydraulic catchment structure.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2011-04-07
    Description: A comprehensive set of benchmark tests for a land surface model of simultaneous fluxes of water and carbon at both the global and seasonal scale Geoscientific Model Development, 4, 255-269, 2011 Author(s): E. Blyth, D. B. Clark, R. Ellis, C. Huntingford, S. Los, M. Pryor, M. Best, and S. Sitch Evaluating the models we use in prediction is important as it allows us to identify uncertainties in prediction as well as guiding the priorities for model development. This paper describes a set of benchmark tests that is designed to quantify the performance of the land surface model that is used in the UK Hadley Centre General Circulation Model (JULES: Joint UK Land Environment Simulator). The tests are designed to assess the ability of the model to reproduce the observed fluxes of water and carbon at the global and regional spatial scale, and on a seasonal basis. Five datasets are used to test the model: water and carbon dioxide fluxes from ten FLUXNET sites covering the major global biomes, atmospheric carbon dioxide concentrations at four representative stations from the global network, river flow from seven catchments, the seasonal mean NDVI over the seven catchments and the potential land cover of the globe (after the estimated anthropogenic changes have been removed). The model is run in various configurations and results are compared with the data. A few examples are chosen to demonstrate the importance of using combined use of observations of carbon and water fluxes in essential in order to understand the causes of model errors. The benchmarking approach is suitable for application to other global models.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2011-04-07
    Description: Skill assessment of a global hydrological model in reproducing flow extremes Hydrology and Earth System Sciences Discussions, 8, 3469-3505, 2011 Author(s): N. Candogan Yossef, L. P. H. van Beek, J. C. J. Kwadijk, and M. F. P. Bierkens As an initial step in assessing the prospect of using macro-scale hydrological models (MHMs) for hydrological forecasting, this study investigates the skill of the MHM PCR-GLOBWB in reproducing past discharge extremes on a global scale. Global terrestrial hydrology from 1958 until 2001 is simulated by forcing PCR-GLOBWB with daily meteorological data obtained by downscaling the CRU dataset to daily fields using the ERA-40 reanalysis. Simulated discharge values are compared with observed monthly streamflow records for a selection of 20 large river basins that represent all continents and a wide range of climatic zones. We assess model skill in three ways. First, the general performance of the model in reproducing hydrographs is evaluated. Second, model skill in reproducing significantly higher and lower flows than the monthly normals is assessed in terms of skill scores used for forecasts of categorical events. Third, model skill in reproducing flood and drought events is assessed by constructing binary contingency tables for floods and droughts for each basin. The results show that the model has skill in all three types of hindcasting. After bias correction the model skill in simulating hydrographs is improved considerably. For most basins it is much higher than that of the climatology. The skill in hindcasting monthly anomalies is high compared to that of an imaginary unskilled system. The model also performs better than an unskilled system in hindcasting floods and droughts, with a markedly higher skill in floods. We conclude that the prospect for using PCR-GLOBWB for monthly and seasonal hydrological forecasting is positive. Our results which we argue are representative for other similar MHMs, show that MHMs have sufficient skill for use in forecasting flow extremes.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2011-05-31
    Description: On the colour and spin of epistemic error (and what we might do about it) Hydrology and Earth System Sciences Discussions, 8, 5355-5386, 2011 Author(s): K. Beven, P. J. Smith, and A. Wood Disinformation as a result of epistemic error is an issue in hydrological modelling. In particular the way in which the colour in model residuals resulting from epistemic errors should be expected to be non-stationary means that it is difficult to justify the spin that the structure of residuals can be properly represented by statistical likelihood functions. To do so would be to greatly overestimate the information content in a set of calibration data and increase the possibility of both Type I and Type II errors. Some principles of trying to identify periods of disinformative data prior to evaluation of a model structure of interest, are discussed. An example demonstrates the effect on the estimated parameter values of a hydrological model.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2011-06-01
    Description: Effects of freezing on soil temperature, frost propagation and moisture redistribution in peat: laboratory investigations Hydrology and Earth System Sciences Discussions, 8, 5387-5426, 2011 Author(s): R. M. Nagare, R. A. Schincariol, W. L. Quinton, and M. Hayashi The effects of freezing on soil temperature and water movement were monitored in four peat Mesocosms subjected to bidirectional freezing. Temperature gradients were applied by bringing the Mesocosm tops in contact with sub-zero air temperature while maintaining a continuously frozen layer at the bottom (proxy permafrost). Soil water movement towards the freezing front (from warmer to colder regions) was inferred from soil freezing curves and from the total water content of frozen core samples collected at the end of freezing cycle. This study illustrates how differences in initial water content influence the hydrologic functions of active layer in permafrost terrains covered with thick peat during soil freezing. A substantial amount of water, enough to raise the upper surface of frozen saturated soil within 15 cm of the soil surface at the end of freezing period, appeared to have moved upwards during freezing. Effects of temperature on soil matric potential, at least in the initial freezing period, appear to drive such movement as seen from analysis of soil freezing curves. Vapour movement from warmer to colder regions also appears to contribute in moisture movement. Frost propagation is controlled by latent heat for a long time during freezing. A simple conceptual model describing freezing of an organic active layer initially resembling a variable moisture landscape is proposed based upon the results of this study. The results of this study will help in understanding, and ultimately forecasting, the hydrologic response of wetland-dominated terrain underlain by discontinuous permafrost.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2011-10-07
    Description: A new version of the CNRM Chemistry-Climate Model, CNRM-CCM: description and improvements from the CCMVal-2 simulations Geoscientific Model Development, 4, 873-900, 2011 Author(s): M. Michou, D. Saint-Martin, H. Teyssèdre, A. Alias, F. Karcher, D. Olivié, A. Voldoire, B. Josse, V.-H. Peuch, H. Clark, J. N. Lee, and F. Chéroux This paper presents a new version of the Météo-France CNRM Chemistry-Climate Model, so-called CNRM-CCM. It includes some fundamental changes from the previous version (CNRM-ACM) which was extensively evaluated in the context of the CCMVal-2 validation activity. The most notable changes concern the radiative code of the GCM, and the inclusion of the detailed stratospheric chemistry of our Chemistry-Transport model MOCAGE on-line within the GCM. A 47-yr transient simulation (1960–2006) is the basis of our analysis. CNRM-CCM generates satisfactory dynamical and chemical fields in the stratosphere. Several shortcomings of CNRM-ACM simulations for CCMVal-2 that resulted from an erroneous representation of the impact of volcanic aerosols as well as from transport deficiencies have been eliminated. Remaining problems concern the upper stratosphere (5 to 1 hPa) where temperatures are too high, and where there are biases in the NO 2 , N 2 O 5 and O 3 mixing ratios. In contrast, temperatures at the tropical tropopause are too cold. These issues are addressed through the implementation of a more accurate radiation scheme at short wavelengths. Despite these problems we show that this new CNRM CCM is a useful tool to study chemistry-climate applications.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2011-10-06
    Description: SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds. The two-CN system approach Hydrology and Earth System Sciences Discussions, 8, 8963-9004, 2011 Author(s): K. X. Soulis and J. D. Valiantzas The Soil Conservation Service Curve Number (SCS-CN) approach is widely used as a simple method for predicting direct runoff volume for a given rainfall event. The CN values can be estimated by being selected from tables. However, it is more accurate to estimate the CN value from measured rainfall-runoff data (assumed available) in a watershed. Previous researchers indicated that the CN values calculated from measured rainfall-runoff data vary systematically with the rainfall depth. They suggested the determination of a single asymptotic CN value observed for very high rainfall depths to characterize the watersheds' runoff response. In this paper, the novel hypothesis that the observed correlation between the calculated CN value and the rainfall depth in a watershed reflects the effect of the inevitable presence of soil-cover complex spatial variability along watersheds is being tested. Based on this hypothesis, the simplified concept of a two-CN heterogeneous system is introduced to model the observed CN-rainfall variation by reducing the CN spatial variability into two classes. The behavior of the CN-rainfall function produced by the proposed two-CN system concept is approached theoretically, it is analyzed systematically, and it is found to be similar to the variation observed in natural watersheds. Synthetic data tests, natural watersheds examples, and detailed study of two natural experimental watersheds with known spatial heterogeneity characteristics were used to evaluate the method. The results indicate that the determination of CN values from rainfall runoff data using the proposed two-CN system approach provides reasonable accuracy and it over performs the previous original method based on the determination of a single asymptotic CN value. Although the suggested method increases the number of unknown parameters to three (instead of one), a clear physical reasoning for them is presented.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2011-10-05
    Description: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments Geoscientific Model Development, 4, 845-872, 2011 Author(s): S. Watanabe, T. Hajima, K. Sudo, T. Nagashima, T. Takemura, H. Okajima, T. Nozawa, H. Kawase, M. Abe, T. Yokohata, T. Ise, H. Sato, E. Kato, K. Takata, S. Emori, and M. Kawamiya An earth system model (MIROC-ESM 2010) is fully described in terms of each model component and their interactions. Results for the CMIP5 (Coupled Model Intercomparison Project phase 5) historical simulation are presented to demonstrate the model's performance from several perspectives: atmosphere, ocean, sea-ice, land-surface, ocean and terrestrial biogeochemistry, and atmospheric chemistry and aerosols. An atmospheric chemistry coupled version of MIROC-ESM (MIROC-ESM-CHEM 2010) reasonably reproduces transient variations in surface air temperatures for the period 1850–2005, as well as the present-day climatology for the zonal-mean zonal winds and temperatures from the surface to the mesosphere. The historical evolution and global distribution of column ozone and the amount of tropospheric aerosols are reasonably simulated in the model based on the Representative Concentration Pathways' (RCP) historical emissions of these precursors. The simulated distributions of the terrestrial and marine biogeochemistry parameters agree with recent observations, which is encouraging to use the model for future global change projections.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2011-10-05
    Description: A channel transmission losses model for different dryland rivers Hydrology and Earth System Sciences Discussions, 8, 8903-8962, 2011 Author(s): A. C. Costa, A. Bronstert, and J. C. de Araújo Channel transmission losses in drylands take place normally in extensive alluvial channels or streambeds underlain by fractured rocks. They can play an important role in flood prediction, groundwater recharge, freshwater supply and channel-associated ecosystems. We aim to develop a semi-distributed channel transmission losses model, a coupling of formulations which are more suitable for data-scarce dryland environments, applicable for both hydraulically disconnected losing streams and hydraulically connected losing(/gaining) streams. Hence, this approach should be able to cover a large variation in climate and hydro-geologic controls, which are typically found in dryland regions of the world. Traditionally, channel transmission losses models have been developed for site specific conditions. Our model was firstly evaluated for a losing/gaining, hydraulically connected 30 km reach of the Jaguaribe River, Ceará, Brazil, which controls a catchment area of 20 000 km 2 . Secondly, we applied it to a small losing, hydraulically disconnected 1.5 km channel reach in the Walnut Gulch Experimental Watershed (WGEW), Arizona, USA. The model based on the perceptual hydrological models of the reaches was able to predict reliably the stream flow for the both case studies. For the larger river reach, the evaluation of the hypotheses on the dominant hydrological processes was fundamental for reducing structural model uncertainties and improving the stream flow prediction, showing that both lateral stream-aquifer water fluxes and groundwater flow in the underlying alluvium parallel to the river course are necessary to predict stream flow and channel transmission losses, the former process being more relevant than the latter. The sensitivity analysis showed that even if the parameters can "potentially" produce large flow exchanges between model units in the saturated part of the modelling, large flow exchanges do not happen because they are restricted by the actual hydraulic gradient between the model units. Moreover, the saturated-part-based parameters (active in the larger river) produced much smaller variation in the sensitivity coefficient than those (active in the smaller river) which drive the unsaturated part of the channel transmission losses model.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2011-10-11
    Description: Watershed discretization based on multiple factors and its application in the Chinese Loess Plateau Hydrology and Earth System Sciences Discussions, 8, 9063-9087, 2011 Author(s): Y. Xu, B. Fu, C. He, and G. Gao The spatial discretization of watersheds is an indispensable procedure for representing landscape variations in eco-hydrological research, representing the contrast between reality and data-supported models. When discretizing a watershed, it is important to construct a scheme of a moderate number of discretized factors while adequately considering the actual eco-hydrological processes, especially in regions with unique eco-hydrological features and intense human activities. Because of their special lithological and pedologic characteristics and widespread man-made vegetation, discretization of watersheds in the Loess Plateau in Northern China is a challenge. In order to simulate the rainfall-runoff process, a watershed in the Loess Plateau, referred as Ansai, was spatially discretized into new units called land type units. These land type units were delineated under a scheme of factors including land use, vegetation condition, soil type and slope. Instead of using units delineated by overlaying land use and soil maps, the land type units were used in the Soil and Water Assessment Tool (SWAT). Curve numbers were assigned and adjusted to simulate runoff, using the US Natural Resources Conservation Service (NRCS) curve number method. The results of the runoff simulation better matched actual observations. Compared to the results that used the original units, the coefficient of determination ( R 2 ) and the Nash–Sutcliffe coefficient ( E NS ) for monthly flow simulation increased from 0.710–0.721 and 0.581–0.656 to 0.726–0.731 and 0.692–0.703, respectively. This method of delineating into land type units is an easy operation and suitable approach for eco-hydrological studies in the Chinese Loess Plateau and other similar regions. It can be further applied in soil erosion simulation and the eco-hydrological assessment of re-vegetation.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2011-10-15
    Description: Improving evapotranspiration in land surface models by using biophysical parameters derived from MSG/SEVIRI satellite Hydrology and Earth System Sciences Discussions, 8, 9113-9171, 2011 Author(s): N. Ghilain, A. Arboleda, G. Sepulcre-Cantò, O. Batelaan, J. Ardö, and F. Gellens-Meulenberghs Vegetation parameters derived from the geostationary satellite MSG/SEVIRI have been distributed at a daily frequency since 2007 over Europe, Africa and part of South America, through the LSA-SAF facility. We propose here a method to handle two new remote sensing products from LSA-SAF, leaf area index and Fractional Vegetation Cover, noted LAI and FVC respectively, for land surface models at MSG/SEVIRI scale. The developed method relies on an ordinary least-square technique and a land cover map to estimate LAI for each model plant functional types of the model spatial unit. The method is conceived to be applicable for near-real time applications at continental scale. Compared to monthly vegetation parameters from a vegetation database commonly used in numerical weather predictions (ECOCLIMAP-I), the new remote sensing products allows a better monitoring of the spatial and temporal variability of the vegetation, including inter-annual signals, and a decreased uncertainty on LAI to be input into land surface models. We assess the impact of using LSA-SAF vegetation parameters compared to ECOCLIMAP-I in the land surface model H-TESSEL at MSG/SEVIRI scale. Comparison with in-situ observations in Europe and Africa shows that the results on evapotranspiration are mostly improved, and especially in semi-arid climates. At last, the use of LSA-SAF and ECOCLIMAP-I is compared with simulations over a North-South Transect in Western Africa using LSA-SAF radiation forcing derived from remote sensing, and differences are highlighted.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2011-11-09
    Description: In-situ evaluation of internal drainage in layered soils (Tukulu, Sepane and Swartland) Hydrology and Earth System Sciences Discussions, 8, 9797-9841, 2011 Author(s): S. S. W. Mavimbela and L. D. van Rensburg The soil water release (SWC) and permeability properties of layered soils following deep infiltration depends on the structural and layering composition of the profiles diagnostic horizons. Three layered soils, the Tukulu, Sepane and Swartland soil forms, from the Free State province of South Africa, were selected for internal drainage evaluation. The soil water release curves as a function of suction ( h ) and unsaturated hydraulic conductivity ( K -coefficient) as a function of soil water content, SWC ( θ ), were characterised alongside the pedological properties of the profiles. The water hanging column in collaboration with the in-situ instantaneous profile method (IPM) was appropriate for this work. Independently, the saturated hydraulic conductivity ( K s ) was measured using double ring infiltrometers. The three soils had a generic orthic A horizon but differed remarkable with depth. A clay rich layer was found in the Tukulu and Sepane at depths of 600 to 850 mm and 300 to 900 mm, respectively. The Swartland was weakly developed with a saprolite rock found at depth of 400–700 mm. During the 1200 h drainage period, soil water loss amounted to 21, 20 and 51 mm from the respective Tukulu, Sepane and Swartland profiles. An abrupt drop in K s in conjunction with a steep K -coefficient gradient with depth was observed from the Tukulu and Sepane. Hydromorphic colours found on the clay-rich horizons suggested a wet soil water regime that implied restriction of internal drainage. It was therefore concluded that the clay rich horizons gave the Tukulu and Sepane soil types restricted internal drainage properties required for soil water storage under infield rainwater harvesting production technique. The coarseness of the Swartland promoted high drainage losses that proliferated a dry soil water regime.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2011-11-10
    Description: Promoting interdisciplinary education – the Vienna Doctoral Programme on Water Resource Systems Hydrology and Earth System Sciences Discussions, 8, 9843-9887, 2011 Author(s): G. Blöschl, G. Carr, C. Bucher, A. H. Farnleitner, H. Rechberger, W. Wagner, and M. Zessner The Vienna Doctoral Programme on Water Resource Systems (DK-WRS) is a programme that aims to educate students in interdisciplinary water science through cutting edge research at an international level. It is funded by the Austrian Science Fund and designed to run over a period of 12 yr during which 80 doctoral students are anticipated to graduate. This paper reports on our experiences of setting up and implementing the Programme. We identify three challenges: integrating the disciplines, maintaining depth in an interdisciplinary programme, and teaching subjects remote to each student's core expertise. To address these challenges we adopted a number of approaches. We use three levels of instruments to foster integration across the disciplines: joint groups (e.g. a joint study programme), joint science questions (e.g. developed in annual symposia), and joint study sites. To maintain depth we apply a system of quality control including regular feedback sessions, theses by journal publications and international study exchange. For simultaneously teaching students from civil and environmental engineering, biology, geology, chemistry, mathematics we use visually explicit teaching, learning by doing, extra mentoring and by cross relating associated subjects. Our initial assessment of the Programme shows some very positive outcomes. Joint science questions formed between students from various disciplines indicate integration is being achieved. The number of successful publications in top journals suggests that depth is maintained. Positive feedback from the students on the variety and clarity of the courses indicates the teaching strategy is working well. Our experiences have shown that implementing and running an interdisciplinary doctoral programme has its challenges and is demanding in terms of time and human resources but seeing interactions progress and watching people grow and develop their way of thinking in an interdisciplinary environment is a valuable reward.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2011-12-08
    Description: El-Niño southern oscillation and rainfall erosivity in the headwater region of the Grande River Basin, Southeast Brazil Hydrology and Earth System Sciences Discussions, 8, 10707-10738, 2011 Author(s): C. R. Mello, L. D. Norton, N. Curi, S. N. M. Yanagi, and A. M. Silva Relationships between regional climate and oceanic and atmospheric anomalies are important tools in order to promote the development of models for predicting rainfall erosivity, especially in regions with substantial intra-annual variability in the rainfall regime. In this context, this work aimed to analyze the rainfall erosivity in headwaters of Grande River Basin, Southern Minas Gerais State, Brazil. This study considered the two most representative environments, the Mantiqueira Range (MR) and Plateau of Southern Minas Gerais (PSM). These areas are affected by the El Nino Southern Oscillation (ENSO) indicators Sea Surface Temperature (SST) for Niño 3.4 Region and Multivariate ENSO Index (MEI). Rainfall erosivity was calculated for individual rainfall events from January 2006 to December 2010. The analyses were conducted using the monthly data of ENSO indicators and the following rainfall variables: rainfall erosivity (EI 30 ), rainfall depth ( P ), erosive rainfall depth ( E ), number of rainfall events (NRE), number of erosive rainfall events (NEE), frequency of occurrence of an early rainfall pattern (EP), occurrence of late rainfall pattern (LP) and occurrence of intermediate rainfall patter (IP). Pearson's coefficient of correlation was used to evaluate the relationships between the rainfall variables and SST and MEI. The coefficients of correlation were significant for SST in the PSM sub-region. Correlations between the rainfall variables and negative oscillations of SST were also significant, especially in the MR sub-region, however, the Person's coefficients were lesser than those obtained for the SST positive oscillations. The correlations between the rainfall variables and MEI were also significant but lesser than the SST correlations. These results demonstrate that SST positive oscillations play a more important role in rainfall erosivity, meaning they were more influenced by El-Niño episodes. Also, these results have shown that the ENSO variables have potential to be useful for rainfall erosivity forecasting in this region.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2011-12-08
    Description: Extreme runoff response to short-duration convective rainfall in South-West Germany Hydrology and Earth System Sciences Discussions, 8, 10739-10780, 2011 Author(s): V. Ruiz-Villanueva, M. Borga, D. Zoccatelli, L. Marchi, E. Gaume, U. Ehret, and E. Zehe The 2 June 2008 flood-producing storm on the Starzel river basin in South-West Germany is examined as a prototype for organized convective systems that dominate the upper tail of the precipitation frequency distribution and are likely responsible for the flash flood peaks in this region. The availability of high-resolution rainfall estimates from radar observations and a rain gauge network, together with indirect peak discharge estimates from a detailed post-event survey, provides the opportunity to study the hydrometeorological and hydrological mechanisms associated with this extreme storm and the ensuing flood. Radar-derived rainfall, streamgauge data and indirect estimates of peak discharges are used along with a distributed hydrologic model to reconstruct hydrographs at multiple locations. The influence of storm structure, evolution and motion on the modeled flood hydrograph is examined by using the "spatial moments of catchment rainfall" (Zoccatelli et al., 2011). It is shown that downbasin storm motion had a noticeable impact on flood peak magnitude. Small runoff ratios (less than 20%) characterized the runoff response. The flood response can be reasonably well reproduced with the distributed hydrological model, using high resolution rainfall observations and model parameters calibrated at a river section which includes most of the area impacted by the storm.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2011-12-07
    Description: Monitoring and quantifying future climate projections of dryness and wetness extremes: SPI bias Hydrology and Earth System Sciences Discussions, 8, 10635-10677, 2011 Author(s): F. Sienz, O. Bothe, and K. Fraedrich The adequacy of the Gamma distribution (GD) for monthly precipitation totals is reconsidered. The motivation for this study is the observation that the GD fails to represent precipitation in considerable areas of global observed and simulated data. This misrepresentation may lead to erroneous estimates of the Standardised Precipitation Index (SPI), evaluations of models, and assessments of climate change. In this study, the GD is compared to the Weibull (WD), Burr Type III (BD), exponentiated Weibull (EWD) and generalised Gamma (GGD) distribution. These distributions extend the GD in terms of possible shapes (skewness and kurtosis) and the behaviour for large arguments. The comparison is based on the Akaike information criterion, which maximises information entropy, and reveals a trade-off between deviation and the numbers of parameters used. We use monthly sums of observed and simulated precipitation for 12 calendar months of the year. Assessing observed and simulated data (i) the Weibull type distributions give distinctly improved fits compared to the GD and (ii) the SPI resulting from the GD overestimates (underestimates) extreme dryness (wetness).
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2011-12-07
    Description: SWAT use of gridded observations for simulating runoff – a Vietnam river basin study Hydrology and Earth System Sciences Discussions, 8, 10679-10705, 2011 Author(s): M. T. Vu, S. V. Raghavan, and S. Y. Liong Many research studies that focus on basin hydrology have used the SWAT model to simulate runoff. One common practice in calibrating the SWAT model is the application of station data rainfall to simulate runoff. But over regions lacking robust station data, there is a problem of applying the model to study the hydrological responses. For some countries and remote areas, the rainfall data availability might be a constraint due to many different reasons such as lacking of technology, war time and financial limitation that lead to difficulty in constructing the runoff data. To overcome such a limitation, this research study uses some of the available globally gridded high resolution precipitation datasets to simulate runoff. Five popular gridded observation precipitation datasets: (1) Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources (APHRODITE), (2) Tropical Rainfall Measuring Mission (TRMM), (3) Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN), (4) Global Precipitation Climatology Project (GPCP), (5) modified Global Historical Climatology Network version 2 (GHCN2) and one reanalysis dataset National Centers for Environment Prediction/National Center for Atmospheric Research (NCEP/NCAR) are used to simulate runoff over the Dakbla River (a small tributary of the Mekong River) in Vietnam. Wherever possible, available station data are also used for comparison. Bilinear interpolation of these gridded datasets is used to input the precipitation data at the closest grid points to the station locations. Sensitivity Analysis and Auto-calibration are performed for the SWAT model. The Nash-Sutcliffe Efficiency (NSE) and Coefficient of Determination ( R 2 ) indices are used to benchmark the model performance. This entails a good understanding of the response of the hydrological model to different datasets and a quantification of the uncertainties in these datasets. Such a methodology is also useful for planning on Rainfall-runoff and even reservoir/river management both at rural and urban scales.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2011-12-03
    Description: Towards an online-coupled chemistry-climate model: evaluation of trace gases and aerosols in COSMO-ART Geoscientific Model Development, 4, 1077-1102, 2011 Author(s): C. Knote, D. Brunner, H. Vogel, J. Allan, A. Asmi, M. Äijälä, S. Carbone, H. D. van der Gon, J. L. Jimenez, A. Kiendler-Scharr, C. Mohr, L. Poulain, A. S. H. Prévôt, E. Swietlicki, and B. Vogel The online-coupled, regional chemistry transport model COSMO-ART is evaluated for periods in all seasons against several measurement datasets to assess its ability to represent gaseous pollutants and ambient aerosol characteristics over the European domain. Measurements used in the comparison include long-term station observations, satellite and ground-based remote sensing products, and complex datasets of aerosol chemical composition and number size distribution from recent field campaigns. This is the first time these comprehensive measurements of aerosol characteristics in Europe are used to evaluate a regional chemistry transport model. We show a detailed analysis of the simulated size-resolved chemical composition under different meteorological conditions. Mean, variability and spatial distribution of the concentrations of O 3 and NO x are well reproduced. SO 2 is found to be overestimated, simulated PM 2.5 and PM 10 levels are on average underestimated, as is AOD. We find indications of an overestimation of shipping emissions. Time evolution of aerosol chemical composition is captured, although some biases are found in relative composition. Nitrate aerosol components are on average overestimated, and sulfates underestimated. The accuracy of simulated organics depends strongly on season and location. While strongly underestimated during summer, organic mass is comparable in spring and autumn. We see indications for an overestimated fractional contribution of primary organic matter in urban areas and an underestimation of SOA at many locations. Aerosol number concentrations compare well with measurements for larger size ranges, but overestimations of particle number concentration with factors of 2–5 are found for particles smaller than 50 nm. Size distribution characteristics are often close to measurements, but show discrepancies at polluted sites. Suggestions for further improvement of the modeling system consist of the inclusion of a revised secondary organic aerosols scheme, aqueous-phase chemistry and improved aerosol boundary conditions. Our work sets the basis for subsequent studies of aerosol characteristics and climate impacts with COSMO-ART, and highlights areas where improvements are necessary for current regional modeling systems in general.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2011-12-07
    Description: Mass transport of contaminated soil released into surface water by landslides (Göta River, SW Sweden) Hydrology and Earth System Sciences Discussions, 8, 10589-10633, 2011 Author(s): G. Göransson, M. Larson, D. Bendz, and M. Åkesson Landslides of contaminated soil into surface water represent an overlooked exposure pathway that has not been addressed properly in existing risk analysis for landslide hazard, contaminated land, or river basin management. A landslide of contaminated soil into surface water implies an instantaneous exposure of the water to the contaminated soil, dramatically changing the prerequisites for the mobilisation and transport of pollutants. In this study, an analytical approach is taken to simulate the transport of suspended matter released in connection with landslides into rivers. Different analytical solutions to the advection-dispersion equation (ADE) were tested against the measured data from the shallow rotational, retrogressive landslide in clayey sediments that took place in 1993 on the Göta River, SW Sweden. The landslide encompassed three distinct events, namely an initial submerged slide, followed by a main slide, and a retrogressive slide. These slides generated three distinct and non-Gaussian peaks in the online turbidity recordings at the freshwater intake downstream the slide area. To our knowledge, this registration of the impact in a river of the sediment release from a landslide is one of the few of its kind in the world, and unique for Sweden considering the low frequency of landslide events, making it highly useful for evaluating how appropriate the ADE is to describe a landslide into surface water. The results yielded realistic predictions of the measured concentration variation, after proper calibration. For the three individual slides it was estimated that a total of about 0.6% (515 000 kg) of the total landslide mass went into suspension/was suspended and was transported downstream. This release corresponds to about 1 to 2% of the annual suspended sediment delivery for that river stretch. The studied landslide partly involved an industrial area and by applying the analytical solution for the transport of metals in the sediments it was found that landslides have the possibility to release a significant amount of pollutants if large contaminated areas are involved. However, further studies are needed to develop more detailed descriptions of the transport processes. There is also a need to increase the knowledge on possible environmental consequences in the near and far field, in a short and long-time perspective. Finally, the risk for the release of pollutants should not be neglected in landslide hazard and risk assessment.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2012-03-09
    Description: On teaching styles of water educators and the impact of didactic training Hydrology and Earth System Sciences Discussions, 9, 2959-2986, 2012 Author(s): A. Pathirana, J. H. Koster, E. de Jong, and S. Uhlenbrook Solving today's complex hydrological problems requires originality, creative thinking and trans-disciplinary approaches. Hydrological education that was traditionally teacher centred, where the students look up to the teacher for expertise and information, should change to better prepare hydrologists to develop new knowledge and apply it in new contexts. An important first step towards this goal is to change the concept of education in the educators' minds. The results of an investigation to find out whether didactic training influences the beliefs of hydrology educators about their teaching styles is presented. Faculty of UNESCO-IHE has been offered a didactic certification program named University Teaching Qualification (UTQ). The hypothesis that UTQ training will significantly alter the teaching style of faculty at UNESCO-IHE from expert/formal authority traits towards facilitator/delegator traits was tested. A first survey was conducted among the entire teaching staff (total 101, response rate 58%). The results indicated that there are significantly higher traits of facilitator and delegator teaching styles among UTQ graduates compared to faculty who were not significantly trained in didactics. The second survey which was conducted among UTQ graduates (total 20, response rate 70%), enquiring after their teaching styles before and after UTQ, corroborated these findings.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2012-02-22
    Description: Identifying the causes of differences in ozone production from the CB05 and CBMIV chemical mechanisms Geoscientific Model Development, 5, 257-268, 2012 Author(s): R. D. Saylor and A. F. Stein An investigation was conducted to identify the mechanistic differences between two versions of the carbon bond gas-phase chemical mechanism (CB05 and CBMIV) which consistently lead to larger ground-level ozone concentrations being produced in the CB05 version of the National Air Quality Forecasting Capability (NAQFC) modeling system even though the two parallel forecast systems utilize the same meteorology and base emissions and similar initial and boundary conditions. Box models of each of the mechanisms as they are implemented in the NAQFC were created and a set of 12 sensitivity simulations was designed. The sensitivity simulations independently probed the conceptual mechanistic differences between CB05 and CBMIV and were exercised over a 45-scenario simulation suite designed to emulate the wide range of chemical regimes encountered in a continental-scale atmospheric chemistry model. Results of the sensitivity simulations indicate that two sets of reactions that were included in the CB05 mechanism, but which were absent from the CBMIV mechanism, are the primary causes of the greater ozone production in the CB05 version of the NAQFC. One set of reactions recycles the higher organic peroxide species of CB05 (ROOH), resulting in additional photochemically reactive products that act to produce additional ozone in some chemical regimes. The other set of reactions recycles reactive nitrogen from less reactive forms back to NO 2 , increasing the effective NO x concentration of the system. In particular, the organic nitrate species (NTR), which was a terminal product for reactive nitrogen in the CBMIV mechanism, acts as a reservoir species in CB05 to redistribute NO x from major source areas to potentially NO x -sensitive areas where additional ozone may be produced in areas remote from direct NO x sources.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2012-03-13
    Description: River monitoring from satellite radar altimetry in the Zambezi River Basin Hydrology and Earth System Sciences Discussions, 9, 3203-3235, 2012 Author(s): C. I. Michailovsky, S. McEnnis, P. A. M. Berry, R. Smith, and P. Bauer-Gottwein Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. In this study, retracked Envisat altimetry data was extracted over the Zambezi River Basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements to be obtained for rivers down to 80 m wide with an RMSE relative to in situ levels of 0.32 to 0.72 m at different locations. The altimetric levels were then converted to discharge using three different methods adapted to different data-availability scenarios: first with an in situ rating curve available, secondly with one simultaneous field measurement of cross-section and discharge, and finally with only historical discharge data available. For the two locations at which all three methods could be applied the accuracies of the different methods were found to be comparable, with RMSE values ranging from 5.5 to 7.4 % terms of high flow estimation relative to in situ gauge measurements. The precision obtained with the different methods was analyzed by running Monte Carlo simulations and also showed comparable values for the three approaches with standard deviations found between 8.2 and 25.8 % of the high flow estimates.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2012-03-13
    Description: Water management simulation games and the construction of knowledge Hydrology and Earth System Sciences Discussions, 9, 3063-3085, 2012 Author(s): M. Rusca, J. Heun, and K. Schwartz In recent years simulations have become an important part of teaching activities. The reasons behind the popularity of simulation games are twofold. On the one hand, emerging theories on how people learn have called for an experienced-based learning approach. On the other hand, the demand for water management professionals has changed. Three important developments are having considerable consequences for water management programmes, which educate and train these professionals. These developments are the increasing emphasis on integration in water management, the characteristics and speed of reforms in the public sector and the shifting state-society relations in many countries. In response to these developments, demand from the labour market is oriented toward water professionals who need to have both a specialist in-depth knowledge in their own field, as well as the ability to understand and interact with other disciplines and interests. In this context, skills in negotiating, consensus building and working in teams are considered essential for all professionals. In this paper we argue that simulation games have an important role to play in (actively) educating students and training the new generation of water professionals to respond to the above-mentioned challenges. At the same time, simulations are not a panacea for learners and teachers. Challenges of using simulations games include the demands it places on the teacher. Setting up the simulation game, facilitating the delivery and ensuring that learning objectives are achieved requires considerable knowledge and experience as well as considerable time-inputs of the teacher. Moreover, simulation games usually incorporate a case-based learning model, which may neglect or underemphasize theories and conceptualization. For simulations to be effective they have to be embedded in this larger theoretical and conceptual framework. Simulations, therefore, complement rather than substitute traditional teaching methods.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2012-03-13
    Description: Evaluation of a complementary based model for mapping land surface evapotranspiration Hydrology and Earth System Sciences Discussions, 9, 3029-3062, 2012 Author(s): Z. Sun, Q. Wang, Z. Ouyang, and Y. Yang A modified Priestley-Taylor (P-T) equation was proposed by Venturini et al. (2008) to map actual evapotranspiration (ET) based solely on satellite remote sensing data, involving a parameter based on a scaled temperature between dew point temperature and surface temperature. In this study, however, theoretical analyses and field experimental evidence show that it is hard to obtain this scaled temperature using dew point temperature and surface temperature. This study also presents a new parameterization method using air temperature, surface temperature, and surface temperature of a reference dry surface. The actual ET estimates obtained by means of our proposed parameterization method are validated at a site scale, and a case study is conducted to map actual ET from Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) images using our proposed method. Results of ground-based validation and a case study of mapping ET using ASTER images indicate that the improvement on the modified P-T equation proposed by Venturini et al. (2008) can contribute to generating reliable actual ET.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2012-03-14
    Description: Influence of parallel computational uncertainty on simulations of the Coupled General Climate Model Geoscientific Model Development, 5, 313-319, 2012 Author(s): Z. Song, F. Qiao, X. Lei, and C. Wang This paper investigates the impact of the parallel computational uncertainty due to the round-off error on climate simulations using the Community Climate System Model Version 3 (CCSM3). A series of sensitivity experiments have been conducted and the analyses are focused on the Global and Nino3.4 average sea surface temperatures (SST). For the monthly time series, it is shown that the amplitude of the deviation induced by the parallel computational uncertainty is the same order as that of the climate system change. However, the ensemble mean method can reduce the influence and the ensemble member number of 15 is enough to ignore the uncertainty. For climatology, the influence can be ignored when the climatological mean is calculated by using more than 30-yr simulations. It is also found that the parallel computational uncertainty has no distinguishable effect on power spectrum analysis of climate variability such as ENSO. Finally, it is suggested that the influence of the parallel computational uncertainty on Coupled General Climate Models (CGCMs) can be a quality standard or a metric for developing CGCMs.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2012-03-15
    Description: Precipitation fields interpolated from gauge stations versus a merged radar-gauge precipitation product: influence on modelled soil moisture at local scale and at SMOS scale Hydrology and Earth System Sciences Discussions, 9, 3385-3413, 2012 Author(s): J. T. dall'Amico, W. Mauser, F. Schlenz, and H. Bach For the validation of coarse resolution soil moisture products from missions such as the Soil Moisture and Ocean Salinity (SMOS) mission, hydrological modelling of soil moisture is an important tool. The spatial distribution of precipitation is among the most crucial input data for such models. Thus, reliable time series of precipitation fields are required, but these often need to be interpolated from data delivered by scarcely distributed gauge station networks. In this study, a commercial precipitation product derived by Meteomedia AG from merging radar and gauge data is introduced as a novel means of adding the promising area-distributed information given by a radar network to the more accurate, but point-like measurements from a gauge station network. This precipitation product is first validated against an independent gauge station network. Further, the novel precipitation product is assimilated into the hydrological land surface model PROMET for the Upper Danube Catchment in southern Germany, one of the major SMOS calibration and validation sites in Europe. The modelled soil moisture fields are compared to those obtained when the operational interpolation from gauge station data is used to force the model. The results suggest that the assimilation of the novel precipitation product can lead to deviations of modelled soil moisture in the order of 0.15 m 3 m −3 on small spatial (∼1 km 2 ) and short temporal resolutions (∼1 day). As expected, after spatial aggregation to the coarser grid on which SMOS data are delivered (~195 km 2 ), these differences are reduced to the order of 0.04 m 3 m −3 , which is the accuracy benchmark for SMOS. The results of both model runs are compared to brightness temperatures measured by the airborne L-band radiometer EMIRAD during the SMOS Validation Campaign 2010. Both comparisons yield equally good correlations, confirming the model's ability to realistically model soil moisture fields in the test site. The fact that the two model runs perform similarly in the comparison is likely associated with the lack of substantial rain events before the days on which EMIRAD was flown.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2012-03-15
    Description: Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities Hydrology and Earth System Sciences Discussions, 9, 3415-3472, 2012 Author(s): Y. Liu, A. H. Weerts, M. Clark, H.-J. Hendricks Franssen, S. Kumar, H. Moradkhani, D.-J. Seo, D. Schwanenberg, P. Smith, A. I. J. M. van Dijk, N. van Velzen, M. He, H. Lee, S. J. Noh, O. Rakovec, and P. Restrepo Data assimilation (DA) holds considerable potential for improving hydrologic predictions as demonstrated in numerous research studies. However, advances in hydrologic DA research have not been adequately or timely implemented into operational forecast systems to improve the skill of forecasts to better inform real-world decision making. This is due in part to a lack of mechanisms to properly quantify the uncertainty in observations and forecast models in real-time forecasting situations and to conduct the merging of data and models in a way that is adequately efficient and transparent to operational forecasters. The need for effective DA of useful hydrologic data into the forecast process has become increasingly recognized in recent years. This motivated a hydrologic DA workshop in Delft, The Netherlands in November 2010, which focused on advancing DA in operational hydrologic forecasting and water resources management. As an outcome of the workshop, this paper reviews, in relevant detail, the current status of DA applications in both hydrologic research and operational practices, and discusses the existing or potential hurdles and challenges in transitioning hydrologic DA research into cost-effective operational forecasting tools, as well as the potential pathways and newly emerging opportunities for overcoming these challenges. Several related aspects are discussed, including (1) theoretical or mathematical considerations in DA algorithms, (2) the estimation of different types of uncertainty, (3) new observations and their objective use in hydrologic DA, (4) the use of DA for real-time control of water resources systems, and (5) the development of community-based, generic DA tools for hydrologic applications. It is recommended that cost-effective transition of hydrologic DA from research to operations should be helped by developing community-based, generic modelling and DA tools or frameworks, and through fostering collaborative efforts among hydrologic modellers, DA developers, and operational forecasters.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2012-03-15
    Description: Impact of climate change on sediment yield in the Mekong River Basin: a case study of the Nam Ou Basin, Lao PDR Hydrology and Earth System Sciences Discussions, 9, 3339-3384, 2012 Author(s): B. Shrestha, M. S. Babel, S. Maskey, A. van Griensven, S. Uhlenbrook, A. Green, and I. Akkharath This paper evaluates the impact of climate change on sediment yield in the Nam Ou Basin located in Northern Laos. The Soil and Water Assessment Tool (SWAT) is used to assess future changes in sediment flux attributable to climate change. Future precipitation and temperature series are constructed through a delta change approach. As per the results, in general, temperature as well as precipitation show increasing trends in both scenarios, A2 and B2. However, monthly precipitation shows both increasing and decreasing trends. The simulation results exhibit that the wet and dry seasonal and annual stream discharges are likely to increase (by up to 15, 17 and 14% under scenario A2; and 11, 5 and 10% under scenario B2 respectively) in the future, which will lead to increased wet and dry seasonal and annual sediment yields (by up to 39, 28 and 36% under scenario A2; and 23, 12 and 22% under scenario B2 respectively). A higher discharge and more sediment flux are expected during the wet seasons, although the changes, percentage-wise, are observed to be higher during the dry months. In conclusion, the sediment yield from the Nam Ou Basin is likely to increase with climate change, which strongly suggests the need for basin-wide sediment management strategies in order to reduce the negative impact of this change.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2012-03-16
    Description: Correcting the radar rainfall forcing of a hydrological model with data assimilation: application to flood forecasting in the Lez Catchment in Southern France Hydrology and Earth System Sciences Discussions, 9, 3527-3579, 2012 Author(s): E. Harader, V. Borrell Estupina, S. Ricci, M. Coustau, O. Thual, A. Piacentini, and C. Bouvier The present study explores the application of a data assimilation (DA) procedure to correct the radar rainfall inputs of an event-based, distributed, parsimonious hydrological model. A simplified Kalman filter algorithm was built on top of a rainfall-runoff model in order to assimilate discharge observations at the catchment outlet. The study site is the 114 km 2 Lez Catchment near Montpellier, France. This catchment is subject to heavy orographic rainfall and characterized by a karstic geology, leading to flash flooding events. The hydrological model uses a derived version of the SCS method, combined with a Lag and Route transfer function. Because it depends on geographical features and cloud structures, the radar rainfall input to the model is particularily uncertain and results in significant errors in the simulated discharges. The DA analysis was applied to estimate a constant correction to each event hyetogram. The analysis was carried out for 19 events, in two different modes: re-analysis and pseudo-forecast. In both cases, it was shown that the reduction of the uncertainty in the rainfall data leads to a reduction of the error in the simulated discharge. The resulting correction of the radar rainfall data was then compared to the mean field bias (MFB), a corrective coefficient determined using ground rainfall measurements, which are more accurate than radar but have a decreased spatial resolution. It was shown that the radar rainfall corrected using DA leads to improved discharge simulations and Nash criteria compared to the MFB correction.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2012-03-16
    Description: Numerical modelling of climate change impacts on freshwater lenses on the North Sea Island of Borkum Hydrology and Earth System Sciences Discussions, 9, 3473-3525, 2012 Author(s): H. Sulzbacher, H. Wiederhold, B. Siemon, M. Grinat, J. Igel, T. Burschil, T. Günther, and K. Hinsby A numerical variable-density groundwater model is set up for the North Sea Island of Borkum to estimate climate change impacts on coastal aquifers and especially the situation of barrier islands in the Wadden Sea. The database includes information from boreholes, a seismic survey, a helicopter-borne electromagnetic survey (HEM), monitoring of the freshwater-saltwater boundary by vertical electrode chains in two boreholes, measurements of groundwater table, pumping and slug tests, as well as water samples. Based on a statistical analysis of borehole columns, seismic sections and HEM, a hydrogeological model is set up. The groundwater model is developed using the finite-element programme FEFLOW. The variable-density groundwater model is calibrated on the basis of hydraulic, hydrological and geophysical data, in particular spatial HEM and local monitoring data. Verification runs with the calibrated model show good agreement between measured and computed hydraulic heads. A good agreement is also obtained between measured and computed density or total dissolved solids data for both the entire freshwater lens on a large scale and in the area of the well fields on a small scale. For simulating future changes in this coastal groundwater system until the end of the current century we use the climate scenario A2, specified by the Intergovernmental Panel on Climate Change and in particular the data for the German North Sea coast. Simulation runs show proceeding salinization with time beneath the well fields of the two waterworks Waterdelle and Ostland. The modelling study shows that spreading of well fields is an appropriate protection measure against excessive salinization of the water supply until the end of the current century.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2012-02-14
    Description: Wavelet-based spatial comparison technique for analysing and evaluating two-dimensional geophysical model fields Geoscientific Model Development, 5, 223-230, 2012 Author(s): S. Saux Picart, M. Butenschön, and J. D. Shutler Complex numerical models of the Earth's environment, based around 3-D or 4-D time and space domains are routinely used for applications including climate predictions, weather forecasts, fishery management and environmental impact assessments. Quantitatively assessing the ability of these models to accurately reproduce geographical patterns at a range of spatial and temporal scales has always been a difficult problem to address. However, this is crucial if we are to rely on these models for decision making. Satellite data are potentially the only observational dataset able to cover the large spatial domains analysed by many types of geophysical models. Consequently optical wavelength satellite data is beginning to be used to evaluate model hindcast fields of terrestrial and marine environments. However, these satellite data invariably contain regions of occluded or missing data due to clouds, further complicating or impacting on any comparisons with the model. This work builds on a published methodology, that evaluates precipitation forecast using radar observations based on predefined absolute thresholds. It allows model skill to be evaluated at a range of spatial scales and rain intensities. Here we extend the original method to allow its generic application to a range of continuous and discontinuous geophysical data fields, and therefore allowing its use with optical satellite data. This is achieved through two major improvements to the original method: (i) all thresholds are determined based on the statistical distribution of the input data, so no a priori knowledge about the model fields being analysed is required and (ii) occluded data can be analysed without impacting on the metric results. The method can be used to assess a model's ability to simulate geographical patterns over a range of spatial scales. We illustrate how the method provides a compact and concise way of visualising the degree of agreement between spatial features in two datasets. The application of the new method, its handling of bias and occlusion and the advantages of the novel method are demonstrated through the analysis of model fields from a marine ecosystem model.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2012-02-14
    Description: Moving beyond traditional model calibration or how to better identify realistic model parameters: sub-period calibration Hydrology and Earth System Sciences Discussions, 9, 1885-1918, 2012 Author(s): S. Gharari, M. Hrachowitz, F. Fenicia, and H. H. G. Savenije Conceptual hydrological models often rely on calibration for the identification of their parameters. As these models are typically designed to reflect real catchment processes, a key objective of an appropriate calibration strategy is the determination of parameter sets that reflect a "realistic" model behavior. Previous studies have shown that parameter estimates for different calibration periods can be significantly different. This questions model transposability in time, which is one of the key conditions for the set-up of a "realistic" model. This paper presents a new approach that selects parameter sets that provide a consistent model performance in time. The approach consists of confronting model performance in different periods, and selecting parameter sets that are as close as possible to the optimum of each individual sub-period. While aiding model calibration, the approach is also useful as a diagnostic tool, illustrating tradeoffs in the identification of time consistent parameter sets. The approach is demonstrated in a case study where we illustrate the multi-objective calibration of the HyMod hydrological model to a Luxembourgish catchment.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2012-02-15
    Description: Impacts of inhomogeneous landscapes in oasis interior on the oasis self-maintaining mechanism by integrating numerical model with satellite data Hydrology and Earth System Sciences Discussions, 9, 1979-2004, 2012 Author(s): X. Meng, S. Lu, T. Zhang, Y. Ao, S. Li, Y. Bao, L. Wen, and S. Luo Mesoscale meteorological modeling is an important tool to help understand the energy budget of the oasis. While basic dynamic and thermodynamic processes for oasis self-maintaining in the desert environment is well investigated, influence of heterogeneous landscapes of oasis interior on the processes are still important and remain to be investigated. In this study, two simulations are designed for investigating the influence of inhomogeneity. In the first case, land surface parameters including land-use types, vegetation cover fraction, and surface layer soil moisture are derived by satellite remote sensing data from EOS/MODIS, and then be used specify the respective options in the MM5 model, to describe a real inhomogeneity for the oasis interior. In the other run, land use types are set to MM5 default, in which landscapes in the oasis interior is relative uniform, and then surface layer soil moisture and vegetation fraction is set to be averages of the first case for the respective oasis and desert surface lying, to represent a relative homogeneity. Results show that the inhomogeneity leads to a weaker oasis "cold-wet island" effect and a stronger turbulence over the oasis interior, both of which will reduce the oasis-desert secondary circulation and increase the evaporation over the oasis, resulting in a negative impact on the oasis self-protecting mechanism. The simulation of homogeneity indicates that the oasis may be more stable even with relative lower soil moisture if landscapes in the oasis interior are comparatively uniform.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2012-02-18
    Description: Calibration and evaluation of a semi-distributed watershed model of sub-Saharan Africa using GRACE data Hydrology and Earth System Sciences Discussions, 9, 2071-2120, 2012 Author(s): H. Xie, L. Longuevergne, C. Ringler, and B. Scanlon Irrigation development is rapidly expanding in mostly rainfed Sub-Saharan Africa. This expansion underscores the need for a more comprehensive understanding of water resources beyond surface water. Gravity Recovery and Climate Experiment (GRACE) satellites provide valuable information on spatio-temporal variability of water storage. The objective of this study was to calibrate and evaluate a semi-distributed regional-scale hydrological model, or a large-scale application of the Soil and Water Assessment Tool (SWAT) model, for basins in Sub-Saharan Africa using seven-year (2002–2009) 10-day GRACE data. Multi-site river discharge data were used as well, and the analysis was conducted in a multi-criteria framework. In spite of the uncertainty arising from the tradeoff in optimizing model parameters with respect to two non-commensurable criteria defined for two fluxes, it is concluded that SWAT can perform well in simulating total water storage variability in most areas of Sub-Saharan Africa, which have semi-arid and sub-humid climates, and that among various water storages represented in SWAT, the water storage variations from soil, the vadose zone, and groundwater are dominant. On the other hand, the study also showed that the simulated total water storage variations tend to have less agreement with the GRACE data in arid and equatorial humid regions, and the model-based partition of total water storage variations into different water storage compartments could be highly uncertain. Thus, future work will be needed for model enhancement in these areas with inferior model fit and for uncertainty reduction in component-wise estimation of water storage variations.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2012-12-19
    Description: Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections Hydrology and Earth System Sciences Discussions, 9, 13773-13803, 2012 Author(s): B. Orlowsky and S. I. Seneviratne Recent years have seen a number of severe droughts in different regions around the world, causing agricultural and economic losses, famines and migration. Despite their devastating consequences, the Standardised Precipitation Index (SPI) of these events lies within the range of internal climate variability, which we estimate from simulations from the 5th phase of the Coupled Model Intercomparison Project (CMIP5). In terms of drought magnitude, regional trends of SPI over the last decades remain mostly inconclusive in observations and CMIP5 simulations, although Soil Moisture Anomalies (SMAs) in CMIP5 simulations hint at increased drought in a few regions (e.g. the Mediterranean, Central America/Mexico, the Amazon, North-East Brazil and South Africa). Also for the future, projections of meteorological (SPI) and agricultural (SMA) drought in CMIP5 display large uncertainties over all time frames, generally impeding trend detection. Analogue analyses of the frequencies rather than magnitudes of future drought display, however, more robust signal-to-noise ratios with detectable trends towards more frequent drought until the end of the 21st century in the Mediterranean, South Africa and Central America/Mexico. Other present-day hot spots are projected to become less drought-prone, or to display unsignificant changes in drought occurrence. A separation of different sources of uncertainty in drought projections reveals that for the near term, internal climate variability is the dominant source, while the formulation of Global Climate Models (GCMs) generally becomes the dominant source of uncertainty by the end of the 21st century, especially for agricultural (soil moisture) drought. In comparison, the uncertainty in Green-House Gas (GHG) concentrations scenarios is negligible for most regions. These findings stand in contrast to respective analyses for a heat wave indicator, for which GHG concentrations scenarios constitute the main source of uncertainty. Our results highlight the inherent difficulty of drought quantification and the uncertainty of drought projections. However, high uncertainty should not be equated with low drought risk, since potential scenarios include large drought increases in key agricultural and ecosystem regions.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2012-12-20
    Description: Simulation of hydrological processes in the Zhalong Wetland within a river basin, Northeast China Hydrology and Earth System Sciences Discussions, 9, 14035-14063, 2012 Author(s): X. Q. Feng, G. X. Zhang, and Y. Jun Xu Zhalong National Nature Preserve is a large wetland reserve on the Songnen Plain in Northeast China. Wetlands in the preserve play a key role in maintaining regional ecosystem function and integrity. Global climate change and intensified anthropogenic activities in the region have raised great concerns over the change of natural flow regime, wetland degradation and losses. In this study, two key hydrologic components in the preserve, open water area and storage, as well as their variations during the period 1985–2006 were investigated with a spatially-distributed hydrologic modeling system, SWAT. A wetland module was incorporated into the SWAT model to represent hydrological linkages between the wetland and adjacent upland areas. The modified modeling system was calibrated with streamflow measurements from 1987 to 1989, in a Nash efficiency coefficient ( E ns ) of 0.86, and was validated for the period 2005–2006, in an E ns of 0.66. In the past 20 yr, open water area in the Zhalong Wetland fluctuated from approximately 200 km 2 to 1145 km 2 with a rapid decreasing trend through the early 2000s. Consequently, open water storage in the preserve decreased largely, especially in the dry seasons. The situation changed following the implementation of a river diversion in 2001. Overall, the modeling yielded plausible estimates of hydrologic changes in this large wetland reserve, building a foundation for assessing ecological water requirements and developing strategies and plans for water resources management within the river basin.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2012-12-21
    Description: On the use of spring baseflow recession for a more accurate parameterization of aquifer transit time distribution functions Hydrology and Earth System Sciences Discussions, 9, 14109-14128, 2012 Author(s): J. Farlin and P. Maloszewski Baseflow recession analysis and groundwater dating have up to now developed as two distinct branches of hydrogeology and were used to solve entirely different problems. We show that by combining two classical models, namely Boussinesq's Equation describing spring baseflow recession and the exponential piston-flow model used in groundwater dating studies, the parameters describing the transit time distribution of an aquifer can be in some cases estimated to a far more accurate degree than with the latter alone. Under the assumption that the aquifer basis is sub-horizontal, the mean residence time of water in the saturated zone can be estimated from spring baseflow recession. This provides an independent estimate of groundwater residence time that can refine those obtained from tritium measurements. This approach is demonstrated in a case study predicting atrazine concentration trend in a series of springs draining the fractured-rock aquifer known as the Luxembourg Sandstone. A transport model calibrated on tritium measurements alone predicted different times to trend reversal following the nationwide ban on atrazine in 2005 with different rates of decrease. For some of the springs, the best agreement between observed and predicted time of trend reversal was reached for the model calibrated using both tritium measurements and the recession of spring discharge during the dry season. The agreement between predicted and observed values was however poorer for the springs displaying the most gentle recessions, possibly indicating the stronger influence of continuous groundwater recharge during the dry period.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2012-12-22
    Description: Development of a method of robust rain gauge network optimization based on intensity-duration-frequency results Hydrology and Earth System Sciences Discussions, 9, 14205-14230, 2012 Author(s): A. Chebbi, Z. K. Bargaoui, and M. da Conceição Cunha Based on rainfall intensity-duration-frequency (IDF) curves, a robust optimization approach is proposed to identify the best locations to install new rain gauges. The advantage of robust optimization is that the resulting design solutions yield networks which behave acceptably under hydrological variability. Robust optimisation can overcome the problem of selecting representative rainfall events when building the optimization process. This paper reports an original approach based on Montana IDF model parameters. The latter are assumed to be geostatistical variables and their spatial interdependence is taken into account through the adoption of cross-variograms in the kriging process. The problem of optimally locating a fixed number of new monitoring stations based on an existing rain gauge network is addressed. The objective function is based on the mean spatial kriging variance and rainfall variogram structure using a variance-reduction method. Hydrological variability was taken into account by considering and implementing several return periods to define the robust objective function. Variance minimization is performed using a simulated annealing algorithm. In addition, knowledge of the time horizon is needed for the computation of the robust objective function. A short and a long term horizon were studied, and optimal networks are identified for each. The method developed is applied to north Tunisia (area = 21 000 km 2 ). Data inputs for the variogram analysis were IDF curves provided by the hydrological bureau and available for 14 tipping bucket type rain gauges. The recording period was from 1962 to 2001, depending on the station. The study concerns an imaginary network augmentation based on the network configuration in 1973, which is a very significant year in Tunisia because there was an exceptional regional flood event in March 1973. This network consisted of 13 stations and did not meet World Meteorological Organization (WMO) recommendations for the minimum spatial density. So, it is proposed to virtually augment it by 25, 50, 100 and 160% which is the rate that would meet WMO requirements. Results suggest that for a given augmentation robust networks remain stable overall for the two time horizons.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2013-01-17
    Description: Can pH and electrical conductivity monitoring reveal spatial and temporal patterns in wetland geochemical processes? Hydrology and Earth System Sciences Discussions, 10, 699-728, 2013 Author(s): P. J. Gerla Carbonate reactions and equilibria play a dominant role in the biogeochemical function of many wetlands. The US Geological Survey PHREEQC computer code was used to model geochemical reactions that may be typical for wetlands with water budgets characterized by: (a) input dominated by direct precipitation, (b) interaction with groundwater, (c) variable degrees of reaction with organic carbon, and (d) different rates of evapotranspiration. Rainfall with a typical composition was progressively reacted with calcite and organic carbon at various rates and proportions using PHREEQC. Contrasting patterns of the results suggest that basic water quality data collected in the field can reveal differences in the geochemical processes in wetlands. Given a temporal record, these can signal subtle changes in surrounding land cover and use. To demonstrate this, temperature, pH, and electrical conductivity (EC) were monitored for three years in five large wetlands comprising 48 sample sites in northwest Minnesota. EC and pH of samples ranged greatly – from 23 to 1300 μS cm −1 and 5.5 to 9. The largest range in pH was observed in small beach ridge wetlands, where two clusters are apparent: (1) low EC and a wide range of pH and (2) higher pH and EC. Large marshes within a glacial lake – till plain have a broad range of pH and EC, but depend on the specific wetland. Outlying data typically occurred in altered or disturbed areas. The inter-annual and intra-wetland consistency of the results suggests that each wetland system hosts characteristic geochemical conditions.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2013-01-16
    Description: Derivation of RCM-driven potential evapotranspiration for hydrological climate change impact analysis in Great Britain: a comparison of methods and associated uncertainty in future projections Hydrology and Earth System Sciences Discussions, 10, 597-624, 2013 Author(s): C. Prudhomme and J. Williamson Potential evapotranspiration PET is the water that would be lost by plants through evaporation and transpiration if water was not limited in the soil, and it is commonly used in conceptual hydrological modelling in the calculation of runoff production and hence river discharge. Future changes of PET are likely to be as important as changes in precipitation patterns in determining changes in river flows. However PET is not calculated routinely by climate models so it must be derived independently when the impact of climate change on river flow is to be assessed. This paper compares PET estimates from twelve equations of different complexity, driven by the Hadley Centre's HadRM3-Q0 model outputs representative of 1961–1990, with MORECS PET, a product used as reference PET in Great Britain. The results show that the FAO56 version of the Penman-Monteith equations reproduce best the spatial and seasonal variability of MORECS PET across GB when driven by HadRM3-Q0 estimates of relative humidity, total cloud, wind speed and linearly bias-corrected mean surface temperature. This suggests that potential biases in HadRM3-Q0 climate do not result in significant biases when the physically-based FAO56 equations are used. Percentage changes in PET between the 1961–1990 and 2041–2070 time slices were also calculated for each of the twelve PET equations. Results show a large variation in the magnitude (and sometimes direction) of changes estimated from different PET equations, with Turc, Jensen-Hense and calibrated Blaney-Criddle methods systematically projecting the largest increases across GB for all months and Priestley-Taylor, Makkink and Thornthwaite showing the smallest changes. We recommend the use of the FAO56 equation as when driven by HadRM3-Q0 climate data this best reproduces the reference MORECS PET across Great Britain for the reference period of 1961–1990. Further, the future changes of PET estimated by FAO56 are within the range of uncertainty defined by the ensemble of twelve PET equations. The changes show a clear northwest-southeast gradient of PET increase with largest (smallest) changes in the northwest in January (July and October) respectively. However, the range in magnitude of PET changes due to the choice of PET method shown in this study for Great Britain suggests that PET uncetainty is perhaps one of the greatest challenges facing the assessment of climate change impact on hydrology.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2013-01-16
    Description: Fuzzy committees of specialised rainfall-runoff models: further enhancements Hydrology and Earth System Sciences Discussions, 10, 675-697, 2013 Author(s): N. Kayastha, J. Ye, F. Fenicia, and D. P. Solomatine Often a single hydrological model cannot capture the details of a complex rainfall-runoff relationship, and a possibility here is building specialised models to be responsible for a particular aspect of this relationship and combining them forming a committee model. This study extends earlier work of using fuzzy committees to combine hydrological models calibrated for different hydrological regimes – by considering the suitability of the different weighting function for objective functions and different class of membership functions used to combine the local models and compare them with global optimal models.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2013-01-16
    Description: Optimal depth-based regional frequency analysis Hydrology and Earth System Sciences Discussions, 10, 519-555, 2013 Author(s): H. Wazneh, F. Chebana, and T. B. M. J. Ouarda Classical methods of regional frequency analysis (RFA) of hydrological variables face two drawbacks: (1) the restriction to a particular region which can correspond to a loss of some information and (2) the definition of a region that generates a border effect. To reduce the impact of these drawbacks on regional modeling performance, an iterative method was proposed recently. The proposed method is based on the statistical notion of the depth function and a weight function φ. This depth-based RFA (DBRFA) approach was shown to be superior to traditional approaches in terms of flexibility, generality and performance. The main difficulty of the DBRFA approach is the optimal choice of the weight function φ (e.g. φ minimizing estimation errors). In order to avoid subjective choice and naïve selection procedures of φ, the aim of the present paper is to propose an algorithm-based procedure to optimize the DBRFA and automate the choice of φ according to objective performance criteria. This procedure is applied to estimate flood quantiles in three different regions in North America. One of the findings from the application is that the optimal weight function depends on the considered region and can also quantify the region homogeneity. By comparing the DBRFA to the canonical correlation analysis (CCA) method, results show that the DBRFA approach leads to better performances both in terms of relative bias and mean square error.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2013-01-18
    Description: Geometric dependency of Tibetan lakes on glacial runoff Hydrology and Earth System Sciences Discussions, 10, 729-768, 2013 Author(s): V. H. Phan, R. C. Lindenbergh, and M. Menenti The Tibetan plateau is an essential source of water for South-East Asia. The run-off from its ~ 34 000 glaciers, which occupy an area of ~ 50 000 km 2 , feed Tibetan lakes and major Asian rivers like Indus and Brahmaputra. Reported glacial shrinkage likely has its impact on the run-off. Unfortunately, accurate quantification of glacial changes is difficult over the high relief Tibetan plateau. However, it has been recently shown that it is possible to directly assess water level changes of a significant part of the ~ 900 Tibetan lakes greater than one square kilometer. This paper exploits different remote sensing products to explicitly create links between Tibetan glaciers, lakes and rivers. The results allow us first to differentiate between lakes with and without outlet. In addition, we introduce the notion of geometric dependency of a lake on glacial runoff, defined as the ratio between the total area of glaciers draining into a lake and the area of the catchment of the lake. These dependencies are determined for all ~ 900 Tibetan lakes. To obtain these results, we combine the so-called CAREERI glacier mask, a lake mask based on the MODIS MOD44W water product and the HydroSHEDS river network product derived from SRTM elevation data. Based on a drainage network analysis, all drainage links between glaciers and lakes are determined. The results show that 25.3% of the total glacier area directly drains into one of 244 Tibetan lakes. The results also give the geometric dependency of each lake on glacial runoff. For example, there are 10~lakes with direct glacial runoff from at least 240 km 2 of glacier. Three case studies, including one over the well-studied Nam Tso, demonstrate how the geometric dependency of a lake on glacial runoff can be directly linked to hydrological processes.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2013-01-18
    Description: Performance of McRAS-AC in the GEOS-5 AGCM: aerosol-cloud-microphysics, precipitation, cloud radiative effects, and circulation Geoscientific Model Development, 6, 57-79, 2013 Author(s): Y. C. Sud, D. Lee, L. Oreopoulos, D. Barahona, A. Nenes, and M. J. Suarez A revised version of the Microphysics of clouds with Relaxed Arakawa-Schubert and Aerosol-Cloud interaction scheme (McRAS-AC) including, among others, a new ice nucleation parameterization, is implemented in the GEOS-5 AGCM. Various fields from a 10-yr-long integration of the AGCM with McRAS-AC are compared with their counterparts from an integration of the baseline GEOS-5 AGCM, as well as satellite observations. Generally McRAS-AC simulations have smaller biases in cloud fields and cloud radiative effects over most of the regions of the Earth than the baseline GEOS-5 AGCM. Two systematic biases are identified in the McRAS-AC runs: one is underestimation of cloud particle numbers around 40° S–60° S, and one is overestimate of cloud water path during the Northern Hemisphere summer over the Gulf Stream and North Pacific. Sensitivity tests show that these biases potentially originate from biases in the aerosol input. The first bias is largely eliminated in a test run using 50% smaller radius of sea-salt aerosol particles, while the second bias is substantially reduced when interactive aerosol chemistry is turned on. The main weakness of McRAS-AC is the dearth of low-level marine stratus clouds, a probable outcome of lack of explicit dry-convection in the cloud scheme. Nevertheless, McRAS-AC largely simulates realistic clouds and their optical properties that can be improved further with better aerosol input. An assessment using the COSP simulator in a 1-yr integration provides additional perspectives for understanding cloud optical property differences between the baseline and McRAS-AC simulations and biases against satellite data. Overall, McRAS-AC physically couples aerosols, the microphysics and macrophysics of clouds, and their radiative effects and thereby has better potential to be a valuable tool for climate modeling research.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2013-01-18
    Description: Benchmark products for land evapotranspiration: LandFlux-EVAL multi-dataset synthesis Hydrology and Earth System Sciences Discussions, 10, 769-805, 2013 Author(s): B. Mueller, M. Hirschi, C. Jimenez, P. Ciais, P. A. Dirmeyer, A. J. Dolman, J. B. Fisher, M. Jung, F. Ludwig, F. Maignan, D. Miralles, M. F. McCabe, M. Reichstein, J. Sheffield, K. C. Wang, E. F. Wood, Y. Zhang, and S. I. Seneviratne Land evapotranspiration (ET) estimates are available from several global datasets. Here, monthly global land ET synthesis products, merged from these individual datasets over the time periods 1989–1995 (7 yr) and 1989–2005 (17 yr), are presented. The merged synthesis products over the shorter period are based on a total of 40 distinct datasets while those over the longer period are based on a total of 14 datasets. In the individual datasets, ET is derived from satellite and/or in-situ observations (diagnostic datasets) or calculated via land-surface models (LSMs) driven with observations-based forcing and atmospheric reanalyses. Statistics for four merged synthesis products are provided, one including all datasets and three including only datasets from one category each (diagnostic, LSMs, and reanalyses). The multi-annual variations of ET in the merged synthesis products display realistic responses. They are also consistent with previous findings of a global increase in ET between 1989 and 1997 (1.15 mm yr −2 in our merged product) followed by a decrease in this trend (−1.40 mm yr −2 ), although these trends are relatively small compared to the uncertainty of absolute ET values. The global mean ET from the merged synthesis products (based on all datasets) is 1.35 mm per day for both the 1989–1995 and 1989–2005 products, which is relatively low compared to previously published estimates. We estimate global runoff (precipitation minus ET) to 34 406 km 3 per year for a total land area of 130 922 km 2 . Precipitation, being an important driving factor and input to most simulated ET datasets, presents uncertainties between single datasets as large as those in the ET estimates. In order to reduce uncertainties in current ET products, improving the accuracy of the input variables, especially precipitation, as well as the parameterizations of ET are crucial.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2013-02-21
    Description: Forecasters priorities for improving probabilistic flood forecasts Hydrology and Earth System Sciences Discussions, 10, 2215-2242, 2013 Author(s): F. Wetterhall, F. Pappenberger, H. L. Cloke, J. Thielen-del Pozo, S. Balabanova, J. Daňhelka, A. Vogelbacher, P. Salamon, I. Carrasco, A. J. Cabrera-Tordera, M. Corzo-Toscano, M. Garcia-Padilla, R. J. Garcia-Sanchez, C. Ardilouze, S. Jurela, B. Terek, A. Csik, J. Casey, G. Stankūnavičius, V. Ceres, E. Sprokkereef, J. Stam, E. Anghel, D. Vladikovic, C. Alionte Eklund, N. Hjerdt, H. Djerv, F. Holmberg, J. Nilsson, K. Nyström, M. Sušnik, M. Hazlinger, and M. Holubecka Hydrological ensemble prediction systems (HEPS) have in recent years been increasingly used for the operational forecasting of floods by hydrometeorological agencies. The most obvious advantages of HEPS are that more of the uncertainty in the modelling system can be assessed; and that ensemble prediction systems generally have better skill than deterministic systems both in the terms of the mean forecast performance and the potential forecasting of extreme events. Research efforts have so far mostly been devoted to the improvement of the technical aspects of the model systems themselves. However, in this paper we argue that there are other areas of HEPS that need urgent attention; such as assessment of the full uncertainty in the forecast chain, multimodel approaches, robust forecast skill assessment and further collaboration and knowledge exchange between operational forecasters and the model development community. In light of limited resources we suggest a simple model to classify the identified priorities in terms of their cost and complexity to decide in which order to tackle them This model is then used to create an action plan of short-, medium- and long-term research priorities with the ultimate goal of an optimal improvement in operational HEPS.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2013-02-20
    Description: Corrigendum to "CLM4-BeTR, a generic biogeochemical transport and reaction module for CLM4: model development, evaluation, and application" published in Geosci. Model Dev., 6, 127–140, 2013 Geoscientific Model Development, 6, 245-245, 2013 Author(s): J. Y. Tang, W. J. Riley, C. D. Koven, and Z. M. Subin No abstract available.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2013-02-21
    Description: Investigating uncertainty of climate change effect on entering runoff to Urmia Lake Iran Hydrology and Earth System Sciences Discussions, 10, 2183-2214, 2013 Author(s): P. Razmara, A. R. Massah Bavani, H. Motiee, S. Torabi, and S. Lotfi The largest lake in Iran, Urmia Lake, has been faced with a sharp decline in water surface in recent years. This decline is putting the survival of Urmia Lake at risk. Due to the fact that the water surface of lakes is affected directly by the entering runoff, herein we study the effect of climate change on the runoff entering Urmia Lake. Ten climate models among AOGCM-AR4 models in the future time period 2013–2040 will be used, under the emission scenarios A2 and B1. The downscaling method used in this research is the change factor-LARS method, while for simulating the runoff, the artificial neural network was applied. First, both the 30-yr and monthly scenarios of climate change, temperature, and precipitation of the region were generated and weighted by the Beta function (β). Then, the cumulative density function (cdf) for each month was computed. Calculating the scenarios of climate change and precipitation at levels of 25, 50, and 75% of cdf functions, and introducing them into LARS-wg model, the time series of temperature and precipitation in the region in the future time period were computed considering the uncertainty of climate variability. Then, introducing the time series of temperature and precipitation at different risk levels into the artificial neural network, the future runoff was generated. The findings illustrate a decrease of streamflow into Urmia Lake in scenario A2 at the three risk levels 25, 50, and 75% by, respectively, −21, −13, and −0.3%, and an increase by, respectively, 4.7, 13.8, and 18.9% in scenario B1. Also, scenario A2 with its prediction of a warm and dry climate suggests more critical conditions for the future compared to scenario B1 and its cool, humid climate.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2013-02-21
    Description: Development and comparative evaluation of a stochastic analog method to downscale daily GCM precipitation Hydrology and Earth System Sciences Discussions, 10, 2141-2181, 2013 Author(s): S. Hwang and W. D. Graham There are a number of statistical techniques that downscale coarse climate information from global circulation models (GCM). However, many of them do not reproduce the small-scale spatial variability of precipitation exhibited by the observed meteorological data which can be an important factor for predicting hydrologic response to climatic forcing. In this study a new downscaling technique (bias-correction and stochastic analog method, BCSA) was developed to produce stochastic realizations of bias-corrected daily GCM precipitation fields that preserve the spatial autocorrelation structure of observed daily precipitation sequences. This approach was designed to reproduce observed spatial and temporal variability as well as mean climatology. We used the BCSA method to downscale 4 GCM precipitation predictions from 1961 to 1999 over the state of Florida and compared the skill of the method to the results obtained with the commonly used bias-correction and spatial disaggregation (BCSD) approach, bias-correction and constructed analog (BCCA) method, and a modified version of BCSD which reverses the order of spatial disaggregation and bias-correction (SDBC). Spatial and temporal statistics, transition probabilities, wet/dry spell lengths, spatial correlation indices, and variograms for wet (June through September) and dry (October through May) seasons were calculated for each method. Results showed that (1) BCCA underestimated mean climatology of daily precipitation while the BCSD, SDBC and BCSA methods accurately reproduced it, (2) the BCSD and BCCA methods underestimated temporal variability because of the interpolation and regression schemes used for downscaling and thus, did not reproduce daily precipitation standard deviations, transition probabilities or wet/dry spell lengths as well as the SDBC and BCSA methods, and (3) the BCSD, BCCA and SDBC methods underestimated spatial variability in precipitation resulting in under-prediction of spatial variance and over-prediction of spatial correlation, whereas the new stochastic technique (BCSA) accurately reproduces observed spatial statistics for both the wet and dry seasons. This study underscores the need to carefully select a downscaling method that reproduces all precipitation characteristics important for the hydrologic system under consideration if local hydrologic impacts of climate variability and change are going to be accurately predicted. For low-relief, rainfall-dominated watersheds where reproducing small-scale spatiotemporal precipitation variability is important, the BCSA method is recommended for use over the BCSD, BCCA, or SDBC methods.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2013-02-22
    Description: A coupled distributed hydrological-stability analysis on a terraced slope of Valtellina (northern Italy) Hydrology and Earth System Sciences Discussions, 10, 2287-2322, 2013 Author(s): C. Camera, T. Apuani, and M. Masetti The aim of this work was to understand and reproduce the hydrological dynamics of a slope, which was terraced using dry-stone retaining walls and its response to these processes in terms of stability at the slope scale. The slope studied is located in Valtellina (northern Italy), near the village of Tresenda, and in the last 30 yr has experienced several soil slip/debris flow events. In 1983 alone, such events caused the death of 18 people. Direct observation of the events of 1983 enabled the principal triggering cause of these events to be recognized in the formation of an overpressure at the base of a dry-stone wall, which caused its failure. To perform the analyses it is necessary to include the presence of dry-stone walls, considering the importance they have in influencing hydrological and geotechnical processes at the slope scale. This requires a very high resolution DEM (1 m × 1 m because the walls are from 0.60 m to 1.0 m wide) that has been appositely derived. A hydrogeological raster-based model, which takes into account both the unsaturated and saturated flux components, was applied. This was able to identify preferential infiltration zones and was rather precise in the prediction of maximum groundwater levels, providing valid input for the distributed stability analysis. Results of the hydrogeological model were used for the successive stability analysis. Sections of terrace were identified from the downslope base of a retaining wall to the top of the next downslope retaining wall. Within each section a global method of equilibrium was applied to determine its safety factor. The stability model showed a general tendency to overestimate the amount of unstable areas. An investigation of the causes of this unexpected behavior was, therefore, also performed in order to progressively improve the reliability of the model.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2013-02-22
    Description: Assessing parameter importance of the Common Land Model based on qualitative and quantitative sensitivity analysis Hydrology and Earth System Sciences Discussions, 10, 2243-2286, 2013 Author(s): J. D. Li, Q. Y. Duan, W. Gong, A. Z. Ye, Y. J. Dai, C. Y. Miao, Z. H. Di, C. Tong, and Y. W. Sun Proper specification of model parameters is critical to the performance of land surface models (LSMs). Due to high dimensionality and parameter interaction, estimating parameters of a LSM is a challenging task. Sensitivity analysis (SA) is a tool that can screen out the most influential parameters on model outputs. In this study, we conducted parameter screening for six output fluxes for the Common Land Model: sensible heat, latent heat, upward longwave radiation, net radiation, soil temperature and soil moisture. A total of 40 adjustable parameters were considered. Five qualitative SA methods, including local, sum-of-trees, multivariate adaptive regression splines, delta test and Morris methods, were compared. The proper sampling design and sufficient sample size necessary to effectively screen out the sensitive parameters were examined. We found that there are 2–8 sensitive parameters, depending on the output type, and about 400 samples are adequate to reliably identify the most sensitive parameters. We also employed a revised Sobol' sensitivity method to quantify the importance of all parameters. The total effects of the parameters were used to assess the contribution of each parameter to the total variances of the model outputs. The results confirmed that global SA methods can generally identify the most sensitive parameters effectively, while local SA methods result in type I errors (i.e. sensitive parameters labeled as insensitive) or type II errors (i.e. insensitive parameters labeled as sensitive). Finally, we evaluated and confirmed the screening results for their consistence with the physical interpretation of the model parameters.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2013-02-23
    Description: Stochastic modeling of Lake Van water level time series with jumps and multiple trends Hydrology and Earth System Sciences Discussions, 10, 2353-2371, 2013 Author(s): H. Aksoy, N. E. Unal, E. Eris, and M. I. Yuce In 1990s, water level in the closed-basin Lake Van located in the Eastern Anatolia, Turkey has risen up about 2 m. Analysis of the hydrometeorological shows that change in the water level is related to the water budget of the lake. In this study, a stochastic model is generated using the measured monthly water level data of the lake. The model is derived after removal of trend and periodicity in the data set. Trend observed in the lake water level time series is fitted by mono- and multiple-trend lines. For the multiple-trend, the time series is first divided into homogeneous segments by means of SEGMENTER, segmentation software. Four segments are found meaningful practically each fitted with a trend line. Two models considering mono- and multiple-trend time series are developed. The multiple-trend model is found better for planning future development in surrounding areas of the lake.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2013-02-23
    Description: Implementation of the chemistry module MECCA (v2.5) in the modal aerosol version of the Community Atmosphere Model component (v3.6.33) of the Community Earth System Model Geoscientific Model Development, 6, 255-262, 2013 Author(s): M. S. Long, W. C. Keene, R. Easter, R. Sander, A. Kerkweg, D. Erickson, X. Liu, and S. Ghan A coupled atmospheric chemistry and climate system model was developed using the modal aerosol version of the National Center for Atmospheric Research Community Atmosphere Model (modal-CAM; v3.6.33) and the Max Planck Institute for Chemistry's Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA; v2.5) to provide enhanced resolution of multiphase processes, particularly those involving inorganic halogens, and associated impacts on atmospheric composition and climate. Three Rosenbrock solvers (Ros-2, Ros-3, RODAS-3) were tested in conjunction with the basic load-balancing options available to modal-CAM (1) to establish an optimal configuration of the implicitly-solved multiphase chemistry module that maximizes both computational speed and repeatability of Ros-2 and RODAS-3 results versus Ros-3, and (2) to identify potential implementation strategies for future versions of this and similar coupled systems. RODAS-3 was faster than Ros-2 and Ros-3 with good reproduction of Ros-3 results, while Ros-2 was both slower and substantially less reproducible relative to Ros-3 results. Modal-CAM with MECCA chemistry was a factor of 15 slower than modal-CAM using standard chemistry. MECCA chemistry integration times demonstrated a systematic frequency distribution for all three solvers, and revealed that the change in run-time performance was due to a change in the frequency distribution of chemical integration times; the peak frequency was similar for all solvers. This suggests that efficient chemistry-focused load-balancing schemes can be developed that rely on the parameters of this frequency distribution.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2013-02-23
    Description: Rainfall statistics changes in Sicily Hydrology and Earth System Sciences Discussions, 10, 2323-2352, 2013 Author(s): E. Arnone, D. Pumo, F. Viola, L. V. Noto, and G. La Loggia Changes in rainfall characteristics are one of the most relevant signs of current climate alterations. Many studies have demonstrated an increase in rainfall intensity and a reduction of frequency in several areas of the world, including Mediterranean areas. Rainfall characteristics may be crucial for vegetation patterns formation and evolution in Mediterranean ecosystems, with important implications, for example, in vegetation water stress or coexistence and competition dynamics. At the same time, characteristics of extreme rainfall events are fundamental for the estimation of flood peaks and quantiles which can be used in many hydrological applications, such as design of the most common hydraulic structures, or planning and management of flood prone areas. In the past, Sicily has been screened for several signals of possible climate change. Annual, seasonal and monthly rainfall data in the entire Sicilian region have been analyzed, showing a global reduction of total annual rainfall. Moreover, annual maximum rainfall series for different durations have been rarely analyzed in order to detect the presence of trends. Results indicated that for short durations, historical series generally exhibit increasing trends while for longer durations the trends are mainly negative. Starting from these premises, the aim of this study is to investigate and quantify changes in rainfall statistics in Sicily, during the second half of the last century. Time series of about 60 stations over the region have been processed and screened by using the non parametric Mann–Kendall test. Particularly, extreme events have been analyzed using annual maximum rainfall series at 1, 3, 6, 12 and 24 h duration while daily rainfall properties have been analyzed in term of frequency and intensity, also characterizing seasonal rainfall features. Results of extreme events analysis confirmed an increasing trend for rainfall of short durations, especially for one hour rainfall duration. Instead, precipitation of long durations have exhibited a decreased trend. With regard to the spatial distribution, increase in short duration precipitation has been observed especially in stations located along the coastline; however, no clear and well-defined spatial pattern have been outlined by the results. Outcomes of analysis for daily rainfall properties have showed that heavy-torrential precipitation tends to be more frequent at regional scale, while light rainfall events exhibited a negative trend at some sites. Values of total annual precipitations confirmed a significant negative trend, mainly due to the reduction during the winter season.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2012-11-03
    Description: Technical Note: An open source library for processing weather radar data ( wradlib ) Hydrology and Earth System Sciences Discussions, 9, 12333-12356, 2012 Author(s): M. Heistermann, S. Jacobi, and T. Pfaff The potential of weather radar observations for hydrological and meteorological research and applications is undisputed, particularly with increasing world-wide radar coverage. However, several barriers impede the use of weather radar data. These barriers are of both scientific and technical nature. The former refers to inherent measurement errors and artefacts, the latter to aspects such as reading specific data formats, geo-referencing, visualisation. The radar processing library wradlib is intended to lower these barriers by providing a free and open source tool for the most important steps in processing weather radar data for hydro-meteorological and hydrological applications. Moreover, the community-based development approach of wradlib allows scientists to share their knowledge about efficient processing algorithms and to make this knowledge available to the weather radar community in a transparent, structured and well-documented way.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2012-11-03
    Description: GloFAS – global ensemble streamflow forecasting and flood early warning Hydrology and Earth System Sciences Discussions, 9, 12293-12332, 2012 Author(s): L. Alfieri, P. Burek, E. Dutra, B. Krzeminski, D. Muraro, J. Thielen, and F. Pappenberger Anticipation and preparedness for large-scale flood events have a key role in mitigating their impact and optimizing the strategic planning of water resources. Although several developed countries have well-established systems for river monitoring and flood early warning, figures of population affected every year by floods in developing countries are unsettling. This paper presents the Global Flood Awareness System, which has been set up to provide an overview on upcoming floods in large world river basins. The Global Flood Awareness System is based on distributed hydrological simulation of numerical ensemble weather predictions with global coverage. Streamflow forecasts are compared statistically to climatological simulations to detect probabilistic exceedance of warning thresholds. In this article, the system setup is described, together with an evaluation of its performance over a two-year test period and a qualitative analysis of a case study for the Pakistan flood, in summer 2010. It is shown that hazardous events in large river basins can be skilfully detected with a forecast horizon of up to 1 month. In addition, results suggest that an accurate simulation of initial model conditions and an improved parameterization of the hydrological model are key components to reproduce accurately the streamflow variability in the many different runoff regimes of the Earth.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2012-11-09
    Description: Flood discharge measurement of mountain rivers Hydrology and Earth System Sciences Discussions, 9, 12655-12690, 2012 Author(s): Y.-C. Chen An efficient method that accounts for personal safety, accuracy and reliability for measuring flood discharge of mountain rivers is proposed. It is composed of new measurement method, tools, and techniques. Measuring flood discharge from mountain rivers by using conventional method is costly, time-consuming, and dangerous. Thus previous discharge measurements for mountainous areas were typically based on estimated precipitation, which alone cannot generate accurate measurements. This study applies a novel flood discharge measurement system composed of an Acoustic Doppler Profiler and crane system to accurately and quickly measure velocity distributions and water depths. Moreover a novel and efficient method for measuring discharge, which is based on the relationship between mean and maximum velocities and the relationship between cross-sectional area and gauge height is applied to estimate flood discharge. Flood discharge from mountain rivers can be estimated easily and rapidly by measuring maximum velocity in the river crosssection and the gauge height. The measured flood discharges can be utilized to create a reliable stage-discharge relationship for continuous estimations of discharge using records of water stage. The proposed method was applied to the Nanshih River, Taiwan. Results of measured discharges and estimated discharges only slightly differed from each other, demonstrating the efficiency and accuracy of the proposed method.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2012-11-09
    Description: New climate change scenarios reveal uncertain future for Central Asian glaciers Hydrology and Earth System Sciences Discussions, 9, 12691-12727, 2012 Author(s): A. F. Lutz, W. W. Immerzeel, A. Gobiet, F. Pellicciotti, and M. F. P. Bierkens Central Asian water resources largely depend on (glacier) melt water generated in the Pamir and Tien Shan mountain ranges, located in the basins of the Amu and Syr Darya rivers, important life lines in Central Asia and the prominent water source of the Aral Sea. To estimate future water availability in the region, it is thus necessary to project the future glacier extent and volume in the Amu and Syr Darya river basins. The aim of this study is to quantify the impact of uncertainty in climate change projections on the future glacier extent in the Amu and Syr Darya river basins. The latest climate change projections provided by the fifth Coupled Model Intercomparison Project (CMIP5) generated for the upcoming fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC) are used to model future glacier extent in the Central Asian region for the two large river basins. The outcomes are compared to model results obtained with the climate change projections used for the fourth IPCC assessment (CMIP3). We use a regionalized glacier mass balance model to estimate changes in glacier extent as a function of glacier size and projections of temperature and precipitation. The model is developed for implementation in (large scale) hydrological models, when the spatial model resolution does not allow for modelling of individual glaciers and data scarcity is an issue. Both CMIP3 and CMIP5 model simulations point towards a strong decline in glacier extent in Central Asia. However, compared to the CMIP3 projections, the CMIP5 projections of future glacier extent in Central Asia provide a wider range of outcomes, mostly owing to greater variability in precipitation projections among the latest suite of climate models. These findings have great impact on projections of the timing and quantity of water availability in glacier melt dominated rivers in the region. Uncertainty about the size of the decline in glacier extent remains large, making estimates of future Central Asian glacier extent and downstream water availability uncertain.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2012-11-14
    Description: Basin-wide water accounting using remote sensing data: the case of transboundary Indus Basin Hydrology and Earth System Sciences Discussions, 9, 12921-12958, 2012 Author(s): P. Karimi, W. G. M. Bastiaanssen, D. Molden, and M. J. M. Cheema The paper describes the application of a new Water Accounting Plus (WA+) framework to produce spatial information on water flows, sinks, uses, storages and assets, in the Indus Basin, South Asia. It demonstrates how satellite-derived estimates of land use, land cover, rainfall, evaporation ( E ), transpiration ( T ), interception ( I ) and biomass production can be used in the context of WA+. The results for one selected year showed that total annual water depletion in the basin (502 km 3 ) plus outflows (21 km 3 ) exceeded total precipitation (482 km 3 ). The deficit in supply was augmented through abstractions beyond actual capacity, mainly from groundwater storage (30 km 3 ). The "landscape ET" (depletion directly from rainfall) was 344 km 3 (69% of total consumption). "Blue water" depletion ("utilized flow") was 158 km 3 (31%). Agriculture was the biggest water consumer and accounted for 59% of the total depletion (297 km 3 ), of which 85% (254 km 3 ) was through irrigated agriculture and the remaining 15% (44 km 3 ) through rainfed systems. While the estimated basin irrigation efficiency was 0.84, due to excessive evaporative losses in agricultural areas, half of all water consumption in the basin was non-beneficial. Average rainfed crop yields were 0.9 t ha −1 and 7.8 t ha −1 for two irrigated crop growing seasons combined. Water productivity was low due to a lack of proper agronomical practices and poor farm water management. The paper concludes that the opportunity for a food-secured and sustainable future for the Indus Basin lies in focusing on reducing soil evaporation. Results of future scenario analyses suggest that by implementing techniques to convert soil evaporation to crop transpiration will not only increase production but can also result in significant water savings that would ease the pressure on the fast declining storage.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2012-11-14
    Description: Water Accounting Plus (WA+) – a water accounting procedure for complex river basins based on satellite measurements Hydrology and Earth System Sciences Discussions, 9, 12879-12919, 2012 Author(s): P. Karimi, W. G. M. Bastiaanssen, and D. Molden Coping with the issue of water scarcity and growing competition for water among different sectors requires proper water management strategies and decision processes. A pre-requisite is a clear understanding of the basin hydrological processes, manageable and unmanageable water flows, the interaction with land use and opportunities to mitigate the negative effects and increase the benefits of water depletion on society. Currently, water professionals do not have a common framework that links hydrological flows to user groups of water and their benefits. The absence of a standard hydrological and water management summary is causing confusion and wrong decisions. The non-availability of water flow data is one of the underpinning reasons for not having operational water accounting systems for river basins in place. In this paper we introduce Water Accounting Plus (WA+), which is a new framework designed to provide explicit spatial information on water depletion and net withdrawal processes in complex river basins. The influence of land use on the water cycle is described explicitly by defining land use groups with common characteristics. Analogous to financial accounting, WA+ presents four sheets including (i) a resource base sheet , (ii) a consumption sheet , (iii) a productivity sheet , and (iv) a withdrawal sheet . Every sheet encompasses a set of indicators that summarize the overall water resources situation. The impact of external (e.g. climate change) and internal influences (e.g. infrastructure building) can be estimated by studying the changes in these WA+ indicators. Satellite measurements can be used for 3 out of the 4 sheets, but is not a precondition for implementing WA+ framework. Data from hydrological models and water allocation models can also be used as inputs to WA+.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2012-11-14
    Description: Multi-variable evaluation of hydrological model predictions for a headwater basin in the Canadian Rocky Mountains Hydrology and Earth System Sciences Discussions, 9, 12825-12877, 2012 Author(s): X. Fang, J. W. Pomeroy, C. R. Ellis, M. K. MacDonald, C. M. DeBeer, and T. Brown One of the purposes of the Cold Regions Hydrological Modelling platform (CRHM) is to diagnose inadequacies in the understanding of the hydrological cycle and its simulation. A physically based hydrological model including a full suite of snow and cold regions hydrology processes as well as warm season, hillslope and groundwater hydrology was developed in CRHM for application in the Marmot Creek Research Basin (~ 9.4km 2 ), located in the Front Ranges of Canadian Rocky Mountains. Parameters were selected from digital elevation model, forest, soil and geological maps, and from the results of many cold regions hydrology studies in the region and elsewhere. Non-calibrated simulations were conducted for six hydrological years during 2005–2011 and were compared with detailed field observations of several hydrological cycle components. Results showed good model performance for snow accumulation and snowmelt compared to the field observations for four seasons during 2007–2011, with a small bias and normalized root mean square difference (NRMSD) ranging from 40 to 42% for the subalpine conifer forests and from 31 to 67% for the alpine tundra and tree-line larch forest environments. Overestimation or underestimation of the peak SWE ranged from 1.6 to 29%. Simulations matched well with the observed unfrozen moisture fluctuation in the top soil layer at a lodgepole pine site during 2006–2011, with a NRMSD ranging from 17% to 39%, but with consistent overestimation of 7 to 34%. Evaluations of seasonal streamflow during 2006–2011 revealed the model generally predicted well compared to observations at the basin scale, with a NRMSD of 77% and small model bias (6%), but at the sub-basin scale NRMSD were larger, ranging from 86 to 106%; though overestimation or underestimation for the cumulative seasonal discharge was within 24%. Timing of discharge was better predicted at the Marmot Creek basin outlet having a Nash-Sutcliffe efficiency (NSE) of 0.31 compared to the outlets of the sub-basins where NSE ranged from −0.03 to −0.76. The Pearson product-moment correlation coefficient of 0.12 and 0.17 for comparisons between the simulated groundwater storage and observed groundwater level fluctuation at two wells indicate weak but positive correlations. The model results are encouraging for uncalibrated prediction and indicate research priorities to improve simulations of snow accumulation at treeline, groundwater dynamics and small-scale runoff generation processes in this environment. The study shows that improved hydrological cycle model prediction can be derived from improved hydrological understanding and therefore is a model that can be applied for prediction in ungauged basins.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2012-11-13
    Description: Implementation of multirate time integration methods for air pollution modelling Geoscientific Model Development, 5, 1395-1405, 2012 Author(s): M. Schlegel, O. Knoth, M. Arnold, and R. Wolke Explicit time integration methods are characterised by a small numerical effort per time step. In the application to multiscale problems in atmospheric modelling, this benefit is often more than compensated by stability problems and step size restrictions resulting from stiff chemical reaction terms and from a locally varying Courant-Friedrichs-Lewy (CFL) condition for the advection terms. Splitting methods may be applied to efficiently combine implicit and explicit methods (IMEX splitting). Complementarily multirate time integration schemes allow for a local adaptation of the time step size to the grid size. In combination, these approaches lead to schemes which are efficient in terms of evaluations of the right-hand side. Special challenges arise when these methods are to be implemented. For an efficient implementation, it is crucial to locate and exploit redundancies. Furthermore, the more complex programme flow may lead to computational overhead which, in the worst case, more than compensates the theoretical gain in efficiency. We present a general splitting approach which allows both for IMEX splittings and for local time step adaptation. The main focus is on an efficient implementation of this approach for parallel computation on computer clusters.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2012-11-13
    Description: Is bias correction of Regional Climate Model (RCM) simulations possible for non-stationary conditions? Hydrology and Earth System Sciences Discussions, 9, 12765-12795, 2012 Author(s): C. Teutschbein and J. Seibert In hydrological climate-change impact studies, Regional Climate Models (RCMs) are commonly used to transfer large-scale Global Climate Model (GCM) data to smaller scales and to provide more detailed regional information. However, there are often considerable biases in RCM simulations, which have led to the development of a number of bias correction approaches to provide more realistic climate simulations for impact studies. Bias correction procedures rely on the assumption that RCM biases do not change over time, because correction algorithms and their parameterizations are derived for current climate conditions and assumed to apply also for future climate conditions. This underlying assumption of bias stationarity is the main concern when using bias correction procedures. It is in principle not possible to test whether this assumption is actually fulfilled for future climate conditions. In this study, however, we demonstrate that it is possible to evaluate how well bias correction methods perform for conditions different from those used for calibration. For five Swedish catchments, several time series of RCM simulated precipitation and temperature were obtained from the ENSEMBLES data base and different commonly-used bias correction methods were applied. We then performed a differential split-sample test by dividing the data series into cold and warm respective dry and wet years. This enabled us to evaluate the performance of different bias correction procedures under systematically varying climate conditions. The differential split-sample test resulted in a large spread and a clear bias for some of the correction methods during validation years. More advanced correction methods such as distribution mapping performed relatively well even in the validation period, whereas simpler approaches resulted in the largest deviations and least reliable corrections for changed conditions. Therefore, we question the use of simple bias correction methods such as the widely used delta-change approach and linear scaling for RCM-based climate-change impact studies and recommend using higher-skill bias correction methods.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2012-11-13
    Description: Estimation of debris flow critical rainfall thresholds by a physically-based model Hydrology and Earth System Sciences Discussions, 9, 12797-12824, 2012 Author(s): M. N. Papa, V. Medina, F. Ciervo, and A. Bateman Real time assessment of debris flow hazard is fundamental for setting up warning systems that can mitigate its risk. A convenient method to assess the possible occurrence of a debris flow is the comparison of measured and forecasted rainfall with rainfall threshold curves (RTC). Empirical derivation of the RTC from the analysis of rainfall characteristics of past events is not possible when the database of observed debris flows is poor or when the environment changes with time. For landslides triggered debris flows, the above limitations may be overcome through the methodology here presented, based on the derivation of RTC from a physically based model. The critical RTC are derived from mathematical and numerical simulations based on the infinite-slope stability model in which land instability is governed by the increase in groundwater pressure due to rainfall. The effect of rainfall infiltration on landside occurrence is modelled trough a reduced form of the Richards equation. The simulations are performed in a virtual basin, representative of the studied basin, taking into account the uncertainties linked with the definition of the characteristics of the soil. A large number of calculations are performed combining different values of the rainfall characteristics (intensity and duration of event rainfall and intensity of antecedent rainfall). For each combination of rainfall characteristics, the percentage of the basin that is unstable is computed. The obtained database is opportunely elaborated to derive RTC curves. The methodology is implemented and tested on a small basin of the Amalfi Coast (South Italy).
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2012-12-08
    Description: Lidar signal simulation for the evaluation of aerosols in chemistry transport models Geoscientific Model Development, 5, 1543-1564, 2012 Author(s): S. Stromatas, S. Turquety, L. Menut, H. Chepfer, J. C. Péré, G. Cesana, and B. Bessagnet We present an adaptable tool, the OPTSIM (OPTical properties SIMulation) software, for the simulation of optical properties and lidar attenuated backscattered profiles ( β ') from aerosol concentrations calculated by chemistry transport models (CTM). It was developed to model both Level 1 observations and Level 2 aerosol lidar retrievals in order to compare model results to measurements: the level 2 enables to estimate the main properties of aerosols plume structures, but may be limited due to specific assumptions. The level 1, originally developed for this tool, gives access to more information about aerosols properties ( β ') requiring, at the same time, less hypothesis on aerosols types. In addition to an evaluation of the aerosol loading and optical properties, active remote sensing allows the analysis of aerosols' vertical structures. An academic case study for two different species (black carbon and dust) is presented and shows the consistency of the simulator. Illustrations are then given through the analysis of dust events in the Mediterranean region during the summer 2007. These are based on simulations by the CHIMERE regional CTM and observations from the CALIOP space-based lidar, and highlight the potential of this approach to evaluate the concentration, size and vertical structure of the aerosol plumes.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2012-12-11
    Description: Expected changes in future temperature extremes and their elevation dependency over the Yellow River source region Hydrology and Earth System Sciences Discussions, 9, 13609-13634, 2012 Author(s): Y. Hu, S. Maskey, and S. Uhlenbrook Using the Statistical DownScaling Model (SDSM) and the outputs from two global climate models we investigate possible changes in mean and extreme temperature indices and their elevation dependency over the Yellow River source region for the period 2081–2100 under the IPCC SRES A2, A1B and B1 emission scenarios. Changes in interannual variability of mean and extreme temperature indices are also analyzed. The validation results show that SDSM performs better in reproducing the maximum temperature-related indices than the minimum temperature-related indices. The projections show that by the end of the 21st century all parts of the study region may experience increases in both mean and extreme temperature in all seasons, along with an increase in the frequency of hot days and warm nights and with a decrease in frost days. Interannual variability increases in all seasons for the frequency of hot days and warm nights and in spring for frost days while it decreases for frost days in summer. Autumn demonstrates pronounced elevation-dependent changes in which six out of eight indices show significant increasing changes with elevation.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2012-12-11
    Description: Do probabilistic forecasts lead to better decisions? Hydrology and Earth System Sciences Discussions, 9, 13569-13607, 2012 Author(s): M. H. Ramos, S. J. van Andel, and F. Pappenberger The last decade has seen growing research in producing probabilistic hydro-meteorological forecasts and increasing their reliability. This followed the promise that, supplied with information about uncertainty, people would take better risk-based decisions. In recent years, therefore, research and operational developments have also start putting attention to ways of communicating the probabilistic forecasts to decision makers. Communicating probabilistic forecasts includes preparing tools and products for visualization, but also requires understanding how decision makers perceive and use uncertainty information in real-time. At the EGU General Assembly 2012, we conducted a laboratory-style experiment in which several cases of flood forecasts and a choice of actions to take were presented as part of a game to participants, who acted as decision makers. Answers were collected and analyzed. In this paper, we present the results of this exercise and discuss if indeed we make better decisions on the basis of probabilistic forecasts.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2012-12-12
    Description: An opportunity of application of excess factor in hydrology Hydrology and Earth System Sciences Discussions, 9, 13635-13649, 2012 Author(s): V. Kovalenko, E. Gaidukova, and A. Kachalova In last few years in hydrology an interest to excess factor has appeared as a reaction to unsuccessful attempts to simulate and predict evolving hydrological processes, which attributive property is statistical instability. The article shows, that the latter has a place at strong relative multiplicative noises of probabilistic stochastic model of a river flow formation, phenomenological display of which are "the thick tails" and polymodality, for which the excess factor "answers", by being ignored by a modern hydrology in connection to the large error of its calculation because of insufficient duration of lines of observation over a flow. However, it is found out, that the duration of observation of several decades practically stabilizes variability of the excess factor, the error of which definition appears commensurable with an error of other calculated characteristics used in engineering hydrology.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2012-12-05
    Description: Spatial distribution of solute leaching with snowmelt and irrigation: measurements and simulations Hydrology and Earth System Sciences Discussions, 9, 13451-13490, 2012 Author(s): D. Schotanus, M. J. van der Ploeg, and S. E. A. T. M. van der Zee Transport of a tracer and a degradable solute in a heterogeneous soil was measured in the field, and simulated with several transient and steady state infiltration rates. Leaching surfaces were used to investigate the solute leaching in space and time simultaneously. In the simulations, a random field for the scaling factor in the retention curve was used for the heterogeneous soil, which was based on the spatial distribution of drainage in an experiment with a multi-compartment sampler. As a criterion to compare the results from simulations and observations, the sorted and cumulative total drainage in a cell was used. The effect of the ratio of the infiltration rate over the degradation rate on leaching of degradable solutes was investigated. Furthermore, the spatial distribution of the leaching of degradable and non-degradable solutes was compared. The infiltration rate determines the amount of leaching of the degradable solute. This can be partly explained by a decreasing travel time with an increasing infiltration rate. The spatial distribution of the leaching also depends on the infiltration rate. When the infiltration rate is high compared to the degradation rate, the leaching of the degradable solute is similar as for the tracer. The fraction of the soil that contributes to solute leaching increases with an increasing infiltration rate. This fraction is similar for a tracer and a degradable solute. With increasing depth, the leaching becomes more homogeneous, as a result of dispersion. The spatial distribution of the solute leaching is different under different transient infiltration rates, therefore also the amount of leaching is different. With independent stream tube approaches, this effect would be ignored.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2013-03-02
    Description: Modelling the Caspian Sea and its catchment area using a coupled regional atmosphere-ocean model (RegCM4-ROMS): model design and preliminary results Geoscientific Model Development, 6, 283-299, 2013 Author(s): U. U. Turuncoglu, G. Giuliani, N. Elguindi, and F. Giorgi We describe the development of a coupled regional atmosphere-ocean model (RegCM4-ROMS) and its implementation over the Caspian Sea basin. The coupled model is run for the period 1999–2008 (after a spin up of 4 yr) and it is compared to corresponding stand alone model simulations and a simulation in which a distributed 1d lake model is run for the Caspian Sea. All model versions show a good performance in reproducing the climatology of the Caspian Sea basin, with relatively minor differences across them. The coupled ROMS produces realistic, although somewhat overestimated, Caspian Sea Surface Temperature (SST), with a considerable improvement compared to the use of the simpler coupled lake model. Simulated near surface salinity and sea currents are also realistic, although the upwelling over the eastern coastal regions is underestimated. The sea ice extent over the shallow northern shelf of the Caspian Sea and its seasonal evolution are well reproduced, however, a significant negative bias in sea-ice fraction exists due to the relatively poor representation of the bathymetry. ROMS also calculates the Caspian Sea Level (CSL), showing that for the present experiment excessive evaporation over the lake area leads to a drift in estimated CSL. Despite this problem, which requires further analysis due to many uncertainties in the estimation of CSL, overall the coupled RegCM4-ROMS system shows encouraging results in reproducing both the climatology of the region and the basic characteristics of the Caspian Sea.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2013-03-02
    Description: Drought evolution characteristics and precipitation intensity changes during alternating dry-wet changes in the Huang-Huai-Hai River basin Hydrology and Earth System Sciences Discussions, 10, 2665-2696, 2013 Author(s): D. H. Yan, D. Wu, R. Huang, L. N. Wang, and G. Y. Yang According to the Chinese climate divisions and the Huang-Huai-Hai River basin digital elevation map, the basin is divided into seven sub-regions by means of cluster analysis of the basin meteorological stations using the self-organizing map (SOM) neural network method. Based on the daily precipitation data of 171 stations for the years 1961–2011, the drought frequency changes with different magnitudes are analyzed and the number of consecutive days without precipitation is used to identify the drought magnitudes. The first precipitation intensity after a drought period is analyzed with the Pearson-III frequency curve, then the relationship between rainfall intensity and different drought magnitudes is observed, as are the drought frequency changes for different years. The results of the study indicated the following: (1) the occurrence frequency of different drought level shows an overall increasing trend; there is no clear interdecadal change shown, but the spatial difference is significant. The occurrence frequencies of severe and extraordinary drought are higher on the North China Plain, Hetao Plains in Ningxia-Inner Mongolia, as well as on the Inner Mongolia and the Loess Plateaus, and in the Fen-Wei Valley basin. (2) As the drought level increases, the probability of extraordinary rainstorm becomes lower, and the frequency of occurrence of spatial changes in different precipitation intensities vary. In the areas surrounding Bo Sea, the Shandong Peninsula and the Huai River downstream, as the drought level increases, the occurrence frequency of different precipitation intensities first shows a decreasing trend, which becomes an increasing trend when extraordinary drought occurs. In the middle and upper reaches of the Huai River basin, on the Hai River basin piedmont plain and Hetao Plains in Ningxia-Inner Mongolia, Inner Mongolia and Loess Plateaus, and in the Fen-Wei Valley basin, the probability of the different precipitation intensities shows an overall decreasing trend. The mountains with high attitude and Tibetan Plateau are located at high altitudes where the variation of different precipitation intensities with the increase in drought level is relatively complex. (3) As the drought frequency increases, areas I, II and V which are located on the coastal and in the river basin are vulnerable to extreme precipitation processes; areas III, IV, VI and VII are located in the inland area where heavier precipitation is not likely to occur.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2013-03-02
    Description: Spatial distribution of stable water isotopes in alpine snow cover Hydrology and Earth System Sciences Discussions, 10, 2641-2664, 2013 Author(s): N. Dietermann and M. Weiler The aim of this study was to analyze and predict the mean stable water isotopic composition of the snow cover at specific geographic locations and altitudes. In addition, the dependence of the isotopic composition of the entire snow cover on altitude was analyzed. Snow in four Swiss catchments was sampled at the end of the accumulation period in April 2010 and a second time in Mai 2010 and analyzed for stable isotope composition of 2 H and 18 O. The sampling was conducted at both south-facing and north-facing slopes at elevation differences of 100 m for a total altitude difference of approximately 1000 m. The observed variability of isotopic composition of the snow cover was analyzed with stepwise multiple linear regression models. The analysis indicated that there is only a limited altitude effect on the isotopic composition when considering all samples. This is due to the high variability of the isotopic composition of the precipitation during the winter months and, in particular in the case of south-facing slopes, an enrichment of heavy isotopes due to intermittent melting processes. This enrichment effect could clearly be observed in the samples which were taken later in the year. A small altitudinal gradient of the isotopic composition could only be observed at some north-facing slopes. However, the dependence of snow depth and the day of the year were significant predictor variables in all models. This study indicates the necessity to further study the variability of water isotopes in the snow cover to increase prediction for isotopic composition of snowmelt and hence increase model performance of residence time models in alpine areas and to better understand the accumulation processes and the sources of water in the snow cover of high mountains.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2013-03-06
    Description: A simple lumped model to convert air temperature into surface water temperature in lakes Hydrology and Earth System Sciences Discussions, 10, 2697-2741, 2013 Author(s): S. Piccolroaz, M. Toffolon, and B. Majone Water temperature in lakes is governed by a complex heat budget, where the single fluxes are hardly assessable over long time periods in the absence of high accuracy data. In order to address this issue, we developed Air2Water, a simple physically-based model to relate the temperature of the lake superficial layer (epilimnion) to air temperature only. The model accounts for the overall heat exchanges with the atmosphere and the deeper layer of the lake (hypolimnion) by means of simplified relationships, which contain a few parameters (from four to eight in the different proposed formulations) to be calibrated with the combined use of air and water temperature measurements. In particular, the calibration of the parameters in a given case study allows one to estimate, in a synthetic way, the influence of the main processes controlling the lake thermal dynamics, and to recognize the atmospheric temperature as the main factor driving the evolution of the system. In fact, the air temperature variation implicitly contains proper information about the variation of other major processes, and hence in our approach is considered as the only input variable of the model. Furthermore, the model can be easily used to predict the response of a lake to climate change, since projected air temperatures are usually available by large-scale global circulation models. In this paper, the model is applied to Lake Superior (USA – Canada) considering a 27-yr record of measurements, among which 18 yr used for calibration and the remaining 9 yr for model validation. The results show a remarkable agreement with measurements, over the entire data period. The use of air temperature reconstructed by satellite imagery is also discussed.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2012-09-27
    Description: On selection of the optimal data time interval for real-time hydrological forecasting Hydrology and Earth System Sciences Discussions, 9, 10829-10875, 2012 Author(s): J. Liu and D. Han With the advancement in modern telemetry and communication technologies, hydrological data can be collected with an increasingly higher sampling rate. An important issue deserving attention from the hydrological community is what suitable time interval of the model input data should be chosen in hydrological forecasting. Such a problem has long been recognised in the control engineering community but is a largely ignored topic in operational applications of hydrological forecasting. In this study, the intrinsic properties of rainfall-runoff data with different time intervals are first investigated from the perspectives of the sampling theorem and the information loss using the discrete wavelet decomposition tool. It is found that rainfall signals with very high sampling rates may not always improve the accuracy of rainfall-runoff modelling due to the catchment low-pass filtering effect. To further investigate the impact of data time interval in real-time forecasting, a real-time forecasting system is constructed by incorporating the Probability Distributed Model (PDM) with a real-time updating scheme, the autoregressive-moving average (ARMA) model. Case studies are then carried out on four UK catchments with different concentration times for real-time flow forecasting using data with different time intervals of 15 min, 30 min, 45 min, 60 min, 90 min and 120 min. A positive relation is found between the forecast lead time and the optimal choice of the data time interval, which is also highly dependent on the catchment concentration time. Finally, based on the conclusions from the case studies, a hypothetical pattern is proposed in three-dimensional coordinates to describe the general impact of the data time interval and to provide implications on the selection of the optimal time interval in real-time hydrological forecasting. Although nowadays most operational hydrological systems still have low data sampling rates (daily or hourly), the trend in the future is that higher sampling rates will become widespread and there is an urgent need for both academic and practising hydrologists to realise the significance of the data time interval issue. It is important that more case studies in different catchments with various hydrological forecasting models should be explored in the future to further verify and improve the proposed hypothetical pattern.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2012-09-27
    Description: Catchment classification based on characterisation of streamflow and precipitation time-series Hydrology and Earth System Sciences Discussions, 9, 10805-10828, 2012 Author(s): E. Toth The formulation of objective procedures for the delineation of homogeneous groups of catchments is a fundamental issue in both operational and research hydrology. For assessing catchment similarity, a variety of hydrological information may be considered; in this paper, gauged sites are characterised by a set of streamflow signatures that include a representation, albeit simplified, of the properties of fine time-scale flow series and in particular of the dynamic components of the data, in order to keep into account the sequential order and the stochastic nature of the streamflow process. The streamflow signatures are provided in input to a clustering algorithm based on unsupervised SOM neural networks, providing an overall reasonable grouping of catchments on the basis of their hydrological response. In order to assign ungauged sites to such groups, the catchments are represented through a parsimonious set of morphometric and pluviometric variables, including also indexes that attempt to synthesize the variability and correlation properties of the precipitation time-series, thus providing information on the type of weather forcing that is specific to each basin. Following a principal components analysis, needed for synthesizing and better understanding the morpho-pluviometric catchment properties, a discriminant analysis finally classifies the ungauged catchments, through a leave-one-out cross-validation, to one of the above identified hydrologic response classes. The approach delivers quite satisfactory results for ungauged catchments, since the comparison of the two cluster sets shows an acceptable overlap. Overall results indicate that the inclusion of information on the properties of the fine time-scale streamflow and rainfall time-series may be a promising way for better representing the hydrologic and climatic character of the study catchments.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2012-09-28
    Description: Modeling postfire water erosion mitigation strategies Hydrology and Earth System Sciences Discussions, 9, 10877-10916, 2012 Author(s): M. C. Rulli, L. Offeddu, and M. Santini Severe wildfires are often followed by significant increase in runoff and erosion, due to vegetation damages and changes in physical and chemical soil properties. Peak flows and sediment yields can increase up to two orders of magnitude becoming dangerous for human lives and ecosystem, especially in the wildland-urban interface. Watershed post fire rehabilitation measures are usually used to mitigate the effects of fire on runoff and erosion, by protecting soil from splash and shear stress detachment and enhancing its infiltration capacity. Modeling post fire erosion and erosion mitigation strategies can be useful in selecting the effectiveness of rehabilitation method. In this paper a distributed model based on Revised Universal Soil Loss Equation (RUSLE), properly parameterized for a Mediterranean basin located in Sardinia, is used to determine soil losses for six different scenarios describing both natural and post-fire basin condition, the last accounting also for the single and combined effect of different erosion mitigation measures. Fire effect on vegetation and soil properties have been mimed by changing soil drainage capacity and organic matter content, and RUSLE factors related to soil cover and protection measures. Model results show for the analyzed rehabilitation treatments their effect in reducing the amount of soil losses with the peculiar characteristics of the spatial distribution of such changes.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2012-09-29
    Description: A new marine ecosystem model for the University of Victoria Earth System Climate Model Geoscientific Model Development, 5, 1195-1220, 2012 Author(s): D. P. Keller, A. Oschlies, and M. Eby Earth System Climate Models (ESCMs) are valuable tools that can be used to gain a better understanding of the climate system, global biogeochemical cycles and how anthropogenically-driven changes may affect them. Here we describe improvements made to the marine biogeochemical ecosystem component of the University of Victoria's ESCM (version 2.9). Major changes include corrections to the code and equations describing phytoplankton light limitation and zooplankton grazing, the implementation of a more realistic zooplankton growth and grazing model, and the implementation of an iron limitation scheme to constrain phytoplankton growth. The new model is evaluated after a 10 000-yr spin-up and compared to both the previous version and observations. For the majority of biogeochemical tracers and ecosystem processes the new model shows significant improvements when compared to the previous version and evaluated against observations. Many of the improvements are due to better simulation of seasonal changes in higher latitude ecosystems and the effect that this has on ocean biogeochemistry. This improved model is intended to provide a basic new ESCM model component, which can be used as is or expanded upon (i.e., the addition of new tracers), for climate change and biogeochemical cycling research.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2012-09-29
    Description: Seasonal forecasts of drought indices in African basins Hydrology and Earth System Sciences Discussions, 9, 11093-11129, 2012 Author(s): E. Dutra, F. Di Giuseppe, F. Wetterhall, and F. Pappenberger Vast parts of Africa rely on the rainy season for livestock and agriculture. Droughts can have a severe impact in these areas which often have a very low resilience and limited capabilities to mitigate their effects. This paper tries to assess the predictive capabilities of an integrated drought monitoring and forecasting system based on the Standard precipitation index (SPI). The system is firstly constructed by temporally extending near real-time precipitation fields (ECMWF ERA-Interim reanalysis and the Climate Anomaly Monitoring System-Outgoing Longwave Radiation Precipitation Index, CAMS-OPI) with forecasted fields as provided by the ECMWF seasonal forecasting system and then is evaluated over four basins in Africa: the Blue Nile, Limpopo, Upper Niger, and Upper Zambezi. There are significant differences in the quality of the precipitation between the datasets depending on the catchments, and a general statement regarding the best product is difficult to make. All the datasets show similar patterns in the South and North West Africa, while there is a low correlation in the tropical region which makes it difficult to define ground truth and choose an adequate product for monitoring. The Seasonal forecasts have a higher reliability and skill in the Blue Nile, Limpopo and Upper Niger in comparison with the Zambezi. This skill and reliability depends strongly on the SPI time-scale, and more skill is observed at larger time-scales. The ECMWF seasonal forecasts have predictive skill which is higher than using climatology for most regions. In regions where no reliable near real-time data is available, the seasonal forecast can be used for monitoring (first month of forecast). Furthermore, poor quality precipitation monitoring products can reduce the potential skill of SPI seasonal forecasts in two to four months lead time.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2012-10-13
    Description: Multi-satellite rainfall sampling error estimates – a comparative study Hydrology and Earth System Sciences Discussions, 9, 11677-11706, 2012 Author(s): M. Itkin and A. Loew This study focus is set on quantifying sampling related uncertainty in the satellite rainfall estimates. We conduct observing system simulation experiment to estimate sampling error for various constellations of Low-Earth orbiting and geostationary satellites. There are two types of microwave instruments currently available: cross track sounders and conical scanners. We evaluate the differences in sampling uncertainty for various satellite constellations that carry instruments of the common type as well as in combination with geostationary observations. A precise orbital model is used to simulate realistic satellite overpasses with orbital shifts taken into account. With this model we resampled rain gauge timeseries to simulate satellites rainfall estimates free of retrieval and calibration errors. We concentrate on two regions, Germany and Benin, areas with different precipitation regimes. Our results show that sampling uncertainty for all satellite constellations does not differ greatly depending on the area despite the differences in local precipitation patterns. Addition of 3 hourly geostationary observations provides equal performance improvement in Germany and Benin, reducing rainfall undersampling by 20–25% of the total rainfall amount. Authors do not find a significant difference in rainfall sampling between conical imager and cross-track sounders.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2012-10-13
    Description: Soil moisture controls on patterns of grass green-up in Inner Mongolia: an index based approach Hydrology and Earth System Sciences Discussions, 9, 11641-11675, 2012 Author(s): H. Liu, F. Tian, H. Hu, H. Hu, and M. Sivapalan Water availability is one of the most important environmental controls on vegetation phenology, especially in semi-arid regions, and is often represented in terms of soil moisture in small-scale studies whereas it tends to be represented by precipitation in large-scale (e.g. regional) studies. Clearly, soil moisture is the more appropriate indicator for root water uptake and vegetation growth/phenology and therefore its potential advantage and applicability needs to be demonstrated at regional scales. This paper represents a data-based regional study of the effectiveness of alternative indices based on water and energy availability on space-time patterns of spring vegetation green-up onset dates estimated from Normalized Difference Vegetation Index (NDVI) datasets in the grasslands of Inner Mongolia, China. The macro-scale hydrological model, VIC, is employed to generate a soil moisture database across the region. In addition to standard index based on temperature, two potential hydrology based indices for prediction of spring onset dates are defined based on the simulated soil moisture data as well as on observed precipitation data. Results indicate that the correspondence between the NDVI-derived green-up onset date and the soil moisture derived potential onset date exhibits a significantly better correlation as a function of increasing aridity, compared to that based on precipitation. In this way the soil moisture based index is demonstrated to be superior to the precipitation based index in terms of capturing grassland spring phenology. The results also showed that both of the hydrological (water based) indices were superior to the thermal (temperature based) index in determining the patterns of grass green-up in the Inner Mongolia region, indicating water availability to be the dominant control, on average. The understanding about the relative controls on grassland phenology, and the effectiveness of alternative indices to capture these controls, are important for future studies and predictions of vegetation phenology change under climate change.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2012-09-22
    Description: Downscaling the climate change for oceans around Australia Geoscientific Model Development, 5, 1177-1194, 2012 Author(s): M. A. Chamberlain, C. Sun, R. J. Matear, M. Feng, and S. J. Phipps At present, global climate models used to project changes in climate poorly resolve mesoscale ocean features such as boundary currents and eddies. These missing features may be important to realistically project the marine impacts of climate change. Here we present a framework for dynamically downscaling coarse climate change projections utilising a near-global ocean model that resolves these features in the Australasian region, with coarser resolution elsewhere. A time-slice projection for a 2060s ocean was obtained by adding climate change anomalies to initial conditions and surface fluxes of a near-global eddy-resolving ocean model. Climate change anomalies are derived from the differences between present and projected climates from a coarse global climate model. These anomalies are added to observed fields, thereby reducing the effect of model bias from the climate model. The downscaling model used here is ocean-only and does not include the effects that changes in the ocean state will have on the atmosphere and air–sea fluxes. We use restoring of the sea surface temperature and salinity to approximate real-ocean feedback on heat flux and to keep the salinity stable. Extra experiments with different feedback parameterisations are run to test the sensitivity of the projection. Consistent spatial differences emerge in sea surface temperature, salinity, stratification and transport between the downscaled projections and those of the climate model. Also, the spatial differences become established rapidly ( 〈 3 yr), indicating the importance of mesoscale resolution. However, the differences in the magnitude of the difference between experiments show that feedback of the ocean onto the air–sea fluxes is still important in determining the state of the ocean in these projections. Until such a time when it is feasible to regularly run a global climate model with eddy resolution, our framework for ocean climate change downscaling provides an attractive way to explore the response of mesoscale ocean features with climate change and their effect on the broader ocean.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...