ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (97,724)
Collection
Language
Years
  • 1
    Publication Date: 2024-04-25
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Vegetation classification is an essential prerequisite for understanding vegetation‐water relations at a range of spatial scales. However, in site‐specific applications, such classifications were mostly based on a single Unmanned Aerial Vehicle (UAV) flight, which can be challenging in grasslands and/or herbaceous‐dominated systems, as those communities are small in size and highly mixed. Here, we conducted monthly UAV flights for two years in a riparian wetland in Germany, with acquired imagery used for vegetation classification on a monthly basis under different strategies (with or without auxiliary information from other flights) to increase understanding in ecohydrology. The results show that multi‐flight‐based classification outperformed single‐flight‐based classification due to the higher classification accuracy. Moreover, improved sensitivity of temporal changes in community distribution highlights the benefits of multi‐flight‐based classification ‐ providing a more comprehensive picture of community evolution. From reference to the monthly community distribution, we argue that a combination of two or three flights in early‐ and late‐summer is enough to achieve comparable results to monthly flights, while mid‐summer would be a better timing in case only one flight is scheduled. With such detailed vegetation mapping, we further interpreted the complex spatio‐temporal heterogeneity in NDVI and explored the dominant areas and developmental progress of each community. Impacts from management (mowing events) were also evaluated based on the different responses between communities in two years. Finally, we explored how such vegetation mapping could help understand landscape ecohydrology, and found that the spatio‐temporal distribution of minimal soil moisture was related to NDVI peaks of local community, while grass distribution was explained by both topography and low moisture conditions. Such bi‐directional relationships proved that apart from contributing to an evidence base for wetland management, multi‐flight UAV vegetation mapping could also provide fundamental insights into the ecohydrology of wetlands.〈/p〉
    Description: Chinese Scholarship Council (CSC)
    Description: Einstein Foundation Berlin and Berlin University Alliance
    Description: Leverhulme Trust http://dx.doi.org/10.13039/501100000275
    Keywords: ddc:551.48 ; ecohydrology ; remote sensed vegetation dynamics ; soil moisture ; UAV ; unmanned aerial vehicles ; wetlands
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-25
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉To evaluate how the presence of pseudotachylytes affects the strength of crustal rocks, deformed pseudotachylytes and their relationship with pristine pseudotachylytes at the base of the Silvretta nappe are analyzed. Pseudotachylytes formed associated with high‐stress crystal plasticity (〈italic〉σ〈/italic〉〈sub〉〈italic〉d〈/italic〉〈/sub〉 > 400 MPa), as indicated by twinned amphiboles in gneisses. Mylonitic quartz clasts enclosed within deformed pseudotachylytes and mylonitic vein‐quartz, hosting folded pseudotachylyte injection veins, reflect creep at lower stresses (ca. 100 MPa) after seismic rupturing. Deformed pseudotachylytes can be crosscut by pristine pseudotachylytes, indicating a second, independent stage of coseismic rupturing after creep. The evidence of dynamic dislocation creep of quartz and the presence of stilpnomelane and epidote associated with all fault rocks indicate similar ambient greenschist facies conditions during all deformation stages. Whereas the intermediate stage of creep is interpreted to represent deformation at large distance to the propagating thrust tip, the pristine pseudotachylytes represent the last stage of rupturing eventually leading to nappe decoupling from its basement. Gneiss clasts in an ultramylonitic matrix (i.e., deformed pseudotachylyte) reveal that pseudotachylytes have a lower strength during creep in relation to the hosting gneisses. In contrast, during coseismic high‐stress crystal plasticity, the coarse gneisses accumulate a higher amount of strain. This strength‐relationship explains that only those rocks rupture, which have not been previously deformed before. The study demonstrates the importance of different strengths of crustal rocks at specific stress‐ and strain‐rate conditions in dependence on the distance to the propagating fault tip.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Ultramylonites (deformed pseudotachylytes) and mylonites represent creep at large distance to the propagating thrust tip〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Pristine pseudotachylytes represent final deformation at the tip of the propagating thrust fault associated with nappe decoupling〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Pseudotachylytes are weak during aseismic creep and strong during coseismic high‐stress plasticity〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://doi.org/10.17632/xhh2ktks9g.4
    Description: https://nano.oxinst.com/products/aztec/
    Description: https://www.horiba.com/aut/scientific/products/detail/action/show/Product/labspec-6-spectroscopy-suite-software-1843/
    Keywords: ddc:551.8 ; (deformed) pseudotachylytes ; (ultra‐)mylonites ; creep ; multiple high‐stress events ; seismic cycle ; nappe decoupling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-25
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉There have been a number of theories proposed concerning the loss of relativistic electrons from the radiation belts. However, direct observations of loss were not possible on a number of previous missions due to the large field of view of the instruments and often high‐altitude orbits of satellites that did not allow researchers to isolate the precipitating electrons from the stably trapped. We use measurements from the ELFIN‐L suit of instruments flown on Lomonosov spacecraft at LEO orbit, which allows us to distinguish stably trapped from the drift loss cone electrons. The sun‐synchronous orbit of Lomonosov allows us to quantify scattering that occurred into the loss cone on the dawn‐side and the dusk‐side magnetosphere. The loss at MeV energies is observed predominantly on the dawn‐side, consistent with the loss induced by the chorus waves. The companion data publication provides processed measurements.〈/p〉
    Description: Plain Language Summary: There have been a number of models proposed concerning the loss of relativistic electrons from radiation belts. However, the direct observations of loss have been missing, as for most of the previous missions; the large aperture telescopes could not isolate the precipitating electrons from being stably trapped. In this study, we use measurements from ELFIN‐L on Lomonosov that allow for such separation and allow us to distinguish stably trapped from precipitating particles. We can also identify the particles that will be lost within one drift around the Earth, the so‐called drift loss cone. For understanding the loss processes and differentiating between them, it's crucially important to quantify where in local magnetic time these electrons will be scattered into the drift loss cone. Measurements from the ELFIN‐L instrument show that the loss at MeV energies is observed predominantly on the dawn side, consistent with the loss induced by the so‐called chorus plasma waves.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉ELFIN‐L measurements allow comparing scattering into the loss cone on the dawn and dusk side〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Processed Level‐3 measurements are provided in the data publication〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Most of the relativistic electrons are scattered into the drift loss cone on the dawn side〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: National Science Foundation
    Description: Russian University Satellite Mission
    Description: Helmholtz Association
    Description: European Union's Horizon 2020 Research and Innovation Program
    Description: https://doi.org/10.5880/GFZ.2.7.2023.002
    Description: https://doi.org/10.5880/GFZ.2.7.2023.003
    Description: https://doi.org/10.5880/GFZ.2.7.2023.004
    Description: https://doi.org/10.5880/GFZ.2.7.2023.005
    Description: https://doi.org/10.5880/GFZ.2.7.2023.006
    Description: https://doi.org/10.5880/GFZ.2.7.2023.007
    Description: https://www.ncei.noaa.gov/data/poes-metop-space-environment-monitor/access/l1b/v01r00/
    Keywords: ddc:538.7 ; Electron Particle Detector ; ELFIN-L ; radiation belts ; electron loss ; drift loss cone
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-25
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Mercury is the smallest and innermost planet of our solar system and has a dipole‐dominated internal magnetic field that is relatively weak, very axisymmetric and significantly offset toward north. Through the interaction with the solar wind, a magnetosphere is created. Compared to the magnetosphere of Earth, Mercury's magnetosphere is smaller and more dynamic. To understand the magnetospheric structures and processes we use in situ MESSENGER data to develop further a semi‐empiric model of the magnetospheric magnetic field, which can explain the observations and help to improve the mission planning for the BepiColombo mission en‐route to Mercury. We present this semi‐empiric KTH22‐model, a modular model to calculate the magnetic field inside the Hermean magnetosphere. Korth et al. (2015, 〈ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1002/2015JA021022"〉https://doi.org/10.1002/2015JA021022〈/ext-link〉, 2017, 〈ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1002/2017gl074699"〉https://doi.org/10.1002/2017gl074699〈/ext-link〉) published a model, which is the basis for the KTH22‐model. In this new version, the representation of the neutral sheet current magnetic field is more realistic, because it is now based on observations rather than ad‐hoc assumptions. Furthermore, a new module is added to depict the eastward ring shaped current magnetic field. These enhancements offer the possibility to improve the main field determination. In addition, analyzing the magnetic field residuals allows us to investigate the field‐aligned currents and their possible dependencies on external drivers. We see increasing currents under more disturbed conditions inside the magnetosphere, but no clear dependence on the z‐component of the interplanetary magnetic field nor on the magnetosheath plasma 〈italic〉β〈/italic〉.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉We present a revised model of Mercury's magnetospheric magnetic field〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The model now includes an eastward ring shaped current and the neutral sheet current is calculated more precisely with Biot Savart's law〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The strength of the field‐aligned currents increases with higher magnetic activity〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: German Ministerium für Wirtschaft und Klimaschutz and the German Zentrum für Luft‐ und Raumfahrt
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: ESA Research Fellowship
    Keywords: ddc:523 ; Mercury ; magnetosphere ; field‐aligned currents ; modeling ; neutral sheet current ; planetary dipole moment
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-25
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Recent observations and modeling increasingly reveal the key role of cold pools in organizing the convective cloud field. Several methods for detecting cold pools in simulations exist, but are usually based on buoyancy fields and fall short of reliably identifying the active gust front. The current cold pool (CP) detection and tracking algorithm (CoolDeTA), aims to identify cold pools and follow them in time, thereby distinguishing their active gust fronts and the “offspring” rain cells generated nearby. To accomplish these tasks, CoolDeTA utilizes a combination of thermodynamic and dynamical variables and examines the spatial and temporal relationships between cold pools and rain events. We demonstrate that CoolDeTA can reconstruct CP family trees. Using CoolDeTA we can contrast radiative convective equilibrium (RCE) and diurnal cycle CP dynamics, as well as cases with vertical wind shear and without. We show that the results obtained are consistent with a conceptual model where CP triggering of children rain cells follows a simple birth rate, proportional to a CP's gust front length. The proportionality factor depends on the ambient atmospheric stability and is lower for RCE, in line with marginal stability as traditionally ascribed to the moist adiabat. In the diurnal case, where ambient stability is lower, the birth rate thus becomes substantially higher, in line with periodic insolation forcing—resulting in essentially run‐away mesoscale excitations generated by a single parent rain cell and its CP.〈/p〉
    Description: Plain Language Summary: Cold pools are cooled air masses below thunderstorm clouds, produced when rain evaporates underneath such clouds. Cold pools are important, as they produce strong gusts and have been associated with clumping of rain cells, whereby heavy rainfall over relatively small areas could be generated—with implications for flooding. The current work describes a method that helps identify such cold pools in computer simulation data. In contrast to earlier methods, we here show that the interaction between a CP and its surroundings can be reconstructed by the method. We show that this identification works under a range of contexts, such as when horizontal wind is applied in the simulations or when the surface temperature is not constant—as might often be the case over a land surface. The identification reveals interesting dynamical effects, such as that in some cases, cold pools can kick‐start a form of chain reaction, by which “rain cell children” of it give rise to additional cold pools that again produce children, and so forth. The dynamics revealed is in line with expectations of widespread, so‐called mesoscale convective systems over land, whereas over an ocean surface the dynamics is much less explosive.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Our CoolDeTA algorithm reliably detects and tracks cold pools and their causal chains〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉We propose a simple conceptual model which reproduces the cascade‐like mesoscale cold pool dynamics identified by CoolDeTA〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉CoolDeTA opens for new studies into the dynamics of convective self‐organization through cold pools〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Villum Fonden http://dx.doi.org/10.13039/100008398
    Description: European Research Council http://dx.doi.org/10.13039/501100000781
    Description: Novo Nordisk Foundation Interdisciplinary Synergy Program
    Description: Scientific Steering Committee
    Description: https://doi.org/10.5281/zenodo.6513224
    Description: https://github.com/Shakiro7/coldPool-detection-and-tracking
    Description: https://doi.org/10.5281/zenodo.10115957
    Description: https://doi.org/10.7717/peerj.453
    Keywords: ddc:551.6 ; cold pools ; detection ; tracking ; cloud resolving simulation ; convective organization
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-25
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The seasonal deposition and sublimation of CO〈sub〉2〈/sub〉 constitute a major element in the Martian volatile cycle. Here, we propose to use the shadow variations of the ice blocks at the foot of the steep scarps of the North Polar Layered Deposits (NPLD) to infer the vertical evolution of the seasonal deposits. We conduct an experiment at a steep scarp centered at (85.0°N, 151.5°E). We assume that no snowfall remains on top of the selected ice blocks, the frost ice layer is homogeneous around the ice blocks and their surroundings, and no significant moating is present. We show that the average thickness of the seasonal deposits due to snowfalls in Mars Year 31 is 0.97 ± 0.13 m at Ls = 350.7° in late winter. The large depth measured makes us wonder if snowfalls are more frequent and violent than previously thought. Meanwhile, we show that the average frost thickness in Mars Year 31 reaches 0.64 ± 0.18 m at Ls = 350.7° in late winter. Combined, the total thickness of the seasonal cover in Mars Year 31 reaches 1.63 ± 0.22 m at Ls = 350.7° in late winter, continuously decreases to 0.45 ± 0.06 m at Ls = 42.8° in middle spring and 0.06 ± 0.05 m at Ls = 69.6° in late spring. These estimates are up to 0.8 m lower than the existing Mars Orbiter Laser Altimeter results during the spring. Meanwhile, we observe that snow in the very early spring of Mars Year 36 can be 0.36 ± 0.13 m thicker than that in Mars Year 31. This study demonstrates the dynamics of the Martian climate and emphasizes the importance of its long‐term monitoring.〈/p〉
    Description: Plain Language Summary: Like Earth, Mars also has seasons. Up to one third of the atmospheric CO〈sub〉2〈/sub〉 annually exchanges with the polar surface through seasonal deposition/sublimation processes. Deposition can be either atmospheric precipitation as snowfall or direct surface condensation as frost. At the steep scarps of the North Polar Layered Deposits (NPLD), fractured ice fragments can detach and fall to form ice blocks. We propose to use variations in the shadows of these ice blocks, observed in the High Resolution Imaging Science Experiment images, to infer the thickness evolution of the seasonal deposits. We make reasonable assumptions about the distribution of snowfall and frost around the ice blocks and their surroundings, which allow us to separately measure the thickness of snowfall and frost. Meanwhile, we introduce a novel approach that allows us to estimate the thickness of the seasonal deposits during late winter and early spring when image quality is insufficient. This approach also enables us to peer into the interannual thickness variations of snowfall. We carry out a successful experiment at a scarp centered at (85.0°N, 151.5°E). The obtained thickness measurements demonstrate the dynamics of the Martian volatile cycling and can be used to constrain the Martian climate models.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉We propose to examine the shadow variations of the ice blocks at the Martian polar region to infer the thickness of the seasonal deposits〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Maximum thickness of the seasonal deposits at the study scarp in MY31 is 1.63 ± 0.22 m to which snowfalls contribute 0.97 ± 0.13 m〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Seasonal deposits at the study scarp are up to 0.8 m shallower than previous measurements during spring〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: HX, LML, and PJG
    Description: https://doi.org/10.17189/1520303
    Description: https://doi.org/10.17632/5yy475dbry.1
    Description: https://doi.org/10.17632/x953mzxxvv.1
    Description: https://doi.org/10.17189/1520101
    Description: http://www.msss.com/moc_gallery/2001
    Keywords: ddc:523 ; Mars ; seasonal polar caps ; thickness ; ice blocks ; HiRISE ; CO2
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-25
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉〈italic〉INSIGHT〈/italic〉 is a Python‐based software tool for processing and reducing 2D grazing‐incidence wide‐ and small‐angle X‐ray scattering (GIWAXS/GISAXS) data. It offers the geometric transformation of the 2D GIWAXS/GISAXS detector image to reciprocal space, including vectorized and parallelized pixel‐wise intensity correction calculations. An explicit focus on efficient data management and batch processing enables full control of large time‐resolved synchrotron and laboratory data sets for a detailed analysis of kinetic GIWAXS/GISAXS studies of thin films. It processes data acquired with arbitrarily rotated detectors and performs vertical, horizontal, azimuthal and radial cuts in reciprocal space. It further allows crystallographic indexing and GIWAXS pattern simulation, and provides various plotting and export functionalities. Customized scripting offers a one‐step solution to reduce, process, analyze and export findings of large 〈italic〉in situ〈/italic〉 and 〈italic〉operando〈/italic〉 data sets.〈/p〉
    Keywords: ddc:548 ; grazing‐incidence X‐ray scattering ; time‐resolved studies ; in situ studies ; operando studies ; computer programs
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-25
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Dansgaard‐Oeschger (D‐O) climate variability during the last glaciation was first evidenced in ice cores and marine sediments, and is also recorded in various terrestrial paleoclimate archives in Europe. The relative synchronicity across Greenland, the North Atlantic and Europe implies a tight and fast coupling between those regions, most probably effectuated by an atmospheric transmission mechanism. In this study, we investigated the atmospheric changes during Greenland interstadial (GI) and stadial (GS) phases based on regional climate model simulations using two specific periods, GI‐10 and GS‐9 both around 40 ka, as boundary conditions. Our simulations accurately capture the changes in temperature and precipitation as reconstructed by the available proxy data. Moreover, the simulations depict an intensified and southward shifted eddy‐driven jet during the stadial period. Ultimately, this affects the near‐surface circulation toward more southwesterly and cyclonic flow in western Europe during the stadial period, explaining much of the seasonal climate variability recorded by the proxy data, including oxygen isotopes, at the considered proxy sites.〈/p〉
    Description: Plain Language Summary: The climate during the last ice age varied between colder and warmer periods on timescales ranging from hundreds to thousands of years. This variability was first detected in Greenland ice cores and marine sediment cores of the North Atlantic, as well as in continental geological records in Europe. The variation between the colder and warmer periods occur mostly simultaneously in Greenland and in Europe, which is why the atmosphere is assumed to have an important role in transferring the climate signals. We simulated two different periods of the last ice age, one colder and one warmer around 40,000 years ago, using a regional climate model. The aim was to study how the climate and atmospheric circulation changed during these two periods. We find the eddy‐driven jet over the North Atlantic intensified and shifted southward during the colder period. The jet influences the near‐surface atmospheric circulation and leads to more southwesterly and cyclonic flow in western Europe. Oxygen isotope variations observed in western European paleoclimate records may be partly explained by different, more southern moisture sources on top of changes in seasonal temperatures.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Simulated temperatures agree with proxy data; precipitation is biased but GI‐10 versus GS‐9 differences are well captured〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The stadial winter jet stream is intensified and shifted southward, consistent with dominant southwesterly/cyclonic flow in western Europe〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Oxygen isotope signal changes at western European proxy sites may be explained not only by temperature but also by varying moisture sources〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: NRDIO
    Description: AXA Research Fund http://dx.doi.org/10.13039/501100001961
    Description: https://doi.org/10.5065/1dfh-6p97
    Keywords: ddc:551.6 ; Dansgaard‐Oeschger cycle ; regional atmospheric dynamics ; regional climate modeling ; continental paleoclimate proxy ; Europe
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-25
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉In this contribution we report the first systematic study of zircon U‐Pb geochronology and δ〈sup〉18〈/sup〉O‐〈italic〉ε〈/italic〉Hf〈sub〉(〈italic〉t〈/italic〉)〈/sub〉 isotope geochemistry from 10 islands of the hot‐spot related Galapagos Archipelago. The data extracted from the zircons allow them to be grouped into three types: (a) young zircons (0–∼4 Ma) with 〈italic〉ε〈/italic〉Hf〈sub〉(〈italic〉t〈/italic〉)〈/sub〉 (∼5–13) and δ〈sup〉18〈/sup〉O (∼4–7) isotopic mantle signature with crystallization ages dating the islands, (b) zircons with 〈italic〉ε〈/italic〉Hf〈sub〉(〈italic〉t〈/italic〉)〈/sub〉 (∼5–13) and δ〈sup〉18〈/sup〉O (∼5–7) isotopic mantle signature (∼4–164 Ma) which are interpreted to date the time of plume activity below the islands (∼164 Ma is the minimum time of impingement of the plume below the lithosphere), and (c) very old zircons (∼213–3,000 Ma) with mostly continental (but also juvenile) 〈italic〉ε〈/italic〉Hf〈sub〉(〈italic〉t〈/italic〉)〈/sub〉 (∼−28–8) and δ〈sup〉18〈/sup〉O (∼5–11) isotopic values documenting potential contamination from a number of sources. The first two types with similar isotopic mantle signature define what we call the Galápagos Plume Array (GPA). Given lithospheric plate motion, this result implies that GPA zircon predating the Galápagos lithosphere (i.e., >14–164 Ma) formed and were stored at sublithospheric depths for extended periods of time. In order to explain these observations, we performed 2D and 3D thermo‐mechanical numerical experiments of plume‐lithosphere interaction which show that dynamic plume activity gives rise to complex asthenospheric flow patterns and results in distinct long‐lasting mantle domains beneath a moving lithosphere. This demonstrates that it is physically plausible that old plume‐derived zircons survive at asthenospheric depths below ocean islands.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Our data define the Galápagos Plume Array defined by mantle 〈italic〉ε〈/italic〉Hf〈sub〉(〈italic〉t〈/italic〉)〈/sub〉 and δ18O values in the range ∼0–164 Ma〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉This finding allows dating back plume activity to, at least, early Middle Jurassic (∼164 Ma)〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Numerical experiments confirm it is plausible that old Plume‐derived zircons survive in the asthenosphere for extended periods of time〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España http://dx.doi.org/10.13039/501100010198
    Description: Ministerio de Ciencia e Innovación http://dx.doi.org/10.13039/501100004837
    Description: European Research Council http://dx.doi.org/10.13039/501100000781
    Description: https://doi.org/10.5281/zenodo.7047729
    Description: https://doi.org/10.5281/zenodo.6967187
    Keywords: ddc:551.9 ; mantle plume ; galapagos zircon ages ; asthenospheric zircon ; oceanic islands ; thermo‐mechanical numerical experiments
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-04-25
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...