ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,332)
  • Copernicus  (1,332)
  • National Academy of Sciences
  • 2010-2014  (1,332)
  • 1980-1984
  • 1945-1949
  • 1925-1929
  • Geoscientific Model Development  (452)
  • Solid Earth  (188)
  • 102048
  • 133345
  • Geosciences  (1,332)
  • 1
    Publication Date: 2013-09-10
    Description: The Chemistry CATT-BRAMS model (CCATT-BRAMS 4.5): a regional atmospheric model system for integrated air quality and weather forecasting and research Geoscientific Model Development, 6, 1389-1405, 2013 Author(s): K. M. Longo, S. R. Freitas, M. Pirre, V. Marécal, L. F. Rodrigues, J. Panetta, M. F. Alonso, N. E. Rosário, D. S. Moreira, M. S. Gácita, J. Arteta, R. Fonseca, R. Stockler, D. M. Katsurayama, A. Fazenda, and M. Bela Coupled Chemistry Aerosol-Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CCATT-BRAMS, version 4.5) is an on-line regional chemical transport model designed for local and regional studies of atmospheric chemistry from the surface to the lower stratosphere suitable both for operational and research purposes. It includes gaseous/aqueous chemistry, photochemistry, scavenging and dry deposition. The CCATT-BRAMS model takes advantage of BRAMS-specific development for the tropics/subtropics as well as the recent availability of preprocessing tools for chemical mechanisms and fast codes for photolysis rates. BRAMS includes state-of-the-art physical parameterizations and dynamic formulations to simulate atmospheric circulations down to the meter. This on-line coupling of meteorology and chemistry allows the system to be used for simultaneous weather and chemical composition forecasts as well as potential feedback between the two. The entire system is made of three preprocessing software tools for user-defined chemical mechanisms, aerosol and trace gas emissions fields and the interpolation of initial and boundary conditions for meteorology and chemistry. In this paper, the model description is provided along with the evaluations performed by using observational data obtained from ground-based stations, instruments aboard aircrafts and retrieval from space remote sensing. The evaluation accounts for model applications at different scales from megacities and the Amazon Basin up to the intercontinental region of the Southern Hemisphere.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-13
    Description: δ 18 O water isotope in the i LOVECLIM model (version 1.0) – Part 1: Implementation and verification Geoscientific Model Development, 6, 1481-1491, 2013 Author(s): D. M. Roche A new 18 O stable water isotope scheme is developed for three components of the i LOVECLIM coupled climate model: atmospheric, oceanic and land surface. The equations required to reproduce the fractionation of stable water isotopes in the simplified atmospheric model ECBilt are developed consistently with the moisture scheme. Simplifications in the processes are made to account for the simplified vertical structure including only one moist layer. Implementation of these equations together with a passive tracer scheme for the ocean and a equilibrium fractionation scheme for the land surface leads to the closure of the (isotopic-) water budget in our climate system. Following the implementation, verification of the existence of usual δ 18 O to climatic relationships are performed for the Rayleigh distillation, the Dansgaard relationship and the δ 18 O –salinity relationship. Advantages and caveats of the approach taken are outlined. The isotopic fields simulated are shown to reproduce most expected oxygen-18–climate relationships with the notable exception of the isotopic composition in Antarctica.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-13
    Description: δ 18 O water isotope in the i LOVECLIM model (version 1.0) – Part 3: A palaeo-perspective based on present-day data–model comparison for oxygen stable isotopes in carbonates Geoscientific Model Development, 6, 1505-1516, 2013 Author(s): T. Caley and D. M. Roche Oxygen stable isotopes (δ 18 O) are among the most useful tools in palaeoclimatology/palaeoceanography. Simulation of oxygen stable isotopes allows testing how the past variability of these isotopes in water can be interpreted. By modelling the proxy directly in the model, the results can also be directly compared with the data. Water isotopes have been implemented in the global three-dimensional model of intermediate complexity i LOVECLIM, allowing fully coupled atmosphere–ocean simulations. In this study, we present the validation of the model results for present-day climate against the global database for oxygen stable isotopes in carbonates. The limitation of the model together with the processes operating in the natural environment reveal the complexity of use the continental calcite-δ 18 O signal of speleothems for a global quantitative data–model comparison exercise. On the contrary, the reconstructed surface ocean calcite-δ 18 O signal in i LOVECLIM does show a very good agreement with the late Holocene database (foraminifers) at the global and regional scales. Our results indicate that temperature and the isotopic composition of the seawater are the main control on the fossil-δ 18 O signal recorded in foraminifer shells when all species are grouped together. Depth habitat, seasonality and other ecological effects play a more significant role when individual species are considered. We argue that a data–model comparison for surface ocean calcite δ 18 O in past climates, such as the Last Glacial Maximum (≈ 21 000 yr), could constitute an interesting tool for mapping the potential shifts of the frontal systems and circulation changes throughout time. Similarly, the potential changes in intermediate oceanic circulation systems in the past could be documented by a data (benthic foraminifers)-model comparison exercise whereas future investigations are necessary in order to quantitatively compare the results with data for the deep ocean.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-17
    Description: Assimilating water column and satellite data for marine export production estimation Geoscientific Model Development, 6, 1575-1590, 2013 Author(s): X. Yao and R. Schlitzer Recent advances in satellite retrieval methodology now allow for estimation of particular organic carbon (POC) concentration in ocean surface waters directly from satellite-based optical data. Because of the good coverage, these data reveal small-scale spatial and temporal concentration gradients and document the evolution of surface water POC as well as the underlying driving biogeochemical processes throughout the seasons. Water column nutrient data also reveal biogeochemical activity. However, because of the scarcity of data, the deduction of temporal changes of particle production and export is not possible in most parts of the ocean. Here we present first results from a new study combining both data streams, thereby exploiting the high spatio-temporal resolution of surface POC concentrations from satellite optical sensors with water column nutrient data having sparser coverage but providing information throughout the entire water column. We use a medium-resolution global model with steady-state 3-D circulation that has been optimized by fitting to a large number of hydrographic parameters and tracers, including CFCs and natural radiocarbon. Production and export of POC is allowed to vary monthly, and the magnitudes of the monthly export fluxes are determined by fitting the model to satellite POC data as well as water column nutrient data using the adjoint method. Two cases have been investigated: (1) the production rate of POC is set to be proportional to export production (EP) and the seasonal changes are assumed sinusoidal (meridionally varying amplitude and phase), and (2) the POC production rate is linked to primary production rates (literature). Both cases were run with the same initial state and model settings, and show total cost function decreases of 12 and 95%, respectively. The POC misfit term alone decreased by 75 and 99.8%. The integrated annual global POC exports of the two cases are 9.9 and 12.3 Gt C yr −1 , respectively. Overall, the remaining POC and phosphate misfits of both solutions are considered too large, and the difference fields still exhibit significant systematic geographical patterns. This indicates that the present model runs are too simplistic and do not fully explain the data. Further, more refined model setups are needed.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-09-28
    Description: Enhancing the representation of subgrid land surface characteristics in land surface models Geoscientific Model Development, 6, 1609-1622, 2013 Author(s): Y. Ke, L. R. Leung, M. Huang, and H. Li Land surface heterogeneity has long been recognized as important to represent in the land surface models. In most existing land surface models, the spatial variability of surface cover is represented as subgrid composition of multiple surface cover types, although subgrid topography also has major controls on surface processes. In this study, we developed a new subgrid classification method (SGC) that accounts for variability of both topography and vegetation cover. Each model grid cell was represented with a variable number of elevation classes and each elevation class was further described by a variable number of vegetation types optimized for each model grid given a predetermined total number of land response units (LRUs). The subgrid structure of the Community Land Model (CLM) was used to illustrate the newly developed method in this study. Although the new method increases the computational burden in the model simulation compared to the CLM subgrid vegetation representation, it greatly reduced the variations of elevation within each subgrid class and is able to explain at least 80% of the total subgrid plant functional types (PFTs). The new method was also evaluated against two other subgrid methods (SGC1 and SGC2) that assigned fixed numbers of elevation and vegetation classes for each model grid (SGC1: M elevation bands– N PFTs method; SGC2: N PFTs– M elevation bands method). Implemented at five model resolutions (0.1°, 0.25°, 0.5°, 1.0°and 2.0°) with three maximum-allowed total number of LRUs (i.e., N LRU of 24, 18 and 12) over North America (NA), the new method yielded more computationally efficient subgrid representation compared to SGC1 and SGC2, particularly at coarser model resolutions and moderate computational intensity ( N LRU = 18). It also explained the most PFTs and elevation variability that is more homogeneously distributed spatially. The SGC method will be implemented in CLM over the NA continent to assess its impacts on simulating land surface processes.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-09-11
    Description: An efficient method to generate a perturbed parameter ensemble of a fully coupled AOGCM without flux-adjustment Geoscientific Model Development, 6, 1447-1462, 2013 Author(s): P. J. Irvine, L. J. Gregoire, D. J. Lunt, and P. J. Valdes We present a simple method to generate a perturbed parameter ensemble (PPE) of a fully-coupled atmosphere-ocean general circulation model (AOGCM), HadCM3, without requiring flux-adjustment. The aim was to produce an ensemble that samples parametric uncertainty in some key variables and gives a plausible representation of the climate. Six atmospheric parameters, a sea-ice parameter and an ocean parameter were jointly perturbed within a reasonable range to generate an initial group of 200 members. To screen out implausible ensemble members, 20 yr pre-industrial control simulations were run and members whose temperature responses to the parameter perturbations were projected to be outside the range of 13.6 ± 2 °C, i.e. near to the observed pre-industrial global mean, were discarded. Twenty-one members, including the standard unperturbed model, were accepted, covering almost the entire span of the eight parameters, challenging the argument that without flux-adjustment parameter ranges would be unduly restricted. This ensemble was used in 2 experiments; an 800 yr pre-industrial and a 150 yr quadrupled CO 2 simulation. The behaviour of the PPE for the pre-industrial control compared well to ERA-40 reanalysis data and the CMIP3 ensemble for a number of surface and atmospheric column variables with the exception of a few members in the Tropics. However, we find that members of the PPE with low values of the entrainment rate coefficient show very large increases in upper tropospheric and stratospheric water vapour concentrations in response to elevated CO 2 and one member showed an implausible nonlinear climate response, and as such will be excluded from future experiments with this ensemble. The outcome of this study is a PPE of a fully-coupled AOGCM which samples parametric uncertainty and a simple methodology which would be applicable to other GCMs.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-09-13
    Description: GAPPARD: a computationally efficient method of approximating gap-scale disturbance in vegetation models Geoscientific Model Development, 6, 1517-1542, 2013 Author(s): M. Scherstjanoi, J. O. Kaplan, E. Thürig, and H. Lischke Models of vegetation dynamics that are designed for application at spatial scales larger than individual forest gaps suffer from several limitations. Typically, either a population average approximation is used that results in unrealistic tree allometry and forest stand structure, or models have a high computational demand because they need to simulate both a series of age-based cohorts and a number of replicate patches to account for stochastic gap-scale disturbances. The detail required by the latter method increases the number of calculations by two to three orders of magnitude compared to the less realistic population average approach. In an effort to increase the efficiency of dynamic vegetation models without sacrificing realism, we developed a new method for simulating stand-replacing disturbances that is both accurate and faster than approaches that use replicate patches. The GAPPARD (approximating GAP model results with a Probabilistic Approach to account for stand Replacing Disturbances) method works by postprocessing the output of deterministic, undisturbed simulations of a cohort-based vegetation model by deriving the distribution of patch ages at any point in time on the basis of a disturbance probability. With this distribution, the expected value of any output variable can be calculated from the output values of the deterministic undisturbed run at the time corresponding to the patch age. To account for temporal changes in model forcing (e.g., as a result of climate change), GAPPARD performs a series of deterministic simulations and interpolates between the results in the postprocessing step. We integrated the GAPPARD method in the vegetation model LPJ-GUESS, and evaluated it in a series of simulations along an altitudinal transect of an inner-Alpine valley. We obtained results very similar to the output of the original LPJ-GUESS model that uses 100 replicate patches, but simulation time was reduced by approximately the factor 10. Our new method is therefore highly suited for rapidly approximating LPJ-GUESS results, and provides the opportunity for future studies over large spatial domains, allows easier parameterization of tree species, faster identification of areas of interesting simulation results, and comparisons with large-scale datasets and results of other forest models.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-06-08
    Description: On the parallelization of atmospheric inversions of CO 2 surface fluxes within a variational framework Geoscientific Model Development, 6, 783-790, 2013 Author(s): F. Chevallier The variational formulation of Bayes' theorem allows inferring CO 2 sources and sinks from atmospheric concentrations at much higher time–space resolution than the ensemble or analytical approaches. However, it usually exhibits limited scalable parallelism. This limitation hinders global atmospheric inversions operated on decadal time scales and regional ones with kilometric spatial scales because of the computational cost of the underlying transport model that has to be run at each iteration of the variational minimization. Here, we introduce a physical parallelization (PP) of variational atmospheric inversions. In the PP, the inversion still manages a single physically and statistically consistent window, but the transport model is run in parallel overlapping sub-segments in order to massively reduce the computation wall-clock time of the inversion. For global inversions, a simplification of transport modelling is described to connect the output of all segments. We demonstrate the performance of the approach on a global inversion for CO 2 with a 32 yr inversion window (1979–2010) with atmospheric measurements from 81 sites of the NOAA global cooperative air sampling network. In this case, we show that the duration of the inversion is reduced by a seven-fold factor (from months to days), while still processing the three decades consistently and with improved numerical stability.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-04-10
    Description: Inclusion of ash and SO 2 emissions from volcanic eruptions in WRF-Chem: development and some applications Geoscientific Model Development, 6, 457-468, 2013 Author(s): M. Stuefer, S. R. Freitas, G. Grell, P. Webley, S. Peckham, S. A. McKeen, and S. D. Egan We describe a new functionality within the Weather Research and Forecasting (WRF) model with coupled Chemistry (WRF-Chem) that allows simulating emission, transport, dispersion, transformation and sedimentation of pollutants released during volcanic activities. Emissions from both an explosive eruption case and a relatively calm degassing situation are considered using the most recent volcanic emission databases. A preprocessor tool provides emission fields and additional information needed to establish the initial three-dimensional cloud umbrella/vertical distribution within the transport model grid, as well as the timing and duration of an eruption. From this source condition, the transport, dispersion and sedimentation of the ash cloud can be realistically simulated by WRF-Chem using its own dynamics and physical parameterization as well as data assimilation. Examples of model applications include a comparison of tephra fall deposits from the 1989 eruption of Mount Redoubt (Alaska) and the dispersion of ash from the 2010 Eyjafjallajökull eruption in Iceland. Both model applications show good coincidence between WRF-Chem and observations.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-04-11
    Description: PORT, a CESM tool for the diagnosis of radiative forcing Geoscientific Model Development, 6, 469-476, 2013 Author(s): A. J. Conley, J.-F. Lamarque, F. Vitt, W. D. Collins, and J. Kiehl The Parallel Offline Radiative Transfer (PORT) model is a stand-alone tool, driven by model-generated datasets, that can be used for any radiation calculation that the underlying radiative transfer schemes can perform, such as diagnosing radiative forcing. In its present distribution, PORT isolates the radiation code from the Community Atmosphere Model (CAM4) in the Community Earth System Model (CESM1). The current configuration focuses on CAM4 radiation with the constituents as represented in present-day conditions in CESM1, along with their optical properties. PORT includes an implementation of stratospheric temperature adjustment under the assumption of fixed dynamical heating, which is necessary to compute radiative forcing in addition to the more straightforward instantaneous radiative forcing. PORT can be extended to use radiative constituent distributions from other models or model simulations. Ultimately, PORT can be used with various radiative transfer models. As illustrations of the use of PORT, we perform the computation of radiative forcing from doubling of carbon dioxide, from the change of tropospheric ozone concentration from the year 1850 to 2000, and from present-day aerosols. The radiative forcing from tropospheric ozone (with respect to 1850) generated by a collection of model simulations under the Atmospheric Chemistry and Climate Model Intercomparison Project is found to be 0.34 (with an intermodel standard deviation of 0.07) W m −2 . Present-day aerosol direct forcing (relative to no aerosols) is found to be −1.3 W m −2 .
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-09-10
    Description: Downscaling a global climate model to simulate climate change over the US and the implication on regional and urban air quality Geoscientific Model Development, 6, 1429-1445, 2013 Author(s): M. Trail, A. P. Tsimpidi, P. Liu, K. Tsigaridis, Y. Hu, A. Nenes, and A. G. Russell Climate change can exacerbate future regional air pollution events by making conditions more favorable to form high levels of ozone. In this study, we use spectral nudging with the Weather Research and Forecasting (WRF) model to downscale NASA earth system GISS modelE2 results during the years 2006 to 2010 and 2048 to 2052 over the contiguous United States in order to compare the resulting meteorological fields from the air quality perspective during the four seasons of five-year historic and future climatological periods. GISS results are used as initial and boundary conditions by the WRF regional climate model (RCM) to produce hourly meteorological fields. The downscaling technique and choice of physics parameterizations used are evaluated by comparing them with in situ observations. This study investigates changes of similar regional climate conditions down to a 12 km by 12 km resolution, as well as the effect of evolving climate conditions on the air quality at major US cities. The high-resolution simulations produce somewhat different results than the coarse-resolution simulations in some regions. Also, through the analysis of the meteorological variables that most strongly influence air quality, we find consistent changes in regional climate that would enhance ozone levels in four regions of the US during fall (western US, Texas, northeastern, and southeastern US), one region during summer (Texas), and one region where changes potentially would lead to better air quality during spring (Northeast). Changes in regional climate that would enhance ozone levels are increased temperatures and stagnation along with decreased precipitation and ventilation. We also find that daily peak temperatures tend to increase in most major cities in the US, which would increase the risk of health problems associated with heat stress. Future work will address a more comprehensive assessment of emissions and chemistry involved in the formation and removal of air pollutants.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-09-10
    Description: The SOCOL version 3.0 chemistry–climate model: description, evaluation, and implications from an advanced transport algorithm Geoscientific Model Development, 6, 1407-1427, 2013 Author(s): A. Stenke, M. Schraner, E. Rozanov, T. Egorova, B. Luo, and T. Peter We present the third generation of the coupled chemistry–climate model (CCM) SOCOL (modeling tools for studies of SOlar Climate Ozone Links). The most notable modifications compared to the previous model version are (1) the dynamical core has been updated with the fifth generation of the middle-atmosphere general circulation model MA-ECHAM (European Centre/HAMburg climate model), and (2) the advection of the chemical species is now calculated by a mass-conserving and shape-preserving flux-form transport scheme instead of the previously used hybrid advection scheme. The whole chemistry code has been rewritten according to the ECHAM5 infrastructure and transferred to Fortran95. In contrast to its predecessors, SOCOLvs3 is now fully parallelized. The performance of the new SOCOL version is evaluated on the basis of transient model simulations (1975–2004) with different horizontal (T31 and T42) resolutions, following the approach of the CCMVal-1 model validation activity. The advanced advection scheme significantly reduces the artificial loss and accumulation of tracer mass in regions with strong gradients that was observed in previous model versions. Compared to its predecessors, SOCOLvs3 generally shows more realistic distributions of chemical trace species, especially of total inorganic chlorine, in terms of the mean state, but also of the annual and interannual variability. Advancements with respect to model dynamics are for example a better representation of the stratospheric mean state in spring, especially in the Southern Hemisphere, and a slowdown of the upward propagation in the tropical lower stratosphere. Despite a large number of improvements model deficiencies still remain. Examples include a too-fast vertical ascent and/or horizontal mixing in the tropical stratosphere, the cold temperature bias in the lowermost polar stratosphere, and the overestimation of polar total ozone loss during Antarctic springtime.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-09-11
    Description: Stable water isotopes in the coupled atmosphere–land surface model ECHAM5-JSBACH Geoscientific Model Development, 6, 1463-1480, 2013 Author(s): B. Haese, M. Werner, and G. Lohmann In this study we present first results of a new model development, ECHAM5-JSBACH-wiso, where we have incorporated the stable water isotopes H 2 18 O and HDO as tracers in the hydrological cycle of the coupled atmosphere–land surface model ECHAM5-JSBACH. The ECHAM5-JSBACH-wiso model was run under present-day climate conditions at two different resolutions (T31L19, T63L31). A comparison between ECHAM5-JSBACH-wiso and ECHAM5-wiso shows that the coupling has a strong impact on the simulated temperature and soil wetness. Caused by these changes of temperature and the hydrological cycle, the δ 18 O in precipitation also shows variations from −4‰ up to 4‰. One of the strongest anomalies is shown over northeast Asia where, due to an increase of temperature, the δ 18 O in precipitation increases as well. In order to analyze the sensitivity of the fractionation processes over land, we compare a set of simulations with various implementations of these processes over the land surface. The simulations allow us to distinguish between no fractionation, fractionation included in the evaporation flux (from bare soil) and also fractionation included in both evaporation and transpiration (from water transport through plants) fluxes. While the isotopic composition of the soil water may change for δ 18 O by up to +8&permil:, the simulated δ 18 O in precipitation shows only slight differences on the order of ±1‰. The simulated isotopic composition of precipitation fits well with the available observations from the GNIP (Global Network of Isotopes in Precipitation) database.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-09-13
    Description: δ 18 O water isotope in the i LOVECLIM model (version 1.0) – Part 2: Evaluation of model results against observed δ 18 O in water samples Geoscientific Model Development, 6, 1493-1504, 2013 Author(s): D. M. Roche and T. Caley The H 2 18 O stable isotope was previously introduced in the three coupled components of the earth system model i LOVECLIM: atmosphere, ocean and vegetation. The results of a long (5000 yr) pre-industrial equilibrium simulation are presented and evaluated against measurement of H 2 18 O abundance in present-day water for the atmospheric and oceanic components. For the atmosphere, it is found that the model reproduces the observed spatial distribution and relationships to climate variables with some merit, though limitations following our approach are highlighted. Indeed, we obtain the main gradients with a robust representation of the Rayleigh distillation but caveats appear in Antarctica and around the Mediterranean region due to model limitation. For the oceanic component, the agreement between the modelled and observed distribution of water δ 18 O is found to be very good. Mean ocean surface latitudinal gradients are faithfully reproduced as well as the mark of the main intermediate and deep water masses. This opens large prospects for the applications in palaeoclimatic context.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2013-09-14
    Description: The Rock Geochemical Model (RokGeM) v0.9 Geoscientific Model Development, 6, 1543-1573, 2013 Author(s): G. Colbourn, A. Ridgwell, and T. M. Lenton A new model of terrestrial rock weathering – the Rock Geochemical Model (RokGeM) – was developed for incorporation into the GENIE Earth System modelling framework. In this paper we describe the model. We consider a range of previously devised parameterizations, ranging from simple dependencies on global mean temperature following Berner et al. (1983), to spatially explicit dependencies on run-off and temperature (GKWM, Bluth and Kump, 1994; GEM-CO2, Amiotte-Suchet et al., 2003) – fields provided by the energy-moisture balance atmosphere model component in GENIE. Using long-term carbon cycle perturbation experiments, we test the effects of a wide range of model parameters, including whether or not the atmosphere was "short-circuited" in the carbon cycle; the sensitivity and feedback strength of temperature and run-off on carbonate and silicate weathering; different river-routing schemes; 0-D (global average) vs. 2-D (spatially explicit) weathering schemes; and the lithology dependence of weathering. Included are details of how to run the model and visualize the results.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-09-18
    Description: An approach to computing direction relations between separated object groups Geoscientific Model Development, 6, 1591-1599, 2013 Author(s): H. Yan, Z. Wang, and J. Li Direction relations between object groups play an important role in qualitative spatial reasoning, spatial computation and spatial recognition. However, none of existing models can be used to compute direction relations between object groups. To fill this gap, an approach to computing direction relations between separated object groups is proposed in this paper, which is theoretically based on gestalt principles and the idea of multi-directions. The approach firstly triangulates the two object groups, and then it constructs the Voronoi diagram between the two groups using the triangular network. After this, the normal of each Voronoi edge is calculated, and the quantitative expression of the direction relations is constructed. Finally, the quantitative direction relations are transformed into qualitative ones. The psychological experiments show that the proposed approach can obtain direction relations both between two single objects and between two object groups, and the results are correct from the point of view of spatial cognition.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-09-25
    Description: Extreme extension across Seram and Ambon, eastern Indonesia: evidence for Banda slab rollback Solid Earth, 4, 277-314, 2013 Author(s): J. M. Pownall, R. Hall, and I. M. Watkinson The island of Seram, which lies in the northern part of the 180°-curved Banda Arc, has previously been interpreted as a fold-and-thrust belt formed during arc-continent collision, which incorporates ophiolites intruded by granites thought to have been produced by anatexis within a metamorphic sole. However, new geological mapping and a re-examination of the field relations cause us to question this model. We instead propose that there is evidence for recent and rapid N–S extension that has caused the high-temperature exhumation of lherzolites beneath low-angle lithospheric detachment faults that induced high-temperature metamorphism and melting in overlying crustal rocks. These "Kobipoto Complex" migmatites include highly residual Al–Mg-rich garnet + cordierite + sillimanite + spinel + corundum granulites (exposed in the Kobipoto Mountains) which contain coexisting spinel + quartz, indicating that peak metamorphic temperatures likely approached 900 °C. Associated with these residual granulites are voluminous Mio-Pliocene granitic diatexites, or "cordierite granites", which crop out on Ambon, western Seram, and in the Kobipoto Mountains and incorporate abundant schlieren of spinel- and sillimanite-bearing residuum. Quaternary "ambonites" (cordierite + garnet dacites) emplaced on Ambon were also evidently sourced from the Kobipoto Complex migmatites as demonstrated by granulite-inherited xenoliths. Exhumation of the hot peridotites and granulite-facies Kobipoto Complex migmatites to shallower structural levels caused greenschist- to lower-amphibolite facies metapelites and amphibolites of the Tehoru Formation to be overprinted by sillimanite-grade metamorphism, migmatisation, and limited localised anatexis to form the Taunusa Complex. The extreme extension required to have driven Kobipoto Complex exhumation evidently occurred throughout Seram and along much of the northern Banda Arc. The lherzolites must have been juxtaposed against the crust at typical lithospheric mantle temperatures in order to account for such high-temperature metamorphism and therefore could not have been part of a cooled ophiolite. In central Seram, lenses of peridotites are incorporated with a major left-lateral strike-slip shear zone (the "Kawa Shear Zone"), demonstrating that strike-slip motions likely initiated shortly after the mantle had been partly exhumed by detachment faulting and that the main strike-slip faults may themselves be reactivated and steepened low-angle detachments. The geodynamic driver for mantle exhumation along the detachment faults and strike-slip faulting in central Seram is very likely the same; we interpret the extreme extension to be the result of eastward slab rollback into the Banda Embayment as outlined by the latest plate reconstructions for Banda Arc evolution.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-09-26
    Description: A method to represent ozone response to large changes in precursor emissions using high-order sensitivity analysis in photochemical models Geoscientific Model Development, 6, 1601-1608, 2013 Author(s): G. Yarwood, C. Emery, J. Jung, U. Nopmongcol, and T. Sakulyanontvittaya Photochemical grid models (PGMs) are used to simulate tropospheric ozone and quantify its response to emission changes. PGMs are often applied for annual simulations to provide both maximum concentrations for assessing compliance with air quality standards and frequency distributions for assessing human exposure. Efficient methods for computing ozone at different emission levels can improve the quality of ozone air quality management efforts. This study demonstrates the feasibility of using the decoupled direct method (DDM) to calculate first- and second-order sensitivity of ozone to anthropogenic NO x and VOC emissions in annual PGM simulations at continental scale. Algebraic models are developed that use Taylor series to produce complete annual frequency distributions of hourly ozone at any location and any anthropogenic emission level between zero and 100%, adjusted independently for NO x and VOC. We recommend computing the sensitivity coefficients at the midpoint of the emissions range over which they are intended to be applied, in this case with 50% anthropogenic emissions. The algebraic model predictions can be improved by combining sensitivity coefficients computed at 10 and 50% anthropogenic emissions. Compared to brute force simulations, algebraic model predictions tend to be more accurate in summer than winter, at rural than urban locations, and with 100% than zero anthropogenic emissions. Equations developed to combine sensitivity coefficients computed with 10 and 50% anthropogenic emissions are able to reproduce brute force simulation results with zero and 100% anthropogenic emissions with a mean bias of less than 2 ppb and mean error of less than 3 ppb averaged over 22 US cities.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-12-13
    Description: A Lagrangian advection scheme with shape matrix (LASM) for solving advection problems Geoscientific Model Development, 7, 2951-2968, 2014 Author(s): L. Dong, B. Wang, and L. Liu A new Lagrangian advection scheme with shape matrix (LASM) is proposed to take advantage of the extreme low numerical diffusion of the Lagrangian methods. The tracer is discretized into finite parcels, which move along the downstream trajectories. Different from other Lagrangian schemes, the parcel shape is simulated explicitly by a linear transformation matrix. By doing so, the aliasing error in the Lagrangian schemes is largely reduced without introducing substantial interparcel mixing in the pure advection stage, because the flow information will be respected when remapping tracer density onto the fixed model grids. An adaptive interparcel mixing algorithm is constructed to ensure the validity of the linear approximation of the parcel shape, where the mixing is only triggered when it is necessary and resembles the physical mixing. The total tracer mass on the parcels is conserved exactly. The new scheme is validated by using several test cases.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-12-18
    Description: Sensitivity of the Mediterranean sea level to atmospheric pressure and free surface elevation numerical formulation in NEMO Geoscientific Model Development, 7, 3001-3015, 2014 Author(s): P. Oddo, A. Bonaduce, N. Pinardi, and A. Guarnieri The sensitivity of the dynamics of the Mediterranean Sea to atmospheric pressure and free surface elevation formulation using NEMO (Nucleus for European Modelling of the Ocean) was evaluated. Four different experiments were carried out in the Mediterranean Sea using filtered or explicit free surface numerical schemes and accounting for the effect of atmospheric pressure in addition to wind and buoyancy fluxes. Model results were evaluated by coherency and power spectrum analysis with tide gauge data. We found that atmospheric pressure plays an important role for periods shorter than 100 days. The free surface formulation is important to obtain the correct ocean response for periods shorter than 30 days. At frequencies higher than 15 days −1 the Mediterranean basin's response to atmospheric pressure was not coherent and the performance of the model strongly depended on the specific area considered. A large-amplitude seasonal oscillation observed in the experiments using a filtered free surface was not evident in the corresponding explicit free surface formulation case, which was due to a phase shift between mass fluxes in the Gibraltar Strait and at the surface. The configuration with time splitting and atmospheric pressure always performed best; the differences were enhanced at very high frequencies.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-11-09
    Description: Gaseous chemistry and aerosol mechanism developments for version 3.5.1 of the online regional model, WRF-Chem Geoscientific Model Development, 7, 2557-2579, 2014 Author(s): S. Archer-Nicholls, D. Lowe, S. Utembe, J. Allan, R. A. Zaveri, J. D. Fast, Ø. Hodnebrog, H. Denier van der Gon, and G. McFiggans We have made a number of developments to the Weather, Research and Forecasting model coupled with Chemistry (WRF-Chem), with the aim of improving model prediction of trace atmospheric gas-phase chemical and aerosol composition, and of interactions between air quality and weather. A reduced form of the Common Reactive Intermediates gas-phase chemical mechanism (CRIv2-R5) has been added, using the Kinetic Pre-Processor (KPP) interface, to enable more explicit simulation of VOC degradation. N 2 O 5 heterogeneous chemistry has been added to the existing sectional MOSAIC aerosol module, and coupled to both the CRIv2-R5 and existing CBM-Z gas-phase schemes. Modifications have also been made to the sea-spray aerosol emission representation, allowing the inclusion of primary organic material in sea-spray aerosol. We have worked on the European domain, with a particular focus on making the model suitable for the study of nighttime chemistry and oxidation by the nitrate radical in the UK atmosphere. Driven by appropriate emissions, wind fields and chemical boundary conditions, implementation of the different developments are illustrated, using a modified version of WRF-Chem 3.4.1, in order to demonstrate the impact that these changes have in the Northwest European domain. These developments are publicly available in WRF-Chem from version 3.5.1 onwards.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-11-08
    Description: Changes in soil organic carbon and nitrogen capacities of Salix cheilophila Schneid along a revegetation chronosequence in semi-arid degraded sandy land of the Gonghe Basin, Tibet Plateau Solid Earth, 5, 1045-1054, 2014 Author(s): Y. Yu and Z. Q. Jia The Gonghe Basin is a sandified and desertified region of China, but the distribution of soil organic carbon (SOC) and total nitrogen (TN) along the cultivation chronosequence across this ecologically fragile region is not well understood. This study was carried out to understand the effects of restoration with Salix cheilophila for different periods of time (6, 11, 16, 21 years) to test whether it enhanced C and N storage. Soil samples, in four replications from seven depth increments (0–10, 10–20, 20–30, 30–50, 50–100, 100–150 and 150–200 cm), were collected in each stand. Soil bulk density, SOC, TN, aboveground biomass and root biomass were measured. Results indicated that changes occurred in both the upper and deeper soil layers with an increase in revegetation time. The 0–200 cm soil showed that the 6-year stand gained 3.89 Mg C ha −1 and 1.00 Mg N ha −1 , which accounted for 40.82% of the original SOC and 11.06% of the TN of the 0-year stand. The 11-year stand gained 7.82 Mg C ha −1 and 1.98 Mg N ha −1 in the 0–200 cm soil layers, accounting for 58.06% of the SOC and 19.80% of the TN of the 0-year stand. The 16-year stand gained 11.32 Mg C ha −1 and 3.30 Mg N ha −1 in the 0–200 cm soil layers, accounting for 66.71% of the SOC and 21.98% of the TN of the 0-year stand. The 21-year stand gained 13.05 Mg C ha −1 and 5.45 Mg N ha −1 from the same soil depth, accounting for 69.79% of the SOC and 40.47% of the TN compared with the 0-year stand. The extent of these changes depended on soil depth and plantation age. The results demonstrated that, as stand age increased, the storage of SOC and TN increased. These results further indicated that restoration with S. cheilophila has positive impacts on the Gonghe Basin and has increased the capacity of SOC sequestration and N storage. The shrub's role as carbon sink is compatible with system management and persistence. The findings are significant for assessing C and N sequestration accurately in semi-arid degraded high, cold sandy regions in the future.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-12-16
    Description: A strategy for GIS-based 3-D slope stability modelling over large areas Geoscientific Model Development, 7, 2969-2982, 2014 Author(s): M. Mergili, I. Marchesini, M. Alvioli, M. Metz, B. Schneider-Muntau, M. Rossi, and F. Guzzetti GIS-based deterministic models may be used for landslide susceptibility mapping over large areas. However, such efforts require specific strategies to (i) keep computing time at an acceptable level, and (ii) parameterize the geotechnical data. We test and optimize the performance of the GIS-based, 3-D slope stability model r.slope.stability in terms of computing time and model results. The model was developed as a C- and Python-based raster module of the open source software GRASS GIS and considers the 3-D geometry of the sliding surface. It calculates the factor of safety (FoS) and the probability of slope failure ( P f ) for a number of randomly selected potential slip surfaces, ellipsoidal or truncated in shape. Model input consists of a digital elevation model (DEM), ranges of geotechnical parameter values derived from laboratory tests, and a range of possible soil depths estimated in the field. Probability density functions are exploited to assign P f to each ellipsoid. The model calculates for each pixel multiple values of FoS and P f corresponding to different sliding surfaces. The minimum value of FoS and the maximum value of P f for each pixel give an estimate of the landslide susceptibility in the study area. Optionally, r.slope.stability is able to split the study area into a defined number of tiles, allowing parallel processing of the model on the given area. Focusing on shallow landslides, we show how multi-core processing makes it possible to reduce computing times by a factor larger than 20 in the study area. We further demonstrate how the number of random slip surfaces and the sampling of parameters influence the average value of P f and the capacity of r.slope.stability to predict the observed patterns of shallow landslides in the 89.5 km 2 Collazzone area in Umbria, central Italy.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2014-12-16
    Description: Preface: Environmental benefits of biochar Solid Earth, 5, 1301-1303, 2014 Author(s): J. Paz-Ferreiro, A. Méndez, A. M. Tarquis, A. Cerdà, and G. Gascó
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2011-06-22
    Description: Exploring the potentials and limitations of the time-reversal imaging of finite seismic sources Solid Earth, 2, 95-105, 2011 Author(s): S. Kremers, A. Fichtner, G. B. Brietzke, H. Igel, C. Larmat, L. Huang, and M. Käser The characterisation of seismic sources with time-reversed wave fields is developing into a standard technique that has already been successful in numerous applications. While the time-reversal imaging of effective point sources is now well-understood, little work has been done to extend this technique to the study of finite rupture processes. This is despite the pronounced non-uniqueness in classic finite source inversions. The need to better constrain the details of finite rupture processes motivates the series of synthetic and real-data time reversal experiments described in this paper. We address questions concerning the quality of focussing in the source area, the localisation of the fault plane, the estimation of the slip distribution and the source complexity up to which time-reversal imaging can be applied successfully. The frequency band for the synthetic experiments is chosen such that it is comparable to the band usually employed for finite source inversion. Contrary to our expectations, we find that time-reversal imaging is useful only for effective point sources, where it yields good estimates of both the source location and the origin time. In the case of finite sources, however, the time-reversed field does not provide meaningful characterisations of the fault location and the rupture process. This result cannot be improved sufficiently with the help of different imaging fields, realistic modifications of the receiver geometry or weights applied to the time-reversed sources. The reasons for this failure are manifold. They include the choice of the frequency band, the incomplete recording of wave field information at the surface, the excitation of large-amplitude surface waves that deteriorate the depth resolution, the absence of a sink that should absorb energy radiated during the later stages of the rupture process, the invisibility of small slip and the neglect of prior information concerning the fault geometry and the inherent smoothness of seismologically inferred Earth models that prevents the beneficial occurrence of strong multiple-scattering. The condensed conclusion of our study is that the limitations of time-reversal imaging – at least in the frequency band considered here – start where the seismic source stops being effectively point-localised.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2011-06-15
    Description: Native American lithic procurement along the international border in the boot heel region of southwestern New Mexico Solid Earth, 2, 75-93, 2011 Author(s): K. E. Zeigler, P. Hogan, C. Hughes, and A. Kurota Multidisciplinary field projects can be very useful to a more fundamental understanding of the world around us, though these projects are not as common as they should be. In particular, the combination of archeology and geology combines our understanding of human behavior and human use of the landscape with an intimate knowledge of geologic processes and the materials available for human use in order to gain a broader understanding of human-Earth interaction. Here we present data from a cross-disciplinary project that uses a common dataset, archeological artifacts, to explore the anthropological and geologic implications of useage patterns. Archeological excavations and surveys conducted by the Office of Contract Archeology in 2007 along the route of the proposed international border fence reveal patterns of use of geologic materials by Archaic, Formative and Protohistoric Native Americans in the Boot Heel of southwestern New Mexico. Thousands of artifacts were recorded in multiple sites from Guadalupe Pass in the southern Peloncillo Mountains to the Carrizalillo Hills west of Columbus. We identified the lithologies of artifacts, ranging from projectile points to groundstones, and then constructed material movement maps based on either known procurement sites ("quarries") or outcrops identified as the closest source to a given site for each lithology. Not unexpectedly, the majority of the rock types utilized by native peoples are local siliceous volcanic materials. However, several artifacts constructed from obsidian were transported into the region from northern Mexico and eastern Arizona, indicating long-distance travel and/or trade routes. We also examine useage pattern difference between Archaic, Formative and Protohistoric sites. Additionally, a dramatic change in distribution of sources for geologic materials occurs between one pre-Spanish site and one post-Spanish site that are adjacent to one another.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2011-06-25
    Description: Semi-Lagrangian methods in air pollution models Geoscientific Model Development, 4, 511-541, 2011 Author(s): A. B. Hansen, J. Brandt, J. H. Christensen, and E. Kaas Various semi-Lagrangian methods are tested with respect to advection in air pollution modeling. The aim is to find a method fulfilling as many of the desirable properties by Rasch andWilliamson (1990) and Machenhauer et al. (2008) as possible. The focus in this study is on accuracy and local mass conservation. The methods tested are, first, classical semi-Lagrangian cubic interpolation, see e.g. Durran (1999), second, semi-Lagrangian cubic cascade interpolation, by Nair et al. (2002), third, semi-Lagrangian cubic interpolation with the modified interpolation weights, Locally Mass Conserving Semi-Lagrangian (LMCSL), by Kaas (2008), and last, semi-Lagrangian cubic interpolation with a locally mass conserving monotonic filter by Kaas and Nielsen (2010). Semi-Lagrangian (SL) interpolation is a classical method for atmospheric modeling, cascade interpolation is more efficient computationally, modified interpolation weights assure mass conservation and the locally mass conserving monotonic filter imposes monotonicity. All schemes are tested with advection alone or with advection and chemistry together under both typical rural and urban conditions using different temporal and spatial resolution. The methods are compared with a current state-of-the-art scheme, Accurate Space Derivatives (ASD), see Frohn et al. (2002), presently used at the National Environmental Research Institute (NERI) in Denmark. To enable a consistent comparison only non-divergent flow configurations are tested. The test cases are based either on the traditional slotted cylinder or the rotating cone, where the schemes' ability to model both steep gradients and slopes are challenged. The tests showed that the locally mass conserving monotonic filter improved the results significantly for some of the test cases, however, not for all. It was found that the semi-Lagrangian schemes, in almost every case, were not able to outperform the current ASD scheme used in DEHM with respect to accuracy.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2011-06-10
    Description: A re-evaluation of the Italian historical geomagnetic catalogue: implications for paleomagnetic dating at active Italian volcanoes Solid Earth, 2, 65-74, 2011 Author(s): F. D'Ajello Caracciolo, A. Pignatelli, F. Speranza, and A. Meloni Paleomagnetism is proving to represent one of the most powerful dating tools of volcanics emplaced in Italy during the last few centuries/millennia. This method requires that valuable proxies of the local geomagnetic field (paleo)secular variation ((P)SV) are available. To this end, we re-evaluate the whole Italian geomagnetic directional dataset, consisting of 833 and 696 declination and inclination measurements, respectively, carried out since 1640 AD at several localities. All directions were relocated via the virtual geomagnetic pole method to Stromboli (38.8° N, 15.2° E), the rough centre of the active Italian volcanoes. For declination-only measurements, missing inclinations were derived (always by pole method) by French data (for period 1670–1789), and by nearby Italian sites/years (for periods 1640–1657 and 1790–1962). Using post-1825 declination values, we obtain a 0.46 ± 0.19° yr −1 westward drift of the geomagnetic field for Italy. The original observation years were modified, considering such drift value, to derive at a drift-corrected relocated dataset. Both datasets were found to be in substantial agreement with directions derived from the field models by Jackson et al. (2000) and Pavon-Carrasco et al. (2009). However, the drift-corrected dataset minimizes the differences between the Italian data and both field models, and eliminates a persistent 1.6° shift of 1933–1962 declination values from Castellaccio with respect to other nearly coeval Italian data. The relocated datasets were used to calculate two post-1640 Italian SV curves, with mean directions calculated every 30 and 10 years before and after 1790, respectively. The curve comparison suggests that both available field models yield the best available SV curve to perform paleomagnetic dating of 1600–1800 AD Italian volcanics, while the Italian drift-corrected curve is probably preferable for the 19th century. For the 20th century, the global model by Jackson et al. (2000) yields more accurate inclination values, while the declinations from our drift-corrected curve seem to better represent the local field evolution, at least for the first half of the century.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2011-06-15
    Description: GEOCLIM reloaded (v 1.0): a new coupled earth system model for past climate change Geoscientific Model Development, 4, 451-481, 2011 Author(s): S. Arndt, P. Regnier, Y. Goddéris, and Y. Donnadieu We present a new version of the coupled Earth system model GEOCLIM. The new release, GEOCLIM reloaded (v 1.0), links the existing atmosphere and weathering modules to a novel, temporally and spatially resolved model of the global ocean circulation, which provides a physical framework for a mechanistic description of the marine biogeochemical dynamics of carbon, nitrogen, phosphorus and oxygen. The ocean model is also coupled to a fully formulated, vertically resolved diagenetic model. GEOCLIM reloaded is thus a unique tool to investigate the short- and long-term feedbacks between climatic conditions, continental inputs, ocean biogeochemical dynamics and diagenesis. A complete and detailed description of the resulting Earth system model and its new features is first provided. The performance of GEOCLIM reloaded is then evaluated by comparing steady-state simulation under present-day conditions with a comprehensive set of oceanic data and existing global estimates of bio-element cycling in the pelagic and benthic compartments.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-06-18
    Description: The CSIRO Mk3L climate system model version 1.0 – Part 1: Description and evaluation Geoscientific Model Development, 4, 483-509, 2011 Author(s): S. J. Phipps, L. D. Rotstayn, H. B. Gordon, J. L. Roberts, A. C. Hirst, and W. F. Budd The CSIRO Mk3L climate system model is a coupled general circulation model, designed primarily for millennial-scale climate simulations and palaeoclimate research. Mk3L includes components which describe the atmosphere, ocean, sea ice and land surface, and combines computational efficiency with a stable and realistic control climatology. This paper describes the model physics and software, analyses the control climatology, and evaluates the ability of the model to simulate the modern climate. Mk3L incorporates a spectral atmospheric general circulation model, a z -coordinate ocean general circulation model, a dynamic-thermodynamic sea ice model and a land surface scheme with static vegetation. The source code is highly portable, and has no dependence upon proprietary software. The model distribution is freely available to the research community. A 1000-yr climate simulation can be completed in around one-and-a-half months on a typical desktop computer, with greater throughput being possible on high-performance computing facilities. Mk3L produces realistic simulations of the larger-scale features of the modern climate, although with some biases on the regional scale. The model also produces reasonable representations of the leading modes of internal climate variability in both the tropics and extratropics. The control state of the model exhibits a high degree of stability, with only a weak cooling trend on millennial timescales. Ongoing development work aims to improve the model climatology and transform Mk3L into a comprehensive earth system model.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2011-05-11
    Description: Medusa-1.0: a new intermediate complexity plankton ecosystem model for the global domain Geoscientific Model Development, 4, 381-417, 2011 Author(s): A. Yool, E. E. Popova, and T. R. Anderson The ongoing, anthropogenically-driven changes to the global ocean are expected to have significant consequences for plankton ecosystems in the future. Because of the role that plankton play in the ocean's "biological pump", changes in abundance, distribution and productivity will likely have additional consequences for the wider carbon cycle. Just as in the terrestrial biosphere, marine ecosystems exhibit marked diversity in species and functional types of organisms. Predicting potential change in plankton ecosystems therefore requires the use of models that are suited to this diversity, but whose parameterisation also permits robust and realistic functional behaviour. In the past decade, advances in model sophistication have attempted to address diversity, but have been criticised for doing so inaccurately or ahead of a requisite understanding of underlying processes. Here we introduce MEDUSA-1.0 ( M odel of E cosystem D ynamics, nutrient U tilisation, S equestration and A cidification), a new "intermediate complexity" plankton ecosystem model that expands on traditional nutrient-phytoplankton-zooplankton-detritus (NPZD) models, and remains amenable to global-scale evaluation. MEDUSA-1.0 includes the biogeochemical cycles of nitrogen, silicon and iron, broadly structured into "small" and "large" plankton size classes, of which the "large" phytoplankton class is representative of a key phytoplankton group, the diatoms. A full description of MEDUSA-1.0's state variables, differential equations, functional forms and parameter values is included, with particular attention focused on the submodel describing the export of organic carbon from the surface to the deep ocean. MEDUSA-1.0 is used here in a multi-decadal hindcast simulation, and its biogeochemical performance evaluated at the global scale.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2011-05-11
    Description: PREP-CHEM-SRC – 1.0: a preprocessor of trace gas and aerosol emission fields for regional and global atmospheric chemistry models Geoscientific Model Development, 4, 419-433, 2011 Author(s): S. R. Freitas, K. M. Longo, M. F. Alonso, M. Pirre, V. Marecal, G. Grell, R. Stockler, R. F. Mello, and M. Sánchez Gácita The preprocessor PREP-CHEM-SRC presented in the paper is a comprehensive tool aiming at preparing emission fields of trace gases and aerosols for use in atmospheric-chemistry transport models. The considered emissions are from the most recent databases of urban/industrial, biogenic, biomass burning, volcanic, biofuel use and burning from agricultural waste sources. For biomass burning, emissions can be also estimated directly from satellite fire detections using a fire emission model included in the tool. The preprocessor provides emission fields interpolated onto the transport model grid. Several map projections can be chosen. The inclusion of these emissions in transport models is also presented. The preprocessor is coded using Fortran90 and C and is driven by a namelist allowing the user to choose the type of emissions and the databases.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2011-05-26
    Description: Open Plot Project: an open-source toolkit for 3-D structural data analysis Solid Earth, 2, 53-63, 2011 Author(s): S. Tavani, P. Arbues, M. Snidero, N. Carrera, and J. A. Muñoz In this work we present the Open Plot Project, an open-source software for structural data analysis, including a 3-D environment. The software includes many classical functionalities of structural data analysis tools, like stereoplot, contouring, tensorial regression, scatterplots, histograms and transect analysis. In addition, efficient filtering tools are present allowing the selection of data according to their attributes, including spatial distribution and orientation. This first alpha release represents a stand-alone toolkit for structural data analysis. The presence of a 3-D environment with digitalising tools allows the integration of structural data with information extracted from georeferenced images to produce structurally validated dip domains. This, coupled with many import/export facilities, allows easy incorporation of structural analyses in workflows for 3-D geological modelling. Accordingly, Open Plot Project also candidates as a structural add-on for 3-D geological modelling software. The software (for both Windows and Linux O.S.), the User Manual, a set of example movies (complementary to the User Manual), and the source code are provided as Supplement. We intend the publication of the source code to set the foundation for free, public software that, hopefully, the structural geologists' community will use, modify, and implement. The creation of additional public controls/tools is strongly encouraged.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-12-09
    Description: Tropical troposphere to stratosphere transport of carbon monoxide and long-lived trace species in the Chemical Lagrangian Model of the Stratosphere (CLaMS) Geoscientific Model Development, 7, 2895-2916, 2014 Author(s): R. Pommrich, R. Müller, J.-U. Grooß, P. Konopka, F. Ploeger, B. Vogel, M. Tao, C. M. Hoppe, G. Günther, N. Spelten, L. Hoffmann, H.-C. Pumphrey, S. Viciani, F. D'Amato, C. M. Volk, P. Hoor, H. Schlager, and M. Riese Variations in the mixing ratio of trace gases of tropospheric origin entering the stratosphere in the tropics are of interest for assessing both troposphere to stratosphere transport fluxes in the tropics and the impact of these transport fluxes on the composition of the tropical lower stratosphere. Anomaly patterns of carbon monoxide (CO) and long-lived tracers in the lower tropical stratosphere allow conclusions about the rate and the variability of tropical upwelling to be drawn. Here, we present a simplified chemistry scheme for the Chemical Lagrangian Model of the Stratosphere (CLaMS) for the simulation, at comparatively low numerical cost, of CO, ozone, and long-lived trace substances (CH 4 , N 2 O, CCl 3 F (CFC-11), CCl 2 F 2 (CFC-12), and CO 2 ) in the lower tropical stratosphere. For the long-lived trace substances, the boundary conditions at the surface are prescribed based on ground-based measurements in the lowest model level. The boundary condition for CO in the lower troposphere (below about 4 km) is deduced from MOPITT measurements. Due to the lack of a specific representation of mixing and convective uplift in the troposphere in this model version, enhanced CO values, in particular those resulting from convective outflow are underestimated. However, in the tropical tropopause layer and the lower tropical stratosphere, there is relatively good agreement of simulated CO with in situ measurements (with the exception of the TROCCINOX campaign, where CO in the simulation is biased low ≈10–15 ppbv). Further, the model results (and therefore also the ERA-Interim winds, on which the transport in the model is based) are of sufficient quality to describe large scale anomaly patterns of CO in the lower stratosphere. In particular, the zonally averaged tropical CO anomaly patterns (the so called "tape recorder" patterns) simulated by this model version of CLaMS are in good agreement with observations, although the simulations show a too rapid upwelling compared to observations as a consequence of the overestimated vertical velocities in the ERA-Interim reanalysis data set. Moreover, the simulated tropical anomaly patterns of N 2 O are in good agreement with observations. In the simulations, anomaly patterns of CH 4 and CFC-11 were found to be very similar to those of N 2 O; for all long-lived tracers, positive anomalies are simulated because of the enhanced tropical upwelling in the easterly shear phase of the quasi-biennial oscillation.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2014-11-29
    Description: Interpretative modelling of a geological cross section from boreholes: sources of uncertainty and their quantification Solid Earth, 5, 1189-1203, 2014 Author(s): R. M. Lark, S. Thorpe, H. Kessler, and S. J. Mathers We conducted a designed experiment to quantify sources of uncertainty in geologists' interpretations of a geological cross section. A group of 28 geologists participated in the experiment. Each interpreted borehole record included up to three Palaeogene bedrock units, including the target unit for the experiment: the London Clay. The set of boreholes was divided into batches from which validation boreholes had been withheld; as a result, we obtained 129 point comparisons between the interpreted elevation of the base of the London Clay and its observed elevation in a borehole not used for that particular interpretation. Analysis of the results showed good general agreement between the observed and interpreted elevations, with no evidence of systematic bias. Between-site variation of the interpretation error was spatially correlated, and the variance appeared to be stationary. The between-geologist component of variance was smaller overall, and depended on the distance to the nearest borehole. There was also evidence that the between-geologist variance depends on the degree of experience of the individual. We used the statistical model of interpretation error to compute confidence intervals for any one interpretation of the base of the London Clay on the cross section, and to provide uncertainty measures for decision support in a hypothetical route-planning process. The statistical model could also be used to quantify error propagation in a full 3-D geological model produced from interpreted cross sections.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2014-12-03
    Description: Tunable diode laser measurements of hydrothermal/volcanic CO 2 and implications for the global CO 2 budget Solid Earth, 5, 1209-1221, 2014 Author(s): M. Pedone, A. Aiuppa, G. Giudice, F. Grassa, V. Francofonte, B. Bergsson, and E. Ilyinskaya Quantifying the CO 2 flux sustained by low-temperature fumarolic fields in hydrothermal/volcanic environments has remained a challenge, to date. Here, we explored the potential of a commercial infrared tunable laser unit for quantifying such fumarolic volcanic/hydrothermal CO 2 fluxes. Our field tests were conducted between April 2013 and March 2014 at Nea Kameni (Santorini, Greece), Hekla and Krýsuvík (Iceland) and Vulcano (Aeolian Islands, Italy). At these sites, the tunable laser was used to measure the path-integrated CO 2 mixing ratios along cross sections of the fumaroles' atmospheric plumes. By using a tomographic post-processing routine, we then obtained, for each manifestation, the contour maps of CO 2 mixing ratios in the plumes and, from their integration, the CO 2 fluxes. The calculated CO 2 fluxes range from low (5.7 ± 0.9 t d −1 ; Krýsuvík) to moderate (524 ± 108 t d −1 ; La Fossa crater, Vulcano). Overall, we suggest that the cumulative CO 2 contribution from weakly degassing volcanoes in the hydrothermal stage of activity may be significant at the global scale.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2014-12-04
    Description: Evaluation of the ECHAM family radiation codes performance in the representation of the solar signal Geoscientific Model Development, 7, 2859-2866, 2014 Author(s): T. Sukhodolov, E. Rozanov, A. I. Shapiro, J. Anet, C. Cagnazzo, T. Peter, and W. Schmutz Solar radiation is the main source of energy for the Earth's atmosphere and in many respects defines its composition, photochemistry, temperature profile and dynamics. The magnitude of the solar irradiance variability strongly depends on the wavelength, making difficult its representation in climate models. Due to some deficiencies in the applied radiation codes, several models fail to show a clear response in middle stratospheric heating rates to solar spectral irradiance variability; therefore, it is important to evaluate model performance in this respect before doing multiple runs. In this work we evaluate the performance of three generations of ECHAM (4, 5 and 6) solar radiation schemes by a comparison with the reference high-resolution libRadtran code. We found that all original ECHAM radiation codes miss almost all solar signals in the heating rates in the mesosphere. In the stratosphere the two-band ECHAM4 code (E4) has an almost negligible radiative response to solar irradiance changes and the six-band ECHAM5 code (E5c) reproduces only about half of the reference signal, while representation in the ECHAM6 code (E6) is better – it misses a maximum of about 15% in the upper stratosphere. On the basis of the comparison results we suggest necessary improvements to the ECHAM family codes by the inclusion of available parameterizations of the heating rate due to absorption by oxygen (O 2 ) and ozone (O 3 ). Improvement is presented for E5c and E6, and both codes, with the introduced parameterizations, represent the heating rate response to the spectral solar irradiance variability simulated with libRadtran much better without a substantial increase in computer time. The suggested parameterizations are recommended to be applied in the middle-atmosphere version of the ECHAM-5 and 6 models for the study of the solar irradiance influence on climate.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2014-12-04
    Description: GEOtop 2.0: simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects Geoscientific Model Development, 7, 2831-2857, 2014 Author(s): S. Endrizzi, S. Gruber, M. Dall'Amico, and R. Rigon GEOtop is a fine-scale grid-based simulator that represents the heat and water budgets at and below the soil surface. It describes the three-dimensional water flow in the soil and the energy exchange with the atmosphere, considering the radiative and turbulent fluxes. Furthermore, it reproduces the highly non-linear interactions between the water and energy balance during soil freezing and thawing, and simulates the temporal evolution of the water and energy budgets in the snow cover and their effect on soil temperature. Here, we present the core components of GEOtop 2.0 and demonstrate its functioning. Based on a synthetic simulation, we show that the interaction of processes represented in GEOtop 2.0 can result in phenomena that are significant and relevant for applications involving permafrost and seasonally frozen soils, both in high altitude and latitude regions.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2014-12-06
    Description: The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project – Part 2: Environmental driver data Geoscientific Model Development, 7, 2875-2893, 2014 Author(s): Y. Wei, S. Liu, D. N. Huntzinger, A. M. Michalak, N. Viovy, W. M. Post, C. R. Schwalm, K. Schaefer, A. R. Jacobson, C. Lu, H. Tian, D. M. Ricciuto, R. B. Cook, J. Mao, and X. Shi Ecosystems are important and dynamic components of the global carbon cycle, and terrestrial biospheric models (TBMs) are crucial tools in further understanding of how terrestrial carbon is stored and exchanged with the atmosphere across a variety of spatial and temporal scales. Improving TBM skills, and quantifying and reducing their estimation uncertainties, pose significant challenges. The Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) is a formal multi-scale and multi-model intercomparison effort set up to tackle these challenges. The MsTMIP protocol prescribes standardized environmental driver data that are shared among model teams to facilitate model–model and model–observation comparisons. This paper describes the global and North American environmental driver data sets prepared for the MsTMIP activity to both support their use in MsTMIP and make these data, along with the processes used in selecting/processing these data, accessible to a broader audience. Based on project needs and lessons learned from past model intercomparison activities, we compiled climate, atmospheric CO 2 concentrations, nitrogen deposition, land use and land cover change (LULCC), C3 / C4 grasses fractions, major crops, phenology and soil data into a standard format for global (0.5° × 0.5° resolution) and regional (North American: 0.25° × 0.25° resolution) simulations. In order to meet the needs of MsTMIP, improvements were made to several of the original environmental data sets, by improving the quality, and/or changing their spatial and temporal coverage, and resolution. The resulting standardized model driver data sets are being used by over 20 different models participating in MsTMIP. The data are archived at the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC, http://daac.ornl.gov ) to provide long-term data management and distribution.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2011-05-07
    Description: The atmospheric chemistry box model CAABA/MECCA-3.0 Geoscientific Model Development, 4, 373-380, 2011 Author(s): R. Sander, A. Baumgaertner, S. Gromov, H. Harder, P. Jöckel, A. Kerkweg, D. Kubistin, E. Regelin, H. Riede, A. Sandu, D. Taraborrelli, H. Tost, and Z.-Q. Xie We present version 3.0 of the atmospheric chemistry box model CAABA/MECCA. In addition to a complete update of the rate coefficients to the most recent recommendations, a number of new features have been added: chemistry in multiple aerosol size bins; automatic multiple simulations reaching steady-state conditions; Monte-Carlo simulations with randomly varied rate coefficients within their experimental uncertainties; calculations along Lagrangian trajectories; mercury chemistry; more detailed isoprene chemistry; tagging of isotopically labeled species. Further changes have been implemented to make the code more user-friendly and to facilitate the analysis of the model results. Like earlier versions, CAABA/MECCA-3.0 is a community model published under the GNU General Public License.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2011-04-01
    Description: A Mesoproterozoic continental flood rhyolite province, the Gawler Ranges, Australia: the end member example of the Large Igneous Province clan Solid Earth, 2, 25-33, 2011 Author(s): M. J. Pankhurst, B. F. Schaefer, P. G. Betts, N. Phillips, and M. Hand Rhyolite and dacite lavas of the Mesoproterozoic upper Gawler Range Volcanics (GRV) (〉30 000 km 3 preserved), South Australia, represent the remnants of one of the most voluminous felsic magmatic events preserved on Earth. Geophysical interpretation suggests eruption from a central cluster of feeder vents which supplied large-scale lobate flows 〉100 km in length. Pigeonite inversion thermometers indicate eruption temperatures of 950–1100 °C. The lavas are A-type in composition (e.g. high Ga/Al ratios) and characterised by elevated primary halogen concentrations (~1600 ppm fluorine, ~400 ppm chlorine). These depolymerised the magma such that temperature-composition-volatile non-Arrhenian melt viscosity modelling suggests they had viscosities of
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2011-04-07
    Description: A comprehensive set of benchmark tests for a land surface model of simultaneous fluxes of water and carbon at both the global and seasonal scale Geoscientific Model Development, 4, 255-269, 2011 Author(s): E. Blyth, D. B. Clark, R. Ellis, C. Huntingford, S. Los, M. Pryor, M. Best, and S. Sitch Evaluating the models we use in prediction is important as it allows us to identify uncertainties in prediction as well as guiding the priorities for model development. This paper describes a set of benchmark tests that is designed to quantify the performance of the land surface model that is used in the UK Hadley Centre General Circulation Model (JULES: Joint UK Land Environment Simulator). The tests are designed to assess the ability of the model to reproduce the observed fluxes of water and carbon at the global and regional spatial scale, and on a seasonal basis. Five datasets are used to test the model: water and carbon dioxide fluxes from ten FLUXNET sites covering the major global biomes, atmospheric carbon dioxide concentrations at four representative stations from the global network, river flow from seven catchments, the seasonal mean NDVI over the seven catchments and the potential land cover of the globe (after the estimated anthropogenic changes have been removed). The model is run in various configurations and results are compared with the data. A few examples are chosen to demonstrate the importance of using combined use of observations of carbon and water fluxes in essential in order to understand the causes of model errors. The benchmarking approach is suitable for application to other global models.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2011-10-07
    Description: A new version of the CNRM Chemistry-Climate Model, CNRM-CCM: description and improvements from the CCMVal-2 simulations Geoscientific Model Development, 4, 873-900, 2011 Author(s): M. Michou, D. Saint-Martin, H. Teyssèdre, A. Alias, F. Karcher, D. Olivié, A. Voldoire, B. Josse, V.-H. Peuch, H. Clark, J. N. Lee, and F. Chéroux This paper presents a new version of the Météo-France CNRM Chemistry-Climate Model, so-called CNRM-CCM. It includes some fundamental changes from the previous version (CNRM-ACM) which was extensively evaluated in the context of the CCMVal-2 validation activity. The most notable changes concern the radiative code of the GCM, and the inclusion of the detailed stratospheric chemistry of our Chemistry-Transport model MOCAGE on-line within the GCM. A 47-yr transient simulation (1960–2006) is the basis of our analysis. CNRM-CCM generates satisfactory dynamical and chemical fields in the stratosphere. Several shortcomings of CNRM-ACM simulations for CCMVal-2 that resulted from an erroneous representation of the impact of volcanic aerosols as well as from transport deficiencies have been eliminated. Remaining problems concern the upper stratosphere (5 to 1 hPa) where temperatures are too high, and where there are biases in the NO 2 , N 2 O 5 and O 3 mixing ratios. In contrast, temperatures at the tropical tropopause are too cold. These issues are addressed through the implementation of a more accurate radiation scheme at short wavelengths. Despite these problems we show that this new CNRM CCM is a useful tool to study chemistry-climate applications.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2011-10-05
    Description: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments Geoscientific Model Development, 4, 845-872, 2011 Author(s): S. Watanabe, T. Hajima, K. Sudo, T. Nagashima, T. Takemura, H. Okajima, T. Nozawa, H. Kawase, M. Abe, T. Yokohata, T. Ise, H. Sato, E. Kato, K. Takata, S. Emori, and M. Kawamiya An earth system model (MIROC-ESM 2010) is fully described in terms of each model component and their interactions. Results for the CMIP5 (Coupled Model Intercomparison Project phase 5) historical simulation are presented to demonstrate the model's performance from several perspectives: atmosphere, ocean, sea-ice, land-surface, ocean and terrestrial biogeochemistry, and atmospheric chemistry and aerosols. An atmospheric chemistry coupled version of MIROC-ESM (MIROC-ESM-CHEM 2010) reasonably reproduces transient variations in surface air temperatures for the period 1850–2005, as well as the present-day climatology for the zonal-mean zonal winds and temperatures from the surface to the mesosphere. The historical evolution and global distribution of column ozone and the amount of tropospheric aerosols are reasonably simulated in the model based on the Representative Concentration Pathways' (RCP) historical emissions of these precursors. The simulated distributions of the terrestrial and marine biogeochemistry parameters agree with recent observations, which is encouraging to use the model for future global change projections.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2011-11-12
    Description: Metamorphic history and geodynamic significance of the Early Cretaceous Sabzevar granulites (Sabzevar structural zone, NE Iran) Solid Earth, 2, 219-243, 2011 Author(s): M. Nasrabady, F. Rossetti, T. Theye, and G. Vignaroli The Iranian ophiolites are part of the vast orogenic suture zones that mark the Alpine-Himalayan convergence zone. Few petrological and geochronological data are available from these ophiolitic domains, hampering a full assessment of the timing and regimes of subduction zone metamorphism and orogenic construction in the region. This paper describes texture, geochemistry, and the pressure-temperature path of the Early Cretaceous mafic granulites that occur within the Tertiary Sabzevar ophiolitic suture zone of NE Iran. Whole rock geochemistry indicates that the Sabzevar granulites are likely derived from a MORB-type precursor. They are thus considered as remnants of a dismembered dynamo-thermal sole formed during subduction of a back-arc basin (proto-Sabzevar Ocean) formed in the upper-plate of the Neotethyan slab. The metamorphic history of the granulites suggests an anticlockwise pressure-temperature loop compatible with burial in a hot subduction zone, followed by cooling during exhumation. Transition from a nascent to a mature stage of oceanic subduction is the geodynamic scenario proposed to accomplish for the reconstructed thermobaric evolution. When framed with the regional scenario, results of this study point to diachronous and independent tectonic evolutions of the different ophiolitic domains of central Iran, for which a growing disparity in the timing of metamorphic equilibration and of pressure-temperature paths can be expected to emerge with further investigations.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2011-12-03
    Description: Remobilization of silicic intrusion by mafic magmas during the 2010 Eyjafjallajökull eruption Solid Earth, 2, 271-281, 2011 Author(s): O. Sigmarsson, I. Vlastelic, R. Andreasen, I. Bindeman, J.-L. Devidal, S. Moune, J. K. Keiding, G. Larsen, A. Höskuldsson, and Th. Thordarson Injection of basaltic magmas into silicic crustal holding chambers and subsequent magma mingling or mixing is a process that has been recognised since the late seventies as resulting in explosive eruptions. Detailed reconstruction and assessment of the mixing process caused by such intrusion is now possible because of the exceptional time-sequence sample suite available from the tephra fallout of the 2010 summit eruption at Eyjafjallajökull volcano in South Iceland. Fallout from 14 to 19 April contains three glass types of basaltic, intermediate, and silicic compositions recording rapid magma mingling without homogenisation, involving evolved FeTi-basalt and silicic melt with composition identical to that produced by the 1821–1823 AD Eyjafjallajökull summit eruption. The time-dependent change in the magma composition suggests a binary mixing process with changing end-member compositions and proportions. Beginning of May, a new injection of primitive basalt was recorded by deep seismicity, appearance of Mg-rich olivine phenocrysts together with high sulphur dioxide output and presence of sulphide crystals. Thus, the composition of the basaltic injection became more magnesian and hotter with time provoking changes in the silicic mixing end-member from pre-existing melt to the solid carapace of the magma chamber. Finally, decreasing proportions of the mafic end-member with time in the erupted mixed-magma demonstrate that injections of Mg-rich basalt was the motor of the 2010 Eyjafjallajökull explosive eruption, and that its decreasing inflow terminated the eruption. Significant quantity of silicic magma is thus still present in the interior of the volcano. Our results show that detailed sampling during the entire eruption was essential for deciphering the complex magmatic processes at play, i.e. the dynamics of the magma mingling and mixing. Finally, the rapid compositional changes in the eruptive products suggest that magma mingling occurs on a timescale of a few hours to days whereas the interval between the first detected magma injection and eruption was several months.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2011-12-03
    Description: Towards an online-coupled chemistry-climate model: evaluation of trace gases and aerosols in COSMO-ART Geoscientific Model Development, 4, 1077-1102, 2011 Author(s): C. Knote, D. Brunner, H. Vogel, J. Allan, A. Asmi, M. Äijälä, S. Carbone, H. D. van der Gon, J. L. Jimenez, A. Kiendler-Scharr, C. Mohr, L. Poulain, A. S. H. Prévôt, E. Swietlicki, and B. Vogel The online-coupled, regional chemistry transport model COSMO-ART is evaluated for periods in all seasons against several measurement datasets to assess its ability to represent gaseous pollutants and ambient aerosol characteristics over the European domain. Measurements used in the comparison include long-term station observations, satellite and ground-based remote sensing products, and complex datasets of aerosol chemical composition and number size distribution from recent field campaigns. This is the first time these comprehensive measurements of aerosol characteristics in Europe are used to evaluate a regional chemistry transport model. We show a detailed analysis of the simulated size-resolved chemical composition under different meteorological conditions. Mean, variability and spatial distribution of the concentrations of O 3 and NO x are well reproduced. SO 2 is found to be overestimated, simulated PM 2.5 and PM 10 levels are on average underestimated, as is AOD. We find indications of an overestimation of shipping emissions. Time evolution of aerosol chemical composition is captured, although some biases are found in relative composition. Nitrate aerosol components are on average overestimated, and sulfates underestimated. The accuracy of simulated organics depends strongly on season and location. While strongly underestimated during summer, organic mass is comparable in spring and autumn. We see indications for an overestimated fractional contribution of primary organic matter in urban areas and an underestimation of SOA at many locations. Aerosol number concentrations compare well with measurements for larger size ranges, but overestimations of particle number concentration with factors of 2–5 are found for particles smaller than 50 nm. Size distribution characteristics are often close to measurements, but show discrepancies at polluted sites. Suggestions for further improvement of the modeling system consist of the inclusion of a revised secondary organic aerosols scheme, aqueous-phase chemistry and improved aerosol boundary conditions. Our work sets the basis for subsequent studies of aerosol characteristics and climate impacts with COSMO-ART, and highlights areas where improvements are necessary for current regional modeling systems in general.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2012-03-09
    Description: Pore formation during dehydration of a polycrystalline gypsum sample observed and quantified in a time-series synchrotron X-ray micro-tomography experiment Solid Earth, 3, 71-86, 2012 Author(s): F. Fusseis, C. Schrank, J. Liu, A. Karrech, S. Llana-Fúnez, X. Xiao, and K. Regenauer-Lieb We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA) to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm 3 proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time. We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process. Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (2048 3 voxels) in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway. Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the advance of the front are coupled in a feedback loop.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2012-02-22
    Description: Identifying the causes of differences in ozone production from the CB05 and CBMIV chemical mechanisms Geoscientific Model Development, 5, 257-268, 2012 Author(s): R. D. Saylor and A. F. Stein An investigation was conducted to identify the mechanistic differences between two versions of the carbon bond gas-phase chemical mechanism (CB05 and CBMIV) which consistently lead to larger ground-level ozone concentrations being produced in the CB05 version of the National Air Quality Forecasting Capability (NAQFC) modeling system even though the two parallel forecast systems utilize the same meteorology and base emissions and similar initial and boundary conditions. Box models of each of the mechanisms as they are implemented in the NAQFC were created and a set of 12 sensitivity simulations was designed. The sensitivity simulations independently probed the conceptual mechanistic differences between CB05 and CBMIV and were exercised over a 45-scenario simulation suite designed to emulate the wide range of chemical regimes encountered in a continental-scale atmospheric chemistry model. Results of the sensitivity simulations indicate that two sets of reactions that were included in the CB05 mechanism, but which were absent from the CBMIV mechanism, are the primary causes of the greater ozone production in the CB05 version of the NAQFC. One set of reactions recycles the higher organic peroxide species of CB05 (ROOH), resulting in additional photochemically reactive products that act to produce additional ozone in some chemical regimes. The other set of reactions recycles reactive nitrogen from less reactive forms back to NO 2 , increasing the effective NO x concentration of the system. In particular, the organic nitrate species (NTR), which was a terminal product for reactive nitrogen in the CBMIV mechanism, acts as a reservoir species in CB05 to redistribute NO x from major source areas to potentially NO x -sensitive areas where additional ozone may be produced in areas remote from direct NO x sources.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2012-03-13
    Description: The regulation of the air: a hypothesis Solid Earth, 3, 87-96, 2012 Author(s): E. G. Nisbet, C. M. R. Fowler, and R. E. R. Nisbet We propose the hypothesis that natural selection, acting on the specificity or preference for CO 2 over O 2 of the enzyme rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase), has controlled the CO 2 :O 2 ratio of the atmosphere since the evolution of photosynthesis and has also sustained the Earth's greenhouse-set surface temperature. Rubisco works in partnership with the nitrogen-fixing enzyme nitrogenase to control atmospheric pressure. Together, these two enzymes control global surface temperature and indirectly the pH and oxygenation of the ocean. Thus, the co-evolution of these two enzymes may have produced clement conditions on the Earth's surface, allowing life to be sustained.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2012-03-14
    Description: Influence of parallel computational uncertainty on simulations of the Coupled General Climate Model Geoscientific Model Development, 5, 313-319, 2012 Author(s): Z. Song, F. Qiao, X. Lei, and C. Wang This paper investigates the impact of the parallel computational uncertainty due to the round-off error on climate simulations using the Community Climate System Model Version 3 (CCSM3). A series of sensitivity experiments have been conducted and the analyses are focused on the Global and Nino3.4 average sea surface temperatures (SST). For the monthly time series, it is shown that the amplitude of the deviation induced by the parallel computational uncertainty is the same order as that of the climate system change. However, the ensemble mean method can reduce the influence and the ensemble member number of 15 is enough to ignore the uncertainty. For climatology, the influence can be ignored when the climatological mean is calculated by using more than 30-yr simulations. It is also found that the parallel computational uncertainty has no distinguishable effect on power spectrum analysis of climate variability such as ENSO. Finally, it is suggested that the influence of the parallel computational uncertainty on Coupled General Climate Models (CGCMs) can be a quality standard or a metric for developing CGCMs.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2012-02-14
    Description: Wavelet-based spatial comparison technique for analysing and evaluating two-dimensional geophysical model fields Geoscientific Model Development, 5, 223-230, 2012 Author(s): S. Saux Picart, M. Butenschön, and J. D. Shutler Complex numerical models of the Earth's environment, based around 3-D or 4-D time and space domains are routinely used for applications including climate predictions, weather forecasts, fishery management and environmental impact assessments. Quantitatively assessing the ability of these models to accurately reproduce geographical patterns at a range of spatial and temporal scales has always been a difficult problem to address. However, this is crucial if we are to rely on these models for decision making. Satellite data are potentially the only observational dataset able to cover the large spatial domains analysed by many types of geophysical models. Consequently optical wavelength satellite data is beginning to be used to evaluate model hindcast fields of terrestrial and marine environments. However, these satellite data invariably contain regions of occluded or missing data due to clouds, further complicating or impacting on any comparisons with the model. This work builds on a published methodology, that evaluates precipitation forecast using radar observations based on predefined absolute thresholds. It allows model skill to be evaluated at a range of spatial scales and rain intensities. Here we extend the original method to allow its generic application to a range of continuous and discontinuous geophysical data fields, and therefore allowing its use with optical satellite data. This is achieved through two major improvements to the original method: (i) all thresholds are determined based on the statistical distribution of the input data, so no a priori knowledge about the model fields being analysed is required and (ii) occluded data can be analysed without impacting on the metric results. The method can be used to assess a model's ability to simulate geographical patterns over a range of spatial scales. We illustrate how the method provides a compact and concise way of visualising the degree of agreement between spatial features in two datasets. The application of the new method, its handling of bias and occlusion and the advantages of the novel method are demonstrated through the analysis of model fields from a marine ecosystem model.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2012-02-17
    Description: Constraining fault interpretation through tomographic velocity gradients: application to northern Cascadia Solid Earth, 3, 53-61, 2012 Author(s): K. Ramachandran Spatial gradients of tomographic velocities are seldom used in interpretation of subsurface fault structures. This study shows that spatial velocity gradients can be used effectively in identifying subsurface discontinuities in the horizontal and vertical directions. Three-dimensional velocity models constructed through tomographic inversion of active source and/or earthquake traveltime data are generally built from an initial 1-D velocity model that varies only with depth. Regularized tomographic inversion algorithms impose constraints on the roughness of the model that help to stabilize the inversion process. Final velocity models obtained from regularized tomographic inversions have smooth three-dimensional structures that are required by the data. Final velocity models are usually analyzed and interpreted either as a perturbation velocity model or as an absolute velocity model. Compared to perturbation velocity model, absolute velocity models have an advantage of providing constraints on lithology. Both velocity models lack the ability to provide sharp constraints on subsurface faults. An interpretational approach utilizing spatial velocity gradients applied to northern Cascadia shows that subsurface faults that are not clearly interpretable from velocity model plots can be identified by sharp contrasts in velocity gradient plots. This interpretation resulted in inferring the locations of the Tacoma, Seattle, Southern Whidbey Island, and Darrington Devil's Mountain faults much more clearly. The Coast Range Boundary fault, previously hypothesized on the basis of sedimentological and tectonic observations, is inferred clearly from the gradient plots. Many of the fault locations imaged from gradient data correlate with earthquake hypocenters, indicating their seismogenic nature.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-01-18
    Description: Performance of McRAS-AC in the GEOS-5 AGCM: aerosol-cloud-microphysics, precipitation, cloud radiative effects, and circulation Geoscientific Model Development, 6, 57-79, 2013 Author(s): Y. C. Sud, D. Lee, L. Oreopoulos, D. Barahona, A. Nenes, and M. J. Suarez A revised version of the Microphysics of clouds with Relaxed Arakawa-Schubert and Aerosol-Cloud interaction scheme (McRAS-AC) including, among others, a new ice nucleation parameterization, is implemented in the GEOS-5 AGCM. Various fields from a 10-yr-long integration of the AGCM with McRAS-AC are compared with their counterparts from an integration of the baseline GEOS-5 AGCM, as well as satellite observations. Generally McRAS-AC simulations have smaller biases in cloud fields and cloud radiative effects over most of the regions of the Earth than the baseline GEOS-5 AGCM. Two systematic biases are identified in the McRAS-AC runs: one is underestimation of cloud particle numbers around 40° S–60° S, and one is overestimate of cloud water path during the Northern Hemisphere summer over the Gulf Stream and North Pacific. Sensitivity tests show that these biases potentially originate from biases in the aerosol input. The first bias is largely eliminated in a test run using 50% smaller radius of sea-salt aerosol particles, while the second bias is substantially reduced when interactive aerosol chemistry is turned on. The main weakness of McRAS-AC is the dearth of low-level marine stratus clouds, a probable outcome of lack of explicit dry-convection in the cloud scheme. Nevertheless, McRAS-AC largely simulates realistic clouds and their optical properties that can be improved further with better aerosol input. An assessment using the COSP simulator in a 1-yr integration provides additional perspectives for understanding cloud optical property differences between the baseline and McRAS-AC simulations and biases against satellite data. Overall, McRAS-AC physically couples aerosols, the microphysics and macrophysics of clouds, and their radiative effects and thereby has better potential to be a valuable tool for climate modeling research.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-02-20
    Description: Corrigendum to "CLM4-BeTR, a generic biogeochemical transport and reaction module for CLM4: model development, evaluation, and application" published in Geosci. Model Dev., 6, 127–140, 2013 Geoscientific Model Development, 6, 245-245, 2013 Author(s): J. Y. Tang, W. J. Riley, C. D. Koven, and Z. M. Subin No abstract available.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-02-23
    Description: Implementation of the chemistry module MECCA (v2.5) in the modal aerosol version of the Community Atmosphere Model component (v3.6.33) of the Community Earth System Model Geoscientific Model Development, 6, 255-262, 2013 Author(s): M. S. Long, W. C. Keene, R. Easter, R. Sander, A. Kerkweg, D. Erickson, X. Liu, and S. Ghan A coupled atmospheric chemistry and climate system model was developed using the modal aerosol version of the National Center for Atmospheric Research Community Atmosphere Model (modal-CAM; v3.6.33) and the Max Planck Institute for Chemistry's Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA; v2.5) to provide enhanced resolution of multiphase processes, particularly those involving inorganic halogens, and associated impacts on atmospheric composition and climate. Three Rosenbrock solvers (Ros-2, Ros-3, RODAS-3) were tested in conjunction with the basic load-balancing options available to modal-CAM (1) to establish an optimal configuration of the implicitly-solved multiphase chemistry module that maximizes both computational speed and repeatability of Ros-2 and RODAS-3 results versus Ros-3, and (2) to identify potential implementation strategies for future versions of this and similar coupled systems. RODAS-3 was faster than Ros-2 and Ros-3 with good reproduction of Ros-3 results, while Ros-2 was both slower and substantially less reproducible relative to Ros-3 results. Modal-CAM with MECCA chemistry was a factor of 15 slower than modal-CAM using standard chemistry. MECCA chemistry integration times demonstrated a systematic frequency distribution for all three solvers, and revealed that the change in run-time performance was due to a change in the frequency distribution of chemical integration times; the peak frequency was similar for all solvers. This suggests that efficient chemistry-focused load-balancing schemes can be developed that rely on the parameters of this frequency distribution.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2012-11-08
    Description: Triplicated P-wave measurements for waveform tomography of the mantle transition zone Solid Earth, 3, 339-354, 2012 Author(s): S. C. Stähler, K. Sigloch, and T. Nissen-Meyer Triplicated body waves sample the mantle transition zone more extensively than any other wave type, and interact strongly with the discontinuities at 410 km and 660 km. Since the seismograms bear a strong imprint of these geodynamically interesting features, it is highly desirable to invert them for structure of the transition zone. This has rarely been attempted, due to a mismatch between the complex and band-limited data and the (ray-theoretical) modelling methods. Here we present a data processing and modelling strategy to harness such broadband seismograms for finite-frequency tomography. We include triplicated P-waves (epicentral distance range between 14 and 30°) across their entire broadband frequency range, for both deep and shallow sources. We show that is it possible to predict the complex sequence of arrivals in these seismograms, but only after a careful effort to estimate source time functions and other source parameters from data, variables that strongly influence the waveforms. Modelled and observed waveforms then yield decent cross-correlation fits, from which we measure finite-frequency traveltime anomalies. We discuss two such data sets, for North America and Europe, and conclude that their signal quality and azimuthal coverage should be adequate for tomographic inversion. In order to compute sensitivity kernels at the pertinent high body wave frequencies, we use fully numerical forward modelling of the seismic wavefield through a spherically symmetric Earth.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2012-11-13
    Description: Implementation of multirate time integration methods for air pollution modelling Geoscientific Model Development, 5, 1395-1405, 2012 Author(s): M. Schlegel, O. Knoth, M. Arnold, and R. Wolke Explicit time integration methods are characterised by a small numerical effort per time step. In the application to multiscale problems in atmospheric modelling, this benefit is often more than compensated by stability problems and step size restrictions resulting from stiff chemical reaction terms and from a locally varying Courant-Friedrichs-Lewy (CFL) condition for the advection terms. Splitting methods may be applied to efficiently combine implicit and explicit methods (IMEX splitting). Complementarily multirate time integration schemes allow for a local adaptation of the time step size to the grid size. In combination, these approaches lead to schemes which are efficient in terms of evaluations of the right-hand side. Special challenges arise when these methods are to be implemented. For an efficient implementation, it is crucial to locate and exploit redundancies. Furthermore, the more complex programme flow may lead to computational overhead which, in the worst case, more than compensates the theoretical gain in efficiency. We present a general splitting approach which allows both for IMEX splittings and for local time step adaptation. The main focus is on an efficient implementation of this approach for parallel computation on computer clusters.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2012-12-08
    Description: Lidar signal simulation for the evaluation of aerosols in chemistry transport models Geoscientific Model Development, 5, 1543-1564, 2012 Author(s): S. Stromatas, S. Turquety, L. Menut, H. Chepfer, J. C. Péré, G. Cesana, and B. Bessagnet We present an adaptable tool, the OPTSIM (OPTical properties SIMulation) software, for the simulation of optical properties and lidar attenuated backscattered profiles ( β ') from aerosol concentrations calculated by chemistry transport models (CTM). It was developed to model both Level 1 observations and Level 2 aerosol lidar retrievals in order to compare model results to measurements: the level 2 enables to estimate the main properties of aerosols plume structures, but may be limited due to specific assumptions. The level 1, originally developed for this tool, gives access to more information about aerosols properties ( β ') requiring, at the same time, less hypothesis on aerosols types. In addition to an evaluation of the aerosol loading and optical properties, active remote sensing allows the analysis of aerosols' vertical structures. An academic case study for two different species (black carbon and dust) is presented and shows the consistency of the simulator. Illustrations are then given through the analysis of dust events in the Mediterranean region during the summer 2007. These are based on simulations by the CHIMERE regional CTM and observations from the CALIOP space-based lidar, and highlight the potential of this approach to evaluate the concentration, size and vertical structure of the aerosol plumes.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-03-02
    Description: Modelling the Caspian Sea and its catchment area using a coupled regional atmosphere-ocean model (RegCM4-ROMS): model design and preliminary results Geoscientific Model Development, 6, 283-299, 2013 Author(s): U. U. Turuncoglu, G. Giuliani, N. Elguindi, and F. Giorgi We describe the development of a coupled regional atmosphere-ocean model (RegCM4-ROMS) and its implementation over the Caspian Sea basin. The coupled model is run for the period 1999–2008 (after a spin up of 4 yr) and it is compared to corresponding stand alone model simulations and a simulation in which a distributed 1d lake model is run for the Caspian Sea. All model versions show a good performance in reproducing the climatology of the Caspian Sea basin, with relatively minor differences across them. The coupled ROMS produces realistic, although somewhat overestimated, Caspian Sea Surface Temperature (SST), with a considerable improvement compared to the use of the simpler coupled lake model. Simulated near surface salinity and sea currents are also realistic, although the upwelling over the eastern coastal regions is underestimated. The sea ice extent over the shallow northern shelf of the Caspian Sea and its seasonal evolution are well reproduced, however, a significant negative bias in sea-ice fraction exists due to the relatively poor representation of the bathymetry. ROMS also calculates the Caspian Sea Level (CSL), showing that for the present experiment excessive evaporation over the lake area leads to a drift in estimated CSL. Despite this problem, which requires further analysis due to many uncertainties in the estimation of CSL, overall the coupled RegCM4-ROMS system shows encouraging results in reproducing both the climatology of the region and the basic characteristics of the Caspian Sea.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2012-09-29
    Description: A new marine ecosystem model for the University of Victoria Earth System Climate Model Geoscientific Model Development, 5, 1195-1220, 2012 Author(s): D. P. Keller, A. Oschlies, and M. Eby Earth System Climate Models (ESCMs) are valuable tools that can be used to gain a better understanding of the climate system, global biogeochemical cycles and how anthropogenically-driven changes may affect them. Here we describe improvements made to the marine biogeochemical ecosystem component of the University of Victoria's ESCM (version 2.9). Major changes include corrections to the code and equations describing phytoplankton light limitation and zooplankton grazing, the implementation of a more realistic zooplankton growth and grazing model, and the implementation of an iron limitation scheme to constrain phytoplankton growth. The new model is evaluated after a 10 000-yr spin-up and compared to both the previous version and observations. For the majority of biogeochemical tracers and ecosystem processes the new model shows significant improvements when compared to the previous version and evaluated against observations. Many of the improvements are due to better simulation of seasonal changes in higher latitude ecosystems and the effect that this has on ocean biogeochemistry. This improved model is intended to provide a basic new ESCM model component, which can be used as is or expanded upon (i.e., the addition of new tracers), for climate change and biogeochemical cycling research.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2012-09-22
    Description: Downscaling the climate change for oceans around Australia Geoscientific Model Development, 5, 1177-1194, 2012 Author(s): M. A. Chamberlain, C. Sun, R. J. Matear, M. Feng, and S. J. Phipps At present, global climate models used to project changes in climate poorly resolve mesoscale ocean features such as boundary currents and eddies. These missing features may be important to realistically project the marine impacts of climate change. Here we present a framework for dynamically downscaling coarse climate change projections utilising a near-global ocean model that resolves these features in the Australasian region, with coarser resolution elsewhere. A time-slice projection for a 2060s ocean was obtained by adding climate change anomalies to initial conditions and surface fluxes of a near-global eddy-resolving ocean model. Climate change anomalies are derived from the differences between present and projected climates from a coarse global climate model. These anomalies are added to observed fields, thereby reducing the effect of model bias from the climate model. The downscaling model used here is ocean-only and does not include the effects that changes in the ocean state will have on the atmosphere and air–sea fluxes. We use restoring of the sea surface temperature and salinity to approximate real-ocean feedback on heat flux and to keep the salinity stable. Extra experiments with different feedback parameterisations are run to test the sensitivity of the projection. Consistent spatial differences emerge in sea surface temperature, salinity, stratification and transport between the downscaled projections and those of the climate model. Also, the spatial differences become established rapidly ( 〈 3 yr), indicating the importance of mesoscale resolution. However, the differences in the magnitude of the difference between experiments show that feedback of the ocean onto the air–sea fluxes is still important in determining the state of the ocean in these projections. Until such a time when it is feasible to regularly run a global climate model with eddy resolution, our framework for ocean climate change downscaling provides an attractive way to explore the response of mesoscale ocean features with climate change and their effect on the broader ocean.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2012-08-21
    Description: Heat-flow and subsurface temperature history at the site of Saraya (eastern Senegal) Solid Earth, 3, 213-224, 2012 Author(s): F. Lucazeau and F. Rolandone New temperature measurements from eight boreholes in the West African Craton (WAC) reveal superficial perturbations down to 100 m below the alteration zone. These perturbations are both related to a recent increase in the surface air temperature (SAT) and to the site effects caused by fluid circulations and/or the lower conduction in the alterites. The ground surface temperature (GST), inverted from the boreholes temperatures, increased slowly in the past (~0.4 °C from 1700 to 1940) and then, more importantly, in recent years (~1.5 °C from 1940 to 2010). This recent trend is consistent with the increase of the SAT recorded at two nearby meteorological stations (Tambacounda and Kedougou), and more generally in the Sahel with a coeval rainfall decrease. Site effects are superimposed to the climatic effect and interpreted by advective (circulation of fluids) or conductive (lower conductivity of laterite and of high-porosity sand) perturbations. We used a 1-D finite differences thermal model and a Monte-Carlo procedure to find the best estimates of these site perturbations: all the eight borehole temperature logs can be interpreted with the same basal heat-flow and the same surface temperature history, but with some realistic changes of thermal conductivity and/or fluid velocity. The GST trend observed in Senegal can be confirmed by two previous borehole measurements made in 1983 in other locations of West Africa, the first one in an arid zone of northern Mali and the second one in a sub-humid zone in southern Mali. Finally, the background heat-flow is low (31±2 mW m −2 ), which makes this part of the WAC more similar with the observations in the southern part (33±8 mW m −2 ) rather than with those in the northern part and in the Pan-African domains where the surface heat-flow is 15–20 mW m −2 higher.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2012-10-18
    Description: Description of a hybrid ice sheet-shelf model, and application to Antarctica Geoscientific Model Development, 5, 1273-1295, 2012 Author(s): D. Pollard and R. M. DeConto The formulation of a 3-D ice sheet-shelf model is described. The model is designed for long-term continental-scale applications, and has been used mostly in paleoclimatic studies. It uses a hybrid combination of the scaled shallow ice and shallow shelf approximations for ice flow. Floating ice shelves and grounding-line migration are included, with parameterized ice fluxes at grounding lines that allows relatively coarse resolutions to be used. All significant components and parameterizations of the model are described in some detail. Basic results for modern Antarctica are compared with observations, and simulations over the last 5 million years are compared with previously published results. The sensitivity of ice volumes during the last deglaciation to basal sliding coefficients is discussed.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2012-10-20
    Description: The Nexus Land-Use model version 1.0, an approach articulating biophysical potentials and economic dynamics to model competition for land-use Geoscientific Model Development, 5, 1297-1322, 2012 Author(s): F. Souty, T. Brunelle, P. Dumas, B. Dorin, P. Ciais, R. Crassous, C. Müller, and A. Bondeau Interactions between food demand, biomass energy and forest preservation are driving both food prices and land-use changes, regionally and globally. This study presents a new model called Nexus Land-Use version 1.0 which describes these interactions through a generic representation of agricultural intensification mechanisms within agricultural lands. The Nexus Land-Use model equations combine biophysics and economics into a single coherent framework to calculate crop yields, food prices, and resulting pasture and cropland areas within 12 regions inter-connected with each other by international trade. The representation of cropland and livestock production systems in each region relies on three components: (i) a biomass production function derived from the crop yield response function to inputs such as industrial fertilisers; (ii) a detailed representation of the livestock production system subdivided into an intensive and an extensive component, and (iii) a spatially explicit distribution of potential (maximal) crop yields prescribed from the Lund-Postdam-Jena global vegetation model for managed Land (LPJmL). The economic principles governing decisions about land-use and intensification are adapted from the Ricardian rent theory, assuming cost minimisation for farmers. In contrast to the other land-use models linking economy and biophysics, crops are aggregated as a representative product in calories and intensification for the representative crop is a non-linear function of chemical inputs. The model equations and parameter values are first described in details. Then, idealised scenarios exploring the impact of forest preservation policies or rising energy price on agricultural intensification are described, and their impacts on pasture and cropland areas are investigated.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2012-04-04
    Description: "Gtool5": a Fortran90 library of input/output interfaces for self-descriptive multi-dimensional numerical data Geoscientific Model Development, 5, 449-455, 2012 Author(s): M. Ishiwatari, E. Toyoda, Y. Morikawa, S. Takehiro, Y. Sasaki, S. Nishizawa, M. Odaka, N. Otobe, Y. O. Takahashi, K. Nakajima, T. Horinouchi, M. Shiotani, Y.-Y. Hayashi, and Gtool development group A Fortran90 input/output library, "gtool5", is developed for use with numerical simulation models in the fields of Earth and planetary sciences. The use of this library will simplify implementation of input/output operations into program code in a consolidated form independent of the size and complexity of the software and data. The library also enables simple specification of the metadata needed for post-processing and visualization of the data. These aspects improve the readability of simulation code, which facilitates the simultaneous performance of multiple numerical experiments with different software and efficiency in examining and comparing the numerical results. The library is expected to provide a common software platform to reinforce research on, for instance, the atmosphere and ocean, where a close combination of multiple simulation models with a wide variety of complexity of physics implementations from massive climate models to simple geophysical fluid dynamics models is required.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2012-04-17
    Description: Detection, tracking and event localization of jet stream features in 4-D atmospheric data Geoscientific Model Development, 5, 457-470, 2012 Author(s): S. Limbach, E. Schömer, and H. Wernli We introduce a novel algorithm for the efficient detection and tracking of features in spatiotemporal atmospheric data, as well as for the precise localization of the occurring genesis, lysis, merging and splitting events. The algorithm works on data given on a four-dimensional structured grid. Feature selection and clustering are based on adjustable local and global criteria, feature tracking is predominantly based on spatial overlaps of the feature's full volumes. The resulting 3-D features and the identified correspondences between features of consecutive time steps are represented as the nodes and edges of a directed acyclic graph, the event graph. Merging and splitting events appear in the event graph as nodes with multiple incoming or outgoing edges, respectively. The precise localization of the splitting events is based on a search for all grid points inside the initial 3-D feature that have a similar distance to two successive 3-D features of the next time step. The merging event is localized analogously, operating backward in time. As a first application of our method we present a climatology of upper-tropospheric jet streams and their events, based on four-dimensional wind speed data from European Centre for Medium-Range Weather Forecasts (ECMWF) analyses. We compare our results with a climatology from a previous study, investigate the statistical distribution of the merging and splitting events, and illustrate the meteorological significance of the jet splitting events with a case study. A brief outlook is given on additional potential applications of the 4-D data segmentation technique.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-02-09
    Description: Aerosol–climate interactions in the Norwegian Earth System Model – NorESM1-M Geoscientific Model Development, 6, 207-244, 2013 Author(s): A. Kirkevåg, T. Iversen, Ø. Seland, C. Hoose, J. E. Kristjánsson, H. Struthers, A. M. L. Ekman, S. Ghan, J. Griesfeller, E. D. Nilsson, and M. Schulz The objective of this study is to document and evaluate recent changes and updates to the module for aerosols and aerosol–cloud–radiation interactions in the atmospheric module CAM4-Oslo of the core version of the Norwegian Earth System Model (NorESM), NorESM1-M. Particular attention is paid to the role of natural organics, sea salt, and mineral dust in determining the gross aerosol properties as well as the anthropogenic contribution to these properties and the associated direct and indirect radiative forcing. The aerosol module is extended from earlier versions that have been published, and includes life-cycling of sea salt, mineral dust, particulate sulphate, black carbon, and primary and secondary organics. The impacts of most of the numerous changes since previous versions are thoroughly explored by sensitivity experiments. The most important changes are: modified prognostic sea salt emissions; updated treatment of precipitation scavenging and gravitational settling; inclusion of biogenic primary organics and methane sulphonic acid (MSA) from oceans; almost doubled production of land-based biogenic secondary organic aerosols (SOA); and increased ratio of organic matter to organic carbon (OM/OC) for biomass burning aerosols from 1.4 to 2.6. Compared with in situ measurements and remotely sensed data, the new treatments of sea salt and dust aerosols give smaller biases in near-surface mass concentrations and aerosol optical depth than in the earlier model version. The model biases for mass concentrations are approximately unchanged for sulphate and BC. The enhanced levels of modeled OM yield improved overall statistics, even though OM is still underestimated in Europe and overestimated in North America. The global anthropogenic aerosol direct radiative forcing (DRF) at the top of the atmosphere has changed from a small positive value to −0.08 W m −2 in CAM4-Oslo. The sensitivity tests suggest that this change can be attributed to the new treatment of biomass burning aerosols and gravitational settling. Although it has not been a goal in this study, the new DRF estimate is closer both to the median model estimate from the AeroCom intercomparison and the best estimate in IPCC AR4. Estimated DRF at the ground surface has increased by ca. 60%, to −1.89 W m −2 . We show that this can be explained by new emission data and omitted mixing of constituents between updrafts and downdrafts in convective clouds. The increased abundance of natural OM and the introduction of a cloud droplet spectral dispersion formulation are the most important contributions to a considerably decreased estimate of the indirect radiative forcing (IndRF). The IndRF is also found to be sensitive to assumptions about the coating of insoluble aerosols by sulphate and OM. The IndRF of −1.2 W m −2 , which is closer to the IPCC AR4 estimates than the previous estimate of −1.9 W m −2 , has thus been obtained without imposing unrealistic artificial lower bounds on cloud droplet number concentrations.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-02-08
    Description: The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics Geoscientific Model Development, 6, 179-206, 2013 Author(s): J.-F. Lamarque, D. T. Shindell, B. Josse, P. J. Young, I. Cionni, V. Eyring, D. Bergmann, P. Cameron-Smith, W. J. Collins, R. Doherty, S. Dalsoren, G. Faluvegi, G. Folberth, S. J. Ghan, L. W. Horowitz, Y. H. Lee, I. A. MacKenzie, T. Nagashima, V. Naik, D. Plummer, M. Righi, S. T. Rumbold, M. Schulz, R. B. Skeie, D. S. Stevenson, S. Strode, K. Sudo, S. Szopa, A. Voulgarakis, and G. Zeng The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) consists of a series of time slice experiments targeting the long-term changes in atmospheric composition between 1850 and 2100, with the goal of documenting composition changes and the associated radiative forcing. In this overview paper, we introduce the ACCMIP activity, the various simulations performed (with a requested set of 14) and the associated model output. The 16 ACCMIP models have a wide range of horizontal and vertical resolutions, vertical extent, chemistry schemes and interaction with radiation and clouds. While anthropogenic and biomass burning emissions were specified for all time slices in the ACCMIP protocol, it is found that the natural emissions are responsible for a significant range across models, mostly in the case of ozone precursors. The analysis of selected present-day climate diagnostics (precipitation, temperature, specific humidity and zonal wind) reveals biases consistent with state-of-the-art climate models. The model-to-model comparison of changes in temperature, specific humidity and zonal wind between 1850 and 2000 and between 2000 and 2100 indicates mostly consistent results. However, models that are clear outliers are different enough from the other models to significantly affect their simulation of atmospheric chemistry.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-02-08
    Description: Implementation of the Fast-JX Photolysis scheme (v6.4) into the UKCA component of the MetUM chemistry-climate model (v7.3) Geoscientific Model Development, 6, 161-177, 2013 Author(s): P. J. Telford, N. L. Abraham, A. T. Archibald, P. Braesicke, M. Dalvi, O. Morgenstern, F. M. O'Connor, N. A. D. Richards, and J. A. Pyle Atmospheric chemistry is driven by photolytic reactions, making their modelling a crucial component of atmospheric models. We describe the implementation and validation of Fast-JX, a state of the art model of interactive photolysis, into the MetUM chemistry-climate model. This allows for interactive photolysis rates to be calculated in the troposphere and augments the calculation of the rates in the stratosphere by accounting for clouds and aerosols in addition to ozone. In order to demonstrate the effectiveness of this new photolysis scheme we employ new methods of validating the model, including techniques for sampling the model to compare to flight track and satellite data.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-02-16
    Description: Seismic imaging of sandbox experiments – laboratory hardware setup and first reflection seismic sections Solid Earth, 4, 93-104, 2013 Author(s): C. M. Krawczyk, M.-L. Buddensiek, O. Oncken, and N. Kukowski With the study and technical development introduced here, we combine analogue sandbox simulation techniques with seismic physical modelling of sandbox models. For that purpose, we designed and developed a new mini-seismic facility for laboratory use, comprising a seismic tank, a PC-driven control unit, a positioning system, and piezoelectric transducers used here for the first time in an array mode. To assess the possibilities and limits of seismic imaging of small-scale structures in sandbox models, different geometry setups were tested in the first 2-D experiments that also tested the proper functioning of the device and studied the seismo-elastic properties of the granular media used. Simple two-layer models of different materials and layer thicknesses as well as a more complex model comprising channels and shear zones were tested using different acquisition geometries and signal properties. We suggest using well sorted and well rounded grains with little surface roughness (glass beads). Source receiver-offsets less than 14 cm for imaging structures as small as 2.0–1.5 mm size have proven feasible. This is the best compromise between wide beam and high energy output, and is applicable with a consistent waveform. Resolution of the interfaces of layers of granular materials depends on the interface preparation rather than on the material itself. Flat grading of interfaces and powder coverage yields the clearest interface reflections. Finally, sandbox seismic sections provide images of high quality showing constant thickness layers as well as predefined channel structures and indications of the fault traces from shear zones. Since these were artificially introduced in our test models, they can be regarded as zones of disturbance rather than tectonic shear zones characterized by decompaction. The multiple-offset surveying introduced here, improves the quality with respect to S / N ratio and source signature even more; the maximum depth penetration in glass-bead layers thereby amounts to 5 cm. Thus, the presented mini-seismic device is already able to resolve structures within simple models of saturated porous media, so that multiple-offset seismic imaging of shallow sandbox models, that are structurally evolving, is generally feasible.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2013-02-20
    Description: A generalized tagging method Geoscientific Model Development, 6, 247-253, 2013 Author(s): V. Grewe The understanding of causes of changes in climate-chemistry simulations is an important, but often challenging task. In atmospheric chemistry, one approach is to tag species according to their origin (e.g. emission categories) and to inherit these tags to other species during subsequent reactions. This concept was recently employed to calculate the contribution of atmospheric processes to temperature. Here a new concept for tagging any state variable is presented. This generalized tagging method results from a sensitivity analysis of the individual forcing terms of the right hand side of the governing differential equations. In a couple of examples, the consistency with previous approaches and the synergy by using different analysis techniques are shown. Since the method is based on a ratio describing relative sensitivities, singularities occur where the method is not applicable. For some applications, such as in atmospheric chemistry, these singularities can easily be removed. However, one theoretical example is given, where this method is not applicable at all.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-02-14
    Description: Exhumation of (ultra-)high-pressure terranes: concepts and mechanisms Solid Earth, 4, 75-92, 2013 Author(s): C. J. Warren The formation and exhumation of high and ultra-high-pressure, (U)HP, rocks of crustal origin appears to be ubiquitous during Phanerozoic plate subduction and continental collision events. Exhumation of (U)HP material has been shown in some orogens to have occurred only once, during a single short-lived event; in other cases exhumation appears to have occurred multiple discrete times or during a single, long-lived, protracted event. It is becoming increasingly clear that no single exhumation mechanism dominates in any particular tectonic environment, and the mechanism may change in time and space within the same subduction zone. Subduction zone style and internal force balance change in both time and space, responding to changes in width, steepness, composition of subducting material and velocity of subduction. In order for continental crust, which is relatively buoyant compared to the mantle even when metamorphosed to (U)HP assemblages, to be subducted to (U)HP conditions, it must remain attached to a stronger and denser substrate. Buoyancy and external tectonic forces drive exhumation, although the changing spatial and temporal dominance of different driving forces still remains unclear. Exhumation may involve whole-scale detachment of the terrane from the subducting slab followed by exhumation within a subduction channel (perhaps during continued subduction) or a reversal in motion of the entire plate (eduction) following the removal of a lower part of the subducting slab. Weakening mechanisms that may be responsible for the detachment of deeply subducted crust from its stronger, denser substrate include strain weakening, hydration, melting, grain size reduction and the development of foliation. These may act locally to form narrow high-strain shear zones separating stronger, less-strained crust or may act on the bulk of the subducted material, allowing whole-scale flow. Metamorphic reactions, metastability and the composition of the subducted crust all affect buoyancy and overall strength. Future research directions include identifying temporal and spatial changes in exhumation mechanisms within different tectonic environments, and determining the factors that influence those changes.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-02-01
    Description: Optimising the FAMOUS climate model: inclusion of global carbon cycling Geoscientific Model Development, 6, 141-160, 2013 Author(s): J. H. T. Williams, R. S. Smith, P. J. Valdes, B. B. B. Booth, and A. Osprey FAMOUS fills an important role in the hierarchy of climate models, both explicitly resolving atmospheric and oceanic dynamics yet being sufficiently computationally efficient that either very long simulations or large ensembles are possible. An improved set of carbon cycle parameters for this model has been found using a perturbed physics ensemble technique. This is an important step towards building the "Earth System" modelling capability of FAMOUS, which is a reduced resolution, and hence faster running, version of the Hadley Centre Climate model, HadCM3. Two separate 100 member perturbed parameter ensembles were performed; one for the land surface and one for the ocean. The land surface scheme was tested against present-day and past representations of vegetation and the ocean ensemble was tested against observations of nitrate. An advantage of using a relatively fast climate model is that a large number of simulations can be run and hence the model parameter space (a large source of climate model uncertainty) can be more thoroughly sampled. This has the associated benefit of being able to assess the sensitivity of model results to changes in each parameter. The climatologies of surface and tropospheric air temperature and precipitation are improved relative to previous versions of FAMOUS. The improved representation of upper atmosphere temperatures is driven by improved ozone concentrations near the tropopause and better upper level winds.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-02-01
    Description: Segmentation of the Izu-Bonin and Mariana slabs based on the analysis of the Benioff seismicity distribution and regional tomography results Solid Earth, 4, 59-73, 2013 Author(s): K. Jaxybulatov, I. Koulakov, and N. L. Dobretsov We present a new model of P and S velocity anomalies in the mantle down to a depth of 1300 km beneath the Izu-Bonin and Mariana (IBM) arcs. This model is derived based on tomographic inversion of global travel time data from the revised ISC catalogue. The results of inversion are thoroughly verified using a series of different tests. The obtained model is generally consistent with previous studies by different authors. We also present the distribution of relocated deep events projected to the vertical surface along the IBM arc system. Unexpectedly, the seismicity forms elongated vertical clusters instead of horizontal zones indicating phase transitions in the slab. We propose that these vertical seismicity zones mark zones of intense deformation and boundaries between semi-autonomous segments of the subducting plate. The P and S seismic tomography models consistently display the slab as prominent high-velocity anomalies coinciding with the distribution of deep seismicity. We can distinguish at least four segments which subduct differently. The northernmost segment of the Izu-Bonin arc has the gentlest angle of dipping which is explained by backward displacement of the trench. In the second segment, the trench stayed at the same location, and we observe the accumulation of the slab material in the transition zone and its further descending to the lower mantle. In the third segment, the trench is moving forward causing the steepening of the slab. Finally, for the Mariana segment, despite the backward displacement of the arc, the subducting slab is nearly vertical. Between the Izu-Bonin and Mariana arcs we clearly observe a gap which can be traced down to about 400 km in depth. Based on joint consideration of the tomography results and the seismicity distribution, we propose two different scenarios of the subduction evolution in the IBM zone during the recent time, depending on the reference frame of plate displacements. In the first case, we consider the movements in respect to the Philippine Plate, and explain the different styles of the subduction by the relative backward and forward migrations of the trench. In the second case, all the elements of the subduction system move westward in respect to the stable Asia. Different subduction styles are explained by the "anchoring" of selected segments of the slab, different physical properties of the subducting plate and the existence of buoyant rigid blocks related to sea mount and igneous provinces.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2012-09-04
    Description: A community diagnostic tool for chemistry climate model validation Geoscientific Model Development, 5, 1061-1073, 2012 Author(s): A. Gettelman, V. Eyring, C. Fischer, H. Shiona, I. Cionni, M. Neish, O. Morgenstern, S. W. Wood, and Z. Li This technical note presents an overview of the Chemistry-Climate Model Validation Diagnostic (CCMVal-Diag) tool for model evaluation. The CCMVal-Diag tool is a flexible and extensible open source package that facilitates the complex evaluation of global models. Models can be compared to other models, ensemble members (simulations with the same model), and/or many types of observations. The initial construction and application is to coupled chemistry-climate models (CCMs) participating in CCMVal, but the evaluation of climate models that submitted output to the Coupled Model Intercomparison Project (CMIP) is also possible. The package has been used to assist with analysis of simulations for the 2010 WMO/UNEP Scientific Ozone Assessment and the SPARC Report on the Evaluation of CCMs. The CCMVal-Diag tool is described and examples of how it functions are presented, along with links to detailed descriptions, instructions and source code. The CCMVal-Diag tool supports model development as well as quantifies model changes, both for different versions of individual models and for different generations of community-wide collections of models used in international assessments. The code allows further extensions by different users for different applications and types, e.g. to other components of the Earth system. User modifications are encouraged and easy to perform with minimum coding.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2012-09-04
    Description: Plate kinematics in the Cantabrian domain of the Pyrenean orogen Solid Earth, 3, 265-292, 2012 Author(s): S. Tavani The Cantabrian domain represents the western portion of the Pyrenean orogen, in the area where the Iberian continental lithosphere was subducted toward the north underneath the transitional to oceanic lithosphere of the Bay of Biscay. There, the about 100 km of orogenic convergence have been mostly accommodated in the northern portion of the orogen (i.e. the retro wedge) developed in the Bay of Biscay abyssal plain, while only crustal-scale folding with limited internal deformation occurred in the Cantabrian southern wedge (pro-wedge). Integrated meso- and macrostructural analyses and a reappraisal of available information from the transitional area between the Pyrenean and Cantabrian domains are presented in this work, allowing to set geometric and kinematic constraints on the entire Meso-Cenozoic history of the northern portion of the Iberian Plate, including subduction initiation and evolution in the western portion of the Pyrenean orogen. The structural record of the Late Jurassic to Early Cretaceous deformation stage, which was associated with rifting and seafloor spreading in the Bay of Biscay, indicates a ridge perpendicular (NNE-SSW oriented) extension, with no evidence of relevant strike-slip components during rifting. A Cenozoic NNW-SSE oriented shortening stage followed, related to the limited (about 100 km) north-directed subduction of the Iberian continental lithosphere underneath the transitional to oceanic lithosphere of the Bay of Biscay. Subduction led to the formation of the poorly-developed Cantabrian pro-wedge, which is laterally juxtaposed to the well-developed Pyrenean pro-wedge to the east. During this convergence stage, the structural framework in the Cantabrian pro-wedge, and particularly along its transition with the Pyrenean wedge to the east, was severely complicated by the reactivation of Paleozoic and Mesozoic inherited structures. Data presented in this work fully support the development of the Cantabrian Mountains as related to indentation and consequent thickening of the Bay of Biscay transitional lower crust during north-directed subduction of Iberian continental lithosphere. In essence, the Cantabrian pro-wedge is a lithospheric south-verging fault-propagation anticline developing above the subduction plane. The structural record in the area indicates that a lithospheric fault-propagation folding stage was predated, during the very early stages of orogenic shortening, by the development of a lithospheric-scale open syncline overlying the nucleation point of lithosphere sinking. Such a syncline is today partially preserved and represents one of the few natural examples of subduction initiation.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2012-08-25
    Description: Models of soil organic matter decomposition: the SoilR package, version 1.0 Geoscientific Model Development, 5, 1045-1060, 2012 Author(s): C. A. Sierra, M. Müller, and S. E. Trumbore Soil organic matter decomposition is a very important process within the Earth system because it controls the rates of mineralization of carbon and other biogeochemical elements, determining their flux to the atmosphere and the hydrosphere. SoilR is a modeling framework that contains a library of functions and tools for modeling soil organic matter decomposition under the R environment for computing. It implements a variety of model structures and tools to represent carbon storage and release from soil organic matter. In SoilR, organic matter decomposition is represented as a linear system of ordinary differential equations that generalizes the structure of most compartment-based decomposition models. A variety of functions is also available to represent environmental effects on decomposition rates. This document presents the conceptual basis for the functions implemented in the package. It is complementary to the help pages released with the software.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2012-08-22
    Description: Seismicity from February 2006 to September 2007 at the Rwenzori Mountains, East African Rift: earthquake distribution, magnitudes and source mechanisms Solid Earth, 3, 251-264, 2012 Author(s): M. Lindenfeld, G. Rümpker, A. Batte, and A. Schumann We have analysed the microseismic activity within the Rwenzori Mountains area in the western branch of the East African Rift. Seismogram recordings from a temporary array of up to 27 stations reveal approximately 800 events per month with local magnitudes ranging from –0.5 to 5.1. The earthquake distribution is highly heterogeneous. The majority of located events lie within faults zones to the east and west of the Rwenzoris with the highest seismic activity observed in the northeastern area, where the mountains are in contact with the rift shoulders. The hypocentral depth distribution exhibits a pronounced peak of seismic energy release at 15 km depth. The maximum extent of seismicity ranges from 20 to 32 km and correlates well with Moho depths that were derived from teleseismic receiver functions. We observe two general features: (i) beneath the rift shoulders, seismicity extends from the surface down to ca. 30 km depth; (ii) beneath the rift valley, seismicity is confined to depths greater than 10 km. From the observations there is no indication for a crustal root beneath the Rwenzori Mountains. The magnitude frequency distribution reveals a b -value of 1.1, which is consistent with the hypothesis that part of the seismicity is caused by magmatic processes within the crust. Fault plane solutions of 304 events were derived from P-polarities and SV/P amplitude ratios. More than 70 % of the source mechanisms exhibit pure or predominantly normal faulting. T-axis trends are highly uniform and oriented WNW–ESE, which is perpendicular to the rift axis and in good agreement with kinematic rift models. At the northernmost part of the region we observe a rotation of the T-axis trends to NEN–SWS, which may be indicative of a local perturbation of the regional stress field.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2012-08-22
    Description: Pre-industrial and mid-Pliocene simulations with NorESM-L: AGCM simulations Geoscientific Model Development, 5, 1033-1043, 2012 Author(s): Z. Zhang and Q. Yan In the Pliocene Model Intercomparison Project (PlioMIP), two sets of experiments are suggested. One includes a reference and a mid-Pliocene experiment run with atmosphere general circulation models (AGCM experiments, referred to as Experiments I), the other includes a pre-industrial and a mid-Pliocene experiment run with coupled ocean-atmosphere general circulation models (AOGCM experiments, referred to as Experiments II). In this paper, we describe the AGCM experiments with the atmosphere component in the low-resolution version of the Norwegian Earth System Model (NorESM-L), and also assess the potential uncertainties in analyzing mid-Pliocene climate anomalies that might result from the choice of the sea surface temperature (SST) forcing for the reference experiment (pre-industrial or modern). We carry out a mid-Pliocene experiment, a control experiment forced by the modern SST fields, and a pre-industrial experiment forced by the monthly SST fields from HadISST averaged between 1879 and 1900. Our experiments illustrate that the simulated mid-Pliocene global mean annual surface air temperature (SAT) is 17.1 °C. It is 2.5 °C warmer than the control experiment, but 2.7 °C warmer than the pre-industrial experiment. We find that the uncertainties in analyses of mid-Pliocene climate anomalies are small on a global scale, but still large on a regional scale. On the regional scale, these uncertainties should be noted and assessed in future PlioMIP studies.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2012-08-21
    Description: Shallow water carbonate platforms (Late Aptian–Early Albian, Southern Apennines) in the context of supraregional to global changes: re-appraisal of palaeoecological events as reflectors of carbonate factory response Solid Earth, 3, 225-249, 2012 Author(s): A. Raspini This paper discusses the palaeoenvironmental significance of the "Orbitolina Level", the microbial carbonates and the Salpingoporella dinarica -rich deposits encased in the Aptian/Albian shallow water carbonate platform strata of Monte Tobenna and Monte Faito (Southern Italy). These facies show a peculiar field appearance due to their color and/or fossil content. In the shallow water carbonate strata, the Late Aptian "Orbitolina Level" was formed during a period of decreasing accommodation space. Microbial carbonates occur in different levels in the composite section. They reach their maximum thickness around the sequence boundaries just above the "Orbitolina Level" and close to the Aptian–Albian transition, and were not deposited during maximum flooding. S. dinarica -rich deposits occur in the lower part of the Monte Tobenna-Monte Faito composite section, in both restricted and more open lagoonal sediments. S. dinarica has its maximum abundance below the "Orbitolina Level" and disappears 11 m above this layer. On the basis of δ 13 C and δ 18 O values recorded at Tobenna-Faito, the succession has been correlated to global sea-level changes and to the main volcanic and climatic events during the Aptian. Deterioration of the inner lagoon environmental conditions was related to high trophic levels triggered by volcano-tectonic activity. Microbial carbonates were deposited especially in periods of third-order sea level lowering. In such a scenario, periods of increased precipitation during the Gargasian induced the mobilization of clay during flooding of the exposed platform due to high-frequency sea-level changes, with consequent terrigenous input to the lagoon. This and the high nutrient levels made the conditions unsuitable for the principle carbonate producers, and an opportunistic biota rich in orbitolinids ( Mesorbitolina texana and M. parva ) populated the platform. In the more open marine domain, the increased nutrient input enhanced the production of organic matter and locally led to the formation of black shales (e.g. the Niveau Fallot in the Vocontian Basin). It is argued that the concomitant low Mg/Ca molar ratio and high concentration of calcium in seawater could have favoured the development of the low-Mg calcite skeleton of the S. dinarica green algae. During third-order sea-level rise, no or minor microbial carbonates formed in the shallowlagoonal settings and S. dinarica disappeared. Carbonate neritic ecosystems were not influenced by the environmental changes inferred to have been induced by the mid-Cretaceous volcanism. The "Orbitolina Level", the microbial carbonates and the Salpingoporella dinarica -rich deposits in the studied Aptian/Albian shallow water carbonate strata are interpreted to be the response to environmental and oceanographic changes in shallow-water and deeper-marine ecosystems.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2012-07-18
    Description: Modelling sub-grid wetland in the ORCHIDEE global land surface model: evaluation against river discharges and remotely sensed data Geoscientific Model Development, 5, 941-962, 2012 Author(s): B. Ringeval, B. Decharme, S. L. Piao, P. Ciais, F. Papa, N. de Noblet-Ducoudré, C. Prigent, P. Friedlingstein, I. Gouttevin, C. Koven, and A. Ducharne The quality of the global hydrological simulations performed by land surface models (LSMs) strongly depends on processes that occur at unresolved spatial scales. Approaches such as TOPMODEL have been developed, which allow soil moisture redistribution within each grid-cell, based upon sub-grid scale topography. Moreover, the coupling between TOPMODEL and a LSM appears as a potential way to simulate wetland extent dynamic and its sensitivity to climate, a recently identified research problem for biogeochemical modelling, including methane emissions. Global evaluation of the coupling between TOPMODEL and an LSM is difficult, and prior attempts have been indirect, based on the evaluation of the simulated river flow. This study presents a new way to evaluate this coupling, within the ORCHIDEE LSM, using remote sensing data of inundated areas. Because of differences in nature between the satellite derived information – inundation extent – and the variable diagnosed by TOPMODEL/ORCHIDEE – area at maximum soil water content, the evaluation focuses on the spatial distribution of these two quantities as well as on their temporal variation. Despite some difficulties in exactly matching observed localized inundated events, we obtain a rather good agreement in the distribution of these two quantities at a global scale. Floodplains are not accounted for in the model, and this is a major limitation. The difficulty of reproducing the year-to-year variability of the observed inundated area (for instance, the decreasing trend by the end of 90s) is also underlined. Classical indirect evaluation based on comparison between simulated and observed river flow is also performed and underlines difficulties to simulate river flow after coupling with TOPMODEL. The relationship between inundation and river flow at the basin scale in the model is analyzed, using both methods (evaluation against remote sensing data and river flow). Finally, we discuss the potential of the TOPMODEL/LSM coupling to simulate wetland areas. A major limitation of the coupling for this purpose is linked to its ability to simulate a global wetland coverage consistent with the commonly used datasets. However, it seems to be a good opportunity to account for the wetland areas sensitivity to the climate and thus to simulate its temporal variability.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2012-06-14
    Description: High resolution reflection seismic profiling over the Tjellefonna fault in the Møre-Trøndelag Fault Complex, Norway Solid Earth, 3, 175-188, 2012 Author(s): E. Lundberg, C. Juhlin, and A. Nasuti The Møre-Trøndelag Fault Complex (MTFC) is one of the most prominent fault zones of Norway, both onshore and offshore. In spite of its importance, very little is known of the deeper structure of the individual fault segments comprising the fault complex. Most seismic lines have been recorded offshore or focused on deeper structures. This paper presents results from two reflection seismic profiles, located on each side of the Tingvollfjord, acquired over the Tjellefonna fault in the southeastern part of the MTFC. Possible kilometer scale vertical offsets, reflecting large scale northwest-dipping normal faulting, separating the high topography to the southeast from lower topography to the northwest have been proposed for the Tjellefonna fault or the Baeverdalen lineament. In this study, however, the Tjellefonna fault is interpreted to dip approximately 50–60° towards the southeast to depths of at least 1.3 km. Travel-time modeling of reflections associated with the fault was used to establish the geometry of the fault structure at depth, while detailed analysis of first P-wave arrivals in shot gathers, together with resistivity profiles, were used to define the near surface geometry of the fault zone. A continuation of the structure on the northeastern side of the Tingvollfjord is suggested by correlation of an in strike direction P-S converted reflection (generated by a fracture zone) seen on the reflection data from that side of the Tingvollfjord. The reflection seismic data correlate well with resistivity profiles and recently published near surface geophysical data. A highly reflective package forming a gentle antiform structure was also identified on both seismic profiles. This structure could be related to the folded amphibolite lenses seen on the surface or possibly by an important boundary within the gneissic basement rocks of the Western Gneiss Region. The fold hinge line of the structure is parallel with the Tjellefonna fault trace suggesting that the folding and faulting may have been related.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2012-06-19
    Description: Evaluation of the sectional aerosol microphysics module SALSA implementation in ECHAM5-HAM aerosol-climate model Geoscientific Model Development, 5, 845-868, 2012 Author(s): T. Bergman, V.-M. Kerminen, H. Korhonen, K. J. Lehtinen, R. Makkonen, A. Arola, T. Mielonen, S. Romakkaniemi, M. Kulmala, and H. Kokkola We present the implementation and evaluation of a sectional aerosol microphysics module SALSA within the aerosol-climate model ECHAM5-HAM. This aerosol microphysics module has been designed to be flexible and computationally efficient so that it can be implemented in regional or global scale models. The computational efficiency has been achieved by minimising the number of variables needed to describe the size and composition distribution. The aerosol size distribution is described using 10 size classes with parallel sections which can have different chemical compositions. Thus in total, the module tracks 20 size sections which cover diameters ranging from 3 nm to 10 μm and are divided into three subranges, each with an optimised selection of processes and compounds. The implementation of SALSA into ECHAM5-HAM includes the main aerosol processes in the atmosphere: emissions, removal, radiative effects, liquid and gas phase sulphate chemistry, and the aerosol microphysics. The aerosol compounds treated in the module are sulphate, organic carbon, sea salt, black carbon, and mineral dust. In its default configuration, ECHAM5-HAM treats aerosol size distribution using the modal method. In this implementation, the aerosol processes were converted to be used in a sectional model framework. The ability of the module to describe the global aerosol properties was evaluated by comparing against (1) measured continental and marine size distributions, (2) observed variability of continental number concentrations, (3) measured sulphate, organic carbon, black carbon and sea-salt mass concentrations, (4) observations of aerosol optical depth (AOD) and other aerosol optical properties from satellites and AERONET network, (5) global aerosol budgets and concentrations from previous model studies, and (6) model results using M7, which is the default aerosol microphysics module in ECHAM5-HAM. The evaluation shows that the global aerosol properties can be reproduced reasonably well using a coarse resolution of 10 sections in size space. The simulated global aerosol budgets are within the range of previous studies. Surface concentrations of sulphate and carbonaceous species have an annual mean within a factor of two of the observations. The simulated sea-salt concentrations reproduce the observations within a factor of two, apart from the Southern Ocean over which the concentrations are within a factor of five. Regionally, AOD is in a relatively good agreement with the observations (within a factor of two). At mid-latitudes the observed AOD is captured well, while at high-latitudes as well as in some polluted and dust regions the modelled AOD is significantly lower than observed. Regarding most of the investigated aerosol properties, the SALSA and the modal aerosol module M7 perform comparably well against observations. However, SALSA reproduces the observed number concentrations and the size distribution of CCN sized particles much more accurately than M7, and is therefore a good choice for aerosol-cloud interaction studies in global models. Our study also shows that when activation type nucleation in the boundary layer is included, the observed concentration of particles under 50 nm in diameter are reproduced much better compared to when only binary nucleation in the free troposphere is assumed.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2012-07-19
    Description: Pliocene Ice Sheet Modelling Intercomparison Project (PLISMIP) – experimental design Geoscientific Model Development, 5, 963-974, 2012 Author(s): A. M. Dolan, S. J. Koenig, D. J. Hill, A. M. Haywood, and R. M. DeConto During the mid-Pliocene warm period (3.264 to 3.025 million years ago), global mean temperature was similar to that predicted for the next century and atmospheric carbon dioxide concentrations were slightly higher than today. Sea level was also higher than today, implying a reduction in the extent of the ice sheets. Thus, the mid-Pliocene warm period (mPWP) provides a unique testing ground to investigate the stability of the Earth's ice sheets and their contribution to sea level in a warmer-than-modern world. Climate models and ice sheet models can be used to enhance our understanding of ice sheet stability; however, uncertainties associated with different ice-sheet modelling frameworks mean that a rigorous comparison of numerical ice sheet model simulations for the Pliocene is essential. As an extension to the Pliocene Model Intercomparison Project (PlioMIP; Haywood et al., 2010, 2011a), the Pliocene Ice Sheet Modelling Intercomparison Project (PLISMIP) will provide the first assessment as to the ice sheet model dependency of ice sheet predictions for the mPWP. Here we outline the PLISMIP experimental design and initialisation conditions that have been adopted to simulate the Greenland and Antarctic ice sheets under present-day and warm mid-Pliocene conditions. Not only will this project provide a new benchmark in the simulation of ice sheets in a past warm period, but the analysis of model sensitivity to various uncertainties could directly inform future predictions of ice sheet and sea level change.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2012-09-14
    Description: Mid-Pliocene climate modelled using the UK Hadley Centre Model: PlioMIP Experiments 1 and 2 Geoscientific Model Development, 5, 1109-1125, 2012 Author(s): F. J. Bragg, D. J. Lunt, and A. M. Haywood The Pliocene Model Intercomparison Project (PlioMIP) is a sub-project of the Paleoclimate Modelling Intercomparison Project (PMIP) whose objective is to compare predictions of the mid-Pliocene climate from the widest possible range of general circulation models. The mid-Pliocene (3.3–3.0 Ma) is the most recent sustained period of greater warmth and atmospheric carbon dioxide concentration than the pre-industrial times and as such has potential to inform predictions of our warming climate in the coming century. This paper describes the UK contribution to PlioMIP using the Hadley Centre Model both in atmosphere-only mode (HadAM3, PlioMIP Experiment 1) and atmosphere-ocean coupled mode (HadCM3, PlioMIP Experiment 2). The coupled model predicts a greater overall warming (3.3 °C) relative to the control than the atmosphere-only (2.5 °C). The Northern Hemisphere latitudinal temperature gradient is greater in the coupled model with a warmer Equator and colder Arctic than the atmosphere-only model, which is constrained by sea surface temperatures from Pliocene proxy reconstructions. The atmosphere-only model predicts a reduction in equatorial precipitation and south Asian monsoon intensity, whereas the coupled model shows an increase in the intensity of these systems. We present sensitivity studies using alternative boundary conditions for both the Pliocene and the control simulations, indicating the sensitivity of the mid-Pliocene warming to uncertainties in both pre-industrial and mid-Pliocene climate.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2012-09-18
    Description: Numerical uncertainty at mesoscale in a Lagrangian model in complex terrain Geoscientific Model Development, 5, 1127-1136, 2012 Author(s): J. Brioude, W. M. Angevine, S. A. McKeen, and E.-Y. Hsie Recently, it has been shown that mass conservation in Lagrangian models is improved by using time-average winds out of Eulerian models. In this study, we evaluate the mass conservation and trajectory uncertainties in complex terrain at mesoscale using the FLEXPART Lagrangian particle dispersion model coupled with the WRF mesoscale model. The specific form of vertical wind used is found to have a large effect. Time average wind with time average sigma dot (σ · ), instantaneous wind with geometric cartesian vertical wind ( w ) and instantaneous wind with σ · are used to simulate mixing ratios of a passive tracer in forward and backward runs using different time interval outputs and horizontal resolutions in California. Mass conservation in the FLEXPART model was not an issue when using time-average wind or instantaneous wind with σ · . However, mass was poorly conserved using instantaneous wind with w , with a typical variation of 25% within 24 h. Uncertainties in surface residence time (a backtrajectory product commonly used in source receptor studies or inverse modeling) calculated for each backtrajectory run were also analyzed. The smallest uncertainties were systematically found when using time-average wind. Uncertainties using instantaneous wind with σ · were slightly larger, as long as the time interval of output was sufficiently small. The largest uncertainties were found when using instantaneous wind with w . Those uncertainties were found to be linearly correlated with the local average gradient of orography. Differences in uncertainty were much smaller when trajectories were calculated over flat terrain. For a typical run at mesoscale in complex terrain, 4 km horizontal resolution and 1 h time interval output, the average uncertainty and bias in surface residence time is, respectively, 8.4% and −2.5% using time-average wind, and 13% and −3.7% using instantaneous wind with σ · in complex terrain. The corresponding values for instantaneous wind with cartesian w were 24% and −11%. While the use of time-average wind systematically improves uncertainty in FLEXPART, the improvements are small, and therfore a systematic use of time-average wind in Lagrangian models is not necessarily required. Use of cartesian vertical wind in complex terrain, however, should be avoided.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2012-07-12
    Description: Corrigendum to "Floating stones off El Hierro, Canary Islands: xenoliths of pre-island sedimentary origin in the early products of the October 2011 eruption" published in Solid Earth, 3, 97–110, 2012 Solid Earth, 3, 189-189, 2012 Author(s): V. R. Troll, A. Klügel, M.-A. Longpré, S. Burchardt, F. M. Deegan, J. C. Carracedo, S. Wiesmaier, U. Kueppers, B. Dahren, L. S. Blythe, T. H. Hansteen, C. Freda, D. A. Budd, E. M. Jolis, E. Jonsson, F. C. Meade, C. Harris, S. E. Berg, L. Mancini, M. Polacci, and K. Pedroza No abstract available.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2012-07-06
    Description: MAESPA: a model to study interactions between water limitation, environmental drivers and vegetation function at tree and stand levels, with an example application to [CO 2 ] × drought interactions Geoscientific Model Development, 5, 919-940, 2012 Author(s): R. A. Duursma and B. E. Medlyn Process-based models (PBMs) of vegetation function can be used to interpret and integrate experimental results. Water limitation to plant carbon uptake is a highly uncertain process in the context of environmental change, and many experiments have been carried out that study drought limitations to vegetation function at spatial scales from seedlings to entire canopies. What is lacking in the synthesis of these experiments is a quantitative tool incorporating a detailed mechanistic representation of the water balance that can be used to integrate and analyse experimental results at scales of both the whole-plant and the forest canopy. To fill this gap, we developed an individual tree-based model (MAESPA), largely based on combining the well-known MAESTRA and SPA ecosystem models. The model includes a hydraulically-based model of stomatal conductance, root water uptake routines, drainage, infiltration, runoff and canopy interception, as well as detailed radiation interception and leaf physiology routines from the MAESTRA model. The model can be applied both to single plants of arbitrary size and shape, as well as stands of trees. The utility of this model is demonstrated by studying the interaction between elevated [CO 2 ] (e C a ) and drought. Based on theory, this interaction is generally expected to be positive, so that plants growing in e C a should be less susceptible to drought. Experimental results, however, are varied. We apply the model to a previously published experiment on droughted cherry, and show that changes in plant parameters due to long-term growth at e C a (acclimation) may strongly affect the outcome of C a × drought experiments. We discuss potential applications of MAESPA and some of the key uncertainties in process representation.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2012-06-29
    Description: Modelling the mid-Pliocene Warm Period climate with the IPSL coupled model and its atmospheric component LMDZ5A Geoscientific Model Development, 5, 903-917, 2012 Author(s): C. Contoux, G. Ramstein, and A. Jost This paper describes the experimental design and model results of the climate simulations of the mid-Pliocene Warm Period (mPWP, ca. 3.3–3 Ma) using the Institut Pierre Simon Laplace model (IPSLCM5A), in the framework of the Pliocene Model Intercomparison Project (PlioMIP). We use the IPSL atmosphere ocean general circulation model (AOGCM), and its atmospheric component alone (AGCM), to simulate the climate of the mPWP. Boundary conditions such as sea surface temperatures (SSTs), topography, ice-sheet extent and vegetation are derived from the ones imposed by the Pliocene Model Intercomparison Project (PlioMIP), described in Haywood et al. (2010, 2011). We first describe the IPSL model main features, and then give a full description of the boundary conditions used for atmospheric model and coupled model experiments. The climatic outputs of the mPWP simulations are detailed and compared to the corresponding control simulations. The simulated warming relative to the control simulation is 1.94 °C in the atmospheric and 2.07 °C in the coupled model experiments. In both experiments, warming is larger at high latitudes. Mechanisms governing the simulated precipitation patterns are different in the coupled model than in the atmospheric model alone, because of the reduced gradients in imposed SSTs, which impacts the Hadley and Walker circulations. In addition, a sensitivity test to the change of land-sea mask in the atmospheric model, representing a sea-level change from present-day to 25 m higher during the mid-Pliocene, is described. We find that surface temperature differences can be large (several degrees Celsius) but are restricted to the areas that were changed from ocean to land or vice versa. In terms of precipitation, impact on polar regions is minor although the change in land-sea mask is significant in these areas.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2012-06-29
    Description: A standard test case suite for two-dimensional linear transport on the sphere Geoscientific Model Development, 5, 887-901, 2012 Author(s): P. H. Lauritzen, W. C. Skamarock, M. J. Prather, and M. A. Taylor It is the purpose of this paper to propose a standard test case suite for two-dimensional transport schemes on the sphere intended to be used for model development and facilitating scheme intercomparison. The test cases are designed to assess important aspects of accuracy in geophysical fluid dynamics such as numerical order of convergence, "minimal" resolution, the ability of the transport scheme to preserve filaments, transport "rough" distributions, and to preserve pre-existing functional relations between species/tracers under challenging flow conditions. The experiments are designed to be easy to set up. They are specified in terms of two analytical wind fields (one non-divergent and one divergent) and four analytical initial conditions (varying from smooth to discontinuous). Both conventional error norms as well as novel mixing and filament preservation diagnostics are used that are easy to implement. The experiments pose different challenges for the range of transport approaches from Lagrangian to Eulerian. The mixing and filament preservation diagnostics do not require an analytical/reference solution, which is in contrast to standard error norms where a "true" solution is needed. Results using the CSLAM (Conservative Semi-Lagrangian Multi-tracer) scheme on the cubed-sphere are presented for reference and illustrative purposes.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2012-06-27
    Description: Land surface Verification Toolkit (LVT) – a generalized framework for land surface model evaluation Geoscientific Model Development, 5, 869-886, 2012 Author(s): S. V. Kumar, C. D. Peters-Lidard, J. Santanello, K. Harrison, Y. Liu, and M. Shaw Model evaluation and verification are key in improving the usage and applicability of simulation models for real-world applications. In this article, the development and capabilities of a formal system for land surface model evaluation called the Land surface Verification Toolkit (LVT) is described. LVT is designed to provide an integrated environment for systematic land model evaluation and facilitates a range of verification approaches and analysis capabilities. LVT operates across multiple temporal and spatial scales and employs a large suite of in-situ, remotely sensed and other model and reanalysis datasets in their native formats. In addition to the traditional accuracy-based measures, LVT also includes uncertainty and ensemble diagnostics, information theory measures, spatial similarity metrics and scale decomposition techniques that provide novel ways for performing diagnostic model evaluations. Though LVT was originally designed to support the land surface modeling and data assimilation framework known as the Land Information System (LIS), it supports hydrological data products from non-LIS environments as well. In addition, the analysis of diagnostics from various computational subsystems of LIS including data assimilation, optimization and uncertainty estimation are supported within LVT. Together, LIS and LVT provide a robust end-to-end environment for enabling the concepts of model data fusion for hydrological applications. The evolving capabilities of LVT framework are expected to facilitate rapid model evaluation efforts and aid the definition and refinement of formal evaluation procedures for the land surface modeling community.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2012-06-09
    Description: GEWEX Cloud System Study (GCSS) cirrus cloud working group: development of an observation-based case study for model evaluation Geoscientific Model Development, 5, 829-843, 2012 Author(s): H. Yang, S. Dobbie, G. G. Mace, A. Ross, and M. Quante The GCSS working group on cirrus focuses on an inter-comparison of model simulations ranging from very detailed microphysical and dynamical models through to general circulation models (GCMs). The past GCSS cirrus cloud inter-comparison highlighted the wide range in modelling results that was a surprise to the modelling community. That inter-comparison was idealised and, therefore, a key issue was that it did not benefit from observations to help distinguish between model performances. In this work, we aim to address this key issue by developing an observationally based case study to be used for the GCSS cirrus modelling inter-comparison study. We focused on developing a case that had sufficient observations with which to evaluate models, to help identify which models in the inter-comparison are performing well and highlight areas for model development. Furthermore, it will provide a base case for future model comparisons or testing of new or updated models. This paper outlines the modelling case development and the inter-comparison results will be presented in a follow-on paper. The case was based on the 9 March 2000 Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) during an intensive observation period (IOP). The case was developed utilising various observations including ARM SGP remote sensing including the MilliMeter Cloud Radar (MMCR), radiometers, radiosondes, aircraft observations, satellite observations, objective analysis and complemented with results from the Rapid Update Cycle (RUC) model as well as bespoke gravity wave simulations used to provide the best estimate for large scale forcing. The retrievals of ice water content, ice number concentration and fall velocity provide several constraints to evaluate model performances. Initial testing of the case has been reported using the UK Met Office Large Eddy Simulation Model (LEM) which suggests the case is appropriate for the model inter-comparison study. To our knowledge, this case offers the most detailed case study for cirrus comparison available and we anticipate this will offer significant benefits over past comparisons which have mostly been loosely based on observations.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2012-06-09
    Description: New developments in the analysis of column-collapse pyroclastic density currents through numerical simulations of multiphase flows Solid Earth, 3, 161-173, 2012 Author(s): S. Lepore and C. Scarpati A granular multiphase model has been used to evaluate the action of differently sized particles on the dynamics of fountains and associated pyroclastic density currents. The model takes into account the overall disequilibrium conditions between a gas phase and several solid phases, each characterized by its own physical properties. The dynamics of the granular flows (fountains and pyroclastic density currents) has been simulated by adopting a Reynolds-averaged Navier-Stokes model for describing the turbulence effects. Numerical simulations have been carried out by using different values for the eruptive column temperature at the vent, solid particle frictional concentration, turbulent kinetic energy, and dissipation. The results obtained provide evidence of the multiphase nature of the model and describe several disequilibrium effects. The low concentration (≤5 × 10 −4 ) zones lie in the upper part of the granular flow, above the fountain, and above the tail and body of pyroclastic density current as thermal plumes. The high concentration zones, on the contrary, lie in the fountain and at the base of the current. Hence, pyroclastic density currents are assimilated to granular flows constituted by a low concentration suspension flowing above a high concentration basal layer (boundary layer), from the proximal regions to the distal ones. Interactions among the solid particles in the boundary layer of the granular flow are controlled by collisions between particles, whereas the dispersal of particles in the suspension is determined by the dragging of the gas phase. The simulations describe well the dynamics of a tractive boundary layer leading to the formation of stratified facies during Strombolian to Plinian eruptions.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2012-06-06
    Description: Towards a public, standardized, diagnostic benchmarking system for land surface models Geoscientific Model Development, 5, 819-827, 2012 Author(s): G. Abramowitz This work examines different conceptions of land surface model benchmarking and the importance of internationally standardized evaluation experiments that specify data sets, variables, metrics and model resolutions. It additionally demonstrates how essential the definition of a priori expectations of model performance can be, based on the complexity of a model and the amount of information being provided to it, and gives an example of how these expectations might be quantified. Finally, the Protocol for the Analysis of Land Surface models (PALS) is introduced – a free, online land surface model benchmarking application that is structured to meet both of these goals.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2012-06-06
    Description: Water isotope variations in the global ocean model MPI-OM Geoscientific Model Development, 5, 809-818, 2012 Author(s): X. Xu, M. Werner, M. Butzin, and G. Lohmann The stable water isotopes H 2 18 O and HDO are incorporated as passive tracers into the oceanic general circulation model MPI-OM, and a control simulation under present-day climate conditions is analyzed in detail. Both δ 18 O and δD distributions at the ocean surface and deep ocean are generally consistent with available observations on the large scale. The modelled δD-δ 18 O relations in surface waters slightly deviates from the slope of the global meteoric water line in most basins, and a much steeper slope is detected in Arctic Oceans. The simulated deuterium excess of ocean surface waters shows small variations between 80° S and 55° N, and a strong decrease north of 55° N. The model is also able to capture the quasi-linear relationship between δ 18 O and salinity S , as well as δD and S , as seen in observational data. Both in the model results and observations, the surface δ− S relations show a steeper slope in extra-tropical regions than in tropical regions, which indicates relatively more addition of isotopically depleted water at high latitudes.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2012-04-18
    Description: The fate of fluids released from subducting slab in northern Cascadia Solid Earth, 3, 121-129, 2012 Author(s): K. Ramachandran and R. D. Hyndman Large amounts of water carried down in subduction zones are driven upward into the overlying forearc upper mantle and crust as increasing temperatures and pressure dehydrate the subducting crust. Through seismic tomography velocities we show (a) the overlying forearc mantle in northern Cascadia is hydrated to serpentinite, and (b) there is low Poisson's ratio at the base of the forearc lower crust that may represent silica deposited from the rising fluids. From the velocities observed in the forearc mantle, the volume of serpentinite estimated is ∼30 %. This mechanically weak hydrated forearc region has important consequences in limits to great earthquakes and to collision tectonics. An approximately 10 km thick lower crustal layer of low Poisson's ratio (σ = 0.22) in the forearc is estimated to represent a maximum addition of ∼14 % by volume of quartz (σ = 0.09). If this quartz is removed from rising silica-saturated fluids over long times, it represents a significant addition of silica to the continental crust and an important contributor to its average composition.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2012-04-21
    Description: Addressing the impact of environmental uncertainty in plankton model calibration with a dedicated software system: the Marine Model Optimization Testbed (MarMOT 1.1 alpha) Geoscientific Model Development, 5, 471-498, 2012 Author(s): J. C. P. Hemmings and P. G. Challenor A wide variety of different plankton system models have been coupled with ocean circulation models, with the aim of understanding and predicting aspects of environmental change. However, an ability to make reliable inferences about real-world processes from the model behaviour demands a quantitative understanding of model error that remains elusive. Assessment of coupled model output is inhibited by relatively limited observing system coverage of biogeochemical components. Any direct assessment of the plankton model is further inhibited by uncertainty in the physical state. Furthermore, comparative evaluation of plankton models on the basis of their design is inhibited by the sensitivity of their dynamics to many adjustable parameters. Parameter uncertainty has been widely addressed by calibrating models at data-rich ocean sites. However, relatively little attention has been given to quantifying uncertainty in the physical fields required by the plankton models at these sites, and tendencies in the biogeochemical properties due to the effects of horizontal processes are often neglected. Here we use model twin experiments, in which synthetic data are assimilated to estimate a system's known "true" parameters, to investigate the impact of error in a plankton model's environmental input data. The experiments are supported by a new software tool, the Marine Model Optimization Testbed, designed for rigorous analysis of plankton models in a multi-site 1-D framework. Simulated errors are derived from statistical characterizations of the mixed layer depth, the horizontal flux divergence tendencies of the biogeochemical tracers and the initial state. Plausible patterns of uncertainty in these data are shown to produce strong temporal and spatial variability in the expected simulation error variance over an annual cycle, indicating variation in the significance attributable to individual model-data differences. An inverse scheme using ensemble-based estimates of the simulation error variance to allow for this environment error performs well compared with weighting schemes used in previous calibration studies, giving improved estimates of the known parameters. The efficacy of the new scheme in real-world applications will depend on the quality of statistical characterizations of the input data. Practical approaches towards developing reliable characterizations are discussed.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2012-04-26
    Description: Pre-industrial and mid-Pliocene simulations with NorESM-L Geoscientific Model Development, 5, 523-533, 2012 Author(s): Z. S. Zhang, K. Nisancioglu, M. Bentsen, J. Tjiputra, I. Bethke, Q. Yan, B. Risebrobakken, C. Andersson, and E. Jansen The mid-Pliocene period (3.3 to 3.0 Ma) is known as a warm climate with atmospheric greenhouse gas levels similar to the present. As the climate at this time was in equilibrium with the greenhouse forcing, it is a valuable test case to better understand the long-term response to high levels of atmospheric greenhouse gases. In this study, we use the low resolution version of the Norwegian Earth System Model (NorESM-L) to simulate the pre-industrial and the mid-Pliocene climate. Comparison of the simulation with observations demonstrates that NorESM-L simulates a realistic pre-industrial climate. The simulated mid-Pliocene global mean surface air temperature is 16.7 °C, which is 3.2 °C warmer than the pre-industrial. The simulated mid-Pliocene global mean sea surface temperature is 19.1 °C, which is 2.0 °C warmer than the pre-industrial. The warming is relatively uniform globally, except for a strong amplification at high latitudes.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2012-04-27
    Description: Efficient modeling of sun/shade canopy radiation dynamics explicitly accounting for scattering Geoscientific Model Development, 5, 535-541, 2012 Author(s): P. Bodin and O. Franklin The separation of global radiation ( R g ) into its direct ( R b ) and diffuse constituents ( R g ) is important when modeling plant photosynthesis because a high R d : R g ratio has been shown to enhance Gross Primary Production (GPP). To include this effect in vegetation models, the plant canopy must be separated into sunlit and shaded leaves. However, because such models are often too intractable and computationally expensive for theoretical or large scale studies, simpler sun-shade approaches are often preferred. A widely used and computationally efficient sun-shade model was developed by Goudriaan (1977) (GOU). However, compared to more complex models, this model's realism is limited by its lack of explicit treatment of radiation scattering. Here we present a new model based on the GOU model, but which in contrast explicitly simulates radiation scattering by sunlit leaves and the absorption of this radiation by the canopy layers above and below (2-stream approach). Compared to the GOU model our model predicts significantly different profiles of scattered radiation that are in better agreement with measured profiles of downwelling diffuse radiation. With respect to these data our model's performance is equal to a more complex and much slower iterative radiation model while maintaining the simplicity and computational efficiency of the GOU model.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...