ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,894)
  • Copernicus  (1,894)
  • American Association for the Advancement of Science
  • Institute of Physics
  • 2010-2014  (1,652)
  • 2005-2009  (242)
  • 1980-1984
  • 1965-1969
  • 1925-1929
  • Geoscientific Model Development  (452)
  • Ocean Science Discussions  (325)
  • 102048
  • 48837
Collection
  • Articles  (1,894)
Publisher
  • Copernicus  (1,894)
  • American Association for the Advancement of Science
  • Institute of Physics
Years
Year
Topic
  • 1
    Publication Date: 2013-09-10
    Description: The Chemistry CATT-BRAMS model (CCATT-BRAMS 4.5): a regional atmospheric model system for integrated air quality and weather forecasting and research Geoscientific Model Development, 6, 1389-1405, 2013 Author(s): K. M. Longo, S. R. Freitas, M. Pirre, V. Marécal, L. F. Rodrigues, J. Panetta, M. F. Alonso, N. E. Rosário, D. S. Moreira, M. S. Gácita, J. Arteta, R. Fonseca, R. Stockler, D. M. Katsurayama, A. Fazenda, and M. Bela Coupled Chemistry Aerosol-Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CCATT-BRAMS, version 4.5) is an on-line regional chemical transport model designed for local and regional studies of atmospheric chemistry from the surface to the lower stratosphere suitable both for operational and research purposes. It includes gaseous/aqueous chemistry, photochemistry, scavenging and dry deposition. The CCATT-BRAMS model takes advantage of BRAMS-specific development for the tropics/subtropics as well as the recent availability of preprocessing tools for chemical mechanisms and fast codes for photolysis rates. BRAMS includes state-of-the-art physical parameterizations and dynamic formulations to simulate atmospheric circulations down to the meter. This on-line coupling of meteorology and chemistry allows the system to be used for simultaneous weather and chemical composition forecasts as well as potential feedback between the two. The entire system is made of three preprocessing software tools for user-defined chemical mechanisms, aerosol and trace gas emissions fields and the interpolation of initial and boundary conditions for meteorology and chemistry. In this paper, the model description is provided along with the evaluations performed by using observational data obtained from ground-based stations, instruments aboard aircrafts and retrieval from space remote sensing. The evaluation accounts for model applications at different scales from megacities and the Amazon Basin up to the intercontinental region of the Southern Hemisphere.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-13
    Description: δ 18 O water isotope in the i LOVECLIM model (version 1.0) – Part 1: Implementation and verification Geoscientific Model Development, 6, 1481-1491, 2013 Author(s): D. M. Roche A new 18 O stable water isotope scheme is developed for three components of the i LOVECLIM coupled climate model: atmospheric, oceanic and land surface. The equations required to reproduce the fractionation of stable water isotopes in the simplified atmospheric model ECBilt are developed consistently with the moisture scheme. Simplifications in the processes are made to account for the simplified vertical structure including only one moist layer. Implementation of these equations together with a passive tracer scheme for the ocean and a equilibrium fractionation scheme for the land surface leads to the closure of the (isotopic-) water budget in our climate system. Following the implementation, verification of the existence of usual δ 18 O to climatic relationships are performed for the Rayleigh distillation, the Dansgaard relationship and the δ 18 O –salinity relationship. Advantages and caveats of the approach taken are outlined. The isotopic fields simulated are shown to reproduce most expected oxygen-18–climate relationships with the notable exception of the isotopic composition in Antarctica.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-13
    Description: δ 18 O water isotope in the i LOVECLIM model (version 1.0) – Part 3: A palaeo-perspective based on present-day data–model comparison for oxygen stable isotopes in carbonates Geoscientific Model Development, 6, 1505-1516, 2013 Author(s): T. Caley and D. M. Roche Oxygen stable isotopes (δ 18 O) are among the most useful tools in palaeoclimatology/palaeoceanography. Simulation of oxygen stable isotopes allows testing how the past variability of these isotopes in water can be interpreted. By modelling the proxy directly in the model, the results can also be directly compared with the data. Water isotopes have been implemented in the global three-dimensional model of intermediate complexity i LOVECLIM, allowing fully coupled atmosphere–ocean simulations. In this study, we present the validation of the model results for present-day climate against the global database for oxygen stable isotopes in carbonates. The limitation of the model together with the processes operating in the natural environment reveal the complexity of use the continental calcite-δ 18 O signal of speleothems for a global quantitative data–model comparison exercise. On the contrary, the reconstructed surface ocean calcite-δ 18 O signal in i LOVECLIM does show a very good agreement with the late Holocene database (foraminifers) at the global and regional scales. Our results indicate that temperature and the isotopic composition of the seawater are the main control on the fossil-δ 18 O signal recorded in foraminifer shells when all species are grouped together. Depth habitat, seasonality and other ecological effects play a more significant role when individual species are considered. We argue that a data–model comparison for surface ocean calcite δ 18 O in past climates, such as the Last Glacial Maximum (≈ 21 000 yr), could constitute an interesting tool for mapping the potential shifts of the frontal systems and circulation changes throughout time. Similarly, the potential changes in intermediate oceanic circulation systems in the past could be documented by a data (benthic foraminifers)-model comparison exercise whereas future investigations are necessary in order to quantitatively compare the results with data for the deep ocean.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-17
    Description: Assimilating water column and satellite data for marine export production estimation Geoscientific Model Development, 6, 1575-1590, 2013 Author(s): X. Yao and R. Schlitzer Recent advances in satellite retrieval methodology now allow for estimation of particular organic carbon (POC) concentration in ocean surface waters directly from satellite-based optical data. Because of the good coverage, these data reveal small-scale spatial and temporal concentration gradients and document the evolution of surface water POC as well as the underlying driving biogeochemical processes throughout the seasons. Water column nutrient data also reveal biogeochemical activity. However, because of the scarcity of data, the deduction of temporal changes of particle production and export is not possible in most parts of the ocean. Here we present first results from a new study combining both data streams, thereby exploiting the high spatio-temporal resolution of surface POC concentrations from satellite optical sensors with water column nutrient data having sparser coverage but providing information throughout the entire water column. We use a medium-resolution global model with steady-state 3-D circulation that has been optimized by fitting to a large number of hydrographic parameters and tracers, including CFCs and natural radiocarbon. Production and export of POC is allowed to vary monthly, and the magnitudes of the monthly export fluxes are determined by fitting the model to satellite POC data as well as water column nutrient data using the adjoint method. Two cases have been investigated: (1) the production rate of POC is set to be proportional to export production (EP) and the seasonal changes are assumed sinusoidal (meridionally varying amplitude and phase), and (2) the POC production rate is linked to primary production rates (literature). Both cases were run with the same initial state and model settings, and show total cost function decreases of 12 and 95%, respectively. The POC misfit term alone decreased by 75 and 99.8%. The integrated annual global POC exports of the two cases are 9.9 and 12.3 Gt C yr −1 , respectively. Overall, the remaining POC and phosphate misfits of both solutions are considered too large, and the difference fields still exhibit significant systematic geographical patterns. This indicates that the present model runs are too simplistic and do not fully explain the data. Further, more refined model setups are needed.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-09-28
    Description: Enhancing the representation of subgrid land surface characteristics in land surface models Geoscientific Model Development, 6, 1609-1622, 2013 Author(s): Y. Ke, L. R. Leung, M. Huang, and H. Li Land surface heterogeneity has long been recognized as important to represent in the land surface models. In most existing land surface models, the spatial variability of surface cover is represented as subgrid composition of multiple surface cover types, although subgrid topography also has major controls on surface processes. In this study, we developed a new subgrid classification method (SGC) that accounts for variability of both topography and vegetation cover. Each model grid cell was represented with a variable number of elevation classes and each elevation class was further described by a variable number of vegetation types optimized for each model grid given a predetermined total number of land response units (LRUs). The subgrid structure of the Community Land Model (CLM) was used to illustrate the newly developed method in this study. Although the new method increases the computational burden in the model simulation compared to the CLM subgrid vegetation representation, it greatly reduced the variations of elevation within each subgrid class and is able to explain at least 80% of the total subgrid plant functional types (PFTs). The new method was also evaluated against two other subgrid methods (SGC1 and SGC2) that assigned fixed numbers of elevation and vegetation classes for each model grid (SGC1: M elevation bands– N PFTs method; SGC2: N PFTs– M elevation bands method). Implemented at five model resolutions (0.1°, 0.25°, 0.5°, 1.0°and 2.0°) with three maximum-allowed total number of LRUs (i.e., N LRU of 24, 18 and 12) over North America (NA), the new method yielded more computationally efficient subgrid representation compared to SGC1 and SGC2, particularly at coarser model resolutions and moderate computational intensity ( N LRU = 18). It also explained the most PFTs and elevation variability that is more homogeneously distributed spatially. The SGC method will be implemented in CLM over the NA continent to assess its impacts on simulating land surface processes.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-09-11
    Description: An efficient method to generate a perturbed parameter ensemble of a fully coupled AOGCM without flux-adjustment Geoscientific Model Development, 6, 1447-1462, 2013 Author(s): P. J. Irvine, L. J. Gregoire, D. J. Lunt, and P. J. Valdes We present a simple method to generate a perturbed parameter ensemble (PPE) of a fully-coupled atmosphere-ocean general circulation model (AOGCM), HadCM3, without requiring flux-adjustment. The aim was to produce an ensemble that samples parametric uncertainty in some key variables and gives a plausible representation of the climate. Six atmospheric parameters, a sea-ice parameter and an ocean parameter were jointly perturbed within a reasonable range to generate an initial group of 200 members. To screen out implausible ensemble members, 20 yr pre-industrial control simulations were run and members whose temperature responses to the parameter perturbations were projected to be outside the range of 13.6 ± 2 °C, i.e. near to the observed pre-industrial global mean, were discarded. Twenty-one members, including the standard unperturbed model, were accepted, covering almost the entire span of the eight parameters, challenging the argument that without flux-adjustment parameter ranges would be unduly restricted. This ensemble was used in 2 experiments; an 800 yr pre-industrial and a 150 yr quadrupled CO 2 simulation. The behaviour of the PPE for the pre-industrial control compared well to ERA-40 reanalysis data and the CMIP3 ensemble for a number of surface and atmospheric column variables with the exception of a few members in the Tropics. However, we find that members of the PPE with low values of the entrainment rate coefficient show very large increases in upper tropospheric and stratospheric water vapour concentrations in response to elevated CO 2 and one member showed an implausible nonlinear climate response, and as such will be excluded from future experiments with this ensemble. The outcome of this study is a PPE of a fully-coupled AOGCM which samples parametric uncertainty and a simple methodology which would be applicable to other GCMs.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-09-13
    Description: GAPPARD: a computationally efficient method of approximating gap-scale disturbance in vegetation models Geoscientific Model Development, 6, 1517-1542, 2013 Author(s): M. Scherstjanoi, J. O. Kaplan, E. Thürig, and H. Lischke Models of vegetation dynamics that are designed for application at spatial scales larger than individual forest gaps suffer from several limitations. Typically, either a population average approximation is used that results in unrealistic tree allometry and forest stand structure, or models have a high computational demand because they need to simulate both a series of age-based cohorts and a number of replicate patches to account for stochastic gap-scale disturbances. The detail required by the latter method increases the number of calculations by two to three orders of magnitude compared to the less realistic population average approach. In an effort to increase the efficiency of dynamic vegetation models without sacrificing realism, we developed a new method for simulating stand-replacing disturbances that is both accurate and faster than approaches that use replicate patches. The GAPPARD (approximating GAP model results with a Probabilistic Approach to account for stand Replacing Disturbances) method works by postprocessing the output of deterministic, undisturbed simulations of a cohort-based vegetation model by deriving the distribution of patch ages at any point in time on the basis of a disturbance probability. With this distribution, the expected value of any output variable can be calculated from the output values of the deterministic undisturbed run at the time corresponding to the patch age. To account for temporal changes in model forcing (e.g., as a result of climate change), GAPPARD performs a series of deterministic simulations and interpolates between the results in the postprocessing step. We integrated the GAPPARD method in the vegetation model LPJ-GUESS, and evaluated it in a series of simulations along an altitudinal transect of an inner-Alpine valley. We obtained results very similar to the output of the original LPJ-GUESS model that uses 100 replicate patches, but simulation time was reduced by approximately the factor 10. Our new method is therefore highly suited for rapidly approximating LPJ-GUESS results, and provides the opportunity for future studies over large spatial domains, allows easier parameterization of tree species, faster identification of areas of interesting simulation results, and comparisons with large-scale datasets and results of other forest models.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-09-13
    Description: Halocline water modification and along slope advection at the Laptev Sea continental margin Ocean Science Discussions, 10, 1581-1617, 2013 Author(s): D. Bauch, S. Torres-Valdes, I. Polyakov, A. Novikhin, I. Dmitrenko, J. McKay, and A. Mix A general pattern in water mass distribution and potential shelf-basin exchanges is revealed at the Laptev Sea continental slope based on hydrochemical and stable oxygen isotope data from summers 2005–2009. Despite considerable interannual variations, a frontal system can be inferred between shelf, continental slope and central Eurasian Basin waters in the upper 100 m of the water column along the continental slope. Net sea-ice melt is consistently found at the continental slope; however the sea-ice meltwater signal is independent from the local retreat of the ice cover and appears to be advected from upwind locations. In addition to the along-slope frontal system at the continental shelf break a strong gradient is identified on the Laptev Sea shelf between 122 and 126° E with an eastward increase of riverine and sea-ice related brine water contents. These waters cross the shelf break at ~ 140° E and feed the Low Salinity Halocline Water (LSHW, salinity S 〈 33) in the upper 50 m of the water column. Extremely high silicate concentrations in Laptev Sea bottom waters may lead to speculation on a link to the local silicate maximum found within the salinity range of ~ 33 to 34.5, typical for the Lower Halocline Water (LHW) at the continental slope. But brine signatures and nutrient ratios from the central Laptev Sea differ from those at the continental slope. Thus a significant contribution of Laptev Sea bottom waters to the LHW at the continental slope can be excluded. The silicate maximum within the LHW at the continental slope may be formed locally or at the outer Laptev Sea shelf. Similar to the advection of the sea-ice melt signal along the Laptev Sea continental slope the nutrient signal at 50–70 m water depth within the LHW might also be fed by advection parallel to the slope. Thus, our analyses suggest that advective processes from upwind locations play a significant role in the halocline formation in the northern Laptev Sea.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-06-08
    Description: On the parallelization of atmospheric inversions of CO 2 surface fluxes within a variational framework Geoscientific Model Development, 6, 783-790, 2013 Author(s): F. Chevallier The variational formulation of Bayes' theorem allows inferring CO 2 sources and sinks from atmospheric concentrations at much higher time–space resolution than the ensemble or analytical approaches. However, it usually exhibits limited scalable parallelism. This limitation hinders global atmospheric inversions operated on decadal time scales and regional ones with kilometric spatial scales because of the computational cost of the underlying transport model that has to be run at each iteration of the variational minimization. Here, we introduce a physical parallelization (PP) of variational atmospheric inversions. In the PP, the inversion still manages a single physically and statistically consistent window, but the transport model is run in parallel overlapping sub-segments in order to massively reduce the computation wall-clock time of the inversion. For global inversions, a simplification of transport modelling is described to connect the output of all segments. We demonstrate the performance of the approach on a global inversion for CO 2 with a 32 yr inversion window (1979–2010) with atmospheric measurements from 81 sites of the NOAA global cooperative air sampling network. In this case, we show that the duration of the inversion is reduced by a seven-fold factor (from months to days), while still processing the three decades consistently and with improved numerical stability.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-04-10
    Description: Inclusion of ash and SO 2 emissions from volcanic eruptions in WRF-Chem: development and some applications Geoscientific Model Development, 6, 457-468, 2013 Author(s): M. Stuefer, S. R. Freitas, G. Grell, P. Webley, S. Peckham, S. A. McKeen, and S. D. Egan We describe a new functionality within the Weather Research and Forecasting (WRF) model with coupled Chemistry (WRF-Chem) that allows simulating emission, transport, dispersion, transformation and sedimentation of pollutants released during volcanic activities. Emissions from both an explosive eruption case and a relatively calm degassing situation are considered using the most recent volcanic emission databases. A preprocessor tool provides emission fields and additional information needed to establish the initial three-dimensional cloud umbrella/vertical distribution within the transport model grid, as well as the timing and duration of an eruption. From this source condition, the transport, dispersion and sedimentation of the ash cloud can be realistically simulated by WRF-Chem using its own dynamics and physical parameterization as well as data assimilation. Examples of model applications include a comparison of tephra fall deposits from the 1989 eruption of Mount Redoubt (Alaska) and the dispersion of ash from the 2010 Eyjafjallajökull eruption in Iceland. Both model applications show good coincidence between WRF-Chem and observations.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-04-11
    Description: PORT, a CESM tool for the diagnosis of radiative forcing Geoscientific Model Development, 6, 469-476, 2013 Author(s): A. J. Conley, J.-F. Lamarque, F. Vitt, W. D. Collins, and J. Kiehl The Parallel Offline Radiative Transfer (PORT) model is a stand-alone tool, driven by model-generated datasets, that can be used for any radiation calculation that the underlying radiative transfer schemes can perform, such as diagnosing radiative forcing. In its present distribution, PORT isolates the radiation code from the Community Atmosphere Model (CAM4) in the Community Earth System Model (CESM1). The current configuration focuses on CAM4 radiation with the constituents as represented in present-day conditions in CESM1, along with their optical properties. PORT includes an implementation of stratospheric temperature adjustment under the assumption of fixed dynamical heating, which is necessary to compute radiative forcing in addition to the more straightforward instantaneous radiative forcing. PORT can be extended to use radiative constituent distributions from other models or model simulations. Ultimately, PORT can be used with various radiative transfer models. As illustrations of the use of PORT, we perform the computation of radiative forcing from doubling of carbon dioxide, from the change of tropospheric ozone concentration from the year 1850 to 2000, and from present-day aerosols. The radiative forcing from tropospheric ozone (with respect to 1850) generated by a collection of model simulations under the Atmospheric Chemistry and Climate Model Intercomparison Project is found to be 0.34 (with an intermodel standard deviation of 0.07) W m −2 . Present-day aerosol direct forcing (relative to no aerosols) is found to be −1.3 W m −2 .
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-04-04
    Description: The transient distributions of nuclear weapon-generated tritium and its decay product 3 He in the Mediterranean Sea, 1952–2011, and their oceanographic potential Ocean Science Discussions, 10, 649-690, 2013 Author(s): W. Roether, P. Jean-Baptiste, E. Fourré, and J. Sültenfuß We present a comprehensive account of tritium and 3 He in the Mediterranean Sea since the appearance of the tritium generated by the atmospheric nuclear-weapon testing in the 1950's and early 1960's, based on essentially all available observations. Tritium in surface waters rose to 20–30 TU in 1964 (TU = 10 18 · [ 3 H]/[H]), a factor of about 100 above the natural level, and thereafter declined 30-fold up to 2011. The decline was largely due to radioactive tritium decay, which produced significant amounts of its stable daughter 3 He. We present the scheme by which we separate the tritiugenic part of 3 He and the part due to release from the sea floor (terrigenic part). We show that the tritiugenic component can be quantified throughout the Mediterranean waters, typically to a ±0.15 TU equivalent, mostly because the terrigenic part is low in 3 He. This fact makes the Mediterranean unique in offering a potential for the use of tritiugenic 3 He as a tracer. The transient distributions of the two tracers are illustrated by a number of sections spanning the entire sea and relevant features of their distributions are noted. By 2011, the 3 He concentrations in the top few hundred meters had become low, in response to the decreasing tritium concentrations combined with a flushing out by the general westward drift of these waters. Tritium- 3 He ages in Levantine Intermediate Water (LIW) were obtained repeated in time at different locations, defining transit times from the LIW source region east of Rhodes. The ages show an upward trend with the time elapsed since the surface-water tritium maximum, which arises because the repeated observations represent increasingly slower moving parts of the full transit time spectrum of LIW. The transit time dispersion found by this new application of tritium- 3 He dating is considerable. We find mean transit times of 12 ± 2 yr up to the Strait of Sicily, 18 ± 3 yr up to the Tyrrhenian Sea, and 22 ± 4 yr up into the Western Mediterranean. We furthermore present full Eastern Mediterranean sections of terrigenic 3 He and tritium- 3 He age in 1987, the latter one similarly showing an effect of the transit time dispersion. We conclude that the available tritium and 3 He data, in particular if combined with other tracer data, are useful for constraining the subsurface circulation and mixing of the Mediterranean Sea.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-09-10
    Description: Downscaling a global climate model to simulate climate change over the US and the implication on regional and urban air quality Geoscientific Model Development, 6, 1429-1445, 2013 Author(s): M. Trail, A. P. Tsimpidi, P. Liu, K. Tsigaridis, Y. Hu, A. Nenes, and A. G. Russell Climate change can exacerbate future regional air pollution events by making conditions more favorable to form high levels of ozone. In this study, we use spectral nudging with the Weather Research and Forecasting (WRF) model to downscale NASA earth system GISS modelE2 results during the years 2006 to 2010 and 2048 to 2052 over the contiguous United States in order to compare the resulting meteorological fields from the air quality perspective during the four seasons of five-year historic and future climatological periods. GISS results are used as initial and boundary conditions by the WRF regional climate model (RCM) to produce hourly meteorological fields. The downscaling technique and choice of physics parameterizations used are evaluated by comparing them with in situ observations. This study investigates changes of similar regional climate conditions down to a 12 km by 12 km resolution, as well as the effect of evolving climate conditions on the air quality at major US cities. The high-resolution simulations produce somewhat different results than the coarse-resolution simulations in some regions. Also, through the analysis of the meteorological variables that most strongly influence air quality, we find consistent changes in regional climate that would enhance ozone levels in four regions of the US during fall (western US, Texas, northeastern, and southeastern US), one region during summer (Texas), and one region where changes potentially would lead to better air quality during spring (Northeast). Changes in regional climate that would enhance ozone levels are increased temperatures and stagnation along with decreased precipitation and ventilation. We also find that daily peak temperatures tend to increase in most major cities in the US, which would increase the risk of health problems associated with heat stress. Future work will address a more comprehensive assessment of emissions and chemistry involved in the formation and removal of air pollutants.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-09-10
    Description: The SOCOL version 3.0 chemistry–climate model: description, evaluation, and implications from an advanced transport algorithm Geoscientific Model Development, 6, 1407-1427, 2013 Author(s): A. Stenke, M. Schraner, E. Rozanov, T. Egorova, B. Luo, and T. Peter We present the third generation of the coupled chemistry–climate model (CCM) SOCOL (modeling tools for studies of SOlar Climate Ozone Links). The most notable modifications compared to the previous model version are (1) the dynamical core has been updated with the fifth generation of the middle-atmosphere general circulation model MA-ECHAM (European Centre/HAMburg climate model), and (2) the advection of the chemical species is now calculated by a mass-conserving and shape-preserving flux-form transport scheme instead of the previously used hybrid advection scheme. The whole chemistry code has been rewritten according to the ECHAM5 infrastructure and transferred to Fortran95. In contrast to its predecessors, SOCOLvs3 is now fully parallelized. The performance of the new SOCOL version is evaluated on the basis of transient model simulations (1975–2004) with different horizontal (T31 and T42) resolutions, following the approach of the CCMVal-1 model validation activity. The advanced advection scheme significantly reduces the artificial loss and accumulation of tracer mass in regions with strong gradients that was observed in previous model versions. Compared to its predecessors, SOCOLvs3 generally shows more realistic distributions of chemical trace species, especially of total inorganic chlorine, in terms of the mean state, but also of the annual and interannual variability. Advancements with respect to model dynamics are for example a better representation of the stratospheric mean state in spring, especially in the Southern Hemisphere, and a slowdown of the upward propagation in the tropical lower stratosphere. Despite a large number of improvements model deficiencies still remain. Examples include a too-fast vertical ascent and/or horizontal mixing in the tropical stratosphere, the cold temperature bias in the lowermost polar stratosphere, and the overestimation of polar total ozone loss during Antarctic springtime.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-09-11
    Description: Stable water isotopes in the coupled atmosphere–land surface model ECHAM5-JSBACH Geoscientific Model Development, 6, 1463-1480, 2013 Author(s): B. Haese, M. Werner, and G. Lohmann In this study we present first results of a new model development, ECHAM5-JSBACH-wiso, where we have incorporated the stable water isotopes H 2 18 O and HDO as tracers in the hydrological cycle of the coupled atmosphere–land surface model ECHAM5-JSBACH. The ECHAM5-JSBACH-wiso model was run under present-day climate conditions at two different resolutions (T31L19, T63L31). A comparison between ECHAM5-JSBACH-wiso and ECHAM5-wiso shows that the coupling has a strong impact on the simulated temperature and soil wetness. Caused by these changes of temperature and the hydrological cycle, the δ 18 O in precipitation also shows variations from −4‰ up to 4‰. One of the strongest anomalies is shown over northeast Asia where, due to an increase of temperature, the δ 18 O in precipitation increases as well. In order to analyze the sensitivity of the fractionation processes over land, we compare a set of simulations with various implementations of these processes over the land surface. The simulations allow us to distinguish between no fractionation, fractionation included in the evaporation flux (from bare soil) and also fractionation included in both evaporation and transpiration (from water transport through plants) fluxes. While the isotopic composition of the soil water may change for δ 18 O by up to +8&permil:, the simulated δ 18 O in precipitation shows only slight differences on the order of ±1‰. The simulated isotopic composition of precipitation fits well with the available observations from the GNIP (Global Network of Isotopes in Precipitation) database.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-09-11
    Description: The effects of climate change on persistent organic pollutants (POPs) in the North Sea Ocean Science Discussions, 10, 1525-1557, 2013 Author(s): K. O'Driscoll, B. Mayer, J. Su, and M. Mathis The fate and cycling of two selected legacy persistent organic pollutants (POPs), PCB 153 and γ-HCH, in the North Sea in the 21st century have been modelled with combined hydrodynamic and fate and transport ocean models. To investigate the impact of climate variability on POPs in the North Sea in the 21st century, future scenario model runs for three 10 yr periods to the year 2100 using plausible levels of both in situ concentrations and atmospheric, river and open boundary inputs are performed. Since estimates of future concentration levels of POPs in the atmosphere, oceans and rivers are not available, our approach was to reutilise 2005 values in the atmosphere, rivers and at the open ocean boundaries for every year of the simulations. In this way, we attribute differences between the three 10 yr simulations to climate change only. For the HAMSOM and atmospheric forcing, results of the IPCC A1B (SRES) 21st century scenario are utilised, where surface forcing is provided by the REMO downscaling of the ECHAM5 global atmospheric model, and open boundary conditions are provided by the MPIOM global ocean model. Dry gas deposition and volatilisation of γ-HCH increase in the future relative to the present. In the water column, total mass of γ-HCH and PCB 153 remain fairly steady in all three runs. In sediment, γ-HCH increases in the future runs, relative to the present, while PCB 153 in sediment decreases exponentially in all three runs, but even faster in the future, both of which are the result of climate change. Annual net sinks exceed sources at the ends of all periods.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-09-12
    Description: Observations of phytoplankton spring bloom onset triggered by a density front in NW Mediterranean Ocean Science Discussions, 10, 1559-1580, 2013 Author(s): A. Olita, S. Sparnocchia, S. Cusí, L. Fazioli, R. Sorgente, J. Tintoré, and A. Ribotti Phytoplankton bloom in NW Mediterranan sea is a seasonal event that mainly occurrs in a limited area (Gulf of Lyon and Provençal basin) where this phenomenon is promoted by a cyclonic circulation, strong wind-driven mixing and subsequent spring restratification. At the southern boundary of this area a density front (North Balearic Front) separating denser waters from the lighter Modified Atlantic Waters reservoir at south is suspected to trigger weaker and earlier (late winter) blooms by (a) enhanced pumping of nutrients into the euphotic layer and (b) promoting an early restratification of the water column (by frontal instabilities). A multisensor glider round trip, equipped with CTD and fluorimeter, crossing the frontal area in February–March 2013, allowed to observe the bloom triggering after the decrease of intense wind-driven turbulent convection and mixing. Satellite imagery supports and confirms in-situ observations. It was shown that frontal activity has a relevant role in the promotion and acceleration of the dynamical restratification, with a consequent biological response in terms of primary production. Restratification is necessary preconditioning factor for bloom triggering in frontal area, net of other involved mechanism promoting the bloom as the enhanced biological pump. So, like for high-latitude fronts (Taylor and Ferrari, 2011a), also for this mid-latitude oligotrophic region front seems to promote new production by dynamically enahnced restratification inhibiting mixing. Finally, we argued that Sverdrup's Critical Depth criterion seems to apply in the northern well-mixed area, where the zeroing of heat fluxes (and related turbulent convection) does not correspond to a prompt onset of the bloom (which appeared 1 month later).
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-09-13
    Description: δ 18 O water isotope in the i LOVECLIM model (version 1.0) – Part 2: Evaluation of model results against observed δ 18 O in water samples Geoscientific Model Development, 6, 1493-1504, 2013 Author(s): D. M. Roche and T. Caley The H 2 18 O stable isotope was previously introduced in the three coupled components of the earth system model i LOVECLIM: atmosphere, ocean and vegetation. The results of a long (5000 yr) pre-industrial equilibrium simulation are presented and evaluated against measurement of H 2 18 O abundance in present-day water for the atmospheric and oceanic components. For the atmosphere, it is found that the model reproduces the observed spatial distribution and relationships to climate variables with some merit, though limitations following our approach are highlighted. Indeed, we obtain the main gradients with a robust representation of the Rayleigh distillation but caveats appear in Antarctica and around the Mediterranean region due to model limitation. For the oceanic component, the agreement between the modelled and observed distribution of water δ 18 O is found to be very good. Mean ocean surface latitudinal gradients are faithfully reproduced as well as the mark of the main intermediate and deep water masses. This opens large prospects for the applications in palaeoclimatic context.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2013-09-14
    Description: The Rock Geochemical Model (RokGeM) v0.9 Geoscientific Model Development, 6, 1543-1573, 2013 Author(s): G. Colbourn, A. Ridgwell, and T. M. Lenton A new model of terrestrial rock weathering – the Rock Geochemical Model (RokGeM) – was developed for incorporation into the GENIE Earth System modelling framework. In this paper we describe the model. We consider a range of previously devised parameterizations, ranging from simple dependencies on global mean temperature following Berner et al. (1983), to spatially explicit dependencies on run-off and temperature (GKWM, Bluth and Kump, 1994; GEM-CO2, Amiotte-Suchet et al., 2003) – fields provided by the energy-moisture balance atmosphere model component in GENIE. Using long-term carbon cycle perturbation experiments, we test the effects of a wide range of model parameters, including whether or not the atmosphere was "short-circuited" in the carbon cycle; the sensitivity and feedback strength of temperature and run-off on carbonate and silicate weathering; different river-routing schemes; 0-D (global average) vs. 2-D (spatially explicit) weathering schemes; and the lithology dependence of weathering. Included are details of how to run the model and visualize the results.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-09-14
    Description: Observed decline of the Atlantic Meridional Overturning Circulation 2004 to 2012 Ocean Science Discussions, 10, 1619-1645, 2013 Author(s): D. A. Smeed, G. McCarthy, S. A. Cunningham, E. Frajka-Williams, D. Rayner, W. E. Johns, C. S. Meinen, M. O. Baringer, B. I. Moat, A. Duchez, and H. L. Bryden The Atlantic Meridional Overturning Circulation (AMOC) has been observed continuously at 26° N since April 2004. The AMOC and its component parts are monitored by combining a transatlantic array of moored instruments with submarine-cable based measurements of the Gulf Stream and satellite derived Ekman transport. The time series has recently been extended to October 2012 and the results show a downward trend since 2004. From April~2008 to March 2012 the AMOC was an average of 2.7 Sv weaker than in the first four years of observation (95% confidence that the reduction is 0.3 Sv or more). Ekman transport reduced by about 0.2 Sv and the Gulf Stream by 0.5 Sv but most of the change (2.0 Sv) is due to the mid-ocean geostrophic flow. The change of the mid-ocean geostrophic flow represents a strengthening of the subtropical gyre above the thermocline. The increased southward flow of warm waters is balanced by a decrease in the southward flow of Lower North Atlantic Deep Water below 3000 m. The transport of Lower North Atlantic Deep Water slowed by 7% per year (95% confidence that the rate of slowing is greater than 2.5% per year).
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-09-18
    Description: An approach to computing direction relations between separated object groups Geoscientific Model Development, 6, 1591-1599, 2013 Author(s): H. Yan, Z. Wang, and J. Li Direction relations between object groups play an important role in qualitative spatial reasoning, spatial computation and spatial recognition. However, none of existing models can be used to compute direction relations between object groups. To fill this gap, an approach to computing direction relations between separated object groups is proposed in this paper, which is theoretically based on gestalt principles and the idea of multi-directions. The approach firstly triangulates the two object groups, and then it constructs the Voronoi diagram between the two groups using the triangular network. After this, the normal of each Voronoi edge is calculated, and the quantitative expression of the direction relations is constructed. Finally, the quantitative direction relations are transformed into qualitative ones. The psychological experiments show that the proposed approach can obtain direction relations both between two single objects and between two object groups, and the results are correct from the point of view of spatial cognition.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-09-26
    Description: A method to represent ozone response to large changes in precursor emissions using high-order sensitivity analysis in photochemical models Geoscientific Model Development, 6, 1601-1608, 2013 Author(s): G. Yarwood, C. Emery, J. Jung, U. Nopmongcol, and T. Sakulyanontvittaya Photochemical grid models (PGMs) are used to simulate tropospheric ozone and quantify its response to emission changes. PGMs are often applied for annual simulations to provide both maximum concentrations for assessing compliance with air quality standards and frequency distributions for assessing human exposure. Efficient methods for computing ozone at different emission levels can improve the quality of ozone air quality management efforts. This study demonstrates the feasibility of using the decoupled direct method (DDM) to calculate first- and second-order sensitivity of ozone to anthropogenic NO x and VOC emissions in annual PGM simulations at continental scale. Algebraic models are developed that use Taylor series to produce complete annual frequency distributions of hourly ozone at any location and any anthropogenic emission level between zero and 100%, adjusted independently for NO x and VOC. We recommend computing the sensitivity coefficients at the midpoint of the emissions range over which they are intended to be applied, in this case with 50% anthropogenic emissions. The algebraic model predictions can be improved by combining sensitivity coefficients computed at 10 and 50% anthropogenic emissions. Compared to brute force simulations, algebraic model predictions tend to be more accurate in summer than winter, at rural than urban locations, and with 100% than zero anthropogenic emissions. Equations developed to combine sensitivity coefficients computed with 10 and 50% anthropogenic emissions are able to reproduce brute force simulation results with zero and 100% anthropogenic emissions with a mean bias of less than 2 ppb and mean error of less than 3 ppb averaged over 22 US cities.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-12-13
    Description: A Lagrangian advection scheme with shape matrix (LASM) for solving advection problems Geoscientific Model Development, 7, 2951-2968, 2014 Author(s): L. Dong, B. Wang, and L. Liu A new Lagrangian advection scheme with shape matrix (LASM) is proposed to take advantage of the extreme low numerical diffusion of the Lagrangian methods. The tracer is discretized into finite parcels, which move along the downstream trajectories. Different from other Lagrangian schemes, the parcel shape is simulated explicitly by a linear transformation matrix. By doing so, the aliasing error in the Lagrangian schemes is largely reduced without introducing substantial interparcel mixing in the pure advection stage, because the flow information will be respected when remapping tracer density onto the fixed model grids. An adaptive interparcel mixing algorithm is constructed to ensure the validity of the linear approximation of the parcel shape, where the mixing is only triggered when it is necessary and resembles the physical mixing. The total tracer mass on the parcels is conserved exactly. The new scheme is validated by using several test cases.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2014-12-13
    Description: Global representation of tropical cyclone-induced ocean thermal changes using Argo data – Part 2: Estimating air–sea heat fluxes and ocean heat content changes Ocean Science Discussions, 11, 2907-2937, 2014 Author(s): L. Cheng, J. Zhu, and R. L. Sriver We use Argo temperature data to examine changes in ocean heat content (OHC) and air–sea heat fluxes induced by tropical cyclones (TC)s on a global scale. A footprint technique that analyzes the vertical structure of cross-track thermal responses along all storm tracks during the period 2004–2012 is utilized (see part I). We find that TCs are responsible for 1.87 PW (11.05 W m −2 when averaging over the global ocean basin) of heat transfer annually from the global ocean to the atmosphere during storm passage (0–3 days) on a global scale. Of this total, 1.05 ± 0.20 PW (4.80 ± 0.85 W m −2 ) is caused by Tropical storms/Tropical depressions (TS/TD) and 0.82 ± 0.21 PW (6.25 ± 1.5 W m −2 ) is caused by hurricanes. Our findings indicate that ocean heat loss by TCs may be a substantial missing piece of the global ocean heat budget. Net changes in OHC after storm passage is estimated by analyzing the temperature anomalies during wake recovery following storm events (4–20 days after storm passage) relative to pre-storm conditions. Results indicate the global ocean experiences a 0.75 ± 0.25 PW (5.98 ± 2.1W m −2 ) net heat gain annually for hurricanes. In contrast, under TS/TD conditions, ocean experiences 0.41 ± 0.21 PW (1.90 ± 0.96 W m −2 ) net ocean heat loss, suggesting the overall oceanic thermal response is particularly sensitive to the intensity of the event. The net ocean heat uptake caused by all storms is 0.34 PW.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-12-18
    Description: Sensitivity of the Mediterranean sea level to atmospheric pressure and free surface elevation numerical formulation in NEMO Geoscientific Model Development, 7, 3001-3015, 2014 Author(s): P. Oddo, A. Bonaduce, N. Pinardi, and A. Guarnieri The sensitivity of the dynamics of the Mediterranean Sea to atmospheric pressure and free surface elevation formulation using NEMO (Nucleus for European Modelling of the Ocean) was evaluated. Four different experiments were carried out in the Mediterranean Sea using filtered or explicit free surface numerical schemes and accounting for the effect of atmospheric pressure in addition to wind and buoyancy fluxes. Model results were evaluated by coherency and power spectrum analysis with tide gauge data. We found that atmospheric pressure plays an important role for periods shorter than 100 days. The free surface formulation is important to obtain the correct ocean response for periods shorter than 30 days. At frequencies higher than 15 days −1 the Mediterranean basin's response to atmospheric pressure was not coherent and the performance of the model strongly depended on the specific area considered. A large-amplitude seasonal oscillation observed in the experiments using a filtered free surface was not evident in the corresponding explicit free surface formulation case, which was due to a phase shift between mass fluxes in the Gibraltar Strait and at the surface. The configuration with time splitting and atmospheric pressure always performed best; the differences were enhanced at very high frequencies.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2014-11-09
    Description: Gaseous chemistry and aerosol mechanism developments for version 3.5.1 of the online regional model, WRF-Chem Geoscientific Model Development, 7, 2557-2579, 2014 Author(s): S. Archer-Nicholls, D. Lowe, S. Utembe, J. Allan, R. A. Zaveri, J. D. Fast, Ø. Hodnebrog, H. Denier van der Gon, and G. McFiggans We have made a number of developments to the Weather, Research and Forecasting model coupled with Chemistry (WRF-Chem), with the aim of improving model prediction of trace atmospheric gas-phase chemical and aerosol composition, and of interactions between air quality and weather. A reduced form of the Common Reactive Intermediates gas-phase chemical mechanism (CRIv2-R5) has been added, using the Kinetic Pre-Processor (KPP) interface, to enable more explicit simulation of VOC degradation. N 2 O 5 heterogeneous chemistry has been added to the existing sectional MOSAIC aerosol module, and coupled to both the CRIv2-R5 and existing CBM-Z gas-phase schemes. Modifications have also been made to the sea-spray aerosol emission representation, allowing the inclusion of primary organic material in sea-spray aerosol. We have worked on the European domain, with a particular focus on making the model suitable for the study of nighttime chemistry and oxidation by the nitrate radical in the UK atmosphere. Driven by appropriate emissions, wind fields and chemical boundary conditions, implementation of the different developments are illustrated, using a modified version of WRF-Chem 3.4.1, in order to demonstrate the impact that these changes have in the Northwest European domain. These developments are publicly available in WRF-Chem from version 3.5.1 onwards.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-11-06
    Description: Dynamics of turbulent western boundary currents at low latitude in a shallow water model Ocean Science Discussions, 11, 2461-2493, 2014 Author(s): C. Q. C. Akuetevi and A. Wirth The dynamics of low latitude turbulent western boundary currents crossing the equator is considered using numerical results from integrations of a reduced gravity shallow-water model. For viscosity values of 1000 m 2 s −1 and more, the boundary layer dynamics compares well to the analytical Munk-layer solution. When the viscosity is reduced, the boundary layer becomes turbulent and coherent structures in form of anticyclonic eddies, bursts (violent detachments of the viscous sub-layer) and dipoles appear. Three distinct boundary layers emerge, the viscous sub-layer, the advective boundary layer and the extended boundary layer. The first is characterized by a dominant vorticity balance between the viscous transport and the advective transport of vorticity. The second by a balance between the advection of planetary vorticity and the advective transport of relative vorticity. The extended boundary layer is the area to which turbulent motion from the boundary extends. The scaling of the three boundary layer thicknesses with viscosity is evaluated. Characteristic scales of the dynamics and dissipation are determined. A pragmatic approach to determine the eddy viscosity diagnostically for coarse resolution numerical models is proposed.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2014-12-16
    Description: A strategy for GIS-based 3-D slope stability modelling over large areas Geoscientific Model Development, 7, 2969-2982, 2014 Author(s): M. Mergili, I. Marchesini, M. Alvioli, M. Metz, B. Schneider-Muntau, M. Rossi, and F. Guzzetti GIS-based deterministic models may be used for landslide susceptibility mapping over large areas. However, such efforts require specific strategies to (i) keep computing time at an acceptable level, and (ii) parameterize the geotechnical data. We test and optimize the performance of the GIS-based, 3-D slope stability model r.slope.stability in terms of computing time and model results. The model was developed as a C- and Python-based raster module of the open source software GRASS GIS and considers the 3-D geometry of the sliding surface. It calculates the factor of safety (FoS) and the probability of slope failure ( P f ) for a number of randomly selected potential slip surfaces, ellipsoidal or truncated in shape. Model input consists of a digital elevation model (DEM), ranges of geotechnical parameter values derived from laboratory tests, and a range of possible soil depths estimated in the field. Probability density functions are exploited to assign P f to each ellipsoid. The model calculates for each pixel multiple values of FoS and P f corresponding to different sliding surfaces. The minimum value of FoS and the maximum value of P f for each pixel give an estimate of the landslide susceptibility in the study area. Optionally, r.slope.stability is able to split the study area into a defined number of tiles, allowing parallel processing of the model on the given area. Focusing on shallow landslides, we show how multi-core processing makes it possible to reduce computing times by a factor larger than 20 in the study area. We further demonstrate how the number of random slip surfaces and the sampling of parameters influence the average value of P f and the capacity of r.slope.stability to predict the observed patterns of shallow landslides in the 89.5 km 2 Collazzone area in Umbria, central Italy.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2011-06-15
    Description: Calculating the water and heat balances of the Eastern Mediterranean basin using ocean modelling and available meteorological, hydrological, and ocean data Ocean Science Discussions, 8, 1301-1338, 2011 Author(s): M. Shaltout and A. Omstedt This paper analyses the Eastern Mediterranean water and heat balances over a 52-yr period. The modelling uses a process-oriented approach resolving the one-dimensional equations of momentum, heat, and salt conservation, with turbulence modelled using a two-equation model. The exchange through the Sicily Channel connecting the Eastern and Western basins is calculated from satellite altimeter data. The results illustrates that calculated surface temperature and salinity follow the reanalysed data well and with biases of −0.4 °C and −0.004, respectively. Monthly and yearly temperature and salinity cycles are also satisfactory simulated. Reanalysed data and calculated water mass structure and heat balance components are in good agreement, indicating that the air-sea interaction and the turbulent mixing are realistically simulated. The study illustrates that the water balance in the Eastern Mediterranean basin is controlled by the difference between inflows/outflows through the Sicily Channel and by the net precipitation rates. The heat balance is controlled by the heat loss from the water surface, sun radiation into the sea, and heat flow through the Sicily Channel, the first two displaying both climate trends. An annual net heat loss of approximately 9 W m −2 was balanced by net heat in flow through the Sicily Channel.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-06-15
    Description: Extraction of spatial-temporal rules from mesoscale eddies in the South China Sea Based on rough set theory Ocean Science Discussions, 8, 1261-1300, 2011 Author(s): Y. Du, X. Fan, Z. He, F. Su, C. Zhou, H. Mao, and D. Wang In this paper, a rough set theory is introduced to represent spatial-temporal relationships and extract the corresponding rules from typical mesoscale-eddy states in the South China Sea (SCS). Three decision attributes are adopted in this study, which make the approach flexible in retrieving spatial-temporal rules with different features. Spatial-temporal rules of typical states in the SCS are extracted as three decision attributes, which then are confirmed by the previous works. The results demonstrate that this approach is effective in extracting spatial-temporal rules from typical mesoscale-eddy states, and therefore provides a powerful approach to forecasts in the future. Spatial-temporal rules in the SCS indicate that warm eddies following the rules are generally in the southeastern and central SCS around 2000 m isobaths in winter. Their intensity and vorticity are weaker than those of cold eddies. They usually move a shorter distance. By contrast, cold eddies are in 2000 m-deeper regions of the southwestern and northeastern SCS in spring and fall. Their intensity and vorticity are strong. Usually they move a long distance. In winter, a few rules are followed by cold eddies in the northern tip of the basin and southwest of Taiwan Island rather than warm eddies, indicating cold eddies may be well-regulated in the region. Several warm-eddy rules are achieved west of Luzon Island, indicating warm eddies may be well-regulated in the region as well. Otherwise, warm and cold eddies are distributed not only in the jet flow off southern Vietnam induced by intraseasonal wind stress in summer-fall, but also in the northern shallow water, which should be a focus of future study.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2011-06-22
    Description: Tracer distribution in the Pacific Ocean following a release off Japan – what does an oceanic general circulation model tell us? Ocean Science Discussions, 8, 1441-1466, 2011 Author(s): H. Dietze and I. Kriest In the aftermath of an earthquake and tsunami on 11 March 2011 considerable amounts of radioactive materials were accidentally released into the sea off Fukushima-Daiichi, Japan. This study uses a three-dimensional eddy-resolving oceanic general circulation model to explore potential pathways of a tracer, similar to 137 Cs, from the coast to the open ocean. Results indicate that enhanced concentrations meet a receding spring bloom offshore and that the area of enhanced concentrations offshore is strongly determined by surface mixed layer dynamics. However, huge uncertainties remain. Among them are the realism of the simulated cross-shelf transport and apparently inconsistent estimates of the particle reactivity of 137 Cs which are discussed in a brief literature review. We argue that a comprehensive set of 137 Cs measurements, including sites offshore, could be a unique opportunity to both evaluate and advance the evaluation of oceanic general circulation models.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2011-06-23
    Description: Usefulness of high resolution coastal models for operational oil spill forecast: the Full City accident Ocean Science Discussions, 8, 1467-1504, 2011 Author(s): G. Broström, A. Carrasco, L. R. Hole, S. Dick, F. Janssen, J. Mattsson, and S. Berger Oil spill modeling is considered to be an important decision support system (DeSS) useful for remedial action in case of accidents, as well as for designing the environmental monitoring system that is frequently set up after major accidents. Many accidents take place in coastal areas implying that low resolution basin scale ocean models is of limited use for predicting the trajectories of an oil spill. In this study, we target the oil spill in connection with the Full City accident on the Norwegian south coast and compare three different oil spill models for the area. The result of the analysis is that all models do a satisfactory job. The "standard" operational model for the area is shown to have severe flaws but including an analysis based on a higher resolution model (1.5 km resolution) for the area the model system show results that compare well with observations. The study also shows that an ensemble using three different models is useful when predicting/analyzing oil spill in coastal areas.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2011-06-28
    Description: Impact of combining GRACE and GOCE gravity data on ocean circulation estimates Ocean Science Discussions, 8, 1535-1573, 2011 Author(s): T. Janjić, J. Schröter, R. Savcenko, W. Bosch, A. Albertella, R. Rummel, and O. Klatt In this work we examine the impact of assimilation of multi-mission-altimeter data and the GRACE/GOCE gravity fields into the finite element ocean model (FEOM), with the focus on the Southern Ocean circulation. In order to do so, we use the geodetic approach for obtaining the dynamical ocean topography (DOT), that combines the multi-mission-altimeter data and the GRACE/GOCE gravity fields, and requires that both fields be spectrally consistent. The spectral consistency is achieved by filtering of the sea surface height and the geoid using profile approach. Combining the GRACE and GOCE data, a considerably shorter filter length resolving more DOT details can be used. In order to specify the spectrally consistent geodetic DOT we applied the Jekeli-Wahr filter corresponding to 241 km, 121 km, 97 km and 81 km halfwidths for the GRACE/GOCE based gravity field model GOCO01S and to the sea surface. More realistic features of the ocean assimilation were obtained in the Weddel gyre area due to increased resolution of the data fields, particularly for temperature field at the 800 m depth compared to Argo data.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2011-06-22
    Description: Wind forcing of salinity anomalies in the Denmark Strait overflow Ocean Science Discussions, 8, 1403-1440, 2011 Author(s): S. Hall, S. R. Dye, K. J. Heywood, and M. R. Wadley The overflow of dense water from the Nordic Seas to the North Atlantic through Denmark Strait is an important part of the global thermohaline circulation. The salinity of the overflow plume has been measured by an array of current meters across the continental slope off the coast of Angmagssalik, southeast Greenland since September 1998. During 2004 the salinity of the overflow plume changed dramatically, with the entire width of the array (70 km) freshening between January 2004 and July 2004, with a significant negative salinity anomaly of about 0.06 in May. The event in May represents a fresh anomaly of over 3 standard deviations from the mean since recording began in 1998. We show that the OCCAM 1/12° Ocean General Circulation Model not only reproduces the 2004 freshening event ( r =0.96, p
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-06-25
    Description: Semi-Lagrangian methods in air pollution models Geoscientific Model Development, 4, 511-541, 2011 Author(s): A. B. Hansen, J. Brandt, J. H. Christensen, and E. Kaas Various semi-Lagrangian methods are tested with respect to advection in air pollution modeling. The aim is to find a method fulfilling as many of the desirable properties by Rasch andWilliamson (1990) and Machenhauer et al. (2008) as possible. The focus in this study is on accuracy and local mass conservation. The methods tested are, first, classical semi-Lagrangian cubic interpolation, see e.g. Durran (1999), second, semi-Lagrangian cubic cascade interpolation, by Nair et al. (2002), third, semi-Lagrangian cubic interpolation with the modified interpolation weights, Locally Mass Conserving Semi-Lagrangian (LMCSL), by Kaas (2008), and last, semi-Lagrangian cubic interpolation with a locally mass conserving monotonic filter by Kaas and Nielsen (2010). Semi-Lagrangian (SL) interpolation is a classical method for atmospheric modeling, cascade interpolation is more efficient computationally, modified interpolation weights assure mass conservation and the locally mass conserving monotonic filter imposes monotonicity. All schemes are tested with advection alone or with advection and chemistry together under both typical rural and urban conditions using different temporal and spatial resolution. The methods are compared with a current state-of-the-art scheme, Accurate Space Derivatives (ASD), see Frohn et al. (2002), presently used at the National Environmental Research Institute (NERI) in Denmark. To enable a consistent comparison only non-divergent flow configurations are tested. The test cases are based either on the traditional slotted cylinder or the rotating cone, where the schemes' ability to model both steep gradients and slopes are challenged. The tests showed that the locally mass conserving monotonic filter improved the results significantly for some of the test cases, however, not for all. It was found that the semi-Lagrangian schemes, in almost every case, were not able to outperform the current ASD scheme used in DEHM with respect to accuracy.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2011-06-15
    Description: GEOCLIM reloaded (v 1.0): a new coupled earth system model for past climate change Geoscientific Model Development, 4, 451-481, 2011 Author(s): S. Arndt, P. Regnier, Y. Goddéris, and Y. Donnadieu We present a new version of the coupled Earth system model GEOCLIM. The new release, GEOCLIM reloaded (v 1.0), links the existing atmosphere and weathering modules to a novel, temporally and spatially resolved model of the global ocean circulation, which provides a physical framework for a mechanistic description of the marine biogeochemical dynamics of carbon, nitrogen, phosphorus and oxygen. The ocean model is also coupled to a fully formulated, vertically resolved diagenetic model. GEOCLIM reloaded is thus a unique tool to investigate the short- and long-term feedbacks between climatic conditions, continental inputs, ocean biogeochemical dynamics and diagenesis. A complete and detailed description of the resulting Earth system model and its new features is first provided. The performance of GEOCLIM reloaded is then evaluated by comparing steady-state simulation under present-day conditions with a comprehensive set of oceanic data and existing global estimates of bio-element cycling in the pelagic and benthic compartments.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2011-06-17
    Description: Mesoscale variability of water masses in the Arabian Sea as revealed by ARGO floats Ocean Science Discussions, 8, 1369-1402, 2011 Author(s): X. Carton and P. L'Hegaret By analysing ARGO float data over the last four years, some aspects of the mesoscale variability of water masses in the Arabian Sea are described. The Red Sea Water outflow is strong in the Southwestern Gulf of Aden, in particular when a cyclonic gyre predominates in this region. Salinities of 36.5 and temperatures of 16 °C are found there between 600 and 1000 m depths. The Red Sea Water is more dilute in the eastern part of the Gulf, and fragments of this water mass can be advected offshore across the gulf or towards its northern coast by the regional gyres. The Red Sea Water outflow is also detected along the northeastern coast of Socotra, and fragments of RSW are found between one and three degrees of latitude north of this island. In the whole Gulf of Aden, the correlation between the deep motions of the floats and the SSH measured by altimetry is strong, at regional scale. The finer scale details of the float trajectories are more often related to the anomalous water masses that they encounter. The Persian Gulf Water (PGW) is found in the float profiles near Ras ash Sharbatat (near 57° E, 18° N), again with 36.5 in salinity and about 18–19 °C in temperature. These observations were achieved in winter when the southwestward monsoon currents can advect PGW along the South Arabian coast. Fragments of PGW are found in the Arabian Sea between 18 and 20° N and 63 and 65° E, showing that this water mass can escape the Gulf of Oman southeastward, in particular during summer.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2011-06-18
    Description: The CSIRO Mk3L climate system model version 1.0 – Part 1: Description and evaluation Geoscientific Model Development, 4, 483-509, 2011 Author(s): S. J. Phipps, L. D. Rotstayn, H. B. Gordon, J. L. Roberts, A. C. Hirst, and W. F. Budd The CSIRO Mk3L climate system model is a coupled general circulation model, designed primarily for millennial-scale climate simulations and palaeoclimate research. Mk3L includes components which describe the atmosphere, ocean, sea ice and land surface, and combines computational efficiency with a stable and realistic control climatology. This paper describes the model physics and software, analyses the control climatology, and evaluates the ability of the model to simulate the modern climate. Mk3L incorporates a spectral atmospheric general circulation model, a z -coordinate ocean general circulation model, a dynamic-thermodynamic sea ice model and a land surface scheme with static vegetation. The source code is highly portable, and has no dependence upon proprietary software. The model distribution is freely available to the research community. A 1000-yr climate simulation can be completed in around one-and-a-half months on a typical desktop computer, with greater throughput being possible on high-performance computing facilities. Mk3L produces realistic simulations of the larger-scale features of the modern climate, although with some biases on the regional scale. The model also produces reasonable representations of the leading modes of internal climate variability in both the tropics and extratropics. The control state of the model exhibits a high degree of stability, with only a weak cooling trend on millennial timescales. Ongoing development work aims to improve the model climatology and transform Mk3L into a comprehensive earth system model.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2011-06-24
    Description: Using dissolved oxygen concentrations to determine mixed layer depths in the Bellingshausen Sea Ocean Science Discussions, 8, 1505-1533, 2011 Author(s): K. Castro-Morales and J. Kaiser Concentrations of oxygen (O 2 ) and other dissolved gases in the oceanic mixed layer are often used to calculate air-sea gas exchange fluxes; for example, in the context of net and gross biological production estimates. The mixed layer depth ( z mix ) may be defined using criteria based on temperature or density differences to a reference depth near the ocean surface. However, temperature criteria fail in regions with strong haloclines such as the Southern Ocean where heat, freshwater and momentum fluxes interact to establish mixed layers. Moreover, the time scales of air-sea exchange differ for gases and heat, so that z mix defined using O 2 may be different to z mix defined using temperature or density. Here, we propose to define an O 2 -based mixed layer depth, z mix (O 2 ), as the depth where the relative difference between the O 2 concentration and a reference value at a depth equivalent to 10 dbar equals 0.5 %. This definition was established by numerical analysis of O 2 profiles in coastal areas of the Southern Ocean and corroborated by visual inspection. Comparisons of z mix (O 2 ) with z mix based on potential temperature differences, i.e. z mix (Δ θ = 0.2 °C) and z mix (Δ θ = 0.5 °C), and potential density differences, i.e. z mix (Δ σ θ = 0.03 kg m −3 ) and z mix (Δ σ θ = 0.125 kg m −3 ), showed that z mix (O 2 ) closely follows z mix (Δ σ θ = 0.03 kg m −3 ). Further comparisons with published z mix climatologies and z mix derived from World Ocean Atlas 2005 data were also performed. To establish z mix for use with biological production estimates in the absence of O 2 profiles, we suggest using z mix (Δ σ θ = 0.03 kg m −3 ), which is also the basis for the climatology by de Boyer Montégut et al. (2004).
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2011-06-11
    Description: N/P ratio of nutrient uptake in the Baltic Sea Ocean Science Discussions, 8, 1233-1259, 2011 Author(s): Z. Wan, L. Jonasson, and H. Bi The N/P ratio of nutrient uptake, i.e., the ratio of dissolved inorganic nitrogen (DIN) to dissolved inorganic phosphorus (DIP) taken by primary producers, varies in different basins and in different seasons in the Baltic Sea. The N/P ratio of nutrient alteration fore and after spring blooms is not same as the N/P ratio of nutrient uptake, but the former can be regarded as an indicator for the later in the Baltic Sea. Based on the observed N/P ratio of nutrient alteration, we hypothesize a non-Redfield N/P ratio of nutrient uptake. The 3D-ecosystem model ERGOM coupled with the circulation model DMI-BSHcmod was used to test the hypothesis. When the Redfield ratio was used in the model, the DIP surplus after spring blooms was too high and resulted in the overly growth of cyanobacteria and too much nitrogen fixation. When the non-Redfield ratio was used in the model, the corresponding problem tended to disappear. In summary, we show that: (1) the Redfield N/P ratio of nutrient uptake in the Baltic Sea tends to be too high; (2) a lower N/P ratio 10:1 appears to work better than the Redfield value; and (3) the N/P ratio of nutrient uptake in the Baltic Proper during spring blooms is around 6:1.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2011-06-15
    Description: Spectrophotometric high-precision seawater pH determination for use in underway measuring systems Ocean Science Discussions, 8, 1339-1367, 2011 Author(s): S. Aßmann, C. Frank, and A. Kötzinger Autonomous sensors are required for a comprehensive documentation of the changes in the marine carbon system and thus to differentiate between its natural variability and anthropogenic impacts. Spectrophotometric determination of pH – a key variable of the seawater carbon system – is particularly suited to achieve precise and drift-free measurements. However, available spectrophotometric instruments are not suitable for integration into automated measurement systems (e.g. FerryBox) since they do not meet the major requirements of reliability, stability, robustness and moderate cost. Here we report on the development and testing of a new indicator-based pH sensor that meets all of these requirements. This sensor can withstand the rough conditions during long-term deployments on ships of opportunities and is applicable on the open ocean as well as in coastal waters with complex background and highly variable conditions. The sensor uses a high resolution CCD spectrometer as detector connected via optical fibers to a custom-made cuvette designed to reduce the impact of air bubbles. The sample temperature can be precisely adjusted (25 °C ± 0.006 °C) using computer-controlled power supplies and Peltier elements thus avoiding the widely used water bath. The overall setup achieves a measurement frequency of 1 min −1 with a precision of ± 0.0007 pH units and an average offset of +0.0018 pH units to a pH reference during shipboard operation. Application of this sensor allows monitoring of seawater pH in autonomous underway systems, providing a key variable for characterization and understanding the marine carbon system.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2011-05-11
    Description: Medusa-1.0: a new intermediate complexity plankton ecosystem model for the global domain Geoscientific Model Development, 4, 381-417, 2011 Author(s): A. Yool, E. E. Popova, and T. R. Anderson The ongoing, anthropogenically-driven changes to the global ocean are expected to have significant consequences for plankton ecosystems in the future. Because of the role that plankton play in the ocean's "biological pump", changes in abundance, distribution and productivity will likely have additional consequences for the wider carbon cycle. Just as in the terrestrial biosphere, marine ecosystems exhibit marked diversity in species and functional types of organisms. Predicting potential change in plankton ecosystems therefore requires the use of models that are suited to this diversity, but whose parameterisation also permits robust and realistic functional behaviour. In the past decade, advances in model sophistication have attempted to address diversity, but have been criticised for doing so inaccurately or ahead of a requisite understanding of underlying processes. Here we introduce MEDUSA-1.0 ( M odel of E cosystem D ynamics, nutrient U tilisation, S equestration and A cidification), a new "intermediate complexity" plankton ecosystem model that expands on traditional nutrient-phytoplankton-zooplankton-detritus (NPZD) models, and remains amenable to global-scale evaluation. MEDUSA-1.0 includes the biogeochemical cycles of nitrogen, silicon and iron, broadly structured into "small" and "large" plankton size classes, of which the "large" phytoplankton class is representative of a key phytoplankton group, the diatoms. A full description of MEDUSA-1.0's state variables, differential equations, functional forms and parameter values is included, with particular attention focused on the submodel describing the export of organic carbon from the surface to the deep ocean. MEDUSA-1.0 is used here in a multi-decadal hindcast simulation, and its biogeochemical performance evaluated at the global scale.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2011-05-11
    Description: PREP-CHEM-SRC – 1.0: a preprocessor of trace gas and aerosol emission fields for regional and global atmospheric chemistry models Geoscientific Model Development, 4, 419-433, 2011 Author(s): S. R. Freitas, K. M. Longo, M. F. Alonso, M. Pirre, V. Marecal, G. Grell, R. Stockler, R. F. Mello, and M. Sánchez Gácita The preprocessor PREP-CHEM-SRC presented in the paper is a comprehensive tool aiming at preparing emission fields of trace gases and aerosols for use in atmospheric-chemistry transport models. The considered emissions are from the most recent databases of urban/industrial, biogenic, biomass burning, volcanic, biofuel use and burning from agricultural waste sources. For biomass burning, emissions can be also estimated directly from satellite fire detections using a fire emission model included in the tool. The preprocessor provides emission fields interpolated onto the transport model grid. Several map projections can be chosen. The inclusion of these emissions in transport models is also presented. The preprocessor is coded using Fortran90 and C and is driven by a namelist allowing the user to choose the type of emissions and the databases.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2011-05-17
    Description: A pre-operational 3-D variational data assimilation system in the North/Baltic Sea Ocean Science Discussions, 8, 1131-1160, 2011 Author(s): S. Y. Zhuang, W. W. Fu, and J. She This paper describes the implementation and evaluation of a pre-operational three dimensional variational (3DVAR) data assimilation system for the North/Baltic Sea. The univariate analysis for temperature and salinity is applied in a 3DVAR scheme in which the horizontal component of the background error covariance is modeled by an isotropic recursive filter (IRF) and the vertical component is represented by dominant Empirical Orthogonal Functions (EOFs) of the background error. Observations of temperature and salinity ( T / S ) profiles in the North/Baltic Sea are assimilated in the year of 2005. Effectiveness of the data assimilation scheme is assessed by comparison with the control run that no assimilation is done. The statistical analysis indicates that the model simulation is significantly improved with the 3DVAR scheme. On average, the root mean square error (RMSE) of temperature and salinity is reduced by 0.2 °C and 0.25 psu in the North/Baltic Sea. In addition, the bias of temperature and salinity is also decreased by 0.1 °C and 0.2 psu, respectively. Starting from an analyzed initial state, one month simulation without assimilation is carried out with the aim of examining the persistence of the initial impact. It is shown that the assimilated initial state can impact the model simulation for nearly two weeks. The influence on salinity is more pronounced than temperature.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2011-05-25
    Description: Numerical simulation and decomposition of kinetic energies in the Central Mediterranean Sea: insight on mesoscale circulation and energy conversion Ocean Science Discussions, 8, 1161-1214, 2011 Author(s): R. Sorgente, A. Olita, P. Oddo, L. Fazioli, and A. Ribotti The spatial and temporal variability of eddy and mean kinetic energy of the Central Mediterranean Sea has been investigated, from January 2008 to December 2010, by mean of a numerical simulation mainly to quantify the mesoscale dynamics and their relationships with physical forcing. In order to understand the energy redistribution processes, the baroclinic energy conversion has been analysed, suggesting hypotheses about the drivers of the mesoscale activity in this area. The ocean model used is based on the Princeton Ocean Model implemented at 1/32° horizontal resolution. Surface momentum and buoyancy fluxes are interactively computed by mean of standard bulk formulae using predicted model Sea Surface Temperature and atmospheric variables provided by the European Centre for Medium Range Weather Forecast operational analyses. At its lateral boundaries the model is one-way nested within the Mediterranean Forecasting System operational products. The model domain has been subdivided in four sub-regions: Sardinia channel and southern Tyrrhenian Sea, Sicily channel, eastern Tunisian shelf and Libyan Sea. Temporal evolution of eddy and mean kinetic energy has been analysed, on each of the four sub-regions composing the model domain, showing different behaviours. On annual scales and within the first 5 m depth, the eddy kinetic energy represents approximately the 60 % of the total kinetic energy over the whole domain, confirming the strong mesoscale nature of the surface current flows in this area. The analyses show that the model well reproduces the path and the temporal behaviour of the main known sub-basin circulation features. New mesoscale structures have been also identified, from numerical results and direct observations, for the first time as the Pantelleria Vortex and the Medina Gyre. The classical the kinetic energy decomposition (eddy and mean) allowed to depict and to quantify the stable and fluctuating parts of the circulation in the region, and to differentiate the four sub-regions as function of relative and absolute strength of the mesoscale activity. Furthermore the Baroclinic Energy Conversion term shows that in the Sardinia Channel the mesoscale activity, due to baroclinic instabilities, is significantly larger than in the other sub-regions, while a negative sign of the energy conversion, meaning a transfer of energy from the Eddy Kinetic Energy to the Eddy Available Potential Energy, has been recorded only for the surface layers of the Sicily Channel during summer.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2014-12-06
    Description: Modelling of the anthropogenic tritium transient and its decay product helium-3 in the Mediterranean Sea using a high-resolution regional model Ocean Science Discussions, 11, 2691-2732, 2014 Author(s): M. Ayache, J.-C. Dutay, P. Jean-Baptiste, K. Beranger, T. Arsouze, J. Beuvier, J. Palmieri, B. Le-vu, and W. Roether This numerical study provides the first simulation of the anthropogenic tritium invasion and its decay product helium-3 ( 3 He) in the Mediterranean Sea. The simulation covers the entire tritium ( 3 H) transient generated by the atmospheric nuclear-weapon tests performed in the 1950s and early 1960s and run till 2011. Tritium, helium-3 and their derived age estimates are particularly suitable for studying intermediate and deep-water ventilation and spreading of water masses at intermediate/deep levels. The simulation is made using a high resolution regional model NEMO-MED12 forced at the surface with prescribed tritium evolution derived from observations. The simulation is compared to measurements of tritium and helium-3 performed along large-scale transects in the Mediterranean Sea during the last few decades on cruises of Meteor M5/6, M31/1, M44/4, M51/2, M84/3, and Poseidon 234. The results show that the input function used for the tritium, generates a realistic distribution of the main hydrographic features of the Mediterranean Sea circulation. In the eastern basin, the results highlight the weak formation of Adriatic Deep Water in the model, which explains its weak contribution to the Eastern Mediterranean Deep Water in the Ionian sub-basin. It produces a realistic representation of the Eastern Mediterranean Transient signal, simulating a deep-water formation in the Aegean sub-basin at the beginning of the 1993, with a realistic timing of deep-water renewal in the eastern basin. In the western basin, the unusual intense deep convection event of winter 2005 in the Gulf of Lions during the Western Mediterranean Transition is simulated. However the spreading of the recently ventilated deep water toward the South is too weak. The ventilation and spreading of the Levantine Intermediate Water from the eastern basin toward the western basin is simulated with realistic tracer-age distribution compared to observation-based estimates.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2014-12-09
    Description: Tropical troposphere to stratosphere transport of carbon monoxide and long-lived trace species in the Chemical Lagrangian Model of the Stratosphere (CLaMS) Geoscientific Model Development, 7, 2895-2916, 2014 Author(s): R. Pommrich, R. Müller, J.-U. Grooß, P. Konopka, F. Ploeger, B. Vogel, M. Tao, C. M. Hoppe, G. Günther, N. Spelten, L. Hoffmann, H.-C. Pumphrey, S. Viciani, F. D'Amato, C. M. Volk, P. Hoor, H. Schlager, and M. Riese Variations in the mixing ratio of trace gases of tropospheric origin entering the stratosphere in the tropics are of interest for assessing both troposphere to stratosphere transport fluxes in the tropics and the impact of these transport fluxes on the composition of the tropical lower stratosphere. Anomaly patterns of carbon monoxide (CO) and long-lived tracers in the lower tropical stratosphere allow conclusions about the rate and the variability of tropical upwelling to be drawn. Here, we present a simplified chemistry scheme for the Chemical Lagrangian Model of the Stratosphere (CLaMS) for the simulation, at comparatively low numerical cost, of CO, ozone, and long-lived trace substances (CH 4 , N 2 O, CCl 3 F (CFC-11), CCl 2 F 2 (CFC-12), and CO 2 ) in the lower tropical stratosphere. For the long-lived trace substances, the boundary conditions at the surface are prescribed based on ground-based measurements in the lowest model level. The boundary condition for CO in the lower troposphere (below about 4 km) is deduced from MOPITT measurements. Due to the lack of a specific representation of mixing and convective uplift in the troposphere in this model version, enhanced CO values, in particular those resulting from convective outflow are underestimated. However, in the tropical tropopause layer and the lower tropical stratosphere, there is relatively good agreement of simulated CO with in situ measurements (with the exception of the TROCCINOX campaign, where CO in the simulation is biased low ≈10–15 ppbv). Further, the model results (and therefore also the ERA-Interim winds, on which the transport in the model is based) are of sufficient quality to describe large scale anomaly patterns of CO in the lower stratosphere. In particular, the zonally averaged tropical CO anomaly patterns (the so called "tape recorder" patterns) simulated by this model version of CLaMS are in good agreement with observations, although the simulations show a too rapid upwelling compared to observations as a consequence of the overestimated vertical velocities in the ERA-Interim reanalysis data set. Moreover, the simulated tropical anomaly patterns of N 2 O are in good agreement with observations. In the simulations, anomaly patterns of CH 4 and CFC-11 were found to be very similar to those of N 2 O; for all long-lived tracers, positive anomalies are simulated because of the enhanced tropical upwelling in the easterly shear phase of the quasi-biennial oscillation.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2014-12-04
    Description: Evaluation of the ECHAM family radiation codes performance in the representation of the solar signal Geoscientific Model Development, 7, 2859-2866, 2014 Author(s): T. Sukhodolov, E. Rozanov, A. I. Shapiro, J. Anet, C. Cagnazzo, T. Peter, and W. Schmutz Solar radiation is the main source of energy for the Earth's atmosphere and in many respects defines its composition, photochemistry, temperature profile and dynamics. The magnitude of the solar irradiance variability strongly depends on the wavelength, making difficult its representation in climate models. Due to some deficiencies in the applied radiation codes, several models fail to show a clear response in middle stratospheric heating rates to solar spectral irradiance variability; therefore, it is important to evaluate model performance in this respect before doing multiple runs. In this work we evaluate the performance of three generations of ECHAM (4, 5 and 6) solar radiation schemes by a comparison with the reference high-resolution libRadtran code. We found that all original ECHAM radiation codes miss almost all solar signals in the heating rates in the mesosphere. In the stratosphere the two-band ECHAM4 code (E4) has an almost negligible radiative response to solar irradiance changes and the six-band ECHAM5 code (E5c) reproduces only about half of the reference signal, while representation in the ECHAM6 code (E6) is better – it misses a maximum of about 15% in the upper stratosphere. On the basis of the comparison results we suggest necessary improvements to the ECHAM family codes by the inclusion of available parameterizations of the heating rate due to absorption by oxygen (O 2 ) and ozone (O 3 ). Improvement is presented for E5c and E6, and both codes, with the introduced parameterizations, represent the heating rate response to the spectral solar irradiance variability simulated with libRadtran much better without a substantial increase in computer time. The suggested parameterizations are recommended to be applied in the middle-atmosphere version of the ECHAM-5 and 6 models for the study of the solar irradiance influence on climate.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2014-12-04
    Description: GEOtop 2.0: simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects Geoscientific Model Development, 7, 2831-2857, 2014 Author(s): S. Endrizzi, S. Gruber, M. Dall'Amico, and R. Rigon GEOtop is a fine-scale grid-based simulator that represents the heat and water budgets at and below the soil surface. It describes the three-dimensional water flow in the soil and the energy exchange with the atmosphere, considering the radiative and turbulent fluxes. Furthermore, it reproduces the highly non-linear interactions between the water and energy balance during soil freezing and thawing, and simulates the temporal evolution of the water and energy budgets in the snow cover and their effect on soil temperature. Here, we present the core components of GEOtop 2.0 and demonstrate its functioning. Based on a synthetic simulation, we show that the interaction of processes represented in GEOtop 2.0 can result in phenomena that are significant and relevant for applications involving permafrost and seasonally frozen soils, both in high altitude and latitude regions.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2014-12-06
    Description: The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project – Part 2: Environmental driver data Geoscientific Model Development, 7, 2875-2893, 2014 Author(s): Y. Wei, S. Liu, D. N. Huntzinger, A. M. Michalak, N. Viovy, W. M. Post, C. R. Schwalm, K. Schaefer, A. R. Jacobson, C. Lu, H. Tian, D. M. Ricciuto, R. B. Cook, J. Mao, and X. Shi Ecosystems are important and dynamic components of the global carbon cycle, and terrestrial biospheric models (TBMs) are crucial tools in further understanding of how terrestrial carbon is stored and exchanged with the atmosphere across a variety of spatial and temporal scales. Improving TBM skills, and quantifying and reducing their estimation uncertainties, pose significant challenges. The Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) is a formal multi-scale and multi-model intercomparison effort set up to tackle these challenges. The MsTMIP protocol prescribes standardized environmental driver data that are shared among model teams to facilitate model–model and model–observation comparisons. This paper describes the global and North American environmental driver data sets prepared for the MsTMIP activity to both support their use in MsTMIP and make these data, along with the processes used in selecting/processing these data, accessible to a broader audience. Based on project needs and lessons learned from past model intercomparison activities, we compiled climate, atmospheric CO 2 concentrations, nitrogen deposition, land use and land cover change (LULCC), C3 / C4 grasses fractions, major crops, phenology and soil data into a standard format for global (0.5° × 0.5° resolution) and regional (North American: 0.25° × 0.25° resolution) simulations. In order to meet the needs of MsTMIP, improvements were made to several of the original environmental data sets, by improving the quality, and/or changing their spatial and temporal coverage, and resolution. The resulting standardized model driver data sets are being used by over 20 different models participating in MsTMIP. The data are archived at the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC, http://daac.ornl.gov ) to provide long-term data management and distribution.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2011-05-07
    Description: The atmospheric chemistry box model CAABA/MECCA-3.0 Geoscientific Model Development, 4, 373-380, 2011 Author(s): R. Sander, A. Baumgaertner, S. Gromov, H. Harder, P. Jöckel, A. Kerkweg, D. Kubistin, E. Regelin, H. Riede, A. Sandu, D. Taraborrelli, H. Tost, and Z.-Q. Xie We present version 3.0 of the atmospheric chemistry box model CAABA/MECCA. In addition to a complete update of the rate coefficients to the most recent recommendations, a number of new features have been added: chemistry in multiple aerosol size bins; automatic multiple simulations reaching steady-state conditions; Monte-Carlo simulations with randomly varied rate coefficients within their experimental uncertainties; calculations along Lagrangian trajectories; mercury chemistry; more detailed isoprene chemistry; tagging of isotopically labeled species. Further changes have been implemented to make the code more user-friendly and to facilitate the analysis of the model results. Like earlier versions, CAABA/MECCA-3.0 is a community model published under the GNU General Public License.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2011-05-05
    Description: The Aegean Sea marine security decision support system Ocean Science Discussions, 8, 1025-1053, 2011 Author(s): L. Perivoliotis, G. Krokos, K. Nittis, and G. Korres As part of the integrated ECOOP (European Coastal Sea Operational observing and Forecasting System) project, HCMR upgraded the already existing standalone Oil Spill Forecasting System for the Aegean Sea, initially developed for the Greek Operational Oceanography System (POSEIDON), into an active element of the European Decision Support System (EuroDeSS). The system is accessible through a user friendly web interface where the case scenarios can be fed into the oil spill drift model component, while the synthetic output contains detailed information about the distribution of oil spill particles and the oil spill budget and it is provided both in text based ECOOP common output format and as a series of sequential graphics. The main development steps that were necessary for this transition were the modification of the forcing input data module in order to allow the import of other system products which are usually provided in standard formats such as NetCDF and the transformation of the model's calculation routines to allow use of current, density and diffusivities data in z instead of sigma coordinates. During the implementation of the Aegean DeSS, the system was used in operational mode in order support the Greek marine authorities in handling a real accident that took place in North Aegean area. Furthermore, the introduction of common input and output files by all the partners of EuroDeSS extended the system's interoperability thus facilitating data exchanges and comparison experiments.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2011-05-05
    Description: How well can we derive Global Ocean Indicators from Argo data? Ocean Science Discussions, 8, 999-1024, 2011 Author(s): K. von Schuckmann and P.-Y. Le Traon Argo deployments began in the year 2000 and by November 2007 the array was 100 % complete, covering the global ocean from the surface down to 2000 m depth. In this study, Argo temperature and salinity measurements during the period 2005 to 2010 are used to develop a revised estimation of Global Ocean Indicators (GOIs) such as heat content variability, freshwater content and steric height. These revised indices are based on a simple box averaging scheme using a weighted mean. They include a proper estimation of the errors due to data handling methods and climatology uncertainties. A global ocean heat content change (OHC) trend of 0.55 ± 0.1 W m −2 is estimated over the time period 2005–2010. Similarly, a global steric sea level (GSSL) rise of 0.69 ± 0.14 mm yr −1 is observed. The global ocean freshwater content (OFC) trend is barely significant. Results show that there is significant interannual variability at global scale, especially for global OFC. Annual mean GOIs from the today's Argo samling can be derived with an accuracy of ±0.10 cm for GSSL, ±0.21 × 10 8 J m −2 for global OHC, and ±700 km 3 for global OFC. Long-term trends (15 yr) of GOIs based on the complete Argo sampling (10–1500 m depth) can be performed with an accuracy of about ±0.03 mm yr −1 for steric rise, ±0.02 W m −2 for ocean warming and ±20 km 3 yr −1 for global OFC trends – under the assumption that no systematic errors remain in the observing system.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2011-03-31
    Description: Silicon pool dynamics and biogenic silica export in the Southern Ocean, inferred from Si-isotopes Ocean Science Discussions, 8, 639-674, 2011 Author(s): F. Fripiat, A.-J. Cavagna, F. Dehairs, S. Speich, L. André, and D. Cardinal Water column silicon isotopic signatures (δ 30 Si) of silicic acid (Si(OH) 4 ) in the Southern Ocean were measured along a meridional transect from South Africa (Subtropical Zone) down to 57° S (northern Weddell Gyre). These data are the first reported for a summer transect across the whole Antarctic Circumpolar Current (ACC). δ 30 Si variations are large in the upper 1000 m, reflecting the effect of the silica pump superimposed upon meridional transfer across the ACC: the transport of Antarctic surface waters northward by a net Ekman drift and their convergence and mixing with warmer upper-ocean Si-depleted waters to the north. Using Si isotopic signatures, we determined different mixing interfaces between ACC water masses: the Antarctic Surface Water (AASW), the Antarctic Intermediate Water (AAIW), and the thermoclines in the low latitude areas. The residual silicic acid concentrations of end-members control the δ 30 Si alteration of the mixing products. With the exception of AASW, all mixing interfaces have a highly Si-depleted mixed layer end-member. These processes deplete the silicic acid AASW concentration across the different interfaces northward without significantly changing the AASW δ 30 Si. By comparing our new results with a previous study in the Australian sector we show that during the circumpolar transport of the ACC eastward, there is a slight but significant Si-isotopic lightening of the silicic acid pools from the Atlantic to the Australian sectors. This results either from the dissolution of biogenic silica in the deeper layers and/or from an isopycnal mixing with the deep water masses in the different oceanic basins: North Atlantic Deep Water in the Atlantic, and Indian Ocean deep water in the Indo-Australian sector. This eastward lightening is further transmitted to the subsurface waters, representing mixing interfaces between the surface and deeper layers. Using the Si-isotopic constraint, we estimate for the Greenwich Meridian a net biogenic silica production which should be representative of the annual export, at 4.5 ± 1.1 and 1.5 ± 0.4 mol Si m −2 for the Antarctic Zone and Polar Front Zone, respectively, in agreement with previous estimations. The summertime Si-supply into the mixed layer via vertical mixing was also assessed at 1.5 ± 0.4 and 0.1 ± 0.5 mol Si m −2 , respectively.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2011-03-31
    Description: Quality control of automated hyperspectral remote sensing measurements from a seaborne platform Ocean Science Discussions, 8, 613-638, 2011 Author(s): S. P. Garaba, M. R. Wernand, and O. Zielinski In this study four data quality flags are presented for automated and unmanned above-water hyperspectral optical measurements collected underway in the North Sea, The Minch, Irish Sea and Celtic Sea in April/May 2009. Coincident to these optical measurements a DualDome D12 (Mobotix, Germany) camera system was used to capture sea surface and sky images. The first three flags are based on meteorological conditions, to select erroneous incoming solar irradiance ( E S ) taken during dusk, dawn, before significant incoming solar radiation could be detected or under rainfall. Furthermore, the relative azimuthal angle of the optical sensors to the sun is used to identify possible sunglint free sea surface zones. A total of 629 spectra remained after applying the meteorological masks (first three flags). Based on this dataset, a fourth flag for sunglint was generated by analysing and evaluating water leaving radiance ( L W ) and remote sensing reflectance ( R RS ) spectral behaviour in the presence and absence of sunglint salient in the simultaneously available sea surface images. Spectra conditions satisfying "mean L W (700–950 nm) 〈 2 mW m −2 nm −1 Sr −1 " or alternatively "minimum R RS (700–950 nm) 〈 0.010 Sr −1 ", mask the most measurements affected by sunglint, providing efficient flagging of sunglint in automated quality control. It is confirmed that valid optical measurements can be performed 0° ≤ Φ ≤ 360° although 90° ≤ Φ ≤ 135° is recommended.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2011-03-31
    Description: Numerical modelling of POC yearly dynamics in the southern Baltic under variable scenarios of nutrients, light and temperature Ocean Science Discussions, 8, 675-700, 2011 Author(s): L. Dzierzbicka-Glowacka, K. Kuliński, A. Maciejewska, J. Jakacki, and J. Pempkowiak This paper presents various scenarios of the particulate organic carbon (POC) in the southern Baltic Sea. The study is based on a one-dimensional Particulate Organic Carbon model (1-D POC). Mathematically, the pelagic variables of 1-D POC model are described by a second-order partial differential equations of the diffusion type with biogeochemical sources and sinks. The POC concentration is determined as the sum of phytoplankton, zooplankton and dead organic matter (detritus) concentrations. The temporal changes in the phytoplankton biomass are caused by primary production, mortality, grazing by zooplankton and sinking. The zooplankton biomass is affected by ingestion, excretion, faecal production, mortality, and carnivorous grazing. The changes in the pelagic detritus concentration are determined by input of: dead phytoplankton and zooplankton, natural mortality of predators, faecal pellets, and sinks: sedimentation, zooplankton grazing and biochemical decomposition. The 1-D POC model was used to simulate temporal dynamics of POC in the southern Baltic Sea (Gdansk Deep, Bornholm Deep and Gotland Deep) under scenarios characterized by different temperature, nutrients and light. Daily, monthly, seasonal and annual variabilities of POC in the upper water layer are presented for the different scenarios. The starting-point of the numerical simulations was assumed as average values of the investigated pelagic variables for 1965–1998 period. Two- to three-fold increases of POC concentrations in late spring were revealed as well as the shift towards postponed maximum POC concentration. It is speculated that, due to POC increase, oxygenation of under-halocline water layer will decrease, while supply of food to organisms from higher trophic level should increase.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2011-04-07
    Description: A comprehensive set of benchmark tests for a land surface model of simultaneous fluxes of water and carbon at both the global and seasonal scale Geoscientific Model Development, 4, 255-269, 2011 Author(s): E. Blyth, D. B. Clark, R. Ellis, C. Huntingford, S. Los, M. Pryor, M. Best, and S. Sitch Evaluating the models we use in prediction is important as it allows us to identify uncertainties in prediction as well as guiding the priorities for model development. This paper describes a set of benchmark tests that is designed to quantify the performance of the land surface model that is used in the UK Hadley Centre General Circulation Model (JULES: Joint UK Land Environment Simulator). The tests are designed to assess the ability of the model to reproduce the observed fluxes of water and carbon at the global and regional spatial scale, and on a seasonal basis. Five datasets are used to test the model: water and carbon dioxide fluxes from ten FLUXNET sites covering the major global biomes, atmospheric carbon dioxide concentrations at four representative stations from the global network, river flow from seven catchments, the seasonal mean NDVI over the seven catchments and the potential land cover of the globe (after the estimated anthropogenic changes have been removed). The model is run in various configurations and results are compared with the data. A few examples are chosen to demonstrate the importance of using combined use of observations of carbon and water fluxes in essential in order to understand the causes of model errors. The benchmarking approach is suitable for application to other global models.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2011-08-03
    Description: A computational method for determining XBT depths Ocean Science Discussions, 8, 1777-1802, 2011 Author(s): J. Stark, J. Gorman, M. Hennessey, F. Reseghetti, J. Willis, J. Lyman, and J. Abraham A new technique for determining the depth of expendable bathythermographs (XBTs) is developed. This new method combines a forward-stepping calculation which incorporates all of the forces on the XBT devices during their descent. Of particular note are drag forces which are calculated using a new drag coefficient expression. That expression, obtained entirely from computational fluid dynamic modeling, accounts for local variations in the ocean environment. Consequently, the method allows for accurate determination of depths for any local temperature environment. The results, which are entirely based on numerical simulation, are compared with an experimental descent of an LM-Sippican T-5 XBT. It is found that the calculated depths differ by less than 3 % from depth estimates using the industry standard FRE. Furthermore, the differences decrease with depth. The computational model allows an investigation of the fluid patterns along the outer surface of the probe as well as in the interior channel. The simulations take account of complex flow phenomena such as laminar-turbulent transition and flow separation.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2011-10-07
    Description: A new version of the CNRM Chemistry-Climate Model, CNRM-CCM: description and improvements from the CCMVal-2 simulations Geoscientific Model Development, 4, 873-900, 2011 Author(s): M. Michou, D. Saint-Martin, H. Teyssèdre, A. Alias, F. Karcher, D. Olivié, A. Voldoire, B. Josse, V.-H. Peuch, H. Clark, J. N. Lee, and F. Chéroux This paper presents a new version of the Météo-France CNRM Chemistry-Climate Model, so-called CNRM-CCM. It includes some fundamental changes from the previous version (CNRM-ACM) which was extensively evaluated in the context of the CCMVal-2 validation activity. The most notable changes concern the radiative code of the GCM, and the inclusion of the detailed stratospheric chemistry of our Chemistry-Transport model MOCAGE on-line within the GCM. A 47-yr transient simulation (1960–2006) is the basis of our analysis. CNRM-CCM generates satisfactory dynamical and chemical fields in the stratosphere. Several shortcomings of CNRM-ACM simulations for CCMVal-2 that resulted from an erroneous representation of the impact of volcanic aerosols as well as from transport deficiencies have been eliminated. Remaining problems concern the upper stratosphere (5 to 1 hPa) where temperatures are too high, and where there are biases in the NO 2 , N 2 O 5 and O 3 mixing ratios. In contrast, temperatures at the tropical tropopause are too cold. These issues are addressed through the implementation of a more accurate radiation scheme at short wavelengths. Despite these problems we show that this new CNRM CCM is a useful tool to study chemistry-climate applications.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2011-10-06
    Description: A vertical-mode decomposition to investigate low-frequency internal motion across the Atlantic at 26° N Ocean Science Discussions, 8, 2047-2100, 2011 Author(s): Z. B. Szuts, J. R. Blundell, M. P. Chidichimo, and J. Marotzke Hydrographic data from full-depth moorings maintained by the RAPID/MOCHA project that span the Atlantic at 26° N are decomposed into vertical modes, in order to give a dynamical framework for interpreting the observed fluctuations. Vertical modes at each mooring are fit to pressure perturbations using a Gauss-Markov inversion. Away from boundaries, the vertical structure is almost entirely described by the first baroclinic mode, as confirmed by high correlation between the original signal and reconstructions using only the first baroclinic mode. These first baroclinic motions are also highly coherent with altimetric sea surface height (SSH). On both the western and eastern boundaries, however, the decomposition contains significant variance at higher modes, and there is a corresponding decrease in the agreement between SSH and either the original signal or the first baroclinic mode reconstruction. At the boundaries, the transport fluctuations described by the first baroclinic mode represent less than 10% of the variance of the full transport signal. At the eastern boundary, a linear combination of many baroclinic modes is required to explain the observed vertical density profile of the seasonal cycle, a result that is consistent with the oceanic response to wind-forcing not propagating far from the eastern boundary.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2011-10-05
    Description: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments Geoscientific Model Development, 4, 845-872, 2011 Author(s): S. Watanabe, T. Hajima, K. Sudo, T. Nagashima, T. Takemura, H. Okajima, T. Nozawa, H. Kawase, M. Abe, T. Yokohata, T. Ise, H. Sato, E. Kato, K. Takata, S. Emori, and M. Kawamiya An earth system model (MIROC-ESM 2010) is fully described in terms of each model component and their interactions. Results for the CMIP5 (Coupled Model Intercomparison Project phase 5) historical simulation are presented to demonstrate the model's performance from several perspectives: atmosphere, ocean, sea-ice, land-surface, ocean and terrestrial biogeochemistry, and atmospheric chemistry and aerosols. An atmospheric chemistry coupled version of MIROC-ESM (MIROC-ESM-CHEM 2010) reasonably reproduces transient variations in surface air temperatures for the period 1850–2005, as well as the present-day climatology for the zonal-mean zonal winds and temperatures from the surface to the mesosphere. The historical evolution and global distribution of column ozone and the amount of tropospheric aerosols are reasonably simulated in the model based on the Representative Concentration Pathways' (RCP) historical emissions of these precursors. The simulated distributions of the terrestrial and marine biogeochemistry parameters agree with recent observations, which is encouraging to use the model for future global change projections.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2011-12-02
    Description: Arctic Ocean circulation and variability – advection and external forcing encounter constraints and local processes Ocean Science Discussions, 8, 2313-2376, 2011 Author(s): B. Rudels The first hydrographic data from the Arctic Ocean, the section from the Laptev Sea to the passage between Greenland and Svalbard obtained by Nansen on the drift by Fram 1893–1896, aptly illustrate the main features of Arctic Ocean oceanography and indicate possible processes active in transforming the water masses in the Arctic Ocean. Many, perhaps most, of these processes were identified already by Nansen, who put his mark on almost all subsequent research in the Arctic Ocean. Here we shall revisit some key questions and follow how our understanding has evolved from the early 20th century to present. What questions, if any, can now be regarded as solved and which remain still open? Five different but connected topics will be discussed: (1) The low salinity surface layer and the storage and export of freshwater. (2) The vertical heat transfer from the Atlantic water to sea ice and to the atmosphere. (3) The circulation and mixing of the two Atlantic inflow branches. (4) The formation and circulation of deep and bottom waters in the Arctic Ocean. (5) The exchanges through Fram Strait. Foci will be on the potential effects of increased freshwater input and reduced sea ice export on the freshwater storage and residence time in the Arctic Ocean, on the deep waters of the Makarov Basin and on the circulation and relative importance of the two inflows, over the Barents Sea and through Fram Strait, for the distribution of heat in the intermediate layers of the Arctic Ocean.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2011-12-03
    Description: Towards an online-coupled chemistry-climate model: evaluation of trace gases and aerosols in COSMO-ART Geoscientific Model Development, 4, 1077-1102, 2011 Author(s): C. Knote, D. Brunner, H. Vogel, J. Allan, A. Asmi, M. Äijälä, S. Carbone, H. D. van der Gon, J. L. Jimenez, A. Kiendler-Scharr, C. Mohr, L. Poulain, A. S. H. Prévôt, E. Swietlicki, and B. Vogel The online-coupled, regional chemistry transport model COSMO-ART is evaluated for periods in all seasons against several measurement datasets to assess its ability to represent gaseous pollutants and ambient aerosol characteristics over the European domain. Measurements used in the comparison include long-term station observations, satellite and ground-based remote sensing products, and complex datasets of aerosol chemical composition and number size distribution from recent field campaigns. This is the first time these comprehensive measurements of aerosol characteristics in Europe are used to evaluate a regional chemistry transport model. We show a detailed analysis of the simulated size-resolved chemical composition under different meteorological conditions. Mean, variability and spatial distribution of the concentrations of O 3 and NO x are well reproduced. SO 2 is found to be overestimated, simulated PM 2.5 and PM 10 levels are on average underestimated, as is AOD. We find indications of an overestimation of shipping emissions. Time evolution of aerosol chemical composition is captured, although some biases are found in relative composition. Nitrate aerosol components are on average overestimated, and sulfates underestimated. The accuracy of simulated organics depends strongly on season and location. While strongly underestimated during summer, organic mass is comparable in spring and autumn. We see indications for an overestimated fractional contribution of primary organic matter in urban areas and an underestimation of SOA at many locations. Aerosol number concentrations compare well with measurements for larger size ranges, but overestimations of particle number concentration with factors of 2–5 are found for particles smaller than 50 nm. Size distribution characteristics are often close to measurements, but show discrepancies at polluted sites. Suggestions for further improvement of the modeling system consist of the inclusion of a revised secondary organic aerosols scheme, aqueous-phase chemistry and improved aerosol boundary conditions. Our work sets the basis for subsequent studies of aerosol characteristics and climate impacts with COSMO-ART, and highlights areas where improvements are necessary for current regional modeling systems in general.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2012-02-22
    Description: Identifying the causes of differences in ozone production from the CB05 and CBMIV chemical mechanisms Geoscientific Model Development, 5, 257-268, 2012 Author(s): R. D. Saylor and A. F. Stein An investigation was conducted to identify the mechanistic differences between two versions of the carbon bond gas-phase chemical mechanism (CB05 and CBMIV) which consistently lead to larger ground-level ozone concentrations being produced in the CB05 version of the National Air Quality Forecasting Capability (NAQFC) modeling system even though the two parallel forecast systems utilize the same meteorology and base emissions and similar initial and boundary conditions. Box models of each of the mechanisms as they are implemented in the NAQFC were created and a set of 12 sensitivity simulations was designed. The sensitivity simulations independently probed the conceptual mechanistic differences between CB05 and CBMIV and were exercised over a 45-scenario simulation suite designed to emulate the wide range of chemical regimes encountered in a continental-scale atmospheric chemistry model. Results of the sensitivity simulations indicate that two sets of reactions that were included in the CB05 mechanism, but which were absent from the CBMIV mechanism, are the primary causes of the greater ozone production in the CB05 version of the NAQFC. One set of reactions recycles the higher organic peroxide species of CB05 (ROOH), resulting in additional photochemically reactive products that act to produce additional ozone in some chemical regimes. The other set of reactions recycles reactive nitrogen from less reactive forms back to NO 2 , increasing the effective NO x concentration of the system. In particular, the organic nitrate species (NTR), which was a terminal product for reactive nitrogen in the CBMIV mechanism, acts as a reservoir species in CB05 to redistribute NO x from major source areas to potentially NO x -sensitive areas where additional ozone may be produced in areas remote from direct NO x sources.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2012-03-14
    Description: Influence of parallel computational uncertainty on simulations of the Coupled General Climate Model Geoscientific Model Development, 5, 313-319, 2012 Author(s): Z. Song, F. Qiao, X. Lei, and C. Wang This paper investigates the impact of the parallel computational uncertainty due to the round-off error on climate simulations using the Community Climate System Model Version 3 (CCSM3). A series of sensitivity experiments have been conducted and the analyses are focused on the Global and Nino3.4 average sea surface temperatures (SST). For the monthly time series, it is shown that the amplitude of the deviation induced by the parallel computational uncertainty is the same order as that of the climate system change. However, the ensemble mean method can reduce the influence and the ensemble member number of 15 is enough to ignore the uncertainty. For climatology, the influence can be ignored when the climatological mean is calculated by using more than 30-yr simulations. It is also found that the parallel computational uncertainty has no distinguishable effect on power spectrum analysis of climate variability such as ENSO. Finally, it is suggested that the influence of the parallel computational uncertainty on Coupled General Climate Models (CGCMs) can be a quality standard or a metric for developing CGCMs.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2012-03-13
    Description: Assessment of a physical-biogeochemical coupled model system for operational service in the Baltic Sea Ocean Science Discussions, 9, 835-876, 2012 Author(s): Z. Wan, J. She, M. Maar, L. Jonasson, and J. Baasch-Larsen Thanks to the abundant observation data, we are able to deploy the traditional point-to-point comparison and statistical measures in combination with a comprehensive model validation scheme to assess the skills of the biogeochemical model ERGOM in providing an operational service for the Baltic Sea. The model assessment concludes that the operational products can resolve the main observed seasonal features for phytoplankton biomass, dissolved inorganic nitrogen, dissolved inorganic phosphorus and dissolved oxygen in euphotic layers, as well as their vertical profiles. This assessment reflects that the model errors of the operational system at the current stage are mainly caused by insufficient light penetration, excessive organic particle export downward, insufficient regional adaptation and some of improper initialization. This study highlights the importance of applying multiple schemes in order to assess model skills rigidly and identify main causes for major model errors.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2012-03-13
    Description: Numerical tools to estimate the flux of a gas across the air-water interface and assess the heterogeny of its forcing functions Ocean Science Discussions, 9, 909-975, 2012 Author(s): V. M. N. de C. da S. Vieira A numerical tool was developed for the estimation of gas fluxes across the air water interface. The primary objective is to use it to estimate CO 2 fluxes. Nevertheless application to other gases is easily accomplished by changing the values of the parameters related to the physical properties of the gases. A user friendly software was developed allowing to build upon a standard kernel a custom made gas flux model with the preferred parametrizations. These include single or double layer models; several numerical schemes for the effects of wind in the air-side and water-side transfer velocities; the effect of turbulence from current drag with the bottom; and the effects on solubility of water temperature, salinity, air temperature and pressure. It was also developed an analysis which decomposes the difference between the fluxes in a reference situation and in alternative situations into its several forcing functions. This analysis relies on the Taylor expansion of the gas flux model, requiring the numerical estimation of partial derivatives by a multivariate version of the collocation polynomial. Both the flux model and the difference decomposition analysis were tested with data taken from surveys done in the lagoonary system of Ria Formosa, south Portugal, in which the CO 2 fluxes were estimated using the IRGA and floating chamber method whereas the CO 2 concentrations were estimated using the IRGA and degasification chamber. Observations and estimations show a remarkable fit.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2012-03-15
    Description: Arctic surface temperatures from Metop AVHRR compared to in situ ocean and land data Ocean Science Discussions, 9, 1009-1043, 2012 Author(s): G. Dybkjær, R. Tonboe, and J. Høyer The ice surface temperature (IST) is an important boundary condition for both atmospheric and ocean and sea ice models and for coupled systems. An operational ice surface temperature product using satellite Metop AVHRR infra-red data was developed for MyOcean. The IST can be mapped in clear sky regions using a split window algorithm specially tuned for sea ice. Clear sky conditions are prevailing during spring in the Arctic while persistent cloud cover limits data coverage during summer. The cloud covered regions are detected using the EUMETSAT cloud mask. The Metop IST compares to 2 m temperature at the Greenland ice cap Summit within STD error of 3.14 °C and to Arctic drifting buoy temperature data within STD error of 3.69 °C. A case study reveal that the in situ radiometer data versus satellite IST STD error can be much lower (0.73 °C) and that the different in situ measures complicates the validation. Differences and variability between Metop IST and in situ data are analysed and discussed. An inter-comparison of Metop IST, numerical weather prediction temperatures and in situ observation indicates large biases between the different quantities. Because of the scarcity of conventional surface temperature or surface air temperature data in the Arctic the satellite IST data with its relatively good coverage can potentially add valuable information to model analysis for the Arctic atmosphere.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2012-03-15
    Description: Towards high resolution mapping of 3-D mesoscale dynamics from observations: preliminary comparison of retrieval techniques and models within MESCLA project Ocean Science Discussions, 9, 1045-1083, 2012 Author(s): B. Buongiorno Nardelli, S. Guinehut, A. Pascual, Y. Drillet, S. Ruiz, and S. Mulet Within the MyOcean R&D project MESCLA (MEsoSCale dynamical Analysis through combined model, satellite and in situ data), different estimates of the vertical velocities derived from observations have been compared. Two main approaches have been considered, one based on the retrieval of 3-D fields from the observations alone and one based on the analyses provided by MyOcean MERCATOR models. The motivation for this double approach is that, while data assimilation in numerical models is crucial to obtain more accurate analyses and forecasts, its results might be significantly influenced by specific model configurations (e.g. forcing, parameterization of smaller scale processes and spatial resolution). On the other hand, the purely observation-based approach is limited by the underlying assumptions of simplified dynamical models and by the relatively low resolution of present products. MESCLA tested innovative methods for the high resolution mapping of 3-D mesoscale dynamics from observations, developing new products that might be used to gradually build the next generations of operational observation-based products.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2012-02-04
    Description: On the Shelf Resonances of the Gulf of Carpentaria and the Arafura Sea Ocean Science Discussions, 9, 443-497, 2012 Author(s): D. J. Webb A numerical model is used to investigate the resonances of the Gulf of Carpentaria and the Arafura Sea. The model is forced at the shelf edge, first with physically realistic real values of angular velocity. The response functions at points within the region show maxima and other behaviour which imply that resonances are involved but it is difficult to be more specific. The study is then extended to complex angular velocities and the results then show a clear pattern of gravity wave and Rossby wave like resonances. The properties of the resonances are investigated and used to reinterpret the responses at real values of angular velocity. It is found that in some regions the response is dominated by modes trapped between the shelf edge and the coast or between opposing coastlines. In other regions the resonances show cooperative behaviour, possibly indicating the importance of other physical processes.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2012-02-14
    Description: Wavelet-based spatial comparison technique for analysing and evaluating two-dimensional geophysical model fields Geoscientific Model Development, 5, 223-230, 2012 Author(s): S. Saux Picart, M. Butenschön, and J. D. Shutler Complex numerical models of the Earth's environment, based around 3-D or 4-D time and space domains are routinely used for applications including climate predictions, weather forecasts, fishery management and environmental impact assessments. Quantitatively assessing the ability of these models to accurately reproduce geographical patterns at a range of spatial and temporal scales has always been a difficult problem to address. However, this is crucial if we are to rely on these models for decision making. Satellite data are potentially the only observational dataset able to cover the large spatial domains analysed by many types of geophysical models. Consequently optical wavelength satellite data is beginning to be used to evaluate model hindcast fields of terrestrial and marine environments. However, these satellite data invariably contain regions of occluded or missing data due to clouds, further complicating or impacting on any comparisons with the model. This work builds on a published methodology, that evaluates precipitation forecast using radar observations based on predefined absolute thresholds. It allows model skill to be evaluated at a range of spatial scales and rain intensities. Here we extend the original method to allow its generic application to a range of continuous and discontinuous geophysical data fields, and therefore allowing its use with optical satellite data. This is achieved through two major improvements to the original method: (i) all thresholds are determined based on the statistical distribution of the input data, so no a priori knowledge about the model fields being analysed is required and (ii) occluded data can be analysed without impacting on the metric results. The method can be used to assess a model's ability to simulate geographical patterns over a range of spatial scales. We illustrate how the method provides a compact and concise way of visualising the degree of agreement between spatial features in two datasets. The application of the new method, its handling of bias and occlusion and the advantages of the novel method are demonstrated through the analysis of model fields from a marine ecosystem model.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-01-16
    Description: NEMO on the shelf: assessment of the Iberia-Biscay-Ireland configuration Ocean Science Discussions, 10, 83-151, 2013 Author(s): C. Maraldi, J. Chanut, B. Levier, N. Ayoub, P. De Mey, G. Reffray, F. Lyard, S. Cailleau, M. Drévillon, E. A. Fanjul, M. G. Sotillo, and P. Marsaleix The Iberia-Biscay-Ireland (IBI) system serves one of the 7 MyOcean "Monitoring and Forecasting Centres". A high resolution simulation covering the IBI region is set-up over July 2007–February 2009. The NEMO (Nucleus for European Modelling of the Ocean) model is used with a 1/36° horizontal resolution and 50 z-levels in the vertical. New developments have been incorporated in NEMO to make it suitable to open- as well as coastal-ocean modelling. In this paper, we pursue three main objectives: (1) give an overview of the model configuration used for the simulations; (2) give a broad-brush account of one particular aspect of this work, namely consistency verification; this type of validation is conducted upstream of the implementation of the system before it is used for production and routinely validated; it is meant to guide model development in identifying gross deficiencies in the modelling of several key physical processes; (3) show that such a regional modelling system has potential as a complement to patchy observations (an integrated approach) to give information on non-observed physical quantities and to provide links between observations by identifying broader-scale patterns and processes. We concentrate on the year 2008. We first provide domain-wide consistency verification results in terms of barotropic tides, transports, sea surface temperature and stratification. We then focus on two dynamical sub-regions: the Celtic shelves and the Bay of Biscay slope and deep regions. The model-data consistency is checked for variables and processes such as tidal currents, tidal fronts, internal tides, residual elevation. We also examine the representation in the model of a seasonal pattern of the Bay of Biscay circulation: the warm extension of the Iberian Poleward Current along the northern Spanish coast (Navidad event) in winter 2007–2008.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-01-18
    Description: Performance of McRAS-AC in the GEOS-5 AGCM: aerosol-cloud-microphysics, precipitation, cloud radiative effects, and circulation Geoscientific Model Development, 6, 57-79, 2013 Author(s): Y. C. Sud, D. Lee, L. Oreopoulos, D. Barahona, A. Nenes, and M. J. Suarez A revised version of the Microphysics of clouds with Relaxed Arakawa-Schubert and Aerosol-Cloud interaction scheme (McRAS-AC) including, among others, a new ice nucleation parameterization, is implemented in the GEOS-5 AGCM. Various fields from a 10-yr-long integration of the AGCM with McRAS-AC are compared with their counterparts from an integration of the baseline GEOS-5 AGCM, as well as satellite observations. Generally McRAS-AC simulations have smaller biases in cloud fields and cloud radiative effects over most of the regions of the Earth than the baseline GEOS-5 AGCM. Two systematic biases are identified in the McRAS-AC runs: one is underestimation of cloud particle numbers around 40° S–60° S, and one is overestimate of cloud water path during the Northern Hemisphere summer over the Gulf Stream and North Pacific. Sensitivity tests show that these biases potentially originate from biases in the aerosol input. The first bias is largely eliminated in a test run using 50% smaller radius of sea-salt aerosol particles, while the second bias is substantially reduced when interactive aerosol chemistry is turned on. The main weakness of McRAS-AC is the dearth of low-level marine stratus clouds, a probable outcome of lack of explicit dry-convection in the cloud scheme. Nevertheless, McRAS-AC largely simulates realistic clouds and their optical properties that can be improved further with better aerosol input. An assessment using the COSP simulator in a 1-yr integration provides additional perspectives for understanding cloud optical property differences between the baseline and McRAS-AC simulations and biases against satellite data. Overall, McRAS-AC physically couples aerosols, the microphysics and macrophysics of clouds, and their radiative effects and thereby has better potential to be a valuable tool for climate modeling research.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-02-20
    Description: Corrigendum to "CLM4-BeTR, a generic biogeochemical transport and reaction module for CLM4: model development, evaluation, and application" published in Geosci. Model Dev., 6, 127–140, 2013 Geoscientific Model Development, 6, 245-245, 2013 Author(s): J. Y. Tang, W. J. Riley, C. D. Koven, and Z. M. Subin No abstract available.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-02-20
    Description: Impact of the Indonesian throughflow on Agulhas leakage Ocean Science Discussions, 10, 353-391, 2013 Author(s): D. Le Bars, H. A. Dijkstra, and W. P. M. De Ruijter Using ocean models of different complexity we show that opening the Indonesian Passage between the Pacific and the Indian Ocean increases the input of Indian Ocean water into the South Atlantic via the Agulhas leakage. In a strongly eddying global ocean model this response results from an increased Agulhas Current transport and a constant proportion of Agulhas retroflection south of Africa. The leakage increases through an increased frequency of ring shedding events. In an idealized two-layer and flat-bottom eddy resolving model, the proportion of the Agulhas Current transport that retroflects is (for a wide range of wind stress forcing) not affected by an opening of the Indonesian Passage. A linear ocean model is not able to explain this behavior which reveals the importance of mixed barotropic/baroclinic instabilities in controlling the Agulhas leakage.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-02-23
    Description: Implementation of the chemistry module MECCA (v2.5) in the modal aerosol version of the Community Atmosphere Model component (v3.6.33) of the Community Earth System Model Geoscientific Model Development, 6, 255-262, 2013 Author(s): M. S. Long, W. C. Keene, R. Easter, R. Sander, A. Kerkweg, D. Erickson, X. Liu, and S. Ghan A coupled atmospheric chemistry and climate system model was developed using the modal aerosol version of the National Center for Atmospheric Research Community Atmosphere Model (modal-CAM; v3.6.33) and the Max Planck Institute for Chemistry's Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA; v2.5) to provide enhanced resolution of multiphase processes, particularly those involving inorganic halogens, and associated impacts on atmospheric composition and climate. Three Rosenbrock solvers (Ros-2, Ros-3, RODAS-3) were tested in conjunction with the basic load-balancing options available to modal-CAM (1) to establish an optimal configuration of the implicitly-solved multiphase chemistry module that maximizes both computational speed and repeatability of Ros-2 and RODAS-3 results versus Ros-3, and (2) to identify potential implementation strategies for future versions of this and similar coupled systems. RODAS-3 was faster than Ros-2 and Ros-3 with good reproduction of Ros-3 results, while Ros-2 was both slower and substantially less reproducible relative to Ros-3 results. Modal-CAM with MECCA chemistry was a factor of 15 slower than modal-CAM using standard chemistry. MECCA chemistry integration times demonstrated a systematic frequency distribution for all three solvers, and revealed that the change in run-time performance was due to a change in the frequency distribution of chemical integration times; the peak frequency was similar for all solvers. This suggests that efficient chemistry-focused load-balancing schemes can be developed that rely on the parameters of this frequency distribution.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-02-23
    Description: On the shelf resonances of the English Channel and Irish Sea Ocean Science Discussions, 10, 393-433, 2013 Author(s): D. J. Webb The resonances of the English Channel and Irish Sea are investigated using the methods of Webb (2012) together with an Arakawa C-grid model of the region under study. In the semi-diurnal tidal band, the high tides of the Bristol Channel and Gulf of St. Malo are shown to be due to two shelf resonances which strongly couple the two regions. In the diurnal band, the response is complicated by the presence of continental shelf waves.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2012-11-13
    Description: Implementation of multirate time integration methods for air pollution modelling Geoscientific Model Development, 5, 1395-1405, 2012 Author(s): M. Schlegel, O. Knoth, M. Arnold, and R. Wolke Explicit time integration methods are characterised by a small numerical effort per time step. In the application to multiscale problems in atmospheric modelling, this benefit is often more than compensated by stability problems and step size restrictions resulting from stiff chemical reaction terms and from a locally varying Courant-Friedrichs-Lewy (CFL) condition for the advection terms. Splitting methods may be applied to efficiently combine implicit and explicit methods (IMEX splitting). Complementarily multirate time integration schemes allow for a local adaptation of the time step size to the grid size. In combination, these approaches lead to schemes which are efficient in terms of evaluations of the right-hand side. Special challenges arise when these methods are to be implemented. For an efficient implementation, it is crucial to locate and exploit redundancies. Furthermore, the more complex programme flow may lead to computational overhead which, in the worst case, more than compensates the theoretical gain in efficiency. We present a general splitting approach which allows both for IMEX splittings and for local time step adaptation. The main focus is on an efficient implementation of this approach for parallel computation on computer clusters.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2012-12-08
    Description: Lidar signal simulation for the evaluation of aerosols in chemistry transport models Geoscientific Model Development, 5, 1543-1564, 2012 Author(s): S. Stromatas, S. Turquety, L. Menut, H. Chepfer, J. C. Péré, G. Cesana, and B. Bessagnet We present an adaptable tool, the OPTSIM (OPTical properties SIMulation) software, for the simulation of optical properties and lidar attenuated backscattered profiles ( β ') from aerosol concentrations calculated by chemistry transport models (CTM). It was developed to model both Level 1 observations and Level 2 aerosol lidar retrievals in order to compare model results to measurements: the level 2 enables to estimate the main properties of aerosols plume structures, but may be limited due to specific assumptions. The level 1, originally developed for this tool, gives access to more information about aerosols properties ( β ') requiring, at the same time, less hypothesis on aerosols types. In addition to an evaluation of the aerosol loading and optical properties, active remote sensing allows the analysis of aerosols' vertical structures. An academic case study for two different species (black carbon and dust) is presented and shows the consistency of the simulator. Illustrations are then given through the analysis of dust events in the Mediterranean region during the summer 2007. These are based on simulations by the CHIMERE regional CTM and observations from the CALIOP space-based lidar, and highlight the potential of this approach to evaluate the concentration, size and vertical structure of the aerosol plumes.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2012-12-11
    Description: On the use of the Strouhal/Stokes number to explain the dynamics and water column structure on shelf seas Ocean Science Discussions, 9, 3723-3738, 2012 Author(s): A. J. Souza In recent years coastal oceanographers have suggested the use of the "Strouhal" number or it's inverse the "Stokes" number, which have been defined as the ratios of the frictional depth (δ) to the water column depth ( h ) or vice versa, to describe the effect of bottom boundary layer turbulence on the vertical structure of both density and currents. Although they have mention that the effects of rotation should be important, they have tended to omit it. This omission may be important when talking about tidal currents as the frictional depth from a fully cyclonic to a fully anticyclonic tidal ellipse can vary up to an order of magnitude in the mid latitudes; so that the stokes number might appear smaller (larger) than it is resulting in frictional effects being underestimated (overestimated). Here a way to calculate a Stokes number, in which the effect of the Earth's rotation is taken into account, is suggested. Then the standard Stokes and the rotational Stokes numbers are used as predictors for the position of the tidal mixing fronts in the Irish Sea. Results show that the rotational number improves prediction of the front in shallow cyclonic areas of the eastern Irish Sea. This suggest that the effect of rotation on the water column structure will be more important in shallow shelf seas and estuaries with strong rotational currents.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-03-02
    Description: Modelling the Caspian Sea and its catchment area using a coupled regional atmosphere-ocean model (RegCM4-ROMS): model design and preliminary results Geoscientific Model Development, 6, 283-299, 2013 Author(s): U. U. Turuncoglu, G. Giuliani, N. Elguindi, and F. Giorgi We describe the development of a coupled regional atmosphere-ocean model (RegCM4-ROMS) and its implementation over the Caspian Sea basin. The coupled model is run for the period 1999–2008 (after a spin up of 4 yr) and it is compared to corresponding stand alone model simulations and a simulation in which a distributed 1d lake model is run for the Caspian Sea. All model versions show a good performance in reproducing the climatology of the Caspian Sea basin, with relatively minor differences across them. The coupled ROMS produces realistic, although somewhat overestimated, Caspian Sea Surface Temperature (SST), with a considerable improvement compared to the use of the simpler coupled lake model. Simulated near surface salinity and sea currents are also realistic, although the upwelling over the eastern coastal regions is underestimated. The sea ice extent over the shallow northern shelf of the Caspian Sea and its seasonal evolution are well reproduced, however, a significant negative bias in sea-ice fraction exists due to the relatively poor representation of the bathymetry. ROMS also calculates the Caspian Sea Level (CSL), showing that for the present experiment excessive evaporation over the lake area leads to a drift in estimated CSL. Despite this problem, which requires further analysis due to many uncertainties in the estimation of CSL, overall the coupled RegCM4-ROMS system shows encouraging results in reproducing both the climatology of the region and the basic characteristics of the Caspian Sea.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2012-09-29
    Description: A new marine ecosystem model for the University of Victoria Earth System Climate Model Geoscientific Model Development, 5, 1195-1220, 2012 Author(s): D. P. Keller, A. Oschlies, and M. Eby Earth System Climate Models (ESCMs) are valuable tools that can be used to gain a better understanding of the climate system, global biogeochemical cycles and how anthropogenically-driven changes may affect them. Here we describe improvements made to the marine biogeochemical ecosystem component of the University of Victoria's ESCM (version 2.9). Major changes include corrections to the code and equations describing phytoplankton light limitation and zooplankton grazing, the implementation of a more realistic zooplankton growth and grazing model, and the implementation of an iron limitation scheme to constrain phytoplankton growth. The new model is evaluated after a 10 000-yr spin-up and compared to both the previous version and observations. For the majority of biogeochemical tracers and ecosystem processes the new model shows significant improvements when compared to the previous version and evaluated against observations. Many of the improvements are due to better simulation of seasonal changes in higher latitude ecosystems and the effect that this has on ocean biogeochemistry. This improved model is intended to provide a basic new ESCM model component, which can be used as is or expanded upon (i.e., the addition of new tracers), for climate change and biogeochemical cycling research.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2012-10-13
    Description: Chaotic variability of the meridional overturning circulation on subannual to interannual timescales Ocean Science Discussions, 9, 3191-3238, 2012 Author(s): J. J.-M. Hirschi, A. T. Blaker, B. Sinha, A. Coward, B. de Cuevas, S. Alderson, and G. Madec Observations and numerical simulations have shown that the meridional overturning circulation (MOC) exhibits substantial variability on sub- to interannual timescales. This variability is not fully understood. In particular it is not known what fraction of the MOC variability is caused by processes such as mesoscale ocean eddies and internal waves which are ubiquitous in the ocean. Here we analyse twin experiments performed with a global ocean model at eddying (1/4°) and non-eddying (1°) resolutions. The twin experiments are forced with the same surface fluxes for the 1958 to 2001 period but start from different initial conditions. Our results show that on subannual to interannual timescales a large fraction of MOC variability directly reflects variability in the surface forcing. Nevertheless, in the eddy-permitting case there is an initial condition dependent MOC variability (hereinafter referred to as "chaotic" variability) of several Sv (1 Sv = 10 6 m 3 s −1 ) in the Atlantic and the Indo-Pacific. In the Atlantic the chaotic MOC variability represents up to 30% of the total variability at the depths where the maximum MOC occurs. In comparison the chaotic MOC variability is only 5–10% in the non-eddying case. The surface forcing being identical in the twin experiments suggests that mesoscale ocean eddies are the most likely cause for the increased chaotic MOC variability in the eddying case. The exact formation time of eddies is determined by the initial conditions which are different in the two accordance with and as a consequence the mesoscale eddy field is decorrelated in the twin experiments. In regions where eddy activity is high in the eddy-permitting model, the correlation of sea surface height variability in the twin runs is close to zero. In the non-eddying case in contrast, we find high correlations (0.9 or higher) over most regions. Looking at the sub- and interannual MOC components separately reveals that despite the amplitude of the chaotic variability being larger on subannual than on interannual timescales, the ratio of chaotic to total MOC variability is larger on interannual than on subannual timescales.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2012-09-22
    Description: Downscaling the climate change for oceans around Australia Geoscientific Model Development, 5, 1177-1194, 2012 Author(s): M. A. Chamberlain, C. Sun, R. J. Matear, M. Feng, and S. J. Phipps At present, global climate models used to project changes in climate poorly resolve mesoscale ocean features such as boundary currents and eddies. These missing features may be important to realistically project the marine impacts of climate change. Here we present a framework for dynamically downscaling coarse climate change projections utilising a near-global ocean model that resolves these features in the Australasian region, with coarser resolution elsewhere. A time-slice projection for a 2060s ocean was obtained by adding climate change anomalies to initial conditions and surface fluxes of a near-global eddy-resolving ocean model. Climate change anomalies are derived from the differences between present and projected climates from a coarse global climate model. These anomalies are added to observed fields, thereby reducing the effect of model bias from the climate model. The downscaling model used here is ocean-only and does not include the effects that changes in the ocean state will have on the atmosphere and air–sea fluxes. We use restoring of the sea surface temperature and salinity to approximate real-ocean feedback on heat flux and to keep the salinity stable. Extra experiments with different feedback parameterisations are run to test the sensitivity of the projection. Consistent spatial differences emerge in sea surface temperature, salinity, stratification and transport between the downscaled projections and those of the climate model. Also, the spatial differences become established rapidly ( 〈 3 yr), indicating the importance of mesoscale resolution. However, the differences in the magnitude of the difference between experiments show that feedback of the ocean onto the air–sea fluxes is still important in determining the state of the ocean in these projections. Until such a time when it is feasible to regularly run a global climate model with eddy resolution, our framework for ocean climate change downscaling provides an attractive way to explore the response of mesoscale ocean features with climate change and their effect on the broader ocean.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2012-10-05
    Description: Co-existence of wind seas and swells along the west coast of India during non-monsoon season Ocean Science Discussions, 9, 3097-3125, 2012 Author(s): R. Rashmi, V. M. Aboobacker, P. Vethamony, and M. P. John Wave data collected along the west coast of India (off Goa, Ratnagiri and Dwarka) during non-monsoon season have been analysed to study the co-existence of wind seas and swells. Diurnal variation in wind and wave parameters is noticeable along the central west coast of India (off Goa and Ratnagiri), and this is not present along the northwest coast of India (off Dwarka). Swells are predominantly mature (91%) and old (88%) during late pre-monsoon and post-monsoon seasons, respectively. Sea Swell Energy Ratio quantifies wind sea, swell and mixed seas prevailing in the regions during non-monsoon season. Intermodal Distance (ID) between the energy peaks is moderately separated during non-monsoon season, whereas, during the shamal events, energy peaks are very close to each other (ID ~ 0). However, pure wind seas (ID ~ 1) are found to co-exist with the swells during non-monsoon season. Wind seas are growing, when wind and wind seas are opposite to swell direction. Wind seas have minimum angular spreads in multimodal state. Under low winds, the interaction between wind sea and swell dominates and thereby the multimodal state reduces to unimodal state. The fetch available for the evolution of the wind sea spectrum has been estimated, and it is found to be less than 150 km. For the fetch limited condition, a non-dimensional empirical relation has been derived relating the significant wind sea height in terms of wind speed and peak wind sea period, and this relation fits for the west coast of India.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2012-10-18
    Description: Description of a hybrid ice sheet-shelf model, and application to Antarctica Geoscientific Model Development, 5, 1273-1295, 2012 Author(s): D. Pollard and R. M. DeConto The formulation of a 3-D ice sheet-shelf model is described. The model is designed for long-term continental-scale applications, and has been used mostly in paleoclimatic studies. It uses a hybrid combination of the scaled shallow ice and shallow shelf approximations for ice flow. Floating ice shelves and grounding-line migration are included, with parameterized ice fluxes at grounding lines that allows relatively coarse resolutions to be used. All significant components and parameterizations of the model are described in some detail. Basic results for modern Antarctica are compared with observations, and simulations over the last 5 million years are compared with previously published results. The sensitivity of ice volumes during the last deglaciation to basal sliding coefficients is discussed.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2012-10-20
    Description: The Nexus Land-Use model version 1.0, an approach articulating biophysical potentials and economic dynamics to model competition for land-use Geoscientific Model Development, 5, 1297-1322, 2012 Author(s): F. Souty, T. Brunelle, P. Dumas, B. Dorin, P. Ciais, R. Crassous, C. Müller, and A. Bondeau Interactions between food demand, biomass energy and forest preservation are driving both food prices and land-use changes, regionally and globally. This study presents a new model called Nexus Land-Use version 1.0 which describes these interactions through a generic representation of agricultural intensification mechanisms within agricultural lands. The Nexus Land-Use model equations combine biophysics and economics into a single coherent framework to calculate crop yields, food prices, and resulting pasture and cropland areas within 12 regions inter-connected with each other by international trade. The representation of cropland and livestock production systems in each region relies on three components: (i) a biomass production function derived from the crop yield response function to inputs such as industrial fertilisers; (ii) a detailed representation of the livestock production system subdivided into an intensive and an extensive component, and (iii) a spatially explicit distribution of potential (maximal) crop yields prescribed from the Lund-Postdam-Jena global vegetation model for managed Land (LPJmL). The economic principles governing decisions about land-use and intensification are adapted from the Ricardian rent theory, assuming cost minimisation for farmers. In contrast to the other land-use models linking economy and biophysics, crops are aggregated as a representative product in calories and intensification for the representative crop is a non-linear function of chemical inputs. The model equations and parameter values are first described in details. Then, idealised scenarios exploring the impact of forest preservation policies or rising energy price on agricultural intensification are described, and their impacts on pasture and cropland areas are investigated.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2012-04-04
    Description: "Gtool5": a Fortran90 library of input/output interfaces for self-descriptive multi-dimensional numerical data Geoscientific Model Development, 5, 449-455, 2012 Author(s): M. Ishiwatari, E. Toyoda, Y. Morikawa, S. Takehiro, Y. Sasaki, S. Nishizawa, M. Odaka, N. Otobe, Y. O. Takahashi, K. Nakajima, T. Horinouchi, M. Shiotani, Y.-Y. Hayashi, and Gtool development group A Fortran90 input/output library, "gtool5", is developed for use with numerical simulation models in the fields of Earth and planetary sciences. The use of this library will simplify implementation of input/output operations into program code in a consolidated form independent of the size and complexity of the software and data. The library also enables simple specification of the metadata needed for post-processing and visualization of the data. These aspects improve the readability of simulation code, which facilitates the simultaneous performance of multiple numerical experiments with different software and efficiency in examining and comparing the numerical results. The library is expected to provide a common software platform to reinforce research on, for instance, the atmosphere and ocean, where a close combination of multiple simulation models with a wide variety of complexity of physics implementations from massive climate models to simple geophysical fluid dynamics models is required.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2012-04-11
    Description: Assimilation of SLA along track observations in the Mediterranean with an oceanographic model forced by atmospheric pressure Ocean Science Discussions, 9, 1577-1598, 2012 Author(s): S. Dobricic, C. Dufau, P. Oddo, N. Pinardi, I. Pujol, and M.-H. Rio A large number of SLA observations at a high along track horizontal resolution are an important ingredient of the data assimilation in the Mediterranean Forecasting System (MFS). Recently new higher frequency SLA products have become available, and the atmospheric pressure forcing has been implemented in the numerical model used in the MFS data assimilation system. In a set of numerical experiments we show that in order to obtain the most accurate analyses the ocean model should include the atmospheric pressure forcing and the observations should contain the atmospheric pressure signal. When the model is not forced by the atmospheric pressure the high frequency filtering of SLA observations, however, improves the quality of the analyses. It is further shown that MFS analyses, produced by an assimilation system given by the numerical model and the high frequency SLA observations, have a correct power spectrum at high wave numbers and they filter efficiently the SLA assimilated observations which, on the other hand, are contaminated by high wavenumber noise.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2012-04-11
    Description: TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic Ocean Science Discussions, 9, 1519-1575, 2012 Author(s): P. Sakov, F. Counillon, L. Bertino, K. A. Lisæter, P. R. Oke, and A. Korablev We present a detailed description of TOPAZ4, the latest version of TOPAZ – a coupled ocean-sea ice data assimilation system for the North Atlantic Ocean and Arctic. It is the only operational, large-scale ocean data assimilation system that uses the ensemble Kalman filter. This means that TOPAZ features a time-evolving, state-dependent estimate of the state error covariance. Based on results from the pilot MyOcean reanalysis for 2003–2008, we demonstrate that TOPAZ4 produces a realistic estimate of the ocean circulation and the sea ice. We find that the ensemble spread for temperature and sea-level remains fairly constant throughout the reanalysis demonstrating that the data assimilation system is robust to ensemble collapse. Moreover, the ensemble spread for ice concentration is well correlated with the actual errors. This indicates that the ensemble statistics provide reliable state-dependent error estimates – a feature that is unique to ensemble-based data assimilation systems. We demonstrate that the quality of the reanalysis changes when different sea surface temperature products are assimilated, or when in situ profiles below the ice in the Arctic Ocean are assimilated. We find that data assimilation improves the match to independent observations compared to a free model. Improvements are particularly noticeable for ice thickness, salinity in the Arctic, and temperature in the Fram Strait, but not for transport estimates or underwater temperature. At the same time, the pilot reanalysis has revealed several flaws in the system that have degraded its performance. Finally, we show that a simple bias estimation scheme can effectively detect the seasonal or constant bias in temperature and sea-level.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2012-04-13
    Description: Fate of river Tiber discharge investigated through numerical simulation and satellite monitoring Ocean Science Discussions, 9, 1599-1649, 2012 Author(s): R. Inghilesi, L. Ottolenghi, A. Orasi, C. Pizzi, F. Bignami, and R. Santoleri The aim of this study was to determine the dispersion of passive pollutants associated with the Tiber discharge into the Tyrrhenian Sea using numerical marine dispersion models and satellite data. Numerical results obtained in the simulation of realistic discharge episodes were compared with the corresponding evolution of the spatial distributions of MODIS diffuse light attenuation coefficient at 490 nm (K490), and the results were discussed with reference to the local climate and the seasonal sub-regional circulation regime. The numerical model used for the simulation of the sub-tidal circulation was a Mediterranean sub-regional scale implementation of the Princeton Ocean Model (POM), nested in the large-scale Mediterranean Forecasting System. The nesting method enabled the model to be applied to almost every area in the Mediterranean Sea and also to be used in seasons for which imposing climatological boundary conditions would have been questionable. Dynamical effects on coastal circulation and on water density due to the Tiber discharge were additionally accounted for in the oceanographic model by implementing the river estuary as a point source of a buoyant jet. A Lagrangian particle dispersion model fed with the POM current fields was then run, in order to reproduce the effect of the turbulent transport of passive tracers mixed in the plume with the coastal flow. Two significant episodes of river discharge in both Winter and Summer conditions were discussed in this paper. It was found that the Winter regime was characterized by the presence of a strong coastal jet flowing with the ambient current. In Summer the prevailing wind regime induces coastal downwelling conditions, which tend to confine the riverine waters close to the shore. In such conditions sudden wind reversals due to local weather perturbations, causing strong local upwelling, proved to be an effective way to disperse the tracers offshore, moving the plume from the coast and detaching large pools of freshwater.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2012-04-13
    Description: An operational model for the West Iberian coast: products and services Ocean Science Discussions, 9, 1651-1689, 2012 Author(s): M. Mateus, G. Riflet, P. Chambel, L. Fernandes, R. Fernandes, M. Juliano, F. Campuzano, H. de Pablo, and R. Neves The paper presents the structure and application of a regional scale operational modelling tool for the West Iberian coast. The forecasting suite includes nested hydrodynamic models forced with up-to-date meteorological forecast data and large scale model results as lateral boundary conditions. The present status of the system and its recent upgrades are reviewed, offering a general description of the main components of the system: circulation model, qualitative and quantitative validation methodology and type of results. Seasonal differences in temperature, salinity and current velocity fields are illustrated with model results, and the validation shows a satisfactory reproduction of the top and deep layers thermodynamics. The system provides boundary forcing for a number of local scale model applications via downscaling of the solution, and its potential for products and services for both scientific and coastal management activities is discussed here.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2012-04-17
    Description: Detection, tracking and event localization of jet stream features in 4-D atmospheric data Geoscientific Model Development, 5, 457-470, 2012 Author(s): S. Limbach, E. Schömer, and H. Wernli We introduce a novel algorithm for the efficient detection and tracking of features in spatiotemporal atmospheric data, as well as for the precise localization of the occurring genesis, lysis, merging and splitting events. The algorithm works on data given on a four-dimensional structured grid. Feature selection and clustering are based on adjustable local and global criteria, feature tracking is predominantly based on spatial overlaps of the feature's full volumes. The resulting 3-D features and the identified correspondences between features of consecutive time steps are represented as the nodes and edges of a directed acyclic graph, the event graph. Merging and splitting events appear in the event graph as nodes with multiple incoming or outgoing edges, respectively. The precise localization of the splitting events is based on a search for all grid points inside the initial 3-D feature that have a similar distance to two successive 3-D features of the next time step. The merging event is localized analogously, operating backward in time. As a first application of our method we present a climatology of upper-tropospheric jet streams and their events, based on four-dimensional wind speed data from European Centre for Medium-Range Weather Forecasts (ECMWF) analyses. We compare our results with a climatology from a previous study, investigate the statistical distribution of the merging and splitting events, and illustrate the meteorological significance of the jet splitting events with a case study. A brief outlook is given on additional potential applications of the 4-D data segmentation technique.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-02-09
    Description: Aerosol–climate interactions in the Norwegian Earth System Model – NorESM1-M Geoscientific Model Development, 6, 207-244, 2013 Author(s): A. Kirkevåg, T. Iversen, Ø. Seland, C. Hoose, J. E. Kristjánsson, H. Struthers, A. M. L. Ekman, S. Ghan, J. Griesfeller, E. D. Nilsson, and M. Schulz The objective of this study is to document and evaluate recent changes and updates to the module for aerosols and aerosol–cloud–radiation interactions in the atmospheric module CAM4-Oslo of the core version of the Norwegian Earth System Model (NorESM), NorESM1-M. Particular attention is paid to the role of natural organics, sea salt, and mineral dust in determining the gross aerosol properties as well as the anthropogenic contribution to these properties and the associated direct and indirect radiative forcing. The aerosol module is extended from earlier versions that have been published, and includes life-cycling of sea salt, mineral dust, particulate sulphate, black carbon, and primary and secondary organics. The impacts of most of the numerous changes since previous versions are thoroughly explored by sensitivity experiments. The most important changes are: modified prognostic sea salt emissions; updated treatment of precipitation scavenging and gravitational settling; inclusion of biogenic primary organics and methane sulphonic acid (MSA) from oceans; almost doubled production of land-based biogenic secondary organic aerosols (SOA); and increased ratio of organic matter to organic carbon (OM/OC) for biomass burning aerosols from 1.4 to 2.6. Compared with in situ measurements and remotely sensed data, the new treatments of sea salt and dust aerosols give smaller biases in near-surface mass concentrations and aerosol optical depth than in the earlier model version. The model biases for mass concentrations are approximately unchanged for sulphate and BC. The enhanced levels of modeled OM yield improved overall statistics, even though OM is still underestimated in Europe and overestimated in North America. The global anthropogenic aerosol direct radiative forcing (DRF) at the top of the atmosphere has changed from a small positive value to −0.08 W m −2 in CAM4-Oslo. The sensitivity tests suggest that this change can be attributed to the new treatment of biomass burning aerosols and gravitational settling. Although it has not been a goal in this study, the new DRF estimate is closer both to the median model estimate from the AeroCom intercomparison and the best estimate in IPCC AR4. Estimated DRF at the ground surface has increased by ca. 60%, to −1.89 W m −2 . We show that this can be explained by new emission data and omitted mixing of constituents between updrafts and downdrafts in convective clouds. The increased abundance of natural OM and the introduction of a cloud droplet spectral dispersion formulation are the most important contributions to a considerably decreased estimate of the indirect radiative forcing (IndRF). The IndRF is also found to be sensitive to assumptions about the coating of insoluble aerosols by sulphate and OM. The IndRF of −1.2 W m −2 , which is closer to the IPCC AR4 estimates than the previous estimate of −1.9 W m −2 , has thus been obtained without imposing unrealistic artificial lower bounds on cloud droplet number concentrations.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-02-08
    Description: The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics Geoscientific Model Development, 6, 179-206, 2013 Author(s): J.-F. Lamarque, D. T. Shindell, B. Josse, P. J. Young, I. Cionni, V. Eyring, D. Bergmann, P. Cameron-Smith, W. J. Collins, R. Doherty, S. Dalsoren, G. Faluvegi, G. Folberth, S. J. Ghan, L. W. Horowitz, Y. H. Lee, I. A. MacKenzie, T. Nagashima, V. Naik, D. Plummer, M. Righi, S. T. Rumbold, M. Schulz, R. B. Skeie, D. S. Stevenson, S. Strode, K. Sudo, S. Szopa, A. Voulgarakis, and G. Zeng The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) consists of a series of time slice experiments targeting the long-term changes in atmospheric composition between 1850 and 2100, with the goal of documenting composition changes and the associated radiative forcing. In this overview paper, we introduce the ACCMIP activity, the various simulations performed (with a requested set of 14) and the associated model output. The 16 ACCMIP models have a wide range of horizontal and vertical resolutions, vertical extent, chemistry schemes and interaction with radiation and clouds. While anthropogenic and biomass burning emissions were specified for all time slices in the ACCMIP protocol, it is found that the natural emissions are responsible for a significant range across models, mostly in the case of ozone precursors. The analysis of selected present-day climate diagnostics (precipitation, temperature, specific humidity and zonal wind) reveals biases consistent with state-of-the-art climate models. The model-to-model comparison of changes in temperature, specific humidity and zonal wind between 1850 and 2000 and between 2000 and 2100 indicates mostly consistent results. However, models that are clear outliers are different enough from the other models to significantly affect their simulation of atmospheric chemistry.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-02-08
    Description: Implementation of the Fast-JX Photolysis scheme (v6.4) into the UKCA component of the MetUM chemistry-climate model (v7.3) Geoscientific Model Development, 6, 161-177, 2013 Author(s): P. J. Telford, N. L. Abraham, A. T. Archibald, P. Braesicke, M. Dalvi, O. Morgenstern, F. M. O'Connor, N. A. D. Richards, and J. A. Pyle Atmospheric chemistry is driven by photolytic reactions, making their modelling a crucial component of atmospheric models. We describe the implementation and validation of Fast-JX, a state of the art model of interactive photolysis, into the MetUM chemistry-climate model. This allows for interactive photolysis rates to be calculated in the troposphere and augments the calculation of the rates in the stratosphere by accounting for clouds and aerosols in addition to ozone. In order to demonstrate the effectiveness of this new photolysis scheme we employ new methods of validating the model, including techniques for sampling the model to compare to flight track and satellite data.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-02-14
    Description: Investigation of saline water intrusions into the Curonian Lagoon (Lithuania) and two-layer flow in the Klaipėda Strait using finite element hydrodynamic model Ocean Science Discussions, 10, 321-352, 2013 Author(s): P. Zemlys, C. Ferrarin, G. Umgiesser, S. Gulbinskas, and D. Bellafiore This work is focused on the application of a modelling system to simulate 3-D interaction between the Curonian Lagoon and the Baltic Sea coastal waters and to reflect spatio-temporal dynamics of marine waters in the Curonian Lagoon. The model system is based on the finite element program package SHYFEM which can be used to resolve the hydrodynamic equations in lagoons, coastal seas, estuaries and lakes. The results of a one year 3-D model simulation with real weather and hydrological forcing show that the saline water intrusions from the sea through Klaipėda Strait are gradually decreasing with distance from the sea and become negligible (average annual salinity about 0.5 ‰) at a~distance of about 20 km to the south of Kiaulės Nugara island. Analyses of the simulation results also show this area being highly heterogeneous according to the vertical salinity distribution. While in the deeper Klaipėda Strait (harbour waterway) differences in average salinity between near bottom and surface layers varies in the range 2–2.5 ‰, in the rest of the Curonian Lagoon it is less than 0.1 ‰. Analyses of the simulation results confirmed the presence of a two-directional flow that from time to time changes to either saline water one-directional flow to the Curonian Lagoon or fresh water one-directional flow to the sea. Two-directional flow duration decreases with a distance from sea entrance in Klaipėda Strait from around 180 days yr −1 close to the sea entrance to 50 days yr −1 just behind Kiaulės Nugara island. One-directional outflow duration is increasing with a distance from the sea entrance from 100 to 225 days yr −1 . One-directional inflow duration occurs in the range 85–100 days yr −1 . The analysis of the ratio of buoyancy layer thickness to water depth ( h b /H) and the Wedderburn number showed three main flow regimes in the strait, identifying the main importance of wind action in the along-strait direction. Absence of wind or cross-strait wind regimes allow the maintenance of an two-layer flow typical of estuarine dynamics.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2013-02-20
    Description: A generalized tagging method Geoscientific Model Development, 6, 247-253, 2013 Author(s): V. Grewe The understanding of causes of changes in climate-chemistry simulations is an important, but often challenging task. In atmospheric chemistry, one approach is to tag species according to their origin (e.g. emission categories) and to inherit these tags to other species during subsequent reactions. This concept was recently employed to calculate the contribution of atmospheric processes to temperature. Here a new concept for tagging any state variable is presented. This generalized tagging method results from a sensitivity analysis of the individual forcing terms of the right hand side of the governing differential equations. In a couple of examples, the consistency with previous approaches and the synergy by using different analysis techniques are shown. Since the method is based on a ratio describing relative sensitivities, singularities occur where the method is not applicable. For some applications, such as in atmospheric chemistry, these singularities can easily be removed. However, one theoretical example is given, where this method is not applicable at all.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-02-01
    Description: Optimising the FAMOUS climate model: inclusion of global carbon cycling Geoscientific Model Development, 6, 141-160, 2013 Author(s): J. H. T. Williams, R. S. Smith, P. J. Valdes, B. B. B. Booth, and A. Osprey FAMOUS fills an important role in the hierarchy of climate models, both explicitly resolving atmospheric and oceanic dynamics yet being sufficiently computationally efficient that either very long simulations or large ensembles are possible. An improved set of carbon cycle parameters for this model has been found using a perturbed physics ensemble technique. This is an important step towards building the "Earth System" modelling capability of FAMOUS, which is a reduced resolution, and hence faster running, version of the Hadley Centre Climate model, HadCM3. Two separate 100 member perturbed parameter ensembles were performed; one for the land surface and one for the ocean. The land surface scheme was tested against present-day and past representations of vegetation and the ocean ensemble was tested against observations of nitrate. An advantage of using a relatively fast climate model is that a large number of simulations can be run and hence the model parameter space (a large source of climate model uncertainty) can be more thoroughly sampled. This has the associated benefit of being able to assess the sensitivity of model results to changes in each parameter. The climatologies of surface and tropospheric air temperature and precipitation are improved relative to previous versions of FAMOUS. The improved representation of upper atmosphere temperatures is driven by improved ozone concentrations near the tropopause and better upper level winds.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2012-09-01
    Description: Variability in the air–sea interaction patterns and time-scales within the Southeastern Bay of Biscay, as observed by HF radar data Ocean Science Discussions, 9, 2793-2815, 2012 Author(s): A. Fontán, G. Esnaola, J. Sáenz, and M. González Two high frequency (HF) radar stations were installed on the Southeastern Bay of Biscay in 2009, providing high spatial and temporal resolution and large spatial coverage currents for the first time in the area. This has enabled to determine quantitatively the air–sea interaction patterns and time-scales for the period 2009–2010. The analysis was conducted by using the Barnett-Preisendorfer approach to canonical correlation analysis (CCA) of reanalysis surface winds and HF radar-derived currents. The results reveal that the CCA yields two canonical patterns. The first wind-current interaction pattern corresponds to the classical Ekman drift at sea surface, whilst the second describes an anticyclonic/cyclonic surface circulation. The results obtained demonstrate that the local winds play an important role in driving the upper water circulation. The wind-current interaction time-scales are mainly related to diurnal breezes and synoptic variability. In particular, the breezes force diurnal currents in the continental shelf and slope of the Southeastern Bay. It is concluded that the breezes may force diurnal currents over considerably wider areas than that covered by the HF radar, considering that the northern and southern continental shelves of the Bay exhibit stronger diurnal than annual wind amplitudes.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...