ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (18,286)
  • English  (18,281)
  • Korean  (3)
  • Arabic  (2)
Collection
Language
  • 1
    Publication Date: 2024-05-17
    Description: Natural gas hydrates form at elevated pressure and low temperatures in the presence of sufficient quantities of gas and water and have therefore been discovered on all continental margins and in permafrost regions. In the marine hydrate-bearing sediments, gas hydrates, depending on their content, can transform a loose sediment into a consolidated rock with a strongly increased strength. In permafrost regions the hydrate stability zone can extent deep into the ice-bearing permafrost and, therefore, both, ice and hydrate can consolidate the sediment. However, the strength of methane hydrate is much higher than that of ice, which behaves much more ductile. Consequently, the resulting strength of a sediment, containing both components, strongly depends on the ice to hydrate ratio. Conversely, the decomposition of natural gas hydrates in marine or permafrost sediments leads to a reduction in the mechanical strength of the host sediment. In addition, the release of gas can create overpressure in the pore spaces, reducing the effective stress and leading to instabilities in the sediment structure. Since both continental margins and permafrost regions are used by humans for various activities that largely depend on the mechanical stability of the sediments, knowledge of the main factors and processes that determine the stability of weakly consolidated sediments is crucial. Both the thawing of ice and the decomposition of gas hydrates in permafrost soils lead to a change in the geo-mechanical properties of the host sediment. The residual and peak shear strengths of ice- and hydrate-bearing sediments were investigated using a ring shear cell developed at the GFZ. Based on literature data and our results, we discuss the dependence of the geo-mechanical properties of sediments on ice and hydrate saturation and the possible consequences if their proportion diminishes.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-17
    Description: Natural gas hydrates are crystalline compounds that are formed from hydrogen-bonded water molecules and gas molecules. They mainly contain climate-active CH4, but also other light hydrocarbons, CO2 or H2S They exhibit a high sensitivity to variations in temperature and pressure, mainly driven by environmental changes. The oceanic or atmospheric warming resulting from climate change may trigger the decompositions of hydrates, potentially releasing significant amounts of CH4. To assess the potential risks associated with CH4 release from destabilized hydrate deposits, a precise understanding of the dissociation behaviour of gas hydrates becomes crucial. In this study, a systematic investigation on the dissociation process of sI CH4 hydrates, sII CH4+C3H8 hydrates, and sII multi-component CH4+C2H6+C3H8+CO2 mixed hydrates was reported. We employed a combination of experimental and molecular dynamics (MD) simulations to provide a more nuanced understanding of the hydrate dissociation behaviours, which primarily shed light on the molecular aspects. The dissociation was induced through thermal stimulation to mimic climate warming. Both in situ and ex situ Raman spectroscopic measurements were performed continuously to characterize the hydrate phase. Throughout the dissociation process, hydrate composition, surface morphology, and the large-to-small cavity ratios were determined. MD simulations were carried out under similar conditions, providing advanced insights and perspectives that couldn't be readily extracted from experimental observations alone. Both experimental and simulation outcomes indicate that intrinsic kinetics likely govern the early stage of hydrate dissociation. A significant development in the dissociation process is the hindrance caused by the formation of a quasi-liquid or amorphous phase at the surface of the hydrate particles after the breakup of the outer layer of hydrate cavities. The unstable (partial) hydrate cavities that form within this quasi-liquid phase are oversaturated with gas molecules. Consequently, gas hydrates undergo a cycle of decomposition-reformation-continuing decomposition until the crystal eventually disappears. With decomposition dominating the process, both experimental and numerical simulation results demonstrate that the breakup of large cavities (51262) is faster than that of small ones (512) in sI hydrates. Conversely, a faster breakdown of small 512 cavities in sII hydrates is observed. Additionally, during the dissociation process of sII CH4-C3H8 hydrate, the cavities occupied by CH4 preferentially collapse compared to those filled with C3H8. Similarly, over the dissociation of multi-component hydrate, cavities filled with CH4 exhibit a preferential collapse compared to those filled with C3H8, C2H6, and CO2. These findings show the complexity and differences in the dissociation behavior of natural gas hydrates depending on their composition and structure and can therefore make an important contribution to an accurate assessment of CH4 release from destabilized hydrate deposits in response to climate change.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-17
    Description: This dataset is the result of an experimental series that was carried out in September/October 2022 at GFZ German Research Centre for Geosciences, Potsdam, Germany to observe biosorption of lead under extreme conditions. Synthetic solutions, simulating the geothermal fluids from the Heemskerk geothermal power plant were were prepared in 30 ml glass vials (Rotalibo screw neck ND24 EPA). To prepare the stock solutions, sodium chloride (NaCl, 99.8 %, Cellpure, Merck, DE) was added at 265 g/L and Pb(II), in form of lead nitrate (Pb(NO3 )2 , Merck, DE), at 1 g/L to ultrapure water. To assess the impact of acetic acid on lead biosorption, two treatments were done: one without acetic acid and one where acetic acid (100 %, Merck, DE) was added at 60 mg/L. Finally, dead biomass of the fungus Penicillium citrinum was added in the samples at a concentration of 4 g/L (Wahab et al., 2017). The samples were incubated in an autoclave at a pressure of 8 bars on a rotative shaker. The temperature was set at 25 °C, 60 °C or 98 °C with three contact times (1, 2 and 3 h). All treatments were performed in triplicates. For each treatment, two controls without biomass were done. Control samples without the addition of NaCl were done in duplicate, at 25 °C and for 2 h. After incubation, samples were filtered through a 0.22 µm nitrocellulose filter (Sartorius Stedim Biotech, FR) to separate the biomass from the liquid. The biomass on the filters was dried for 24 h at 45 °C before being scraped from the filter and kept in a Falcon tube at room temperature.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-17
    Description: Pit lakes in the ‘anthropogenic lake district’ in the Muskau Arch (western Poland; central Europe) are strongly affected by acid mine drainage (AMD). The studied acidic pit lake, ŁK-61 (pH 〈3), is also exposed to floods due to its location in the flood hazard area, which may significantly influence the geochemical behavior of elements. The elemental compositions of water and lake sediment samples were measured with ICP–OES and ICP–MS. The sediment profile was also examined for 137Cs and 210Po activity concentrations using gamma and alpha spectrometry, respectively. Grain size distribution, mineralogical composition, diatoms, and organic matter content in the collected core were also determined. The key factors responsible for the distribution of selected heavy metals (e.g., Cu, Ni, Pb, Zn) and radioisotopes (137Cs and 210Po) in the bottom sediments of Lake ŁK-61 are their coprecipitation/precipitation with Fe and Al secondary minerals and their sorption onto authigenic and allogenic phases. These processes are likely driven by the lake tributary, which is an important source of dissolved elements. The data also showed that the physiochemical parameters of Lake ŁK-61 water changed during an episodic depositional event, i.e., the flood of the Nysa Łużycka River in the summer of 2010. The flood caused an increase in the water pH, as interpreted from the subfossil diatom studies. The down-core profiles of the studied heavy metal and radionuclide (HMRs) contents were probably affected by this depositional event, which prevented a detailed age determination of the collected lake sediments with 137Cs and 210Pb dating methods. Geochemical modeling indicates that the flood-related shift in the physicochemical parameters of the lake water could have caused the scavenging of dissolved elements by the precipitation of fresh secondary minerals. Moreover, particles contaminated with HMRs have also possibly been delivered by the river, along with the nutrients (e.g., phosphorus and nitrogen).
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-15
    Description: In the race against time, the European Union must move swiftly to navigate the green transition. This imperative isn't just about staying ahead in the global green technology competition; it is about securing the future of Europe's economy while combating climate change. Ahead of the EU elections looming, the urgency of this dual challenge cannot be overstated. With a new pro-EU Polish government in place, the Weimar Triangle - a trilateral forum that brings together Poland, France and Germany - could provide the ideal place to offer a new bold industrial policy leadership in Europe.
    Keywords: ddc:320
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: workingpaper , doc-type:workingPaper
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-05-14
    Description: Cyanobacteria are major contributors to algal blooms in inland waters, threatening ecosystem function and water uses, especially when toxin-producing strains dominate. Here, we examine 140 hyperspectral (HS) images of five representatives of the widespread, potentially toxin-producing and bloom-forming genera Microcystis, Planktothrix, Aphanizomenon, Chrysosporum and Dolichospermum, to determine the potential of utilizing visible and near-infrared (VIS/NIR) reflectance for their discrimination. Cultures were grown under various light and nutrient conditions to induce a wide range of pigment and spectral variability, mimicking variations potentially found in natural environments. Importantly, we assumed a simplified scenario where all spectral variability was derived from cyanobacteria. Throughout the cyanobacterial life cycle, multiple HS images were acquired along with extractions of chlorophyll a and phycocyanin. Images were calibrated and average spectra from the region of interest were extracted using k-means algorithm. The spectral data were pre-processed with seven methods for subsequent integration into Random Forest models, whose performances were evaluated with different metrics on the training, validation and testing sets. Successful classification rates close to 90 % were achieved using either the first or second derivative along with spectral smoothing, identifying important wavelengths in both the VIS and NIR. Microcystis and Chrysosporum were the genera achieving the highest accuracy (〉95 %), followed by Planktothrix (79 %), and finally Dolichospermum and Aphanizomenon (〉50 %). The potential of HS imagery to discriminate among toxic cyanobacteria is discussed in the context of advanced monitoring, aiming to enhance remote sensing capabilities and risk predictions for water bodies affected by cyanobacterial harmful algal blooms.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-05-14
    Description: Observations of rift and rifted margin architecture suggest that significant spatial and temporal structural heterogeneity develops during the multiphase evolution of continental rifting. Inheritance is often invoked to explain this heterogeneity, such as pre‐existing anisotropies in rock composition, rheology, and deformation. Here, we use high‐resolution 3D thermal‐mechanical numerical models of continental extension to demonstrate that rift‐parallel heterogeneity may develop solely through fault network evolution during the transition from distributed to localized deformation. In our models, the initial phase of distributed normal faulting is seeded through randomized initial strength perturbations in an otherwise laterally homogeneous lithosphere extending at a constant rate. Continued extension localizes deformation onto lithosphere‐scale faults, which are laterally offset by 10’s of km and discontinuous along‐strike. These results demonstrate that rift‐ and margin‐parallel heterogeneity of large‐scale fault patterns may in‐part be a natural byproduct of fault network coalescence.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-05-14
    Description: Over the past few decades, azimuthal seismic anisotropy measurements have been widely used proxy to study past and present‐day deformation of the lithosphere and to characterize convection in the mantle. Beneath continental regions, distinguishing between shallow and deep sources of anisotropy remains difficult due to poor depth constraints of measurements and a lack of regional‐scale geodynamic modeling. Here, we constrain the sources of seismic anisotropy beneath Madagascar where a complex pattern cannot be explained by a single process such as absolute plate motion, global mantle flow, or geology. We test the hypotheses that either Edge‐Driven Convection (EDC) or mantle flow derived from mantle wind interactions with lithospheric topography is the dominant source of anisotropy beneath Madagascar. We, therefore, simulate two sets of mantle convection models using regional‐scale 3‐D computational modeling. We then calculate Lattice Preferred Orientation that develops along pathlines of the mantle flow models and use them to calculate synthetic splitting parameters. Comparison of predicted with observed seismic anisotropy shows a good fit in northern and southern Madagascar for the EDC model, but the mantle wind case only fits well in northern Madagascar. This result suggests the dominant control of the measured anisotropy may be from EDC, but the role of localized fossil anisotropy in narrow shear zones cannot be ruled out in southern Madagascar. Our results suggest that the asthenosphere beneath northern and southern Madagascar is dominated by dislocation creep. Dislocation creep rheology may be dominant in the upper asthenosphere beneath other regions of continental lithosphere.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-05-14
    Description: Continental rifts evolve by linkage and interaction of adjacent individual segments. As rift segments propagate, they can cause notable re-orientation of the local stress field so that stress orientations deviate from the regional trend. In return, this stress re-orientation can feed back on progressive deformation and may ultimately deflect propagating rift segments in an unexpected way. Here, we employ numerical and analog experiments of continental rifting to investigate the interaction between stress re-orientation and segment linkage. Both model types employ crustal-scale two-layer setups wherein pre-existing linear heterogeneities are introduced by mechanical weak seeds. We test various seed configurations to investigate the effect of (i) two competing rift segments that propagate unilaterally, (ii) linkage of two opposingly propagating rift segments, and (iii) the combination of these configurations on stress re-orientation and rift linkage. Both the analog and numerical models show counterintuitive rift deflection of two sub-parallel propagating rift segments competing for linkage with an opposingly propagating segment. The deflection pattern can be explained by means of stress analysis in numerical experiments wherein stress re-orientation occurs locally and propagates across the model domain as rift segments propagate. Major stress re-orientations may occur locally, which means that faults and rift segment trends do not necessarily align perpendicularly to far-field extension directions. Our results show that strain localization and stress re-orientation are closely linked, mutually influence each other, and may be an important factor for rift deflection among competing rift segments as observed in nature.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-05-14
    Description: Geodynamic modelling provides a powerful tool to investigate processes in the Earth's crust, mantle, and core that are not directly observable. However, numerical models are inherently subject to the assumptions and simplifications on which they are based. In order to use and review numerical modelling studies appropriately, one needs to be aware of the limitations of geodynamic modelling as well as its advantages. Here, we present a comprehensive yet concise overview of the geodynamic modelling process applied to the solid Earth from the choice of governing equations to numerical methods, model setup, model interpretation, and the eventual communication of the model results. We highlight best practices and discuss their implementations including code verification, model validation, internal consistency checks, and software and data management. Thus, with this perspective, we encourage high-quality modelling studies, fair external interpretation, and sensible use of published work. We provide ample examples, from lithosphere and mantle dynamics specifically, and point out synergies with related fields such as seismology, tectonophysics, geology, mineral physics, planetary science, and geodesy. We clarify and consolidate terminology across geodynamics and numerical modelling to set a standard for clear communication of modelling studies. All in all, this paper presents the basics of geodynamic modelling for first-time and experienced modellers, collaborators, and reviewers from diverse backgrounds to (re)gain a solid understanding of geodynamic modelling as a whole.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...