ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (5,511)
  • Copernicus  (5,511)
  • National Academy of Sciences
  • 2010-2014  (5,511)
  • 1980-1984
  • 1945-1949
  • 1925-1929
  • Hydrology and Earth System Sciences Discussions  (1,487)
  • The Cryosphere Discussions  (614)
  • Geoscientific Model Development  (452)
  • 102048
  • 54330
  • 92598
  • Geosciences  (5,511)
Collection
  • Articles  (5,511)
Publisher
  • Copernicus  (5,511)
  • National Academy of Sciences
Years
Year
Topic
  • 1
    Publication Date: 2013-09-06
    Description: Imperfect scaling in distributions of radar-derived rainfall fields Hydrology and Earth System Sciences Discussions, 10, 11385-11422, 2013 Author(s): M. J. van den Berg, L. Delobbe, and N. E. C. Verhoest Fine scale rainfall observations for modeling exercises are often not available, but rather coarser data derived from a variety of sources are used. Effectively using these data sources in models often requires the probability distribution of the data at the applicable scale. Although numerous models for scaling distributions exist, these are often based on theoretical developments, rather than on data. In this study, we develop a model based on the α-stable distribution of rainfall fields, and tested on 5 min radar data from a Belgian weather radar. We use these data to estimate functions that describe parameters of the distribution over various scales. Moreover, we study how the mean of the distribution and the intermittency change with scale, and validate and design functions to describe the shape parameter of the distribution. This information was combined into an effective model of the distribution. Finally, the model was fitted to data from numerous storms, and the resulting parameters were compared to investigate the change in scaling behavior through time.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-06
    Description: Spatially resolved information on karst conduit flow from in-cave dye-tracing Hydrology and Earth System Sciences Discussions, 10, 11311-11335, 2013 Author(s): U. Lauber, W. Ufrecht, and N. Goldscheider Artificial tracers are powerful tools to investigate karst systems. Tracers are commonly injected into sinking streams or dolines, while springs serve as monitoring sites. The obtained flow and transport parameters represent mixed information from the vadose, epiphreatic and phreatic zones, i.e., the aquifer remains a black box. Accessible active caves constitute valuable but underexploited natural laboratories to gain detailed insights into the hydrologic functioning of the aquifer. Two multi-tracer tests in the catchment of a major karst spring (Blautopf, Germany) with injections and monitoring in two associated water caves aimed at obtaining spatially and temporally resolved information on groundwater flow in different compartments of the system. Two tracers were injected in the caves to characterize the hydraulic connections between them and with the spring. Two injections at the land surface, far from the spring, aimed at resolving the aquifer's internal drainage structure. Tracer breakthrough curves were monitored by field fluorimeters in caves and at the spring. Results demonstrate the dendritic drainage structure of the aquifer. It was possible to obtain relevant flow and transport parameters for different sections of this system. The highest mean flow velocities (275 m h −1 ) were observed in the near-spring epiphreatic section (open-channel flow), while velocities in the phreatic zone (pressurized flow) were one order of magnitude lower. Determined conduit water volumes confirm results of water balances and hydrograph analyses. In conclusion, experiments and monitoring in caves can deliver spatially resolved information on karst aquifer heterogeneity and dynamics that cannot be obtained by traditional investigative methods.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-06
    Description: On the lack of robustness of hydrologic models regarding water balance simulation – a diagnostic approach on 20 mountainous catchments using three models of increasing complexity Hydrology and Earth System Sciences Discussions, 10, 11337-11383, 2013 Author(s): L. Coron, V. Andréassian, C. Perrin, M. Bourqui, and F. Hendrickx This paper investigates the robustness of rainfall–runoff models when their parameters are transferred in time. More specifically, we studied their ability to simulate water balance on periods with different hydroclimatic characteristics. The testing procedure consisted in a series of parameter transfers between 10-yr periods and the systematic analysis of mean-volume errors. This procedure was applied to three conceptual models of different structural complexity over 20 mountainous catchments in southern France. The results showed that robustness problems are common. Errors on 10-yr-mean flows were significant for all three models and calibration periods, even when the entire record was used for calibration. Various graphical and numerical tools were used to show strong similarities between the shapes of mean flow biases calculated on a 10-yr-long sliding window when various parameter sets are used. Unexpected behavioural similarities were observed between the three models tested, considering their large differences in structural complexity. While the actual causes for robustness problems in these models remain unclear, this work stresses the limited transferability in time of the water balance adjustments made through parameter optimization. Although absolute differences between simulations obtained with different calibrated parameter sets were sometimes substantial, relative differences in simulated mean flows between time periods remained similar regardless of the calibrated parameter sets.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-10
    Description: The Chemistry CATT-BRAMS model (CCATT-BRAMS 4.5): a regional atmospheric model system for integrated air quality and weather forecasting and research Geoscientific Model Development, 6, 1389-1405, 2013 Author(s): K. M. Longo, S. R. Freitas, M. Pirre, V. Marécal, L. F. Rodrigues, J. Panetta, M. F. Alonso, N. E. Rosário, D. S. Moreira, M. S. Gácita, J. Arteta, R. Fonseca, R. Stockler, D. M. Katsurayama, A. Fazenda, and M. Bela Coupled Chemistry Aerosol-Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CCATT-BRAMS, version 4.5) is an on-line regional chemical transport model designed for local and regional studies of atmospheric chemistry from the surface to the lower stratosphere suitable both for operational and research purposes. It includes gaseous/aqueous chemistry, photochemistry, scavenging and dry deposition. The CCATT-BRAMS model takes advantage of BRAMS-specific development for the tropics/subtropics as well as the recent availability of preprocessing tools for chemical mechanisms and fast codes for photolysis rates. BRAMS includes state-of-the-art physical parameterizations and dynamic formulations to simulate atmospheric circulations down to the meter. This on-line coupling of meteorology and chemistry allows the system to be used for simultaneous weather and chemical composition forecasts as well as potential feedback between the two. The entire system is made of three preprocessing software tools for user-defined chemical mechanisms, aerosol and trace gas emissions fields and the interpolation of initial and boundary conditions for meteorology and chemistry. In this paper, the model description is provided along with the evaluations performed by using observational data obtained from ground-based stations, instruments aboard aircrafts and retrieval from space remote sensing. The evaluation accounts for model applications at different scales from megacities and the Amazon Basin up to the intercontinental region of the Southern Hemisphere.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-09-11
    Description: Antecedent flow conditions and nitrate concentrations in the Mississippi River Basin Hydrology and Earth System Sciences Discussions, 10, 11451-11484, 2013 Author(s): J. C. Murphy, R. M. Hirsch, and L. A. Sprague The influence of antecedent flow conditions on nitrate concentrations was explored at eight sites in the Mississippi River Basin, USA. Antecedent moisture conditions have been shown to influence nutrient export from small, relatively homogenous basins, but this influence has not been observed at a regional or continental scale. Antecedent flow conditions were quantified as the ratio between the mean daily flow of the previous year and the mean daily flow from the period of record ( Q ratio), and the Q ratio was statistically related to nitrate anomalies (the unexplained variability in nitrate concentration after filtering out season, long-term trend, and contemporaneous flow effects) at each site. Nitrate anomaly and Q ratio were negatively related at three of the four major tributary sites and upstream in the Mississippi River, indicating that when the previous year was drier than average, at these sites, nitrate concentrations were higher than expected. The strength of these relationships increased when data were subdivided by contemporaneous flow conditions. Five of the eight sites had significant negative relationships ( p ≤ 0.05) at high or moderately high contemporaneous flows, suggesting nitrate that accumulates in these basins during a drought is flushed during subsequent storm events. At half of the sites, when flow during the previous year was 50% drier than average, nitrate concentration can be from 9 and 27% higher than nitrate concentrations that follow a year with average daily flow. Conversely, nitrate concentration can be from 8 and 21% lower than expected when the previous year was 50% wetter than average. These relationships between nitrate concentration and Q ratio serve as the basis for future studies that can better define specific hydrologic processes occurring during and after a drought, which influence nitrate concentration, such as the duration or magnitude of low flows, and the timing of low and high flows.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-09-12
    Description: Contribution of snow and glacier melt to discharge for highly glacierised catchments in Norway Hydrology and Earth System Sciences Discussions, 10, 11485-11517, 2013 Author(s): M. Engelhardt, T. V. Schuler, and L. M. Andreassen Glacierised catchments significantly alter the streamflow regime due to snow and glacier meltwater contribution to discharge. In this study, we modelled the mass balance and discharge rates for three highly glacierised catchments (〉50% glacier cover) in western Norway over the period 1961–2012. The spatial pattern of the catchments follows a gradient in climate continentality from west to east. The model uses gridded temperature and precipitation values from seNorge ( http://senorge.no ) as input which are available at a daily resolution. It accounts for accumulation of snow, transformation of snow to firn and ice, evaporation and melt. The model was calibrated for each catchment based on measurements of seasonal glacier mass-balances and daily discharge rates. For validation, daily melt rates were compared with measurements from sonic rangers located in the ablation zones of two of the glaciers and an uncertainty analysis was performed for the third catchment. The discharge contributions from snowmelt, glacier melt and rain were analysed with respect to spatial variations and temporal evolution. The model simulations reveal an increase of the relative contribution from glacier melt for the three catchments from less than 10% in the early 1990s to 15–30% in the late 2000s. The decline in precipitation by 10–20% in the same period was therefore overcompensated resulting in an increase of the annual discharge by 5–20%. Annual discharge sums and annual glacier melt are strongest correlated with annual and winter precipitation at the most maritime glacier and, with increased climate continentality, variations in both glacier melt contribution and annual discharge are becoming stronger correlated with variations in summer temperatures.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-09-12
    Description: Decadal trends in the Antarctic sea ice extent ultimately controlled by ice-ocean feedback The Cryosphere Discussions, 7, 4585-4632, 2013 Author(s): H. Goosse and V. Zunz The large natural variability of the Antarctic sea ice is a key characteristic of the system that might be responsible for the small positive trend in sea ice extent observed since 1979. In order to gain insight in the processes responsible for this variability, we have analysed in a control simulation performed with a coupled climate model a strong positive ice-ocean feedback that amplifies sea ice variations. When sea ice concentration increases in a region, in particular close to the ice edge, the mixed layer depth tends to decrease. This can be caused by a net inflow of ice and thus of freshwater that stabilizes the water column. Another stabilizing mechanism at interannual time scales that appears more widespread in our simulation is associated with the downward salt transport due to the seasonal cycle of ice formation: brine is released in winter when ice is formed and mixed over a deep layer while the freshwater flux caused by ice melting is included in a shallow layer, resulting in a net vertical transport of salt. Because of this stronger stratification due to the presence of sea ice, more heat is stored at depth in the ocean and the vertical oceanic heat flux is reduced, which contributes to maintain a higher ice extent. This positive feedback is not associated with a particular spatial pattern. Consequently, the spatial distribution of the trend in ice concentration is largely imposed by the wind changes that can provide the initial perturbation. A positive freshwater flux could alternatively be the initial trigger but the amplitude of the final response of the sea ice extent is finally set up by the amplification related to ice-ocean feedback. Initial conditions have also an influence as the chance to have a large increase in ice extent is higher if starting from a state characterized by a low value.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-09-13
    Description: δ 18 O water isotope in the i LOVECLIM model (version 1.0) – Part 1: Implementation and verification Geoscientific Model Development, 6, 1481-1491, 2013 Author(s): D. M. Roche A new 18 O stable water isotope scheme is developed for three components of the i LOVECLIM coupled climate model: atmospheric, oceanic and land surface. The equations required to reproduce the fractionation of stable water isotopes in the simplified atmospheric model ECBilt are developed consistently with the moisture scheme. Simplifications in the processes are made to account for the simplified vertical structure including only one moist layer. Implementation of these equations together with a passive tracer scheme for the ocean and a equilibrium fractionation scheme for the land surface leads to the closure of the (isotopic-) water budget in our climate system. Following the implementation, verification of the existence of usual δ 18 O to climatic relationships are performed for the Rayleigh distillation, the Dansgaard relationship and the δ 18 O –salinity relationship. Advantages and caveats of the approach taken are outlined. The isotopic fields simulated are shown to reproduce most expected oxygen-18–climate relationships with the notable exception of the isotopic composition in Antarctica.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-09-13
    Description: δ 18 O water isotope in the i LOVECLIM model (version 1.0) – Part 3: A palaeo-perspective based on present-day data–model comparison for oxygen stable isotopes in carbonates Geoscientific Model Development, 6, 1505-1516, 2013 Author(s): T. Caley and D. M. Roche Oxygen stable isotopes (δ 18 O) are among the most useful tools in palaeoclimatology/palaeoceanography. Simulation of oxygen stable isotopes allows testing how the past variability of these isotopes in water can be interpreted. By modelling the proxy directly in the model, the results can also be directly compared with the data. Water isotopes have been implemented in the global three-dimensional model of intermediate complexity i LOVECLIM, allowing fully coupled atmosphere–ocean simulations. In this study, we present the validation of the model results for present-day climate against the global database for oxygen stable isotopes in carbonates. The limitation of the model together with the processes operating in the natural environment reveal the complexity of use the continental calcite-δ 18 O signal of speleothems for a global quantitative data–model comparison exercise. On the contrary, the reconstructed surface ocean calcite-δ 18 O signal in i LOVECLIM does show a very good agreement with the late Holocene database (foraminifers) at the global and regional scales. Our results indicate that temperature and the isotopic composition of the seawater are the main control on the fossil-δ 18 O signal recorded in foraminifer shells when all species are grouped together. Depth habitat, seasonality and other ecological effects play a more significant role when individual species are considered. We argue that a data–model comparison for surface ocean calcite δ 18 O in past climates, such as the Last Glacial Maximum (≈ 21 000 yr), could constitute an interesting tool for mapping the potential shifts of the frontal systems and circulation changes throughout time. Similarly, the potential changes in intermediate oceanic circulation systems in the past could be documented by a data (benthic foraminifers)-model comparison exercise whereas future investigations are necessary in order to quantitatively compare the results with data for the deep ocean.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-09-14
    Description: Bias correction can modify climate model-simulated precipitation changes without adverse affect on the ensemble mean Hydrology and Earth System Sciences Discussions, 10, 11585-11611, 2013 Author(s): E. P. Maurer and D. W. Pierce When applied to remove climate model biases in precipitation, quantile mapping can in some settings modify the simulated trends. This has important implications when the precipitation will be used to drive an impacts model that is sensitive to changes in precipitation. We use daily precipitation output from 12 general circulation models (GCMs) over the conterminous United States interpolated to a common 1° grid, and gridded observations aggregated to the same scale, to compare precipitation differences before and after quantile mapping bias correction. The change in seasonal mean (winter, DJF, and summer, JJA) precipitation between different 30-yr historical periods is compared to examine (1) the consensus among GCMs as to whether the bias correction tends to amplify or diminish their simulated precipitation trends, and (2) whether the modification of the change in precipitation tends to improve or degrade the correspondence to observed changes in precipitation for the same periods. In some cases, for a particular GCM, the trend modification can be as large as the original simulated change, though the areas where this occurs varies among GCMs so the ensemble median shows smaller trend modification. In specific locations and seasons the trend modification by quantile mapping improves correspondence with observed trends, and in others it degrades it. In the majority of the domain the ensemble median is for little effect on the correspondence of simulated precipitation trends with observed. This highlights the need to use an ensemble of GCMs rather than relying on a small number of models to estimate impacts.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-09-17
    Description: Assimilating water column and satellite data for marine export production estimation Geoscientific Model Development, 6, 1575-1590, 2013 Author(s): X. Yao and R. Schlitzer Recent advances in satellite retrieval methodology now allow for estimation of particular organic carbon (POC) concentration in ocean surface waters directly from satellite-based optical data. Because of the good coverage, these data reveal small-scale spatial and temporal concentration gradients and document the evolution of surface water POC as well as the underlying driving biogeochemical processes throughout the seasons. Water column nutrient data also reveal biogeochemical activity. However, because of the scarcity of data, the deduction of temporal changes of particle production and export is not possible in most parts of the ocean. Here we present first results from a new study combining both data streams, thereby exploiting the high spatio-temporal resolution of surface POC concentrations from satellite optical sensors with water column nutrient data having sparser coverage but providing information throughout the entire water column. We use a medium-resolution global model with steady-state 3-D circulation that has been optimized by fitting to a large number of hydrographic parameters and tracers, including CFCs and natural radiocarbon. Production and export of POC is allowed to vary monthly, and the magnitudes of the monthly export fluxes are determined by fitting the model to satellite POC data as well as water column nutrient data using the adjoint method. Two cases have been investigated: (1) the production rate of POC is set to be proportional to export production (EP) and the seasonal changes are assumed sinusoidal (meridionally varying amplitude and phase), and (2) the POC production rate is linked to primary production rates (literature). Both cases were run with the same initial state and model settings, and show total cost function decreases of 12 and 95%, respectively. The POC misfit term alone decreased by 75 and 99.8%. The integrated annual global POC exports of the two cases are 9.9 and 12.3 Gt C yr −1 , respectively. Overall, the remaining POC and phosphate misfits of both solutions are considered too large, and the difference fields still exhibit significant systematic geographical patterns. This indicates that the present model runs are too simplistic and do not fully explain the data. Further, more refined model setups are needed.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-09-27
    Description: The effect of training image and secondary data integration with multiple-point geostatistics in groundwater modeling Hydrology and Earth System Sciences Discussions, 10, 11829-11860, 2013 Author(s): X. He, T. O. Sonnenborg, F. Jørgensen, and K. H. Jensen Multiple-point geostatistic simulation (MPS) has recently become popular in stochastic hydrogeology, primarily because of its capability to derive multivariate distributions from the training image (TI). However, its application in three dimensional simulations has been constrained by the difficulty of constructing 3-D TI. The object-based TiGenerator may be a useful tool in this regard; yet the sensitivity of model predictions to the training image has not been documented. Another issue in MPS is the integration of multiple geophysical data. The best way to retrieve and incorporate information from high resolution geophysical data is still under discussion. This work shows that TI from TiGenerator delivers acceptable results when used for groundwater modeling, although the TI directly converted from high resolution geophysical data leads to better simulation. The model results also indicate that soft conditioning in MPS is a convenient and efficient way of integrating secondary data such as 3-D airborne electromagnetic data, but over conditioning has to be avoided.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-09-27
    Description: Multi-decadal river flows variations in France Hydrology and Earth System Sciences Discussions, 10, 11861-11900, 2013 Author(s): J. Boé and F. Habets In this article, multi-decadal variations in French hydroclimate are investigated, with a specific focus on river flows. Based on long observed series, it is shown that river flows in France generally exhibit large multi-decadal variations on the historical period, especially in spring. Differences of means between two 21 yr periods of the 20th century as large as 40% are indeed found for many gauging stations. Multi-decadal spring river flows variations are associated with variations in spring precipitation and temperature. These multi-decadal variations in precipitation are themselves found to be driven by large-scale atmospheric circulation, more precisely by a multi-decadal oscillation in a sea level pressure dipole between western Europe and the East Atlantic. It is suggested that the Atlantic Multidecadal Variability, the main mode of decadal variability in the North Atlantic/Europe sector, controls those variations in large-scale circulation and is therefore the main ultimate driver of multi-decadal variations in spring river flows. Multi-decadal variations in river flows in other seasons, and in particular summer, are also noted. As they are not associated with significant surface climate anomalies (i.e. temperature, precipitation) in summer, other mechanisms are investigated based on hydrological simulations. The impact of climate variations in spring on summer soil moisture, and the impact of soil moisture in summer on the runoff to precipitation ratio, could potentially play a role in multi-decadal summer river flows variations. The large amplitude of the multi-decadal variations in French river flows suggests that internal variability may play a very important role in the evolution of river flows during the next decades, potentially temporarily limiting, reversing or seriously aggravating the long-term impacts of anthropogenic climate change.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-09-28
    Description: Enhancing the representation of subgrid land surface characteristics in land surface models Geoscientific Model Development, 6, 1609-1622, 2013 Author(s): Y. Ke, L. R. Leung, M. Huang, and H. Li Land surface heterogeneity has long been recognized as important to represent in the land surface models. In most existing land surface models, the spatial variability of surface cover is represented as subgrid composition of multiple surface cover types, although subgrid topography also has major controls on surface processes. In this study, we developed a new subgrid classification method (SGC) that accounts for variability of both topography and vegetation cover. Each model grid cell was represented with a variable number of elevation classes and each elevation class was further described by a variable number of vegetation types optimized for each model grid given a predetermined total number of land response units (LRUs). The subgrid structure of the Community Land Model (CLM) was used to illustrate the newly developed method in this study. Although the new method increases the computational burden in the model simulation compared to the CLM subgrid vegetation representation, it greatly reduced the variations of elevation within each subgrid class and is able to explain at least 80% of the total subgrid plant functional types (PFTs). The new method was also evaluated against two other subgrid methods (SGC1 and SGC2) that assigned fixed numbers of elevation and vegetation classes for each model grid (SGC1: M elevation bands– N PFTs method; SGC2: N PFTs– M elevation bands method). Implemented at five model resolutions (0.1°, 0.25°, 0.5°, 1.0°and 2.0°) with three maximum-allowed total number of LRUs (i.e., N LRU of 24, 18 and 12) over North America (NA), the new method yielded more computationally efficient subgrid representation compared to SGC1 and SGC2, particularly at coarser model resolutions and moderate computational intensity ( N LRU = 18). It also explained the most PFTs and elevation variability that is more homogeneously distributed spatially. The SGC method will be implemented in CLM over the NA continent to assess its impacts on simulating land surface processes.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-09-29
    Description: A data set of world-wide glacier length fluctuations The Cryosphere Discussions, 7, 4775-4811, 2013 Author(s): P. W. Leclercq, J. Oerlemans, H. J. Basagic, I. Bushueva, A. J. Cook, and R. Le Bris Glacier fluctuations contribute to variations in sea level and historical glacier length fluctuations are natural indicators of climate change. To study these subjects, long-term information of glacier change is needed. In this paper we present a~data set of global long-term glacier length fluctuations. The data set is a compilation of available information on changes in glacier length world-wide, including both measured and reconstructed glacier length fluctuations. All 471 length series start before 1950 and cover at least four decades. The longest record starts in 1534, but the majority of time series start after 1850. The number of available records decreases again after 1962. The data set has global coverage including records from all continents. However, the Canadian Arctic is not represented in the data set. The glacier length series show relatively small fluctuations until the mid-19th century followed by a global retreat that was strongest in the first half of the 20th century, although large variability in the length change of the different glaciers is observed. During the 20th century, calving glaciers retreated more than land terminating glaciers, but their relative length change was approximately equal. Besides calving, the glacier slope is the most important glacier property determining length change: steep glaciers have retreated less than glaciers with a gentle slope.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-10-01
    Description: Teleconnection analysis of runoff and soil moisture over the Pearl River basin in South China Hydrology and Earth System Sciences Discussions, 10, 11943-11982, 2013 Author(s): J. Niu, J. Chen, and B. Sivakumar This study explores the teleconnection of two climatic patterns, namely the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD), with hydrological processes over the Pearl River basin in South China. The Variable Infiltration Capacity (VIC) model is used to simulate the daily hydrological processes over the basin for the study period 1952–2000, and then, using the simulation results, the time series of the monthly runoff and soil moisture anomalies for its ten sub-basins are aggregated. Wavelet analysis is performed to explore the variability properties of these time series at 49 timescales ranging from 2 months to 9 yr. Use of wavelet coherence and rank correlation method reveals that the dominant variabilities of the time series of runoff and soil moisture are basically correlated with IOD. The influences of ENSO on the terrestrial hydrological processes are mainly found in the eastern sub-basins. The teleconnections between climatic patterns and hydrological variability also serve as a reference basis for inferences on the occurrence of extreme hydrological events (e.g. floods and droughts).
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-09-07
    Description: Hydrological functions of sinkholes and characteristics of point recharge in groundwater basins Hydrology and Earth System Sciences Discussions, 10, 11423-11449, 2013 Author(s): N. Somaratne, K. Smettem, J. Lawson, K. Nguyen, and J. Frizenschaf Karstic limestone aquifers are hydrologically and hydrochemically extremely heterogeneous and point source recharge via sinkholes and fissures is a common feature. We studied three groundwater systems in karstic settings dominated by point source recharge in order to assess the relative contributions to total recharge from point sources using chloride and δ 18 O relations. Preferential groundwater flows were observed through an inter-connected network of highly conductive zones with groundwater mixing along flow paths. Measurements of salinity and chloride indicated that fresh water pockets exist at point recharge locations. A measurable fresh water plume develops only when a large quantity of surface water enters the aquifer as a point recharge source. The difference in chloride concentrations in diffuse and point recharge zones decreases as aquifer saturated thickness increases and the plumes become diluted through mixing. The chloride concentration in point recharge fluxes crossing the watertable plane can remain at or near surface runoff chloride concentrations, rather than in equilibrium with groundwater chloride. In such circumstances the conventional chloride mass balance method that assumes equilibrium of recharge water chloride with groundwater requires modification to include both point and diffuse recharge mechanisms.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-09-07
    Description: Implementation and evaluation of prognostic representations of the optical diameter of snow in the detailed snowpack model SURFEX/ISBA-Crocus The Cryosphere Discussions, 7, 4443-4500, 2013 Author(s): C. M. Carmagnola, S. Morin, M. Lafaysse, F. Domine, B. Lesaffre, Y. Lejeune, G. Picard, and L. Arnaud In the SURFEX/ISBA-Crocus multi-layer snowpack model, the snow microstructure was up to now characterized by the grain size and by semi-empirical shape variables which cannot be measured easily in the field or linked to other relevant snow properties. In this work we introduce a new formulation of snow metamorphism directly based on equations describing the rate of change of the optical diameter ( d opt ). This variable is considered here to be equal to the equivalent sphere optical diameter, which is inversely proportional to the specific surface area (SSA). d opt thus represents quantitatively some of the geometric characteristics of a porous medium. Different prognostic rate equations of d opt , including a re-formulation of the original Crocus scheme and the parametrizations from Taillandier et al. (2007) and Flanner and Zender (2006), were evaluated by comparing their predictions to field measurements carried out at Summit Camp (Greenland) in May and June 2011 and at Col de Porte (French Alps) during the 2009/10 and 2011/12 winter seasons. We focused especially on results in terms of SSA. In addition, we tested the impact of the different formulations on the simulated density profile, the total snow height, the snow water equivalent (SWE) and the surface albedo. Results indicate that all formulations perform well, with median values of the RMSD between measured and simulated SSA lower than 10 m 2 kg −1 . Incorporating the optical diameter as a fully-fledged prognostic variable is an important step forward in the quantitative description of the snow microstructure within snowpack models, because it opens the way to data assimilation of various electromagnetic observations.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-09-10
    Description: Distribution and recent variations of supraglacial lakes on dendritic-type glaciers in the Khan Tengri-Tomur Mountains, Central Asia The Cryosphere Discussions, 7, 4545-4584, 2013 Author(s): Q. Liu, C. Mayer, and S. Liu Supraglacial lakes are widely distributed on glaciers in the Tomur-Khan Tengri Tianshan Mountains, Central Asia. The existence and development of supraglacial lakes play an important role in the ice melting processes and also in the storage and release of glacial melt water. Here we mapped the supraglacial lakes of eight typical debris-covered dendritic-type glaciers around the Tomur-Khan Tengri peaks based on 9 Landsat TM/ETM+ images acquired in the summers of 1990 until 2011. With a lower area limit of 3600 m 2 for a conservative identification of glacial lakes, we mapped 775 supraglacial lakes and 38 marginal glacial lakes in total. Our results indicate that supraglacial lakes (area 〉 3600 m 2 ) in the study region never develop beyond an elevation of about 3850 m a.s.l., 800 m lower than the maximum upper boundary of debris cover (4650 m a.s.l.). The area-elevation distribution shows that lakes are predominantly occured close to the altitude of 3250 m a.s.l., where the clean ice simultaneously disappears. The majority of the supraglacial lakes are found on the Tomur Glacier and the South Inylchek Glacier, two strongly debris-covered dendritic-type glaciers in the region. As for the multi-year variation of lake area, the summer total and mean areas of supraglacial lakes show some variability from 1990 and 2005 but increased noticeably between 2005 and 2011. The mean area of the mapped lakes reached a maximum in 2010. We found that the area of supraglacial lakes is positively correlated to the total precipitation in summer (July to September) but negatively correlated to the mean spring air temperature (April to June). Pre-summer air temperature fluctuations likely have a stronger impact on the different evolution processes of glacial drainage, evolving from unconnected to connected systems, which may lead to the drainage of larger supraglacial lakes and results in shrinkage of the total and mean lake area during the summer.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-09-10
    Description: Fracture-induced softening for large-scale ice dynamics The Cryosphere Discussions, 7, 4501-4544, 2013 Author(s): T. Albrecht and A. Levermann Floating ice shelves can exert a retentive and hence stabilizing force onto the inland ice sheet of Antarctica. However, this effect has been observed to diminish by fracture-coupled dynamic processes within the protective ice shelves leading to accelerated ice flow and hence to a sea-level contribution. In order to better understand the role of fractures in ice dynamics we apply a large-scale continuum representation of fractures and related fracture growth into the prognostic Parallel Ice Sheet Model (PISM). To this end we introduce a higher-order accuracy advection scheme for the transport of the two-dimensional fracture density across the regular computational grid. Dynamic coupling of fractures and ice flow is attained by a reduction of effective ice viscosity proportional to the inferred fracture density. This formulation implies the possibility of a non-linear threshold behavior due to self-amplified fracturing in shear regions triggered by small variations in damage threshold. As a result of prognostic flow simulations, flow patterns with realistically large across-flow velocity gradients in fracture-weakened regions as seen in observations are reproduced. This model framework is expandable to grounded ice streams and accounts for climate-induced effects on fracturing and hence on the ice-flow dynamics. It further allows for an enhanced fracture-based calving parameterization.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-09-11
    Description: An efficient method to generate a perturbed parameter ensemble of a fully coupled AOGCM without flux-adjustment Geoscientific Model Development, 6, 1447-1462, 2013 Author(s): P. J. Irvine, L. J. Gregoire, D. J. Lunt, and P. J. Valdes We present a simple method to generate a perturbed parameter ensemble (PPE) of a fully-coupled atmosphere-ocean general circulation model (AOGCM), HadCM3, without requiring flux-adjustment. The aim was to produce an ensemble that samples parametric uncertainty in some key variables and gives a plausible representation of the climate. Six atmospheric parameters, a sea-ice parameter and an ocean parameter were jointly perturbed within a reasonable range to generate an initial group of 200 members. To screen out implausible ensemble members, 20 yr pre-industrial control simulations were run and members whose temperature responses to the parameter perturbations were projected to be outside the range of 13.6 ± 2 °C, i.e. near to the observed pre-industrial global mean, were discarded. Twenty-one members, including the standard unperturbed model, were accepted, covering almost the entire span of the eight parameters, challenging the argument that without flux-adjustment parameter ranges would be unduly restricted. This ensemble was used in 2 experiments; an 800 yr pre-industrial and a 150 yr quadrupled CO 2 simulation. The behaviour of the PPE for the pre-industrial control compared well to ERA-40 reanalysis data and the CMIP3 ensemble for a number of surface and atmospheric column variables with the exception of a few members in the Tropics. However, we find that members of the PPE with low values of the entrainment rate coefficient show very large increases in upper tropospheric and stratospheric water vapour concentrations in response to elevated CO 2 and one member showed an implausible nonlinear climate response, and as such will be excluded from future experiments with this ensemble. The outcome of this study is a PPE of a fully-coupled AOGCM which samples parametric uncertainty and a simple methodology which would be applicable to other GCMs.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-09-13
    Description: GAPPARD: a computationally efficient method of approximating gap-scale disturbance in vegetation models Geoscientific Model Development, 6, 1517-1542, 2013 Author(s): M. Scherstjanoi, J. O. Kaplan, E. Thürig, and H. Lischke Models of vegetation dynamics that are designed for application at spatial scales larger than individual forest gaps suffer from several limitations. Typically, either a population average approximation is used that results in unrealistic tree allometry and forest stand structure, or models have a high computational demand because they need to simulate both a series of age-based cohorts and a number of replicate patches to account for stochastic gap-scale disturbances. The detail required by the latter method increases the number of calculations by two to three orders of magnitude compared to the less realistic population average approach. In an effort to increase the efficiency of dynamic vegetation models without sacrificing realism, we developed a new method for simulating stand-replacing disturbances that is both accurate and faster than approaches that use replicate patches. The GAPPARD (approximating GAP model results with a Probabilistic Approach to account for stand Replacing Disturbances) method works by postprocessing the output of deterministic, undisturbed simulations of a cohort-based vegetation model by deriving the distribution of patch ages at any point in time on the basis of a disturbance probability. With this distribution, the expected value of any output variable can be calculated from the output values of the deterministic undisturbed run at the time corresponding to the patch age. To account for temporal changes in model forcing (e.g., as a result of climate change), GAPPARD performs a series of deterministic simulations and interpolates between the results in the postprocessing step. We integrated the GAPPARD method in the vegetation model LPJ-GUESS, and evaluated it in a series of simulations along an altitudinal transect of an inner-Alpine valley. We obtained results very similar to the output of the original LPJ-GUESS model that uses 100 replicate patches, but simulation time was reduced by approximately the factor 10. Our new method is therefore highly suited for rapidly approximating LPJ-GUESS results, and provides the opportunity for future studies over large spatial domains, allows easier parameterization of tree species, faster identification of areas of interesting simulation results, and comparisons with large-scale datasets and results of other forest models.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2013-09-13
    Description: Climate information based streamflow and rainfall forecasts for Huai River Basin using Hierarchical Bayesian Modeling Hydrology and Earth System Sciences Discussions, 10, 11559-11584, 2013 Author(s): X. Chen, Z. Hao, N. Devineni, and U. Lall A Hierarchal Bayesian model for forecasting regional summer rainfall and streamflow season-ahead using exogenous climate variables for East Central China is presented. The model provides estimates of the posterior forecasted probability distribution for 12 rainfall and 2 streamflow stations considering parameter uncertainty, and cross-site correlation. The model has a multilevel structure with regression coefficients modeled from a common multivariate normal distribution results in partial-pooling of information across multiple stations and better representation of parameter and posterior distribution uncertainty. Covariance structure of the residuals across stations is explicitly modeled. Model performance is tested under leave-10-out cross-validation. Frequentist and Bayesian performance metrics used include Receiver Operating Characteristic, Reduction of Error, Coefficient of Efficiency, Rank Probability Skill Scores, and coverage by posterior credible intervals. The ability of the model to reliably forecast regional summer rainfall and streamflow season-ahead offers potential for developing adaptive water risk management strategies.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2013-09-14
    Description: Sea ice detection with space-based LIDAR The Cryosphere Discussions, 7, 4681-4701, 2013 Author(s): S. Rodier, Y. Hu, and M. Vaughan Monitoring long-term climate change in the Polar Regions relies on accurate, detailed and repeatable measurements of geophysical processes and states. These regions are among the Earth's most vulnerable ecosystems, and measurements there have shown rapid changes in the seasonality and the extent of snow and sea ice coverage. The authors have recently developed a promising new technique that uses lidar surface measurements from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission to infer ocean surface ice-water phase. CALIPSO's 532 nm depolarization ratio measurements of the ocean surface are uniquely capable of providing information about the ever-changing sea surface state within the Polar Regions. With the finer resolution of the CALIPSO footprint (90 m diameter, spaced 335 m apart) and its ability to acquire measurements during both daytime and nighttime orbit segments and in the presence of clouds, the CALIPSO sea ice product provides fine-scale information on mixed phase scenes and can be used to assess/validate the estimates of sea-ice concentration currently provided by passive sensors. This paper describes the fundamentals of the CALIPSO sea-ice detection and classification technique. We present retrieval results from a six-year study, which are compared to existing data sets obtained by satellite-based passive remote sensors.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-09-24
    Description: A spatial bootstrap technique for parameter estimation of rainfall annual maxima distribution Hydrology and Earth System Sciences Discussions, 10, 11755-11794, 2013 Author(s): F. Uboldi, A. N. Sulis, C. Lussana, M. Cislaghi, and M. Russo Estimation of extreme event distributions and depth-duration-frequency (DDF) curves is achieved at any target site by repeated sampling among all available raingauge data in the surrounding area. The estimate is computed over a gridded domain in Northern Italy, using precipitation time series from 1929 to 2011, including data from historical analog stations and from the present-day automatic observational network. The presented local regionalisation naturally overcomes traditional station-point methods, with their demand of long historical series and their sensitivity to very rare events occurring at very few stations, possibly causing unrealistic spatial gradients in DDF relations. At the same time, the presented approach allows for spatial dependence, necessary in a geographical domain such as Lombardy, complex for both its topography and its climatology. The bootstrap technique enables evaluating uncertainty maps for all estimated parameters and for rainfall depths at assigned return periods.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-09-24
    Description: Overview of the first HyMeX Special Observation Period over Italy: observations and model results Hydrology and Earth System Sciences Discussions, 10, 11643-11710, 2013 Author(s): R. Ferretti, E. Pichelli, S. Gentile, I. Maiello, D. Cimini, S. Davolio, M. M. Miglietta, G. Panegrossi, L. Baldini, F. Pasi, F. S. Marzano, A. Zinzi, S. Mariani, M. Casaioli, G. Bartolini, N. Loglisci, A. Montani, C. Marsigli, A. Manzato, A. Pucillo, M. E. Ferrario, V. Colaiuda, and R. Rotunno During the first Hymex campaign (5 September–6 November 2012) referred to as Special Observation Period (SOP-1), dedicated to heavy precipitation events and flash floods in Western Mediterranean, three Italian hydro-meteorological monitoring sites were activated: Liguria-Tuscany, North-Eastern Italy and Central Italy. The extraordinary deployment of advanced instrumentation, including instrumented aircrafts, and the use of several different operational weather forecast models has allowed an unprecedented monitoring and analysis of high impact weather events around the Italian hydro-meteorological sites. This activity has seen the strict collaboration between the Italian scientific and operational communities. In this paper, an overview of the Italian organization during the SOP-1 is provided, and selected Intensive Observation Periods (IOPs) are described. A significant event for each Italian target area is chosen for this analysis: IOP2 (12–13 September 2012) in North-Eastern Italy, IOP13 (15–16 October 2012) in Central Italy and IOP19 (3–5 November 2012) in Liguria and Tuscany. For each IOP the meteorological characteristics, together with special observations and weather forecasts, are analyzed with the aim of highlighting strengths and weaknesses of the forecast modeling systems. Moreover, using one of the three events, the usefulness of different operational chains is highlighted.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-09-24
    Description: Correcting basin-scale snowfall in a mountainous basin using a distributed snowmelt model and remote sensing data Hydrology and Earth System Sciences Discussions, 10, 11711-11753, 2013 Author(s): M. Shrestha, L. Wang, T. Koike, H. Tsutsui, Y. Xue, and Y. Hirabayashi Adequate estimation of the spatial distribution of snowfall is critical in hydrologic modeling. However, this is a well-known problem in estimating basin-scale snowfall, especially in mountainous basins with data scarcity. This study focuses on correction and estimation of this spatial distribution, which considers topographic effects within the basin. A method is proposed that optimizes an altitude-based snowfall correction factor ( C fsnow ). This is done through multi-objective calibration of a spatially distributed, multilayer energy and water balance-based snowmelt model (WEB-DHM-S) with observed discharge and remotely sensed snow cover data from the Moderate Resolution Imaging Spectroradiometer (MODIS). The Shuffled Complex Evolution – University of Arizona automatic search algorithm is used to obtain the optimal value of C fsnow for minimum cumulative error in discharge and snow cover simulations. Discharge error is quantified by Nash–Sutcliffe efficiency and relative volume deviation, and snow cover error was estimated by pixel-by-pixel analysis. The study region is the heavily snow-fed Yagisawa Basin of the Upper Tone River in northeast Japan. First, the system was applied to one snow season (2002–2003), obtaining an optimized C fsnow of 0.0007 m −1 . For validation purposes, the optimized C fsnow was implemented to correct snowfall in 2004, 2002 and 2001. Overall, the system was effective, implying improvements in correlation of simulated vs. observed discharge and snow cover. The 4 yr mean of basin-average snowfall for the corrected spatial snowfall distribution was 1160 mm (780 mm before correction). Execution of sensitivity runs against other model input and parameters indicated that C fsnow could be affected by uncertainty in shortwave radiation and setting of the threshold air temperature parameter. Our approach is suitable to correct snowfall and estimate its distribution in poorly-gauged basins, where elevation dependence of snowfall amount is strong.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-09-25
    Description: Simulating the role of gravel on the dynamics of permafrost on the Qinghai-Tibetan Plateau The Cryosphere Discussions, 7, 4703-4740, 2013 Author(s): S. Yi, J. Chen, Q. Wu, and Y. Ding Gravel (particle size ≥ 2 mm) is common in soil profiles of the Qinghai-Tibetan Plateau (QTP). It has different thermal and hydrological properties than other fine mineral soils (particle size 〈 2 mm), which may have significant impacts on the thermal and hydrological processes of soil. However, few models have considered gravel. In this study, we implemented the thermal and hydraulic properties of gravel into the Dynamic Organic Soil-Terrestrial Ecosystem Model to develop new schemes to simulate the dynamics of permafrost on the QTP. Results showed that: (1) the widely used Farouki thermal scheme always simulated higher thermal conductivity of frozen soils than unfrozen soils with the same soil water content; therefore it tends to overestimate permafrost thickness strongly; (2) there exists a soil moisture threshold, below which the new set of schemes with gravel simulated smaller thermal conductivity of frozen soils than unfrozen soils; (3) soil with gravel has higher hydraulic conductivity and poorer water retention capability; and simulations with gravel were usually drier than those without gravel; and (4) the new schemes simulated faster upward degradation than downward degradation; and the simulated permafrost thicknesses were sensitive to the fraction of gravel, the gravel size, the thickness of soil with gravel, and the subsurface drainage. To reduce the uncertainties in the projection of permafrost degradation on the QTP, more effort should be made to: (1) developing robust relationships between soil thermal and hydraulic properties and gravel characteristics based on laboratory work; and (2) compiling spatial datasets of the vertical distribution of gravel content based on measurements during drilling or the digging of soil pits.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-09-26
    Description: Attribution of hydrologic forecast uncertainty within scalable forecast windows Hydrology and Earth System Sciences Discussions, 10, 11795-11828, 2013 Author(s): L. Yang, F. Tian, Y. Sun, X. Yuan, and H. Hu Hindcasts based on the Extended Streamflow Prediction (ESP) approach are carried out in a typical rainfall-dominated basin in China, aiming to examine the roles of initial condition (IC), future atmospheric forcing (FC) and hydrologic model uncertainty (MU) in the streamflow forecast skill. The combined effects of IC and FC are explored within the framework of a forecast window. By implementing virtual numerical simulations without the consideration of MU, it is found that the dominance of IC could last up to 90 days in dry season, while its impact gives way to FC for lead times exceeding 30 days in the wet season. The combined effects of IC and FC on the forecast skill are further investigated by proposing a dimensionless parameter ( β ) that represents the ratio of the total amount of initial water storage and the incoming rainfall. The forecast skill increases exponentially with β , and varies greatly in different forecast windows. Moreover, the influence of MU on forecast skill is examined by focusing on the uncertainty of model parameters. Two different hydrologic model calibration strategies are carried out. The results indicate that the uncertainty of model parameters exhibits a more significant influence on the forecast skill in the dry season than in the wet season. The ESP approach is more skillful in monthly streamflow forecast during the transition period from wet to dry than otherwise. For the transition period from dry to wet, the low skill of the forecasts could be attributed to the combined effects of IC and FC, but less to the biases in the hydrologic model parameters. For the forecasting in dry season, the usefulness of the ESP approach is heavily dependent on the strategy of the model calibration.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-10-01
    Description: A conceptual model of check dam hydraulics for gully control Hydrology and Earth System Sciences Discussions, 10, 11901-11941, 2013 Author(s): C. Castillo, R. Pérez, and J. A. Gómez There is little information in scientific literature regarding the modifications induced by check dam systems in flow regimes in restored gully reaches, despite it being a crucial issue for the design of conservation measures. Here, we develop a conceptual model to classify flow regimes in straight rectangular channels for initial and dam-filling conditions as well as a method of estimating efficiency in order to provide guidelines for optimal design. The model integrates several previous mathematical approaches for assessing the main processes involved (hydraulic jump HJ, impact flow, gradually varied flows). Its performance was compared with the simulations obtained from IBER, a bi-dimensional hydrodynamic model. The impact of check dam spacing (defined by the geometric factor of influence c ) on efficiency was explored. Eleven main classifications of flow regimes were identified depending on the element and level of influence. The model produced similar results when compared with IBER, but led to higher estimations of HJ and impact lengths. Total influence guaranteed maximum efficiency and HJ control defining the location of the optimal c . Geometric total influence ( c = 1) was a valid criterion for the different stages of the structures in a wide range of situations provided that hydraulic roughness conditions remained high within the gully, e.g. through revegetation. Our total influence criterion involved shorter spacing than that habitually recommended in technical manuals for restoration, but was in line with those values found in spontaneous and stable step-pools systems, which might serve as a reference for man-made interventions.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-10-02
    Description: Senstitivity of water balance components to environmental changes in a mountainous watershed: uncertainty assessment based on models comparison Hydrology and Earth System Sciences Discussions, 10, 11983-12026, 2013 Author(s): E. Morán-Tejeda, J. Zabalza, K. Rahman, A. Gago-Silva, J. I. López-Moreno, S. Vicente-Serrano, A. Lehmann, C. L. Tague, and M. Beniston This paper evaluates the response of stream flow and other components of the water balance to changes in climate and land-use in a Pyrenean watershed. It further provides a measure of uncertainty in water resources forecasts by comparing the performance of two hydrological models: Soil and Water Assessment Tool (SWAT) and Regional Hydro-Ecological Simulation System (RHESSys). Regional Climate Model outputs for the 2021–2050 time-frame, and hypothetical (but plausible) land-use scenarios considering re-vegetation and wildfire processes were used as inputs to the models. Results indicate an overall decrease in river flows when the scenarios are considered, except for the post-fire vegetation scenario, in which stream flows are simulated to increase. However the magnitude of these projections varies between the two models used, as SWAT tends to produce larger hydrological changes under climate change scenarios, and RHESSys shows more sensitivity to changes in land-cover. The final prediction will therefore depend largely on the combination of the land-use and climate scenarios, and on the model utilized.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-10-01
    Description: Ice volume estimates for the Himalaya–Karakoram region: evaluating different methods The Cryosphere Discussions, 7, 4813-4854, 2013 Author(s): H. Frey, H. Machguth, M. Huss, C. Huggel, S. Bajracharya, T. Bolch, A. Kulkarni, A. Linsbauer, N. Salzmann, and M. Stoffel Ice volume estimates are crucial for assessing water reserves stored in glaciers. A variety of different methodologies exist but there is a lack of systematic comparative analysis thereof. Due to its large glacier coverage, such estimates are of particular interest for the Himalayan-Karakoram (HK) region. Here, three volume–area (V–A) relations, a slope-dependent estimation method, and two ice-thickness distribution models are applied to a complete glacier inventory of the HK region. An uncertainty and sensitivity assessment is performed to investigate the influence of the input glacier areas, and model approaches and parameters on the resulting total ice volumes. Results of the two ice-thickness distribution models are validated with local ice-thickness measurements at six glaciers. The resulting ice volumes for the entire HK region range from 2955 km 3 to 6455 km 3 , depending on the approach. Results from the ice thickness distribution models and the slope-dependent thickness estimations agree well with measured local ice thicknesses while V–A relations show stronger deviations. The study provides evidence on the significant effect of the selected method on results and underlines the importance of a careful and critical evaluation. More ice-thickness measurements are needed to improve models and results in the future.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-10-02
    Description: Black carbon concentrations from a Tibetan Plateau ice core spanning 1843–1982: recent increases due to emissions and glacier melt The Cryosphere Discussions, 7, 4855-4880, 2013 Author(s): M. Jenkins, S. Kaspari, S. Kang, B. Grigholm, and P. A. Mayewski Black carbon (BC) deposited on snow and glacier surfaces can reduce albedo and lead to accelerated melt. An ice core recovered from Guoqu glacier on Mt. Geladaindong and analyzed using a Single Particle Soot Photometer provides the first long-term (1843–1982) record of BC concentrations from the Central Tibetan Plateau. The highest concentrations are observed from 1975–1982, which corresponds to a 2.0-fold and 2.4-fold increase in average and median values, respectively, relative to 1843–1940. BC concentrations post-1940 are also elevated relative to the earlier portion of the record. Causes for the higher BC concentrations include increased regional BC emissions and subsequent deposition, and melt induced enrichment of BC, with the melt potentially accelerated due to the presence of BC at the glacier surface. A qualitative comparison of the BC and Fe (used as a dust proxy) records suggests that if changes in the concentrations of absorbing impurities at the glacier surface have influenced recent glacial melt, the melt may be due to the presence of BC rather than dust. Guoqu glacier has received no net ice accumulation since the 1980s, and is a potential example of a glacier where an increase in the equilibrium line altitude is exposing buried high impurity layers. That BC concentrations in the uppermost layers of the Geladaindong ice core are not substantially higher relative to deeper in the ice core suggests that some of the BC that must have been deposited on Guoqu glacier via wet or dry deposition between 1983 and 2005 has been removed from the surface of the glacier, potentially via supraglacial or englacial meltwater.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-10-03
    Description: Hydrologic impact of climate change on Murray Hotham catchment of Western Australia: a projection of rainfall-runoff for future water resources planning Hydrology and Earth System Sciences Discussions, 10, 12027-12076, 2013 Author(s): S. A. Islam, M. A. Bari, and A. H. M. F. Anwar Reduction of rainfall and runoff in recent years across South West Western Australia (SWWA) has drawn attention about climate change impact on water resources and its availability in this region. In this paper, hydrologic impact of climate change on Murray Hotham catchment in SWWA is investigated using multi-model ensemble approach. The Land Use Change Incorporated Catchment (LUCICAT) model was used for hydrologic modelling. Model calibration was performed using (5 km) grid rainfall data from Australian Water Availability Project (AWAP). Downscaled and bias corrected rainfall data from 11 General Circulation Models (GCMs) for Intergovernmental Panel on Climate Change (IPCC) emission scenarios A2 and B1 was used in LUCICAT model to derive rainfall and runoff scenarios for 2046–2065 (mid this century) and 2081–2100 (late this century). The results of climate scenarios were compared with observed past (1961–1980) climate. The mean annual rainfall averaged over the catchment during recent time (1981–2000) was reduced by 2.3% with respect to observed past (1961–1980) and resulting runoff reduction was found 14%. Compared to the past, the mean annual rainfall reductions, averaged over 11 ensembles and over the period for the catchment for A2 scenario are 13.6 and 23.6% for mid and late this century respectively while the corresponding runoff reductions are 36 and 74%. For B1 scenario, the rainfall reductions were 11.9 and 11.6% for mid and late this century and corresponding runoff reductions were 31 and 38%. Spatial distribution of rainfall and runoff changes showed that the rate of changes were higher in high rainfall part compared to the low rainfall part. Temporal distribution of rainfall and runoff indicate that high rainfall in the catchment reduced significantly and further reductions are projected resulting significant runoff reductions. A catchment scenario map has been developed through plotting decadal runoff reduction against corresponding rainfall reduction at four gauging stations for observed and projected period. This could be useful for planning future water resources in the catchment. Projection of rainfall and runoff made based on the GCMs varied significantly for the time periods and emission scenarios. Hence, considerable uncertainty involved in this study though ensemble mean was used to explain the findings.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-10-03
    Description: 3D-VAR multilayer assimilation of X-band SAR data into a detailed snowpack model The Cryosphere Discussions, 7, 4881-4912, 2013 Author(s): X. V. Phan, L. Ferro-Famil, M. Gay, Y. Durand, M. Dumont, S. Morin, S. Allain, G. D'Urso, and A. Girard We introduce a variational data assimilation scheme to assimilate X-band Synthetic Aperture Radar (SAR) data into a snowpack evolution model. The structure properties of a snowpack, such as snow density and grain optical diameter of each layer, are simulated over a period of time by the snow metamorphism model Crocus, fed by the local reanalysis SAFRAN at a French alpine location. These parameters are used as inputs of an Electromagnetic Backscattering Model (EBM) based on Dense Media Radiative Transfer (DMRT) theory, which calculates the simulated total backscattering coefficient. Next, 3D-VAR data assimilation is implemented in order to minimize the discrepancies between model simulations and observations obtained from SAR acquisitions, by modifying the parameters of a multilayer snowpack calculated by Crocus. The algorithm then reinitializes Crocus with the optimized snowpack structure properties, and therefore allows it to continue the simulation of snowpack evolution where adjustments based on remote sensing data has been taken into account. Results obtained using TerraSAR-X acquisitions on Argentière Glacier (Mont-Blanc massif, French Alps) show the high potential of this method for improving snow cover simulation.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-06-08
    Description: Upscaling of evapotranspiration fluxes from instantaneous to daytime scales for thermal remote sensing applications Hydrology and Earth System Sciences Discussions, 10, 7325-7350, 2013 Author(s): C. Cammalleri, M. C. Anderson, and W. P. Kustas Four upscaling methods for estimating daytime evapotranspiration (ET) from single time-of-day snapshots, as commonly retrieved using remote sensing, were compared. These methods are based on the assumption of self-preservation of the ratio between ET and a given reference variable over the daytime hours. The analysis was performed using eddy covariance data collected at 12 AmeriFlux towers, sampling a fairly wide range in climatic and land cover conditions. The choice of energy budget closure method significantly impacted performance using different scaling methodologies. Therefore, a statistical evaluation approach was adopted to better account for the inherent uncertainty in ET fluxes using eddy covariance technique. Overall, this approach suggests that at-surface solar radiation is the most robust reference variable amongst those tested, due to high accuracy of upscaled fluxes and absence of systematic biases. Top-of-atmosphere irradiance was also tested and proved to be reliable under near clear-sky conditions, but tended to overestimate the observed daytime ET during cloudy days. Use of reference ET as a scaling flux did not perform as well as the solar radiation method, but similarly had errors with little seasonal dependency. Finally, the commonly-used evaporative fraction method yielded satisfactory results only in summer months, July and August, and tended to underestimate the observations in the fall/winter seasons from November to January at the flux sites studied.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-06-08
    Description: The physical basis for gas transport through polar firn: a case study at Summit, Greenland The Cryosphere Discussions, 7, 2455-2487, 2013 Author(s): A. C. Adolph and M. R. Albert Compared to other natural porous materials, relatively little is known about the physical nature of polar firn. This intricate network of ice and pore space that comprises the top 60–100 m of the polar ice sheets is the framework that forms the natural archive of past climate information. Despite the many implications for ice core interpretation, direct measurements of physical properties throughout the firn column are limited. Models of gas transport through firn are used to interpret in-situ chemical data which is retrieved to analyze past atmospheric composition. These traditional models treat the firn as a "black box," with gas transport parameters tuned to match gas concentrations with depth to known atmospheric histories. Though this method has been largely successful and provided very useful insights, there are still many questions and uncertainties to be addressed. This work seeks to understand the impact of firn structure on gas transport in firn from a first principles standpoint through direct measurements of permeability, gas diffusivity and microstructure. The relationships between gas transport properties and microstructure will be characterized and compared to existing relationships for general porous media. Direct measurements of gas diffusivity are compared to diffusivities deduced from models based on firn air chemical sampling. Our comparison illuminates the primary importance of including microstructural parameters, beyond just porosity or density, in mass transport modeling, and it provides insights about the nature of gas transport throughout the firn column. Guidance is provided for development of next-generation firn air transport models.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-06-12
    Description: Global isoscapes for δ 18 O and δ 2 H in precipitation: improved prediction using regionalized climatic regression models Hydrology and Earth System Sciences Discussions, 10, 7351-7393, 2013 Author(s): S. Terzer, L. I. Wassenaar, L. J. Araguás-Araguás, and P. K. Aggarwal A Regionalized Climatic Water Isotope Prediction (RCWIP) approach, based on the Global Network for Isotopes in Precipitation (GNIP), was demonstrated for the purposes of predicting point- and large-scale spatiotemporal patterns of the stable isotope compositions of water (δ 2 H, δ 18 O) in precipitation around the world. Unlike earlier global domain and fixed regressor models, RCWIP pre-defined thirty-six climatic cluster domains, and tested all model combinations from an array of climatic and spatial regressor variables to obtain the best predictive approach to each cluster domain, as indicated by RMSE and variogram analysis. Fuzzy membership fractions were thereafter used as the weights to seamlessly amalgamate results of the optimized climatic zone prediction models into a single predictive mapping product, such as global or regional amount-weighted mean annual, mean monthly or growing-season δ 18 O/δ 2 H in precipitation. Comparative tests revealed the RCWIP approach outperformed classical global-fixed regression-interpolation based models more than 67% of the time, and significantly improved upon predictive accuracy and precision. All RCWIP isotope mapping products are available as gridded GeoTIFF files from the IAEA website ( www.iaea.org/water ) and are for use in hydrology, climatology, food authenticity, ecology, and forensics.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-06-13
    Description: Water displacement by sewer infrastructure in the Grote Nete catchment, Belgium, and its hydrological regime effects Hydrology and Earth System Sciences Discussions, 10, 7425-7467, 2013 Author(s): D. Vrebos, T. Vansteenkiste, J. Staes, P. Willems, and P. Meire Urbanization and especially impervious areas, in combination with wastewater treatment infrastructure, can exert several pressures on the hydrological cycle. These pressures were studied for the Grote Nete catchment in Belgium (8.18% impervious area and 3.89% effective impervious area), based on a combination of empirical and model-based approaches. The effective impervious area, combined with the extent of the wastewater collection regions which do not coincide with the natural catchment boundaries, was used as an indicator for the urbanization pressure. Our study revealed changes in the total upstream areas of the subcatchments between −16% and +3%, and in upstream impervious areas between −99% and +64%. These changes lead to important inter-catchment water transfers. Based on simulations with a physically-based and spatially-distributed hydrological catchment model, profound impacts of effective impervious area on infiltration and runoff were found. The model results show that the changes in impervious areas and related water displacements in and between catchments due to the installation of the wastewater treatment infrastructure severely impacted low flows, peak flows and seasonal trends. They moreover show that it is difficult, but of utmost importance, to incorporate these pressures and artificial processes in an accurate way during the development of hydrological models for urbanized catchments.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-06-06
    Description: Solving Richards Equation for snow improves snowpack meltwater runoff estimations The Cryosphere Discussions, 7, 2373-2412, 2013 Author(s): N. Wever, C. Fierz, C. Mitterer, H. Hirashima, and M. Lehning The runoff from the snow cover during spring snow melt or rain-on-snow events is an important factor in the hydrological cycle. In this study, water transport schemes for a 1-dimensional physical based snowpack model are compared to 14 yr of lysimeter measurements at a high alpine site. The schemes include a simple bucket-type approach, an approximation of Richards Equation (RE), and the full RE. The results show that daily sums of runoff are strongly related to a positive energy balance of the snow cover and therefore, all water transport schemes show very similar performance in terms of Nash–Sutcliffe efficiency (NSE) coefficients (around 0.59) and r 2 values (around 0.77). Timing of the arrival of meltwater in spring at the bottom of the snowpack showed differences between the schemes, where especially in the bucket-type and approximated RE approach, meltwater release is slower than in the measurements. Overall, solving RE for the snow cover yields the best agreement between modelled and measured runoff. On sub-daily time scales, the water transport schemes behave very differently. Also here, solving RE provides the highest agreement between modelled and measured runoff in terms of NSE coefficient (0.48), where other water transport schemes loose any predictive power. This appears to be mainly due to bad timing of meltwater release during the day. Accordingly, solving RE for the snow cover improves several aspects of modelling snow cover runoff. The additional computational cost was found to be in the order of a factor of 1.5.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-06-06
    Description: An upper-bound estimate for the accuracy of volume-area scaling The Cryosphere Discussions, 7, 2293-2331, 2013 Author(s): D. Farinotti and M. Huss Volume-area scaling is the most popular method for estimating the ice volume of large glacier samples. Here, a series of resampling experiments based on different sets of synthetic data are presented in order to derive an upper-bound estimate (i.e. a level achieved only with ideal conditions) for the accuracy of its application. We also quantify the maximum accuracy expected when scaling is used for determining the glacier volume change, and area change of a given glacier population. A comprehensive set of measured glacier areas, volumes, area and volume changes is evaluated to investigate the impact of real-world data quality on the so assessed accuracies. For populations larger than a few thousand glaciers, the total ice volume can be recovered within 30% if all measurements available worldwide are used for estimating the scaling coefficients. Assuming no systematic biases in ice volume measurements, their uncertainty is of secondary importance. Knowing the individual areas of a glacier sample for two points in time allows recovering the corresponding ice volume change within 40% for populations larger than a few hundred glaciers, both for steady-state and transient geometries. If ice volume changes can be estimated without bias, glacier area changes derived from volume-area scaling show similar uncertainties as for the volume changes. This paper does not aim at making a final judgement about the suitability of volume-area scaling, but provides the means for assessing the accuracy expected from its application.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-06-06
    Description: Evaluation of the snow regime in dynamic vegetation land surface models using field measurements The Cryosphere Discussions, 7, 2333-2372, 2013 Author(s): E. Kantzas, M. Lomas, S. Quegan, and E. Zakharova An increasing number of studies have demonstrated the significant climatic and ecological changes occurring in the northern latitudes over the past decades. As coupled, earth-system models attempt to describe and simulate the dynamics and complex feedbacks of the Arctic environment, it is important to reduce their uncertainties in short-term predictions by improving the description of both the systems processes and its initial state. This study focuses on snow-related variables and extensively utilizes a historical data set (1966–1996) of field snow measurements acquired across the extend of the Former Soviet Union (FSU) to evaluate a range of simulated snow metrics produced by a variety of land surface models, most of them embedded in IPCC-standard climate models. We reveal model-specific issues in simulating snow dynamics such as magnitude and timings of SWE as well as evolution of snow density. We further employ the field snow measurements alongside novel and model-independent methodologies to extract for the first time (i) a fresh snow density value (57–117 kg m –3 ) for the region and (ii) mean monthly snowpack sublimation estimates across a grassland-dominated western (November–February) [9.2, 6.1, 9.15, 15.25] mm and forested eastern sub-sector (November–March) [1.53, 1.52, 3.05, 3.80, 12.20] mm; we subsequently use the retrieved values to assess relevant model outputs. The discussion session consists of two parts. The first describes a sensitivity study where field data of snow depth and snow density are forced directly into the surface heat exchange formulation of a land surface model to evaluate how inaccuracies in simulating snow metrics affect important modeled variables and carbon fluxes such as soil temperature, thaw depth and soil carbon decomposition. The second part showcases how the field data can be assimilated with ready-available optimization techniques to pinpoint model issues and improve their performance.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-06-07
    Description: Virtual water trade and development in Africa Hydrology and Earth System Sciences Discussions, 10, 7291-7324, 2013 Author(s): M. Konar and K. Caylor A debate has long existed on the relationships between human population, natural resources, and development. Recent research has expanded this debate to include the impacts of trade; specifically, virtual water trade, or the water footprint of traded commodities. We conduct an empirical analysis of the relationships between virtual water trade, population, and development in Africa. We find that increases in virtual water imports do not lead to increases in population growth nor do they diminish human welfare. We establish a new index of virtual water trade openness and show that levels of undernourishment tend to fall with increased values of virtual water trade openness. Countries with small dam storage capacity obtain a higher fraction of their agricultural water requirements from external sources, which may indicate implicit "infrastructure sharing" across nations. Globally, increased crop exports tends to correlate with increased crop water use efficiency, though this relationship does not hold for Africa. However, internal African trade is much more efficient in terms of embodied water resources than any other region in the world. Thus, internal African trade patterns may be compensating for poor internal production systems.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-06-07
    Description: An interdisciplinary swat ecohydrological model to define catchment-scale hydrologic partitioning Hydrology and Earth System Sciences Discussions, 10, 7235-7290, 2013 Author(s): C. L. Shope, G. R. Maharjan, J. Tenhunen, B. Seo, K. Kim, J. Riley, S. Arnhold, T. Koellner, Y. S. Ok, S. Peiffer, B. Kim, J.-H. Park, and B. Huwe Land use and climate change have long been implicated in modifying ecosystem services, such as water quality and water yield, biodiversity, and agricultural production. To account for future effects on ecosystem services, the integration of physical, biological, economic, and social data over several scales must be implemented to assess the effects on natural resource availability and use. Our objective is to assess the capability of the SWAT model to capture short-duration monsoonal rainfall-runoff processes in complex mountainous terrain under rapid, event-driven processes in a monsoonal environment. To accomplish this, we developed a unique quality-control gap-filling algorithm for interpolation of high frequency meteorological data. We used a novel multi-location, multi-optimization calibration technique to improve estimations of catchment-wide hydrologic partitioning. We calibrated the interdisciplinary model to a combination of statistical, hydrologic, and plant growth metrics. In addition, we used multiple locations of different drainage area, aspect, elevation, and geologic substrata distributed throughout the catchment. Results indicate scale-dependent sensitivity of hydrologic partitioning and substantial influence of engineered features. While our model accurately reproduced observed discharge variability, the addition of hydrologic and plant growth objective functions identified the importance of culverts in catchment-wide flow distribution. The results of this study provide a valuable resource to describe landscape controls and their implication on discharge, sediment transport, and nutrient loading. This study also shows the challenges of applying the SWAT model to complex terrain and extreme environments. By incorporating anthropogenic features into modeling scenarios, we can greatly enhance our understanding of the hydroecological impacts on ecosystem services.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-06-08
    Description: On the parallelization of atmospheric inversions of CO 2 surface fluxes within a variational framework Geoscientific Model Development, 6, 783-790, 2013 Author(s): F. Chevallier The variational formulation of Bayes' theorem allows inferring CO 2 sources and sinks from atmospheric concentrations at much higher time–space resolution than the ensemble or analytical approaches. However, it usually exhibits limited scalable parallelism. This limitation hinders global atmospheric inversions operated on decadal time scales and regional ones with kilometric spatial scales because of the computational cost of the underlying transport model that has to be run at each iteration of the variational minimization. Here, we introduce a physical parallelization (PP) of variational atmospheric inversions. In the PP, the inversion still manages a single physically and statistically consistent window, but the transport model is run in parallel overlapping sub-segments in order to massively reduce the computation wall-clock time of the inversion. For global inversions, a simplification of transport modelling is described to connect the output of all segments. We demonstrate the performance of the approach on a global inversion for CO 2 with a 32 yr inversion window (1979–2010) with atmospheric measurements from 81 sites of the NOAA global cooperative air sampling network. In this case, we show that the duration of the inversion is reduced by a seven-fold factor (from months to days), while still processing the three decades consistently and with improved numerical stability.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-06-07
    Description: Spatial debris-cover effect on the maritime glaciers of Mount Gongga, south-eastern Tibetan Plateau The Cryosphere Discussions, 7, 2413-2453, 2013 Author(s): Y. Zhang, Y. Hirabayashi, K. Fujita, S. Liu, and Q. Liu The Tibetan Plateau and surroundings contain a large number of debris-covered glaciers, on which debris cover affects glacier response to climate change by altering ice melting rates and spatial patterns of mass loss. Insufficient spatial distribution of debris thickness data makes it difficult to analyze regional debris-cover effects. Mount Gongga glaciers, maritime glaciers in the south-eastern Tibetan Plateau, are characterized by a substantial reduction in glacier length and ice mass in recent decades. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)-derived thermal property of the debris layer reveals that 68% of the glaciers have extensive mantles of supraglacial debris in their ablation zones, in which the proportion of debris cover to total glacier area varies from 1.74% to 53.0%. Using a surface energy-mass balance model accounting for the debris-cover effect applied at a regional scale, we find that although the presence of supraglacial debris has a significant insulating effect on heavily debris-covered glaciers, it accelerates ice melting on ~ 10.2% of the total ablation area and produces rapid wastage of ~ 25% of the debris-covered glaciers, resulting in the similar mass losses between debris-covered and debris-free glaciers. Widespread debris cover also facilitates the development of active terminus regions. Regional differences in the debris-cover effect are apparent, highlighting the importance of debris cover for understanding glacier status and hydrology in both the Tibetan Plateau and other mountain ranges around the world.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-06-11
    Description: Decadal changes from a multi-temporal glacier inventory of Svalbard The Cryosphere Discussions, 7, 2489-2532, 2013 Author(s): C. Nuth, J. Kohler, M. König, A. von Deschwanden, J. O. Hagen, A. Kääb, G. Moholdt, and R. Pettersson We present a multi-temporal digital inventory of Svalbard glaciers with the most recent from the late 2000s containing 33 775 km 2 of glaciers, or 57% of the total land area of the archipelago. At present, 68% of the glaciated area of Svalbard drains through tidewater glaciers that have a summed terminus width of ~ 740 km. The glaciated area over the entire archipelago has decreased by an average of 80 km 2 a −1 over the past ~ 30 yr, representing a reduction of 7%. For a sample of ~ 400 glaciers (10 000 km 2 ) in the south and west of Spitsbergen, three digital inventories are available from 1930/60s, 1990 and 2007 from which we calculate average changes during 2 epochs. In the more recent epoch, the terminus retreat was larger than in the earlier epoch while area shrinkage was smaller. The contrasting pattern may be explained by the decreased lateral wastage of the glacier tongues. Temporal retreat rates for individual glaciers show a mix of accelerating and decelerating trends, reflecting the large spatial variability of glacier types and climatic/dynamic response times in Svalbard. Last, retreat rates estimated by dividing glacier area changes by the tongue width are larger than centerline retreat due to a more encompassing frontal change estimate with inclusion of lateral area loss.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-04-10
    Description: Inclusion of ash and SO 2 emissions from volcanic eruptions in WRF-Chem: development and some applications Geoscientific Model Development, 6, 457-468, 2013 Author(s): M. Stuefer, S. R. Freitas, G. Grell, P. Webley, S. Peckham, S. A. McKeen, and S. D. Egan We describe a new functionality within the Weather Research and Forecasting (WRF) model with coupled Chemistry (WRF-Chem) that allows simulating emission, transport, dispersion, transformation and sedimentation of pollutants released during volcanic activities. Emissions from both an explosive eruption case and a relatively calm degassing situation are considered using the most recent volcanic emission databases. A preprocessor tool provides emission fields and additional information needed to establish the initial three-dimensional cloud umbrella/vertical distribution within the transport model grid, as well as the timing and duration of an eruption. From this source condition, the transport, dispersion and sedimentation of the ash cloud can be realistically simulated by WRF-Chem using its own dynamics and physical parameterization as well as data assimilation. Examples of model applications include a comparison of tephra fall deposits from the 1989 eruption of Mount Redoubt (Alaska) and the dispersion of ash from the 2010 Eyjafjallajökull eruption in Iceland. Both model applications show good coincidence between WRF-Chem and observations.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-04-06
    Description: Technical note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models Hydrology and Earth System Sciences Discussions, 10, 4275-4299, 2013 Author(s): J. D. Herman, J. B. Kollat, P. M. Reed, and T. Wagener The increase in spatially distributed hydrologic modeling warrants a corresponding increase in diagnostic methods capable of analyzing complex models with large numbers of parameters. Sobol ' sensitivity analysis has proven to be a valuable tool for diagnostic analyses of hydrologic models. However, for many spatially distributed models, the Sobol ' method requires a prohibitive number of model evaluations to reliably decompose output variance across the full set of parameters. We investigate the potential of the method of Morris, a screening-based sensitivity approach, to provide results sufficiently similar to those of the Sobol ' method at a greatly reduced computational expense. The methods are benchmarked on the Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM) model over a six-month period in the Blue River Watershed, Oklahoma, USA. The Sobol ' method required over six million model evaluations to ensure reliable sensitivity indices, corresponding to more than 30 000 computing hours and roughly 180 gigabytes of storage space. We find that the method of Morris is able to correctly identify sensitive and insensitive parameters with 300 times fewer model evaluations, requiring only 100 computing hours and 1 gigabyte of storage space. Method of Morris proves to be a promising diagnostic approach for global sensitivity analysis of highly parameterized, spatially distributed hydrologic models.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-04-11
    Description: PORT, a CESM tool for the diagnosis of radiative forcing Geoscientific Model Development, 6, 469-476, 2013 Author(s): A. J. Conley, J.-F. Lamarque, F. Vitt, W. D. Collins, and J. Kiehl The Parallel Offline Radiative Transfer (PORT) model is a stand-alone tool, driven by model-generated datasets, that can be used for any radiation calculation that the underlying radiative transfer schemes can perform, such as diagnosing radiative forcing. In its present distribution, PORT isolates the radiation code from the Community Atmosphere Model (CAM4) in the Community Earth System Model (CESM1). The current configuration focuses on CAM4 radiation with the constituents as represented in present-day conditions in CESM1, along with their optical properties. PORT includes an implementation of stratospheric temperature adjustment under the assumption of fixed dynamical heating, which is necessary to compute radiative forcing in addition to the more straightforward instantaneous radiative forcing. PORT can be extended to use radiative constituent distributions from other models or model simulations. Ultimately, PORT can be used with various radiative transfer models. As illustrations of the use of PORT, we perform the computation of radiative forcing from doubling of carbon dioxide, from the change of tropospheric ozone concentration from the year 1850 to 2000, and from present-day aerosols. The radiative forcing from tropospheric ozone (with respect to 1850) generated by a collection of model simulations under the Atmospheric Chemistry and Climate Model Intercomparison Project is found to be 0.34 (with an intermodel standard deviation of 0.07) W m −2 . Present-day aerosol direct forcing (relative to no aerosols) is found to be −1.3 W m −2 .
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-04-04
    Description: The effect of black carbon on reflectance of snow in the accumulation area of glaciers in the Baspa basin, Himachal Pradesh, India The Cryosphere Discussions, 7, 1359-1382, 2013 Author(s): A. V. Kulkarni, G. Vinay Kumar, H. S. Negi, J. Srinivasan, and S. K. Satheesh Himalayan glaciers are being extensively debated in scientific and public forums, as changes in their distribution can significantly affect the availability of water in many rivers originating in the region. The distribution of glaciers can be influenced by mass balance, and most of the glaciers located in the Pir Panjal and Greater Himalayan mountain ranges are losing mass at the rate of almost a meter per year. The Equilibrium Line Altitude (ELA) has also shifted upward by 400 m in the last two decades. This upward migration of ELA and the loss in mass could have been influenced by changes in temperature, precipitation and by the deposition of black carbon in the accumulation area of glaciers. The deposition of black carbon can reduce the albedo of snow in the accumulation area leading to faster melting of snow and causing more negative mass balance. In this investigation, a change in reflectance in the accumulation area of the Baspa basin is analysed for the year 2009, as the region has experienced extensive forest fires along with northern Indian biomass burning. The investigation has shown that: (1) The number of forest fires in the summer of 2009 was substantially higher than in any other year between 2001 and 2010; (2) the drop in reflectance in the visible region from April to May in the accumulation area was significantly higher in the year 2009 than in any other year from 2000 to 2012; (3) the temperature of the region was substantially lower than the freezing point during the active fire period of 2009, indicating the small influence of liquid water and grain size; (4) the drop in reflectance was observed only in the visible region, indicating role of contamination; (5) in the visible region, a mean drop in reflectance of 21± 5% was observed during the active fire period in the accumulation area. At some places, the drop was as high as 50 ± 5%. This can only be explained by the deposition of black carbon. The study suggests that a change in snow albedo in the accumulation area due to the deposition of black carbon from anthropogenic and natural causes can influence the mass balance of the glaciers in the Baspa basin, Himachal Pradesh, India.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-04-10
    Description: Socio-hydrology: conceptualising human-flood interactions Hydrology and Earth System Sciences Discussions, 10, 4515-4536, 2013 Author(s): G. Di Baldassarre, A. Viglione, G. Carr, L. Kuil, J. L. Salinas, and G. Blöschl Over history, humankind has tended to settle near streams because of the role of rivers as transportation corridors and the fertility of riparian areas. However, human settlements in floodplains have been threatened by the risk of flooding. Possible responses have been to resettle away and/or modify the river system by building flood control structures. This has led to a complex web of interactions and feedback mechanisms between hydrological and social processes in settled floodplains. This paper is an attempt to conceptualise these interplays for hypothetical human-flood systems. We develop a simple, dynamic model to represent the interactions and feedback loops between hydrological and social processes. The model is then used to explore the dynamics of the human-flood system and the effect of changing individual characteristics, including external forcing such as technological development. The results show that the conceptual model is able to reproduce reciprocal effects between floods and people as well as the emergence of typical patterns. For instance, when levees are built or raised to protect floodplain areas, their presence not only reduces the frequency of flooding, but also exacerbates high water levels. Then, because of this exacerbation, higher flood protection levels are required by the society. As a result, more and more flooding events are avoided, but rare and catastrophic events take place.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-04-11
    Description: Integration of remote sensing, RUSLE and GIS to model potential soil loss and sediment yield (SY) Hydrology and Earth System Sciences Discussions, 10, 4567-4596, 2013 Author(s): H. Kamaludin, T. Lihan, Z. Ali Rahman, M. A. Mustapha, W. M. R. Idris, and S. A. Rahim Land use activities within a basin serve as one of the contributing factors which cause deterioration of river water quality through its potential effect on erosion. Sediment yield in the form of suspended solid in the river water body which is transported to the coastal area occurs as a sign of lowering of the water quality. Hence, the aim of this study was to determine potential soil loss using the Revised Universal Soil Loss Equation (RUSLE) model and the sediment yield, in the Geographical Information Systems (GIS) environment within selected sub-catchments of Pahang River Basin. RUSLE was used to estimate potential soil losses and sediment yield by utilizing information on rainfall erosivity ( R ) using interpolation of rainfall data, soil erodibility ( K ) using field measurement and soil map, vegetation cover ( C ) using satellite images, topography (LS) using DEM and conservation practices ( P ) using satellite images. The results indicated that the rate of potential soil loss in these sub-catchments ranged from very low to extremely high. The area covered by very low to low potential soil loss was about 99%, whereas moderate to extremely high soil loss potential covered only about 1% of the study area. Sediment yield represented only 1% of the potential soil loss. The sediment yield (SY) value in Pahang River turned out to be higher closer to the river mouth because of the topographic character, climate, vegetation type and density, and land use within the drainage basin.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-04-11
    Description: Probability distributions for explaining hydrological losses in South Australian catchments Hydrology and Earth System Sciences Discussions, 10, 4597-4626, 2013 Author(s): S. H. P. W. Gamage, G. A. Hewa, and S. Beecham The wide variability of hydrological losses in catchments is due to multiple variables that affect the rainfall-runoff process. Accurate estimation of hydrological losses is required for making vital decisions in design applications that are based on design rainfall models and rainfall-runoff models. Using representative single values of losses, despite their wide variability, is common practice, especially in Australian studies. This practice leads to issues such as over or under estimation of design floods. Probability distributions can be used as a better representation of losses. In particular, using joint probability approaches (JPA), probability distributions can be incorporated into hydrological loss parameters in design models. However, lack of understanding of loss distributions limits the benefit of using JPA. The aim of this paper is to identify a probability distribution function that can successfully describe hydrological losses in South Australian (SA) catchments. This paper describes suitable parametric and non-parametric distributions that can successfully describe observed loss data. The goodness-of-fit of the fitted distributions and quantification of the errors associated with quantile estimation are also discussed a two-parameter Gamma distribution was identified as one that successfully described initial loss (IL) data of the selected catchments. Also, a non-parametric standardised distribution of losses that describes both IL and continuing loss (CL) data were identified. The results obtained for the non-parametric methods were compared with similar studies carried out in other parts of Australia and a remarkable degree of consistency was observed. The results will be helpful in improving design flood applications.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-04-06
    Description: Technical Note: Using wavelet analyses on water depth time series to detect glacial influence in high-mountain hydrosystems Hydrology and Earth System Sciences Discussions, 10, 4369-4395, 2013 Author(s): S. Cauvy-Fraunié, T. Condom, A. Rabatel, M. Villacis, D. Jacobsen, and O. Dangles Worldwide, the rapid shrinking of glaciers in response to ongoing climate change is currently modifying the glacial meltwater contribution to hydrosystems in glacierized catchments. Assessing the contribution of glacier run-off to stream discharge is therefore of critical importance to evaluate potential impact of glacier retreat on water quality and aquatic biota. This task has challenged both glacier hydrologists and ecologists over the last 20 yr due to both structural and functional complexity of the glacier-stream system interface. Here we propose a new methodological approach based on wavelet analyses on water depth time series to determine the glacial influence in glacierized catchments. We performed water depth measurement using water pressure loggers over ten months in 15 stream sites in two glacier-fed catchments in the Ecuadorian Andes (〉 4000 m). We determined the global wavelet spectrum of each time series and defined the Wavelet Glacier Signal (WGS) as the ratio between the global wavelet power spectrum value at a 24 h-scale and its corresponding significance value. To test the relevance of the WGS we compared it with the percentage of the glacier cover in the catchments, a metric of glacier influence often used in the literature. We then tested whether one month data could be sufficient to reliably determine the glacial influence. As expected we found that the WGS of glacier-fed streams decreased downstream with the increasing of non-glacial tributaries. We also found that the WGS and the percentage of the glacier cover in the catchment were significantly positively correlated and that one month data was sufficient to identify and compare the glacial influence between two sites, provided that the water level time series were acquired over the same period. Furthermore, we found that our method permits to detect glacial signal in supposedly non-glacial sites, thereby evidencing glacial meltwater infiltrations. While we specifically focused on the tropical Andes in this paper, our approach to determine glacier influence would be applicable to temperate and arctic glacierized catchments. The WGS therefore appears as a powerful and cost effective tool to better understand the hydrological links between glaciers and hydrosystems and assess the consequences of rapid glacier melting.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-04-06
    Description: Spatio-temporal heterogeneity of riparian soil morphology in a restored floodplain Hydrology and Earth System Sciences Discussions, 10, 4337-4367, 2013 Author(s): B. Fournier, C. Guenat, G. Bullinger-Weber, and E. A. D. Mitchell Floodplains have been intensively altered in industrialized countries, but are now increasingly being restored and it is therefore important to assess the effect of these restoration projects on the aquatic and terrestrial components of ecosystems. Soils are a functionally crucial component of terrestrial ecosystems but are generally overlooked in floodplain restoration assessment. We studied the spatio-temporal heterogeneity of soil morphology in a restored (riverbed widening) river reach along River Thur (Switzerland) using three criteria (soil diversity, dynamism and typicality) and their associated indicators. We hypothesized that these criteria would correctly discriminate the post-restoration changes in soil morphology within the study site, and that these changes correspond to patterns of vascular plant diversity. Soil diversity and dynamism increased five years after the restoration, but typical soils of braided rivers were still missing. Soil typicality and dynamism correlated to vegetation changes. These results suggest a limited success of the project in agreement with evaluations carried out at the same site using other, more resource demanding methods (e.g. soil fauna, fish, ecosystem functioning). Soil morphology provides structural and functional information on floodplain ecosystems and allows predicting broad changes in plant diversity. The spatio-temporal heterogeneity of soil morphology represents a cost-efficient ecological indicator that could easily be integrated into rapid assessment protocols of floodplain and river restoration projects.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-04-06
    Description: Space-time kriging extension of precipitation variability at 12 km spacing from tree-ring chronologies and its implications for drought analysis Hydrology and Earth System Sciences Discussions, 10, 4301-4335, 2013 Author(s): F. Biondi Understanding and preparing for future hydroclimatic variability greatly benefits from long (i.e., multi-century) records at seasonal to annual time steps that have been gridded at km-scale spatial intervals over a geographic region. Kriging is a geostatistical technique commonly used for optimal interpolation of environmental data, and space-time geostatistical models can improve kriging estimates when long temporal sequences of observations exist at relatively few points on the landscape. Here I present how a network of 22 tree-ring chronologies from single-leaf pinyon ( Pinus monophylla ) in the central Great Basin of North America was used to extend hydroclimatic records both temporally and spatially. First, the Line of Organic Correlation (LOC) method was used to reconstruct October–May total precipitation anomalies at each tree-ring site, as these ecotonal environments at the lower forest border are typically moisture limited. Individual site reconstructions were then combined using a hierarchical model of spatio-temporal kriging that produced annual anomaly maps on a 12 × 12 km grid during the period in common among all chronologies (1650–1976). Hydro-climatic episodes were numerically identified and modeled using their duration, magnitude, and peak. Spatial patterns were more variable during wet years than during dry years, and the evolution of drought episodes over space and time could be visualized and quantified. The most remarkable episode in the entire reconstruction was the early 1900s pluvial, followed by the late 1800s drought. The 1930s "Dust Bowl" drought was among the top ten hydroclimatic episodes in the past few centuries. These results directly address the needs of water and natural resource managers with respect to planning for "worst case" scenarios of drought duration and magnitude at the watershed level. For instance, it is possible to analyze which geographical areas are more likely to be impacted by severe and sustained droughts at annual or multiannual timescales and at spatial resolutions commonly used by regional climate models.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-04-03
    Description: Optimising predictor domains for spatially coherent precipitation downscaling Hydrology and Earth System Sciences Discussions, 10, 4015-4061, 2013 Author(s): S. Radanovics, J.-P. Vidal, E. Sauquet, A. Ben Daoud, and G. Bontron Statistical downscaling is widely used to overcome the scale gap between predictors from Numerical Weather Prediction (NWP) models or General Circulation Models (GCMs) and predictands like local precipitation, required for example for medium-term operational forecasts or climate change impact studies. The predictors are considered over a given spatial domain which is rarely optimised with respect to the target predictand location. In this study the geopotential predictor domains used by an analogue downscaling method are optimised for 608 target zones covering France. An extended version of the growing rectangular domain algorithm provides an ensemble of five near-optimum domains for each target zone. All five near-optimum domains are consistently equally skillful based on the Continuous Rank Probability Score. Relevance maps calculated for selected target zones first reveal high skill geopotential regions with specific shapes for locations in south-eastern France compared to the rest of the country. In all cases, the optimised domains tend to include the most relevant area on the relevance maps. The domain centers of the optimised domains are mainly distributed following the geographical location of the target location, but there are apparent differences between the windward and the lee side of mountain ridges. Moreover, domains for target zones located in south-eastern France are centered more east and south than the ones for target locations on the same longitude. The size of the optimised domains tends to be larger in the southeastern part of the country, while domains with a very small meridional extent can be found in a east-west band around 47° N. Sensitivity tests on the archive length for the analogue method show a general robustness except for zones with high interannual variability like in the Cévennes area. Moreover, results appear to be rather unsensitive to the starting point of the optimisation algorithm except for zones located in the transition area north of the zones having optimized domains with a small meridional extent. This study paves the way for defining regions with homogeneous geopotential predictor domains for precipitation downscaling over France.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-04-03
    Description: Opportunities and challenges for the use of scintillometer-based catchment-averaged evapotranspiration estimates as model forcing Hydrology and Earth System Sciences Discussions, 10, 3973-4013, 2013 Author(s): B. Samain and V. R. N. Pauwels To date, lumped rainfall-runoff models rely on rough estimates of catchment-averaged potential evapotranspiration (ET p ) rates as meteorological forcing. A model parameter converts this ET p input into actual evapotranspiration (ET act ) estimates. This paper examines the potential use of scintillometer-based ET act rates for rainfall-runoff modeling. It has been found that the reservoir-structure of the rainfall-runoff model functions as a low-pass filter for the ET p input. If the long-term volume of the ET p used in the model simulations is consistent with the data set used for calibration, a good match of the seasonal pattern, using temporally constant ET p data, is sufficient to obtain adequate discharge simulations. However, these results are then obtained with strongly erroneous evapotranspiration estimates. A better match of the diurnal cycle does not lead to better model results. Replacing the ET p inputs by scintillometer-based ET act estimates does not lead to better model predictions. Small underestimations of ET act under stable conditions, which occur at night and during the Winter, and which accumulate to significant amounts, are the cause of this problem. Consistent with other studies, the scintillometer-based ET act estimates can be considered reliable and realistic under unstable conditions. These values can thus be used as forcing for rainfall-runoff models.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-04-04
    Description: Temporal stability of soil moisture patterns measured by proximal ground-penetrating radar Hydrology and Earth System Sciences Discussions, 10, 4063-4097, 2013 Author(s): J. Minet, N. E. C. Verhoest, S. Lambot, and M. Vanclooster We analyzed the temporal stability of soil moisture patterns acquired using a proximal ground-penetrating radar (GPR) in a 2.5 ha agricultural field at five different dates over three weeks. The GPR system was mounted on a mobile platform, allowing for real-time mapping of soil moisture with a high spatial resolution (2–5 m). The spatio-temporal soil moisture patterns were in accordance with the meteorological data and with soil moisture measurements from soil core sampling. Time-stable areas showing the field-average moisture could be revealed by two methods: (1) by the computation of temporal stability indicators based on relative differences of soil moisture to the field-average and (2) by the spatial intersection of the areas showing the field-average. Locations where the mean relative difference was below 0.02 m 3 m −3 extended up to 10% of the field area whereas the intersection of areas showing the field-average within a tolerance of 0.02 m 3 m −3 covered 5% of the field area. Compared to most of the previous studies about temporal stability of soil moisture, time-stable areas and their spatial patterns could be revealed instead of single point locations, owing to the advanced GPR method for real-time mapping. It is believed that determining spatially coherent time-stable areas is more informative rather than determining time-stable points. Other acquisitions over larger time periods would be necessary to assert the robustness of the time-stable areas.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-04-10
    Description: Supercooled interfacial water in fine grained soils probed by dielectric spectroscopy The Cryosphere Discussions, 7, 1441-1493, 2013 Author(s): A. Lorek and N. Wagner Water as thermodynamic state parameter affects nearly all physical, chemical and biological processes on the earth. Recent Mars observations as well as laboratory investigations suggest that water is also a key factor of current physical and chemical processes on the martian surface, e.g. rheological phenomena. Therefore it is of particular interest to get information about the liquid like state of water on martian analog soils in the temperature range below 0 °C. In this context, a parallel plate capacitor has been developed to obtain isothermal dielectric spectra of fine grained soils in the frequency range from 10 Hz to 1.1 MHz at martian like temperatures down to −70 °C. Two martian analogue soils have been investigated: a Ca-Bentonite (specific surface of 237 m 2 g −1 , up to 9.4% w/w gravimetric water content) and JSC Mars 1, a volcanic ash (specific surface of 146 m 2 g −1 , up to 7.4% w/w ). Three soil-specific relaxation processes are observed in the investigated frequency-temperature range: two weak high frequency processes (bound or hydrated water as well as ice) and a strong low frequency process due to counter ion relaxation and the Maxwell–Wagner effect. To characterize the dielectric relaxation behavior, a generalized fractional dielectric relaxation model is applied assuming three active relaxation processes with relaxation time of the i th process according to an Eyring equation. The real part of effective complex soil permittivity at 350 kHz was used to determine ice and liquid like water content by means of the Birchak or CRIM equation. There are evidence that Bentonite down to −70 °C has a liquid like water content of 1.17 monolayers and JSC Mars 1 a liquid like water content of 1.96 mono layers.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-04-11
    Description: Impacts of tropical cyclones on hydrochemistry of a subtropical forest Hydrology and Earth System Sciences Discussions, 10, 4537-4566, 2013 Author(s): C. T. Chang, S. P. Hamburg, J. L. Hwong, N. H. Lin, M. L. Hsueh, M. C. Chen, and T. C. Lin Tropical cyclones (typhoons/hurricanes) have major impacts on the biogeochemistry of forest ecosystems, but the stochastic nature and the long intervals between storms means that there are limited data on their effects. We characterized the impacts of 14 typhoons over six years on hydrochemistry of a subtropical forest plantation in Taiwan, a region experiencing frequent typhoons. Typhoons contributed 1/3 of annual rainfall on average, but ranged from 4% to 55%. The stochastic nature of annual typhoon related precipitation poses a challenge with respect to managing the impacts of these extreme events. This challenge is exacerbated by the fact that typhoon-related rainfall is not significantly correlated with wind velocity, the current focus of weather forecasts. Thus little advance warning is provided for the hydrological impacts of these storms. The typhoons we studied contributed approximately one third of the annual input and output of most nutrients (except nitrogen) during an average 9.5d yr −1 period, resulting in nutrient input/output rates an order of magnitude greater than during non-typhoon period. Nitrate output balanced input during the non-typhoon period, but during the typhoon period an average of 10 kg ha −1 yr −1 nitrate was lost. Streamwater chemistry exhibited similarly high variability during typhoon and non-typhoon periods and returned to pre-typhoon levels one to three weeks following each typhoon. The streamwater chemistry appears to be very resilient in response to typhoons, resulting in minimal loss of nutrients.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-09-10
    Description: Downscaling a global climate model to simulate climate change over the US and the implication on regional and urban air quality Geoscientific Model Development, 6, 1429-1445, 2013 Author(s): M. Trail, A. P. Tsimpidi, P. Liu, K. Tsigaridis, Y. Hu, A. Nenes, and A. G. Russell Climate change can exacerbate future regional air pollution events by making conditions more favorable to form high levels of ozone. In this study, we use spectral nudging with the Weather Research and Forecasting (WRF) model to downscale NASA earth system GISS modelE2 results during the years 2006 to 2010 and 2048 to 2052 over the contiguous United States in order to compare the resulting meteorological fields from the air quality perspective during the four seasons of five-year historic and future climatological periods. GISS results are used as initial and boundary conditions by the WRF regional climate model (RCM) to produce hourly meteorological fields. The downscaling technique and choice of physics parameterizations used are evaluated by comparing them with in situ observations. This study investigates changes of similar regional climate conditions down to a 12 km by 12 km resolution, as well as the effect of evolving climate conditions on the air quality at major US cities. The high-resolution simulations produce somewhat different results than the coarse-resolution simulations in some regions. Also, through the analysis of the meteorological variables that most strongly influence air quality, we find consistent changes in regional climate that would enhance ozone levels in four regions of the US during fall (western US, Texas, northeastern, and southeastern US), one region during summer (Texas), and one region where changes potentially would lead to better air quality during spring (Northeast). Changes in regional climate that would enhance ozone levels are increased temperatures and stagnation along with decreased precipitation and ventilation. We also find that daily peak temperatures tend to increase in most major cities in the US, which would increase the risk of health problems associated with heat stress. Future work will address a more comprehensive assessment of emissions and chemistry involved in the formation and removal of air pollutants.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-09-10
    Description: The SOCOL version 3.0 chemistry–climate model: description, evaluation, and implications from an advanced transport algorithm Geoscientific Model Development, 6, 1407-1427, 2013 Author(s): A. Stenke, M. Schraner, E. Rozanov, T. Egorova, B. Luo, and T. Peter We present the third generation of the coupled chemistry–climate model (CCM) SOCOL (modeling tools for studies of SOlar Climate Ozone Links). The most notable modifications compared to the previous model version are (1) the dynamical core has been updated with the fifth generation of the middle-atmosphere general circulation model MA-ECHAM (European Centre/HAMburg climate model), and (2) the advection of the chemical species is now calculated by a mass-conserving and shape-preserving flux-form transport scheme instead of the previously used hybrid advection scheme. The whole chemistry code has been rewritten according to the ECHAM5 infrastructure and transferred to Fortran95. In contrast to its predecessors, SOCOLvs3 is now fully parallelized. The performance of the new SOCOL version is evaluated on the basis of transient model simulations (1975–2004) with different horizontal (T31 and T42) resolutions, following the approach of the CCMVal-1 model validation activity. The advanced advection scheme significantly reduces the artificial loss and accumulation of tracer mass in regions with strong gradients that was observed in previous model versions. Compared to its predecessors, SOCOLvs3 generally shows more realistic distributions of chemical trace species, especially of total inorganic chlorine, in terms of the mean state, but also of the annual and interannual variability. Advancements with respect to model dynamics are for example a better representation of the stratospheric mean state in spring, especially in the Southern Hemisphere, and a slowdown of the upward propagation in the tropical lower stratosphere. Despite a large number of improvements model deficiencies still remain. Examples include a too-fast vertical ascent and/or horizontal mixing in the tropical stratosphere, the cold temperature bias in the lowermost polar stratosphere, and the overestimation of polar total ozone loss during Antarctic springtime.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-09-11
    Description: Stable water isotopes in the coupled atmosphere–land surface model ECHAM5-JSBACH Geoscientific Model Development, 6, 1463-1480, 2013 Author(s): B. Haese, M. Werner, and G. Lohmann In this study we present first results of a new model development, ECHAM5-JSBACH-wiso, where we have incorporated the stable water isotopes H 2 18 O and HDO as tracers in the hydrological cycle of the coupled atmosphere–land surface model ECHAM5-JSBACH. The ECHAM5-JSBACH-wiso model was run under present-day climate conditions at two different resolutions (T31L19, T63L31). A comparison between ECHAM5-JSBACH-wiso and ECHAM5-wiso shows that the coupling has a strong impact on the simulated temperature and soil wetness. Caused by these changes of temperature and the hydrological cycle, the δ 18 O in precipitation also shows variations from −4‰ up to 4‰. One of the strongest anomalies is shown over northeast Asia where, due to an increase of temperature, the δ 18 O in precipitation increases as well. In order to analyze the sensitivity of the fractionation processes over land, we compare a set of simulations with various implementations of these processes over the land surface. The simulations allow us to distinguish between no fractionation, fractionation included in the evaporation flux (from bare soil) and also fractionation included in both evaporation and transpiration (from water transport through plants) fluxes. While the isotopic composition of the soil water may change for δ 18 O by up to +8&permil:, the simulated δ 18 O in precipitation shows only slight differences on the order of ±1‰. The simulated isotopic composition of precipitation fits well with the available observations from the GNIP (Global Network of Isotopes in Precipitation) database.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-09-13
    Description: δ 18 O water isotope in the i LOVECLIM model (version 1.0) – Part 2: Evaluation of model results against observed δ 18 O in water samples Geoscientific Model Development, 6, 1493-1504, 2013 Author(s): D. M. Roche and T. Caley The H 2 18 O stable isotope was previously introduced in the three coupled components of the earth system model i LOVECLIM: atmosphere, ocean and vegetation. The results of a long (5000 yr) pre-industrial equilibrium simulation are presented and evaluated against measurement of H 2 18 O abundance in present-day water for the atmospheric and oceanic components. For the atmosphere, it is found that the model reproduces the observed spatial distribution and relationships to climate variables with some merit, though limitations following our approach are highlighted. Indeed, we obtain the main gradients with a robust representation of the Rayleigh distillation but caveats appear in Antarctica and around the Mediterranean region due to model limitation. For the oceanic component, the agreement between the modelled and observed distribution of water δ 18 O is found to be very good. Mean ocean surface latitudinal gradients are faithfully reproduced as well as the mark of the main intermediate and deep water masses. This opens large prospects for the applications in palaeoclimatic context.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-09-13
    Description: Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics Hydrology and Earth System Sciences Discussions, 10, 11519-11557, 2013 Author(s): A. D. Jayakaran, T. M. Williams, H. Ssegane, D. M. Amatya, B. Song, and C. C. Trettin Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal watersheds in South Carolina in terms of stream flow and vegetation dynamics, both before and after the hurricane's passage in 1989. The study objectives were to quantify the magnitude and timing of changes including a reversal in relative streamflow-difference between two paired watersheds, and to examine the selective impacts of a hurricane on the vegetative composition of the forest. We related these impacts to their potential contribution to change watershed hydrology through altered evapotranspiration processes. Using over thirty years of monthly rainfall and streamflow data we showed that there was a significant transformation in the hydrologic character of the two watersheds – a transformation that occurred soon after the hurricane's passage. We linked the change in the rainfall-runoff relationship to a catastrophic shift in forest vegetation due to selective hurricane damage. While both watersheds were located in the path of the hurricane, extant forest structure varied between the two watersheds as a function of experimental forest management techniques on the treatment watershed. We showed that the primary damage was to older pines, and to some extent larger hardwood trees. We believe that lowered vegetative water use impacted both watersheds with increased outflows on both watersheds due to loss of trees following hurricane impact. However, one watershed was able to recover to pre hurricane levels of canopy transpiration at a quicker rate due to the greater abundance of pine seedlings and saplings in that watershed.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2013-09-14
    Description: The Rock Geochemical Model (RokGeM) v0.9 Geoscientific Model Development, 6, 1543-1573, 2013 Author(s): G. Colbourn, A. Ridgwell, and T. M. Lenton A new model of terrestrial rock weathering – the Rock Geochemical Model (RokGeM) – was developed for incorporation into the GENIE Earth System modelling framework. In this paper we describe the model. We consider a range of previously devised parameterizations, ranging from simple dependencies on global mean temperature following Berner et al. (1983), to spatially explicit dependencies on run-off and temperature (GKWM, Bluth and Kump, 1994; GEM-CO2, Amiotte-Suchet et al., 2003) – fields provided by the energy-moisture balance atmosphere model component in GENIE. Using long-term carbon cycle perturbation experiments, we test the effects of a wide range of model parameters, including whether or not the atmosphere was "short-circuited" in the carbon cycle; the sensitivity and feedback strength of temperature and run-off on carbonate and silicate weathering; different river-routing schemes; 0-D (global average) vs. 2-D (spatially explicit) weathering schemes; and the lithology dependence of weathering. Included are details of how to run the model and visualize the results.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-09-14
    Description: Influence of snow depth distribution on surface roughness in alpine terrain: a multi-scale approach The Cryosphere Discussions, 7, 4633-4680, 2013 Author(s): J. Veitinger, B. Sovilla, and R. S. Purves In alpine terrain, the snow covered winter surface deviates from its underlying summer terrain due to the progressive smoothing caused by snow accumulation. Terrain smoothing is believed to be an important factor in avalanche formation, avalanche dynamics and affects surface heat transfer, energy balance as well as snow depth distribution. To characterize the effect of snow on terrain we use the concept of roughness. Roughness is calculated for several snow surfaces and its corresponding underlying terrain for three alpine basins in the Swiss Alps characterized by low medium and high terrain roughness. To this end, elevation models of winter and summer terrain are derived from high-resolution (1 m) measurements performed by airborne and terrestrial LIDAR. We showed that on basin scale terrain smoothing not only depends on mean snow depth in the basin but also on its variability. Terrain smoothing can be modelled in function of mean snow depth and its standard deviation using a power law. However, a relationship between terrain smoothing and snow depth does not exist on a pixel scale. Further we demonstrated the high persistence of snow surface roughness even in between winter seasons. Those persistent patterns might be very useful to improve the representation of a winter terrain without modelling of the snow cover distribution. This can potentially improve avalanche release area definition and in the long term natural hazard management strategies.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-09-18
    Description: An approach to computing direction relations between separated object groups Geoscientific Model Development, 6, 1591-1599, 2013 Author(s): H. Yan, Z. Wang, and J. Li Direction relations between object groups play an important role in qualitative spatial reasoning, spatial computation and spatial recognition. However, none of existing models can be used to compute direction relations between object groups. To fill this gap, an approach to computing direction relations between separated object groups is proposed in this paper, which is theoretically based on gestalt principles and the idea of multi-directions. The approach firstly triangulates the two object groups, and then it constructs the Voronoi diagram between the two groups using the triangular network. After this, the normal of each Voronoi edge is calculated, and the quantitative expression of the direction relations is constructed. Finally, the quantitative direction relations are transformed into qualitative ones. The psychological experiments show that the proposed approach can obtain direction relations both between two single objects and between two object groups, and the results are correct from the point of view of spatial cognition.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-09-18
    Description: Recent evolution of China's virtual water trade: analysis of selected crops and considerations for policy Hydrology and Earth System Sciences Discussions, 10, 11613-11641, 2013 Author(s): J. Shi, J. Liu, and L. Pinter China has dramatically increased its virtual water import unconsciously for recent years. Many studies have focused on the quantity of traded virtual water but very few go into analysing geographic distribution and the properties of China's virtual water trade network. This paper provides a calculation and analysis of the crop-related virtual water trade network of China based on 27 major primary crops between 1986 and 2009. The results show that China is a net importer of virtual water from water-abundant areas of North and South America, and a net virtual water exporter to water-stressed areas of Asia, Africa, and Europe. Virtual water import is far larger than virtual water export and in both import and export a small number of trade partners control the supply chain. Grain crops are the major contributors to virtual water trade, and among grain crops soybeans, mostly imported from the US, Brazil and Argentina are the most significant. As crop yield and crop water productivity in North and South America are generally higher than those in Asia and Africa, the effect of China's crop-related virtual water trade positively contributes to optimizing crop water use efficiency at the global scale. In order to mitigate water scarcity and secure the food supply, virtual water should be actively incorporated into national water management strategies. From the national perspective, China should reduce the export and increase the import of water-intensive crops. But the sources of virtual water import need to be further diversified to reduce supply chain risks and increase resilience.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-09-26
    Description: A method to represent ozone response to large changes in precursor emissions using high-order sensitivity analysis in photochemical models Geoscientific Model Development, 6, 1601-1608, 2013 Author(s): G. Yarwood, C. Emery, J. Jung, U. Nopmongcol, and T. Sakulyanontvittaya Photochemical grid models (PGMs) are used to simulate tropospheric ozone and quantify its response to emission changes. PGMs are often applied for annual simulations to provide both maximum concentrations for assessing compliance with air quality standards and frequency distributions for assessing human exposure. Efficient methods for computing ozone at different emission levels can improve the quality of ozone air quality management efforts. This study demonstrates the feasibility of using the decoupled direct method (DDM) to calculate first- and second-order sensitivity of ozone to anthropogenic NO x and VOC emissions in annual PGM simulations at continental scale. Algebraic models are developed that use Taylor series to produce complete annual frequency distributions of hourly ozone at any location and any anthropogenic emission level between zero and 100%, adjusted independently for NO x and VOC. We recommend computing the sensitivity coefficients at the midpoint of the emissions range over which they are intended to be applied, in this case with 50% anthropogenic emissions. The algebraic model predictions can be improved by combining sensitivity coefficients computed at 10 and 50% anthropogenic emissions. Compared to brute force simulations, algebraic model predictions tend to be more accurate in summer than winter, at rural than urban locations, and with 100% than zero anthropogenic emissions. Equations developed to combine sensitivity coefficients computed with 10 and 50% anthropogenic emissions are able to reproduce brute force simulation results with zero and 100% anthropogenic emissions with a mean bias of less than 2 ppb and mean error of less than 3 ppb averaged over 22 US cities.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2014-12-13
    Description: A Lagrangian advection scheme with shape matrix (LASM) for solving advection problems Geoscientific Model Development, 7, 2951-2968, 2014 Author(s): L. Dong, B. Wang, and L. Liu A new Lagrangian advection scheme with shape matrix (LASM) is proposed to take advantage of the extreme low numerical diffusion of the Lagrangian methods. The tracer is discretized into finite parcels, which move along the downstream trajectories. Different from other Lagrangian schemes, the parcel shape is simulated explicitly by a linear transformation matrix. By doing so, the aliasing error in the Lagrangian schemes is largely reduced without introducing substantial interparcel mixing in the pure advection stage, because the flow information will be respected when remapping tracer density onto the fixed model grids. An adaptive interparcel mixing algorithm is constructed to ensure the validity of the linear approximation of the parcel shape, where the mixing is only triggered when it is necessary and resembles the physical mixing. The total tracer mass on the parcels is conserved exactly. The new scheme is validated by using several test cases.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2014-12-13
    Description: Extending periodic eddy covariance latent heat fluxes through tree sapflow measurements to estimate long-term total evaporation in a peat swamp forest Hydrology and Earth System Sciences Discussions, 11, 13607-13661, 2014 Author(s): A. D. Clulow, C. S. Everson, M. G. Mengistu, J. S. Price, A. Nickless, and G. P. W. Jewitt A combination of measurement and modelling was used to find a pragmatic solution to estimate the annual total evaporation (ET) from the rare and indigenous Nkazana Peat Swamp Forest (PSF) on the east coast of Southern Africa to improve the water balance estimates within the area. Total evaporation was measured during three window periods (between seven and nine days each) using an eddy covariance (EC) system on a telescopic mast above the forest canopy. Sapflow of an understory and an emergent tree was measured using a low maintenance heat pulse velocity system for an entire hydrological year (October 2009 to September 2010). An empirical model was derived, describing the relationship between the observed ET of the Nkazana PSF measured during two of the window periods ( R 2 = 0.92 and 0.90) which, overlapped with sapflow measurements, thereby providing hourly estimates of predicted ET of the Nkazana PSF for a year, totalling 1125 mm (while rainfall was 650 mm). In building the empirical model, it was found that including the understory tree sapflow provided no benefit to the model performance. In addition, the observed emergent tree sapflow relationship with observed ET between the two field campaigns was consistent and could be represented by a single empirical model ( R 2 = 0.90; RMSE = 0.08 mm). During the window periods of EC measurement, no single meteorological variable was found to describe the Nkazana PSF ET satisfactorily. However, in terms of evaporation models, the hourly FAO56 Penman–Monteith equation best described the observed ET from EC during the August 2009 ( R 2 = 0.75), November 2009 ( R 2 = 0.85) and March 2010 ( R 2 = 0.76) field campaigns, compared to the Priestley–Taylor model ( R 2 = 0.54, 0.74 and 0.62 during the respective field campaigns). From the empirical model of ET and the FAO56 Penman–Monteith equation, a monthly crop factor ( K c ) was derived for the Nkazana PSF providing a method of estimating long-term swamp forest ET from meteorological data. The monthly crop factor indicated two distinct periods. From February to May, it was between 1.2 and 1.4 compared with June to January, when the crop factor was 0.8 to 1.0. The derived monthly K c values were verified as accurate (to one significant digit) using historical data measured at the same site, also using EC, from a~previous study. The measurements provided insights into the microclimate within a subtropical peat swamp forest and the contrasting sapflow of emergent and understory trees. They showed that expensive, high maintenance equipment can be used during manageable window periods in conjunction with low maintenance systems, dedicated to individual trees, to derive a model to estimate long-term ET over remote heterogeneous forests. In addition, the contrast in ET and rainfall emphasises the reliance of the Nkazana PSF on groundwater.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2014-12-16
    Description: Dye tracing for investigating flow and transport properties of hydrocarbon-polluted Rabots glaciär, Kebnekaise, Sweden Hydrology and Earth System Sciences Discussions, 11, 13711-13744, 2014 Author(s): C. C. Clason, C. Coch, J. Jarsjö, K. Brugger, P. Jansson, and G. Rosqvist Over 11 000 L of hydrocarbon pollution was deposited on the surface of Rabots glaciär on the Kebnekaise Massif, northern Sweden, following the crash of a Royal Norwegian Air Force aircraft in March 2012. An environmental monitoring programme was subsequently commissioned, including water, snow and ice sampling. The scientific programme further included a series of dye tracing experiments during the 2013 melt season, conducted to investigate flow pathways for pollutants through the glacier hydrological system, and to gain new insight to the internal hydrological system of Rabots glaciär. Results of dye tracing reveal a degree of homogeneity in the topology of the drainage system throughout July and August, with an increase in efficiency as the season progresses, as reflected by decreasing temporary storage and dispersivity. Early onset of melting likely led to formation of an efficient, discrete drainage system early in the melt season, subject to decreasing sinuosity and braiding as the season progressed. Analysis of turbidity-discharge hysteresis further supports the formation of discrete, efficient drainage, with clockwise diurnal hysteresis suggesting easy mobilisation of readily-available sediments in channels. Dye injection immediately downstream of the pollution source zone revealed prolonged storage of dye followed by fast, efficient release. Twinned with a low dye recovery, and supported by sporadic detection of hydrocarbons in the proglacial river, we suggest that meltwater, and thus pollutants in solution, may be released periodically from this zone of the glacier hydrological system. The here identified dynamics of dye storage, dispersion and breakthrough indicate that the ultimate fate and permanence of pollutants in the glacier system is likely to be governed by storage of pollutants in the firn layer and ice mass, or within the internal hydrological system, where it may refreeze. This shows that future studies on the fate of hydrocarbons in pristine, glaciated mountain environments should address the extent to which pollutants in solution act like water molecules or whether they are more susceptible to, for example, refreezing into the surrounding ice, becoming stuck in micro-fractures and pore spaces, or sorption onto subglacial sediments.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2014-12-16
    Description: Air temperature variability over three glaciers in the Ortles-Cevedale (Italian Alps): effects of glacier disintegration, intercomparison of calculation methods, and impacts on mass balance modeling The Cryosphere Discussions, 8, 6147-6192, 2014 Author(s): L. Carturan, F. Cazorzi, F. De Blasi, and G. Dalla Fontana Glacier mass balance models rely on accurate spatial calculation of input data, in particular air temperature. Lower temperatures (the so-called glacier cooling effect), and lower temperature variability (the so-called glacier damping effect) generally occur over glaciers, compared to ambient conditions. These effects, which depend on the geometric characteristics of glaciers and display a high spatial and temporal variability, have been mostly investigated on medium- to large-size glaciers so far, while observations on smaller ice bodies are scarce. Using a dataset from 8 on-glacier and 4 off-glacier weather stations, collected in summer 2010 and 2011, we analyzed the air temperature variability and wind regime over three different glaciers in the Ortles-Cevedale. The magnitude of the cooling effect and the occurrence of katabatic boundary layer (KBL) processes showed remarkable differences among the three ice bodies, suggesting the likely existence of important reinforcing mechanisms during glacier decay and disintegration. None of the methods proposed in the literature for calculating on-glacier temperature from off-glacier data fully reproduced our observations. Among them, the more physically-based procedure of Greuell and Böhm (1998) provided the best overall results where the KBL prevail, but it was not effective elsewhere (i.e. on smaller ice bodies and close to the glacier margins). The accuracy of air temperature estimations strongly impacted the results from a mass balance model which was applied to the three investigated glaciers. Most importantly, even small temperature deviations caused distortions in parameter calibration, thus compromising the model generalizability.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2014-12-18
    Description: Sensitivity of the Mediterranean sea level to atmospheric pressure and free surface elevation numerical formulation in NEMO Geoscientific Model Development, 7, 3001-3015, 2014 Author(s): P. Oddo, A. Bonaduce, N. Pinardi, and A. Guarnieri The sensitivity of the dynamics of the Mediterranean Sea to atmospheric pressure and free surface elevation formulation using NEMO (Nucleus for European Modelling of the Ocean) was evaluated. Four different experiments were carried out in the Mediterranean Sea using filtered or explicit free surface numerical schemes and accounting for the effect of atmospheric pressure in addition to wind and buoyancy fluxes. Model results were evaluated by coherency and power spectrum analysis with tide gauge data. We found that atmospheric pressure plays an important role for periods shorter than 100 days. The free surface formulation is important to obtain the correct ocean response for periods shorter than 30 days. At frequencies higher than 15 days −1 the Mediterranean basin's response to atmospheric pressure was not coherent and the performance of the model strongly depended on the specific area considered. A large-amplitude seasonal oscillation observed in the experiments using a filtered free surface was not evident in the corresponding explicit free surface formulation case, which was due to a phase shift between mass fluxes in the Gibraltar Strait and at the surface. The configuration with time splitting and atmospheric pressure always performed best; the differences were enhanced at very high frequencies.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2014-11-06
    Description: Strategy of valid 14 C dates choice in syngenetic permafrost The Cryosphere Discussions, 8, 5589-5621, 2014 Author(s): Y. K. Vasil'chuk and A. C. Vasil'chuk The main problem of radiocarbon dating within permafrost is the uncertain reliability of the 14 C dates. Syngenetic sediments contain allochthonous organic deposit that originated at a distance from its present position. Due to the very good preservation of organic materials in permafrost conditions and numerous re-burials of the fossils from ancient deposits into younger ones the dates could be both younger and older than the true age of dated material. The strategy for the most authentic radiocarbon date selection for dating of syncryogenic sediments is considered taking into account the fluvial origin of the syngenetic sediments. The re-deposition of organic material is discussed in terms of cyclic syncryogenic sedimentation and also the possible re-deposition of organic material in subaerial-subaqueous conditions. The advantages and the complications of dating organic micro-inclusions from ice wedges by the accelerator mass spectrometry (AMS) method are discussed applying to true age of dated material search. Radiocarbon dates of different organic materials from the same samples are compared. The younger age of the yedoma from cross-sections of Duvanny Yar in Kolyma River and Mamontova Khayata in the mouth of Lena River is substantiated due to the principle of the choice of the youngest 14 C date from the set.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2014-11-06
    Description: Simulating the Antarctic ice sheet in the Late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project The Cryosphere Discussions, 8, 5539-5588, 2014 Author(s): B. de Boer, A. M. Dolan, J. Bernales, E. Gasson, H. Goelzer, N. R. Golledge, J. Sutter, P. Huybrechts, G. Lohmann, I. Rogozhina, A. Abe-Ouchi, F. Saito, and R. S. W. van de Wal In the context of future climate change, understanding the nature and behaviour of ice sheets during warm intervals in Earth history is of fundamental importance. The Late-Pliocene warm period (also known as the PRISM interval: 3.264 to 3.025 million years before present) can serve as a potential analogue for projected future climates. Although Pliocene ice locations and extents are still poorly constrained, a significant contribution to sea-level rise should be expected from both the Greenland ice sheet and the West and East Antarctic ice sheets based on palaeo sea-level reconstructions. Here, we present results from simulations of the Antarctic ice sheet by means of an international Pliocene Ice Sheet Modeling Intercomparison Project (PLISMIP-ANT). For the experiments, ice-sheet models including the shallow ice and shelf approximations have been used to simulate the complete Antarctic domain (including grounded and floating ice). We compare the performance of six existing numerical ice-sheet models in simulating modern control and Pliocene ice sheets by a suite of four sensitivity experiments. Ice-sheet model forcing fields are taken from the HadCM3 atmosphere–ocean climate model runs for the pre-industrial and the Pliocene. We include an overview of the different ice-sheet models used and how specific model configurations influence the resulting Pliocene Antarctic ice sheet. The six ice-sheet models simulate a comparable present-day ice sheet, although the models are setup with their own parameter settings. For the Pliocene simulations using the Bedmap1 bedrock topography, some models show a small retreat of the East Antarctic ice sheet, which is thought to have happened during the Pliocene for the Wilkes and Aurora basins. This can be ascribed to either the surface mass balance, as the HadCM3 Pliocene climate shows a significant increase over the Wilkes and Aurora basin, or the initial bedrock topography. For the latter, our simulations with the recently published Bedmap2 bedrock topography indicate a significantly larger contribution to Pliocene sea-level rise from the East Antarctic ice sheet for all six models relative to the simulations with Bedmap1.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2014-11-07
    Description: Snow mass decrease in the Northern Hemisphere (1979/80–2010/11) The Cryosphere Discussions, 8, 5623-5644, 2014 Author(s): Z. Li, J. Liu, L. Huang, N. Wang, B. Tian, J. Zhou, Q. Chen, and P. Zhang Snow cover has a key effect on climate change and hydrological cycling, as well as water supply to a sixth of the world's population across the Northern Hemisphere. However, reliable data on trends in snow cover in the Northern Hemisphere is lacking. Snow water equivalent (SWE) is a common measure of the amount of equivalent water of the snow pack. Here we verify the accuracy of three existing global SWE products and merge the most accurate aspects of them to generate a new SWE product covering the last 32 years (1979/80–2010/11). Using this new SWE product, we show that there has been a significant decreasing trend in the total mass of snow in the Northern Hemisphere. The most notable changes in total snow mass are −16.45 ± 6.68 and −13.55 ± 7.80 Gt year −1 in January and February, respectively. These are followed by March and December, which have trends of −12.58 ± 6.88 and −10.70 ± 5.62 Gt year −1 , respectively, from 1979/80 to 2010/11. During the same period, the temperature in the study area raised 0.17 °C decade −1 , which is thought to be the main reason of SWE decline.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2014-11-07
    Description: Factors controlling Slope Environmental Lapse Rate (SELR) of temperature in the monsoon and cold-arid glacio-hydrological regimes of the Himalaya The Cryosphere Discussions, 8, 5645-5686, 2014 Author(s): R. J. Thayyen and A. P. Dimri Moisture, temperature and precipitation interplay forced through the orographic processes sustains the Himalayan cryospheric system. However, factors controlling the Slope Environmental Lapse Rate (SELR) of temperature along the higher Himalayan mountain slopes across various glacio-hydrologic regimes remain as a key knowledge gap. Present study dwells on the orographic processes driving the moisture–temperature interplay in the monsoon and cold-arid glacio-hydrological regimes of the Himalaya. Systematic data collection at three altitudes between 2540 and 3763 m a.s.l. in the Garhwal Himalaya (hereafter called monsoon regime) and between 3500 and 5600 m a.s.l. in the Ladakh Himalaya (herefater called cold-arid regime) revealed moistrue control on temperature distribution at temporal and spatial scales. Observed daily SELR of temperature ranges between 9.0 to 1.9 °C km −1 and 17.0 to 2.8 °C km −1 in the monsoon and cold-arid regimes respectively highlighting strong regional variability. Moisture influx to the region, either from Indian summer monsoon (ISM) or from Indian winter monsoon (IWM) forced lowering of SELR. This phenophena of "monsoon lowering" of SELR is due to the release latent heat of condensation from orographically focred lifted air parcel. Seasonal response of SELR in the monsoon regime is found to be closly linked with the variations in the local lifting condensation levels (LCL). Contrary to this, cold-arid system is characterised by the extremely high values of daily SELR upto 17 °C km −1 signifying the extremely arid conditions prevailing in summer. Distinctly lower SELR devoid of monsoon lowering at higher altitude sections of monsoon and cold-arid regimes suggests sustained wetter high altitude regimes. We have proposed a SELR model for both glacio-hydrological regimes demostrating with two sections each using a derivative of the Clausius–Clapeyron relationship by deriving monthly SELR indices. It has been proposed that the manifestations of presence or absence of moisture is the single most important factor determining the temperature distribution along the higher Himalayan slopes driven by the orographic forcings. This work also suggests that the arbitary use of temperature lapse rate to extrapolate temperature to the higher Himalaya is extremely untenable.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2014-11-08
    Description: Sampling frequency trade-offs in the assessment of mean transit times of tropical montane catchment waters under semi-steady-state conditions Hydrology and Earth System Sciences Discussions, 11, 12443-12488, 2014 Author(s): E. Timbe, D. Windhorst, R. Celleri, L. Timbe, P. Crespo, H.-G. Frede, J. Feyen, and L. Breuer Stream and soil waters were collected on a weekly basis in a tropical montane cloud forest catchment for two years and analyzed for stable water isotopes in order to infer transit time distribution functions and to define the mean transit times. Depending on the water type (stream or soil water), lumped distribution functions such as Exponential-Piston flow, Linear-Piston flow and Gamma models using temporal isotopic variations of precipitation event samples as input, were fitted. Samples were aggregated to daily, weekly, biweekly, monthly and bimonthly time scales in order to check the sensitivity of temporal sampling on model predictions. The study reveals that the effect of decreasing sampling frequency depends on the water type. For soil waters with transit times in the order of weeks to months, there was a clear trend of over prediction. In contrast, the trend of prediction for stream waters, with a dampened isotopic signal and mean transit times in the order of 2 to 4 years, was less clear and depending on the type of model used. The trade-off to coarse data resolutions could potentially lead to misleading conclusions on how water actually moves through the catchment, while at the same time predictions can reach better fitting efficiencies, lesser uncertainties, errors and biases. For both water types an optimal sampling frequency seems to be one or at most two weeks. The results of our analyses provide information for the planning (in particular in terms of cost-benefit and time requirements) of future fieldwork in similar Andean or other catchments.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2014-11-09
    Description: Gaseous chemistry and aerosol mechanism developments for version 3.5.1 of the online regional model, WRF-Chem Geoscientific Model Development, 7, 2557-2579, 2014 Author(s): S. Archer-Nicholls, D. Lowe, S. Utembe, J. Allan, R. A. Zaveri, J. D. Fast, Ø. Hodnebrog, H. Denier van der Gon, and G. McFiggans We have made a number of developments to the Weather, Research and Forecasting model coupled with Chemistry (WRF-Chem), with the aim of improving model prediction of trace atmospheric gas-phase chemical and aerosol composition, and of interactions between air quality and weather. A reduced form of the Common Reactive Intermediates gas-phase chemical mechanism (CRIv2-R5) has been added, using the Kinetic Pre-Processor (KPP) interface, to enable more explicit simulation of VOC degradation. N 2 O 5 heterogeneous chemistry has been added to the existing sectional MOSAIC aerosol module, and coupled to both the CRIv2-R5 and existing CBM-Z gas-phase schemes. Modifications have also been made to the sea-spray aerosol emission representation, allowing the inclusion of primary organic material in sea-spray aerosol. We have worked on the European domain, with a particular focus on making the model suitable for the study of nighttime chemistry and oxidation by the nitrate radical in the UK atmosphere. Driven by appropriate emissions, wind fields and chemical boundary conditions, implementation of the different developments are illustrated, using a modified version of WRF-Chem 3.4.1, in order to demonstrate the impact that these changes have in the Northwest European domain. These developments are publicly available in WRF-Chem from version 3.5.1 onwards.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2014-11-08
    Description: A model study of Abrahamsenbreen, a surging glacier in northern Spitsbergen The Cryosphere Discussions, 8, 5687-5726, 2014 Author(s): J. Oerlemans and W. J. J. van Pelt The climate sensitivity of Abrahamsenbreen, a 20 km long surge-type glacier in northern Spitsbergen, is studied with a simple glacier model. A scheme to describe the surges is included, which makes it possible to account for the effect of surges on the total mass budget of the glacier. A climate reconstruction back to AD 1300, based on ice-core data from Lomonosovfonna and climate records from Longyearbyen, is used to drive the model. The model is calibrated by requesting that it produces the correct Little Ice Age maximum glacier length and simulates the observed magnitude of the 1978-surge. Abrahamsenbreen is strongly out of balance with the current climate. If climatic conditions will remain as they were for the period 1989–2010, the glacier will ultimately shrink to a length of about 4 km (but this will take hundreds of years). For a climate change scenario involving a 2 m yr −1 rise of the equilibrium line from now onwards, we predict that in the year 2100 Abrahamsenbreen will be about 12 km long. The main effect of a surge is to lower the mean surface elevation and to increase the ablation area, thereby causing a negative perturbation of the mass budget. We found that the occurrence of surges leads to a somewhat stronger retreat of the glacier in a warming climate. Because of the very small bed slope, Abrahamsenbreen is sensitive to small perturbations in the equilibrium-line altitude E . For a decrease of E of only 160 m, the glacier would steadily grow into the Woodfjorddalen until after 2000 years it would reach the Woodfjord and calving could slow down the advance.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2014-11-05
    Description: Quantitative high-resolution observations of soil water dynamics in a complicated architecture with time-lapse Ground-Penetrating Radar Hydrology and Earth System Sciences Discussions, 11, 12365-12404, 2014 Author(s): P. Klenk, S. Jaumann, and K. Roth High-resolution time-lapse Ground-Penetrating Radar (GPR) observations of advancing and retreating water tables can yield a wealth of information about near-surface water content dynamics. In this study, we present and analyze a series of imbibition, drainage and infiltration experiments which have been carried out at our artificial ASSESS test site and observed with surface based GPR. The test site features a complicated but known subsurface architecture constructed with three different kinds of sand. It allows studying soil water dynamics with GPR under a wide range of different conditions. Here, we assess in particular (i) the accurate determination of soil water dynamics averaged over the whole vertical extent by evaluating the bottom reflection and (ii) the feasibility of monitoring the dynamic shape of the capillary fringe reflection. The phenomenology of the GPR response of a dynamically changing capillary fringe is developed from a soil physical point of view. We then explain experimentally observed phenomena based on numerical simulations of both the water content dynamics and the expected GPR response.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2014-11-05
    Description: Simulating long-term past changes in the balance between water demand and availability and assessing their main drivers at the river basin management scale Hydrology and Earth System Sciences Discussions, 11, 12315-12364, 2014 Author(s): J. Fabre, D. Ruelland, A. Dezetter, and B. Grouillet The aim of this study was to assess the balance between water demand and availability and its spatial and temporal variability from 1971 to 2009 in the Herault (2500 km 2 , France) and the Ebro (85 000 km 2 , Spain) catchments. Natural streamflow was evaluated using a conceptual hydrological model. The regulation of river flow was accounted for through a widely applicable demand-driven reservoir management model applied to the largest dam in the Herault basin and to 11 major dams in the Ebro basin. Urban water demand was estimated from population and monthly unit water consumption data. Water demand for irrigation was computed from irrigated area, crop and soil data, and climatic forcing. Finally, a series of indicators comparing water supply and water demand at strategic resource and demand nodes were computed at a 10 day time step. Variations in water stress in each catchment over the past 40 years were successfully modeled, taking into account climatic and anthropogenic pressures and changes in water management strategies over time. Observed changes in discharge were explained by separating human and hydro-climatic pressures on water resources: respectively 20 and 3% of the decrease in the Ebro and the Herault discharges were linked to human-induced changes. Although key areas of the Herault basin were shown to be highly sensitive to hydro-climatic variability, the balance between water uses and availability in the Ebro basin appears to be more critical, owing to high agricultural pressure on water resources. The proposed modeling framework is currently being used to assess water stress under climatic and socio-economic prospective scenarios. Further research will investigate the effectiveness of adaptation policies aimed at maintaining the balance between water use and availability.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2014-11-05
    Description: Time-series analysis of the long-term hydrologic impacts of afforestation in the Águeda watershed of North-Central Portugal Hydrology and Earth System Sciences Discussions, 11, 12223-12256, 2014 Author(s): D. Hawtree, J. P. Nunes, J. J. Keizer, R. Jacinto, J. Santos, M. E. Rial-Rivas, A.-K. Boulet, F. Tavares-Wahren, and K.-H. Feger The north-central region of Portugal has undergone significant afforestation of the species Pinus pinaster and Eucalyptus globulus since the early 1900s; however, the long-term hydrologic impacts of this land cover change are not fully understood. To contribute to a better understanding of the potential hydrologic impacts of this land cover change, this study examines the temporal trends in 7 years of data from the Águeda watershed (part of the Vouga Basin) over the period of 1936 to 2010. Meteorological and hydrological records were analysed using a combined Thiel–Sen/Mann–Kendall trend testing approach, to assess the magnitude and significance of patterns in the observed data. These trend tests indicated that there had been no significant reduction in streamflow yield over either the entire test period, or during sub-record periods, despite the large-scale afforestation which had taken place. This lack of change is attributed to both the characteristics of the watershed and the nature of the land cover change. By contrast, a number of significant trends were found for baseflow index, which showed positive trends in the early data record (primarily during Pinus pinaster afforestation), followed by a reversal to negative trends later in the data record (primarily during Eucalyptus globulus afforestation). These changes are attributed to vegetation impacts on streamflow generating processes, both due to the species differences and to alterations in soil properties (i.e. promoting water repellency of the topsoil). These results highlight the importance of considering both vegetation types/dynamics and watershed characteristic when assessing hydrologic impacts, in particular with respect to soil properties.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2014-11-05
    Description: Reply to D. L. Peters' comment on "Streamflow input to Lake Athabasca, Canada" by Rasouli et al. (2013) Hydrology and Earth System Sciences Discussions, 11, 12257-12270, 2014 Author(s): K. Rasouli, M. A. Hernández-Henríquez, and S. J. Déry This paper provides a reply to a comment from Peters (2014) on our recent effort focused on evaluating changes in streamflow input to Lake Athabasca, Canada. Lake Athabasca experienced a 21.2% decline in streamflow input between 1960 and 2010 that has led to a marked decline in its water levels in recent decades. A reassessment of trends in naturalized Lake Athabasca water levels shows insignificant changes from our previous findings reported in Rasouli et al. (2013), and hence our previous conclusions remain unchanged. The reply closes with recommendations for future research to minimize uncertainties in historical assessments of trends in Lake Athabasca water levels and to better project its future water levels driven by climate change and anthropogenic activities in the Athabasca Lake Basin.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2014-11-05
    Description: Is sinuosity a function of slope and bankfull discharge? – A case study of the meandering rivers in the Pannonian Basin Hydrology and Earth System Sciences Discussions, 11, 12271-12290, 2014 Author(s): J. Petrovszki, G. Timár, and G. Molnár Pre-regulation channel sinuosities of the meandering rivers of the Pannonian Basin are analysed in order to define a mathematical model to estimate the influence of the bankfull discharge and the channel slope on them. As a primary database, data triplets of slope, discharge and sinuosity values were extracted from historical and modern datasets and pre-regulation historical topographic maps. Channel slope values were systematically modified to estimate figures valid before the river regulation works. The bankfull discharges were estimated from the average discharges using a robust yet complex method. The "classical" graphs of Leopold and Wolman (1957), Ackers and Charlton (1970b) and Schumm and Khan (1972) were compiled to a set up a theoretical surface, whose parameters are estimated by the real values of the above database, containing characteristics of the Pannonian Basin rivers. As a result it occurred that there is a two-dimensional function of the bankfull discharges, which provides a good estimation of the most probable sinuosity values of the rivers with the given slope and discharge characteristics. The average RMS error of this estimation is around 15% on this dataset and believed to be the effect of the non-analysed changes in the sediment discharge and size distribution.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2014-11-05
    Description: Technical Note: Field experiences using UV/VIS sensors for high-resolution monitoring of nitrate in groundwater Hydrology and Earth System Sciences Discussions, 11, 12291-12314, 2014 Author(s): M. Huebsch, F. Grimmeisen, M. Zemann, O. Fenton, K. G. Richards, P. Jordan, A. Sawarieh, P. Blum, and N. Goldscheider Two different in-situ spectrophotometers are compared that were used in the field to determine nitrate-nitrogen (NO 3 -N) concentrations at two distinct spring discharge sites. One sensor was a double wavelength spectrophotometer (DWS) and the other a multiple wavelength spectrophotometer (MWS). The objective of the study was to review the hardware options, determine ease of calibration, accuracy, influence of additional substances and to assess positive and negative aspects of the two sensors as well as troubleshooting and trade-offs. Both sensors are sufficient to monitor highly time-resolved NO 3 -N concentrations in emergent groundwater. However, the chosen path length of the sensors had a significant influence on the sensitivity and the range of detectable NO 3 -N. The accuracy of the calculated NO 3 -N concentrations of the sensors can be affected, if the content of additional substances such as turbidity, organic matter, nitrite or hydrogen carbonate significantly varies after the sensors have been calibrated to a particular water matrix. The MWS offers more possibilities for calibration and error detection, but requires more expertise compared with the DWS.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2014-12-16
    Description: Complex networks, streamflow, and hydrometric monitoring system design Hydrology and Earth System Sciences Discussions, 11, 13663-13710, 2014 Author(s): M. Halverson and S. Fleming Network theory is applied to an array of streamflow gauges located in the Coast Mountains of British Columbia and Yukon, Canada. The goal of the analysis is to assess whether insights from this branch of mathematical graph theory can be meaningfully applied to hydrometric data, and more specifically, whether it may help guide decisions concerning stream gauge placement so that the full complexity of the regional hydrology is efficiently captured. The streamflow data, when represented as a complex network, has a global clustering coefficient and average shortest path length consistent with small-world networks, which are a class of stable and efficient networks common in nature, but the results did not clearly suggest a scale-free network. Stability helps ensure that the network is robust to the loss of nodes; in the context of a streamflow network, stability is interpreted as insensitivity to station removal at random. Community structure is also evident in the streamflow network. A community detection algorithm identified 10 separate communities, each of which appears to be defined by the combination of its median seasonal flow regime (pluvial, nival, hybrid, or glacial, which in this region in turn mainly reflects basin elevation) and geographic proximity to other communities (reflecting shared or different daily meteorological forcing). Betweenness analyses additionally suggest a handful of key stations which serve as bridges between communities and might therefore be highly valued. We propose that an idealized sampling network should sample high-betweenness stations, as well as small-membership communities which are by definition rare or undersampled relative to other communities, while retaining some degree of redundancy to maintain network robustness.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2014-12-16
    Description: A strategy for GIS-based 3-D slope stability modelling over large areas Geoscientific Model Development, 7, 2969-2982, 2014 Author(s): M. Mergili, I. Marchesini, M. Alvioli, M. Metz, B. Schneider-Muntau, M. Rossi, and F. Guzzetti GIS-based deterministic models may be used for landslide susceptibility mapping over large areas. However, such efforts require specific strategies to (i) keep computing time at an acceptable level, and (ii) parameterize the geotechnical data. We test and optimize the performance of the GIS-based, 3-D slope stability model r.slope.stability in terms of computing time and model results. The model was developed as a C- and Python-based raster module of the open source software GRASS GIS and considers the 3-D geometry of the sliding surface. It calculates the factor of safety (FoS) and the probability of slope failure ( P f ) for a number of randomly selected potential slip surfaces, ellipsoidal or truncated in shape. Model input consists of a digital elevation model (DEM), ranges of geotechnical parameter values derived from laboratory tests, and a range of possible soil depths estimated in the field. Probability density functions are exploited to assign P f to each ellipsoid. The model calculates for each pixel multiple values of FoS and P f corresponding to different sliding surfaces. The minimum value of FoS and the maximum value of P f for each pixel give an estimate of the landslide susceptibility in the study area. Optionally, r.slope.stability is able to split the study area into a defined number of tiles, allowing parallel processing of the model on the given area. Focusing on shallow landslides, we show how multi-core processing makes it possible to reduce computing times by a factor larger than 20 in the study area. We further demonstrate how the number of random slip surfaces and the sampling of parameters influence the average value of P f and the capacity of r.slope.stability to predict the observed patterns of shallow landslides in the 89.5 km 2 Collazzone area in Umbria, central Italy.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2014-12-09
    Description: Monitoring and modelling of soil–plant interactions: the joint use of ERT, sap flow and Eddy Covariance data to characterize the volume of an orange tree root zone Hydrology and Earth System Sciences Discussions, 11, 13353-13384, 2014 Author(s): G. Cassiani, J. Boaga, D. Vanella, M. T. Perri, and S. Consoli Mass and energy exchanges between soil, plants and atmosphere control a number of key environmental processes involving hydrology, biota and climate. The understanding of these exchanges also play a critical role for practical purposes e.g. in precision agriculture. In this paper we present a methodology based on coupling innovative data collection and models in order to obtain quantitative estimates of the key parameters of such complex flow system. In particular we propose the use of hydro-geophysical monitoring via 4-D Electrical Resistivity Tomography (ERT) in conjunction with measurements of plant transpiration via sap flow and evapotranspiration from Eddy Covariance (EC). This abundance of data is fed to a spatially distributed soil model in order to characterize the distribution of active roots. We conducted experiments in an orange orchard in Eastern Sicily (Italy), characterized by the typical Mediterranean semi-arid climate. The subsoil dynamics, particularly influenced by irrigation and root uptake, were characterized mainly by the ERT setup, consisting of 48 buried electrodes on 4 instrumented micro boreholes (about 1.2 m deep) placed at the corners of a square (about 1.3 m in side) surrounding the orange tree, plus 24 mini-electrodes on the surface spaced 0.1 m on a square grid. During the monitoring, we collected repeated ERT and TDR soil moisture measurements, soil water samples, sap flow measurements from the orange tree and EC data. We conducted a laboratory calibration of the soil electrical properties as a function of moisture content and pore water electrical conductivity. Irrigation, precipitation, sap flow and ET data are available allowing knowledge of the system's long term forcing conditions on the system. This information was used to calibrate a 1-D Richards' equation model representing the dynamics of the volume monitored via 3-D ERT. Information on the soil hydraulic properties was collected from laboratory and field experiments. The successful results of the calibrated modeling exercise allow the quantification of the soil volume interested by root water uptake. This volume is much smaller (with a surface area less than 2 m 2 , and about 40 cm thickness) than expected and assumed in the design of classical drip irrigation schemes that prove to be losing at least half of the irrigated water that is not uptaken by the plants.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2011-06-16
    Description: Domestic wells have high probability of pumping septic tank leachate Hydrology and Earth System Sciences Discussions, 8, 5701-5732, 2011 Author(s): J. E. Horn and T. Harter Onsite wastewater treatment systems such as septic systems are common in rural and semi-rural areas around the world; in the US, about 25–30 % of households are served by a septic system and a private drinking water well. Site-specific conditions and local groundwater flow are often ignored when installing septic systems and wells. Particularly in areas with small lots, thus a high septic system density, these typically shallow wells are prone to contamination by septic system leachate. Typically, mass balance approaches are used to determine a maximum septic system density that would prevent contamination of the aquifer. In this study, we estimate the probability of a well pumping partially septic system leachate. A detailed groundwater and transport model is used to calculate the capture zone of a typical drinking water well. A spatial probability analysis is performed to assess the probability that a capture zone overlaps with a septic system drainfield depending on aquifer properties, lot and drainfield size. We show that a high septic system density poses a high probability of pumping septic system leachate. The hydraulic conductivity of the aquifer has a strong influence on the intersection probability. We conclude that mass balances calculations applied on a regional scale underestimate the contamination risk of individual drinking water wells by septic systems. This is particularly relevant for contaminants released at high concentrations, for substances which experience limited attenuation, and those being harmful even in low concentrations.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2011-06-21
    Description: Use of ENVISAT ASAR Global Monitoring Mode to complement optical data in the mapping of rapid broad-scale flooding in Pakistan Hydrology and Earth System Sciences Discussions, 8, 5769-5809, 2011 Author(s): D. O'Grady, M. Leblanc, and D. Gillieson Envisat ASAR Global Monitoring Mode (GM) data are used to produce maps of the extent of the flooding in Pakistan which are made available to the rapid response effort within 24 h of acquisition. The high temporal frequency and independence of the data from cloud-free skies makes GM data a viable tool for mapping flood waters during those periods where optical satellite data is unavailable, which may be crucial to rapid response disaster planning, where thousands of lives are affected. Image differencing techniques are used, with pre-flood baseline image backscatter values being deducted from target values to eliminate regions with a permanent flood-like radar response due to volume scattering and attenuation, and to highlight the low response caused by specular reflection by open flood water. The effect of local incidence angle on the received signal is mitigated by ensuring that the deducted image is acquired from the same orbit track as the target image. Poor separability of the water class with land in areas beyond the river channels is tackled using a region-growing algorithm which seeks threshold-conformance from seed pixels at the center of the river channels. The resultant mapped extents are tested against MODIS SWIR data where available, with encouraging results.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2011-06-21
    Description: Soil weathering rates in 21 catchments of the Canadian Shield Hydrology and Earth System Sciences Discussions, 8, 5743-5768, 2011 Author(s): D. Houle, P. Lamoureux, N. Bélanger, M. Bouchard, C. Gagnon, S. Couture, and A. Bouffard Soil mineral weathering represents an essential source of nutrient base cation (Ca, Mg and K) for forest growth in addition to provide a buffering power against precipitation acidity for soils and surface waters. Weathering rates of base cations were obtained for 21 catchments located within the temperate and the boreal forest of the Canadian Shield with the geochemical model PROFILE. Weathering rates ranged from 0.58 to 4.46 kmol c ha −1 yr −1 and their spatial variation within the studied area was mostly in agreement with spatial variations in soil mineralogy. Weathering rates of Ca and Mg were significantly correlated ( r = 0.80 and 0.64) with their respective lake concentrations. Weathering rates of K and Na did not correlate with lake concentrations of K and Na. The modeled weathering rates for each catchment were also compared with estimations of net catchment exportations. The result show that modeled weathering rates of Ca were not significantly different than the net catchment exportations while modeled weathering rates of Mg were higher by 51 %. Larger differences were observed for K and Na weathering rates that were significantly different than net catchment exportations being 6.9 and 2.2 times higher than net exportations, respectively. The results for K were expected given its high reactivity with biotic compartments and suggest that most of the K produced by weathering reactions was retained within soil catchments and/or above ground biomass. This explanation does not apply to Na, however, which is a conservative element in forest ecosystems because of the insignificant needs of Na for soil microorganisms and above ground vegetations. It raises concern about the liability of the PROFILE model to provide reliable values of Na weathering rates. Overall, we concluded that the PROFILE model is powerful enough to reproduce spatial geographical gradients in weathering rates for relatively large areas as well as adequately predict absolute weathering rates values for the sum of base cations, Ca and Mg.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2011-06-23
    Description: Brief communication "Snow profile associated measurements (SPAM) – a new instrument for quick snow profile measurements" The Cryosphere Discussions, 5, 1737-1748, 2011 Author(s): P. Lahtinen A new instrument concept (SPAM) for snow profile associated measurements is presented. The potential of the concept is demonstrated by presenting preliminary results obtained with the prototype instrument. With this concept it is possible to retrieve rapid snow profiles of e.g. light extinction, reflectance, temperature and snow layer structure with high vertical resolution. As a side-product, also snow depth is retrieved.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2011-06-24
    Description: The role of catchment classification in rainfall-runoff modeling Hydrology and Earth System Sciences Discussions, 8, 6113-6153, 2011 Author(s): Y. He, A. Bárdossy, and E. Zehe A sound catchment classification scheme is a fundamental step towards improved catchment hydrology science and prediction in ungauged basins. Two categories of catchment classification methods are presented in the paper. The first one is based directly on physiographic properties and climatic conditions over a catchment and regarded as a Linnaean type or natural classification scheme. The second one is based on numerical clustering and regionalization methods and considered as a statistical or arbitrary classification scheme. This paper reviews each category including what has been done since recognition of the intrinsic value of catchment classification, what is being done in the current research, as well as what is to be done in the future.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2011-06-28
    Description: Infiltration-soil moisture redistribution under natural conditions: experimental evidence as a guideline for realizing simulation models Hydrology and Earth System Sciences Discussions, 8, 6199-6225, 2011 Author(s): R. Morbidelli, C. Corradini, C. Saltalippi, A. Flammini, and E. Rossi The evolution in time, t , of the experimental soil moisture vertical profile under natural conditions is investigated in order to address the corresponding simulation modelling. The measurements were conducted in a plot with a bare silty loam soil. The soil water content, θ, was continuously monitored at different depths, z , using a Time Domain Reflectometry (TDR) system. For each profile four buriable three-rod waveguides were inserted horizontally at different depths (5, 15, 25 and 35 cm). In addition, we used sensors of air temperature and relative humidity, wind speed, solar radiation, evaporation and rain as supports for the application of selected simulation models, as well as for the detection of elements leading to their improvement. The results indicate that, under natural conditions, very different trends of the θ( z , t ) function can be observed in the given fine-textured soil, where the formation of a sealing layer over the parent soil requires an adjustment of the simulation modelling commonly used for hydrological applications. In particular, because of the considerable variations in the shape of the moisture content vertical profile as a function of time, a generalization of the existing models should incorporate a representation of the variability in time of the saturated hydraulic conductivity of the uppermost soil. This conclusion is supported by the fact that the observed shape of θ( z ) can be appropriately reproduced by adopting this approach, however the observed rainfall rate and the occurrence of freeze-thaw cycles with high soil moisture contents have to be explicitly incorporated.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2011-06-16
    Description: Modeling the impact of wintertime rain events on the thermal regime of permafrost The Cryosphere Discussions, 5, 1697-1736, 2011 Author(s): S. Westermann, J. Boike, M. Langer, T. V. Schuler, and B. Etzelmüller In this study, we present field measurements and numerical process modeling from Western Svalbard showing that the ground surface temperature below the snow is impacted by strong wintertime rain events. During such events, rain water percolates to the bottom of the snow pack, where it freezes and releases latent heat. In the winter season 2005/2006, on the order of 20 to 50 % of the wintertime precipitation fell as rain, thus confining the surface temperature to close to 0 °C for several weeks. The measured average ground surface temperature during the snow-covered period is −0.6 °C, despite of a snow surface temperature of on average −8.5 °C. For the considered period, the temperature threshold below which permafrost is sustainable on long timescales is exceeded. We present a simplified model of rain water infiltration in the snow coupled to a transient permafrost model. While small amounts of rain have only minor impact on the ground surface temperature, strong rain events have a long-lasting impact. We show that consecutively applying the conditions encountered in the winter season 2005/2006 results in the formation of an unfrozen zone in the soil after three to five years, depending on the prescribed soil properties. If water infiltration in the snow is disabled in the model, more time is required for the permafrost to reach a similar state of degradation.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...