ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (5)
  • Oxford University Press  (5)
  • American Geophysical Union (AGU)
  • American Meteorological Society
  • 2020-2024  (5)
  • 1980-1984
  • 1925-1929
  • Tree Physiology. 2021; Published 2021 Aug 13. doi: 10.1093/treephys/tpab107. [early online release]  (1)
  • Tree Physiology. 2021; Published 2021 Jul 29. doi: 10.1093/treephys/tpab102. [early online release]  (1)
  • Tree Physiology. 2021; Published 2021 Oct 28. doi: 10.1093/treephys/tpab137. [early online release]  (1)
  • Tree Physiology. 2021; Published 2021 Oct 29. doi: 10.1093/treephys/tpab142. [early online release]  (1)
  • Tree Physiology. 2021; Published 2021 Sep 28. doi: 10.1093/treephys/tpab127. [early online release]  (1)
  • 1007
Collection
  • Articles  (5)
Publisher
  • Oxford University Press  (5)
  • American Geophysical Union (AGU)
  • American Meteorological Society
Years
Year
Journal
  • 1
    Publication Date: 2021-10-28
    Description: Quantifying inter-specific variations of tree resilience to drought and revealing the underlying mechanisms are of great importance to the understanding of forest functionality particularly in water-limited regions. So far, comprehensive studies incorporating investigations in inter-specific variations of long-term growth patterns of trees and the underlying physiological mechanisms are very limited. Here, in a semi-arid site of northern China, tree radial growth rate, inter-annual tree-ring growth responses to climate variability, as well as physiological characteristics pertinent to xylem hydraulics, carbon assimilation and drought tolerance were analyzed in seven pine species growing in a common environment. Considerable inter-specific variations in radial growth rate, growth response to drought and physiological characteristics were observed among the studied species. Differently, the studied species exhibited similar degrees of resistance to drought-induced branch xylem embolism with water potential corresponding to 50% loss hydraulic conductivity ranged from −2.31 to −2.96 MPa. We found that higher branch hydraulic efficiency is related to greater leaf photosynthetic capacity, smaller hydraulic safety margin and lower woody density (P  0.05). Rather, species with higher hydraulic conductivity and photosynthetic capacity was more sensitive to drought stress and tended to show weaker growth resistance to extreme drought events as quantified by tree-ring analyses, which is at least partially due to a trade-off between hydraulic efficiency and safety across species. This study thus demonstrates the importance of drought resilience rather than instantaneous water and carbon flux capacity in determining tree growth in water-limited environments.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-29
    Description: Light and water availability are likely to vary over the lifespan of closed-canopy forest trees with understory trees experiencing greater limitations to growth by light and canopy trees greater limitation due to drought. As drought and shade have opposing effects on isotope discrimination (Δ13C), paired measurement of ring width and Δ13C can potentially be used to differentiate between water and light limitations on tree growth. We tested this approach for Cedrela trees from three tropical forests in Bolivia and Mexico that differ in rainfall and canopy structure. Using lifetime ring width and Δ13C data for trees of up to and over 200 years old, we assessed how controls on tree growth changed from understory to the canopy. Growth and Δ13C are mostly anti-correlated in the understory but this anti-correlation disappeared or weakened when trees reached the canopy, especially at the wettest site. This indicates that understory growth variation is controlled by photosynthetic carbon assimilation (A) due to variation in light levels. Once trees reached the canopy, inter-annual variation in growth and Δ13C at one of the dry sites showed positive correlations, indicating inter-annual variation in growth is driven by variation in water stress affecting stomatal conductance (gs). Paired analysis of ring widths and carbon isotopes provides significant insight to discerning between environmental factors controlling growth over trees’ life; strong light limitations for understory trees in closed-canopy moist forests switched to drought stress for (sub)canopy trees in dry forests. We show that combined isotope and ring width measurements can significantly improve our insights in tree functioning and be used to disentangle limitations due to shade from those due to drought.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-09-28
    Description: Boreal trees are capable of taking up organic nitrogen (N) as effectively as inorganic N. Depending on the abundance of soil N forms, plants may adjust physiological and morphological traits to optimize N uptake. However, the link between these traits and N uptake in response to soil N sources is poorly understood. We examined Pinus sylvestris seedlings’ biomass growth and allocation, transpiration, and N uptake in response to additions of organic (the amino acid arginine) or inorganic N (ammonium-nitrate). We also monitored in-situ soil N fluxes in the pots following an addition of N, using a microdialysis system. Supplying organic N resulted in a stable soil N flux, whereas the inorganic N resulted in a sharp increase of nitrate flux followed by a rapid decline, demonstrating a fluctuating N supply and a risk for loss of nitrate from the growth medium. Seedlings supplied with organic N achieved a greater biomass with a higher N content, thus reaching a higher N recovery compared with those supplied inorganic N. In spite of a higher N concentration in organic N seedlings, root-to-shoot ratio and transpiration per unit leaf area were similar to those of inorganic N seedlings. We conclude that enhanced seedlings’ nutrition and growth under the organic N source may be attributed to a stable supply of N, owing to a strong retention rate in the soil medium.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-07-29
    Description: Microbes living in plant tissues—endophytes—are mainly studied in crop plants where they typically colonize the root apoplast. Trees—a large carbon source with a high capacity for photosynthesis—provide a variety of niches for endophytic colonization. We have earlier identified a new type of plant–endophyte interaction in buds of adult Scots pine, where Methylorubrum species live inside the meristematic cells. The endosymbiont Methylorubrum extorquens DSM13060 significantly increases needle and root growth of pine seedlings without producing plant hormones, but by aggregating around host nuclei. Here, we studied gene expression and metabolites of the pine host induced by M. extorquens DSM13060 infection. Malic acid was produced by pine to potentially boost M. extorquens colonization and interaction. Based on gene expression, the endosymbiont activated the auxin- and ethylene (ET)-associated hormonal pathways through induction of CUL1 and HYL1, and suppressed salicylic and abscisic acid signaling of pine. Infection by the endosymbiont had an effect on pine meristem and leaf development through activation of GLP1-7 and ALE2, and suppressed flowering, root hair and lateral root formation by downregulation of AGL8, plantacyanin, GASA7, COW1 and RALFL34. Despite of systemic infection of pine seedlings by the endosymbiont, the pine genes CUL1, ETR2, ERF3, HYL, GLP1-7 and CYP71 were highly expressed in the shoot apical meristem, rarely in needles and not in stem or root tissues. Low expression of MERI5, CLH2, EULS3 and high quantities of ononitol suggest that endosymbiont promotes viability and protects pine seedlings against abiotic stress. Our results indicate that the endosymbiont positively affects host development and stress tolerance through mechanisms previously unknown for endophytic bacteria, manipulation of plant hormone signaling pathways, downregulation of senescence and cell death-associated genes and induction of ononitol biosynthesis.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-08-13
    Description: Canopy structure—the size and distribution of tree crowns and the spatial and temporal distribution of leaves within them—exerts dominant control over primary productivity, transpiration and energy exchange. Stand structure—the spatial arrangement of trees in the forest (height, basal area and spacing)—has a strong influence on forest growth, allocation and resource use. Forest response to elevated atmospheric CO2 is likely to be dependent on the canopy and stand structure. Here, we investigated elevated CO2 effects on the forest structure of a Liquidambar styraciflua L. stand in a free-air CO2 enrichment experiment, considering leaves, tree crowns, forest canopy and stand structure. During the 12-year experiment, the trees increased in height by 5 m and basal area increased by 37%. Basal area distribution among trees shifted from a relatively narrow distribution to a much broader one, but there was little evidence of a CO2 effect on height growth or basal area distribution. The differentiation into crown classes over time led to an increase in the number of unproductive intermediate and suppressed trees and to a greater concentration of stand basal area in the largest trees. A whole-tree harvest at the end of the experiment permitted detailed analysis of canopy structure. There was little effect of CO2 enrichment on the relative leaf area distribution within tree crowns and there was little change from 1998 to 2009. Leaf characteristics (leaf mass per unit area and nitrogen content) varied with crown depth; any effects of elevated CO2 were much smaller than the variation within the crown and were consistent throughout the crown. In this young, even-aged, monoculture plantation forest, there was little evidence that elevated CO2 accelerated tree and stand development, and there were remarkably small changes in canopy structure. Questions remain as to whether a more diverse, mixed species forest would respond similarly.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...