ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geophysik
  • German  (5)
  • Italian
  • Spanish
  • 2000-2004  (3)
  • 1980-1984  (2)
  • 1970-1974
Collection
Language
Years
Year
  • 1
    facet.materialart.
    Unknown
    Selbstverlag Fachbereich Geowissenschaften, FU Berlin
    In:  Herausgeberexemplar
    Publication Date: 2024-05-03
    Description: In den letzten Jahren hat die Technik, die bei geophysikalischen Messungen eingesetzt wird, einen enormen Entwicklungsschub genommen. Hochempfindliche und -spezialisierte Meß- und Registrierapparaturen erhöhen die Genauigkeit der aus der Erde empfangenen Signale und ermöglichen damit das Vordringen in immer tiefere Bereiche der Erdkruste. Während das technische Equipment dem Prozeß einer ständigen Weiterentwicklung unterliegt, ist die Interpretation der gewonnenen Daten jedoch zumeist noch ein manuelles Problem. Zwar bedienen sich heute die Geowissenschaften, insbesondere die datenintensiven Bereiche wie Seismik, Gravimetrie, Magnetik usw., bereits hochentwickelter Computer zur Bearbeitung und Auswertung der Meßergebnisse; um den geophysikalisch-geologischen Interpretationsprozeß jedoch in eine neue Qualität zu überführen, muß die ihm zugrundeliegende Methodik grundlegend überdacht und erweitert werden. Da die konventionelle Datenauswertung im allgemeinen symbolisches Wissen nicht verarbeiten kann, während der Interpretation jedoch zum überwiegenden Teil mit solchem gearbeitet wird, ist es unumgänglich, neben den konventionellen Verfahren auch die wissensbasierte Methodik, die diesen Mangel beheben kann, einzubinden. Die Einbindung symbolischen Wissens bedeutet eine gründliche Analyse des abzubildenden Prozesses, der ihm zugrundeliegenden Prinzipien, Faktoren und Abläufe. In der vorliegenden Arbeit, die sich mit der Abbildung der manuellen Interpretationsmethodik in einem wissensbasierten System befaßt, nimmt dieser Analyseprozeß aufgrund seiner Komplexität und enormen Wichtigkeit einen breiten Raum ein. Kapitel 2 der Arbeit befaßt sich zunächst einleitend mit der Verknüpfung von Geowissenschaften und Informatik. Es gibt einen Überblick über die wissensbasierte Methodik und ordnet den geophysikalisch-geologischen Interpretationsprozeß in die Problematik der Wissensverarbeitung ein. Das übliche Interpretationsverfahren, seine Mängel und Schwachstellen werden im dritten Kapitel kurz erläutert. Die “Abstraktion des Interpretationsprozesses” setzt sich daran anschließend mit der Arbeitsweise des interpretierenden Wissenschaftlers auseinander und definiert somit den Funktionsumfang des zu entwickelnden Systems. Die wissensbasierte Methodik ist vielfältig; um die für die Interpretation geeigneten Ansätze auswählen zu können, faßt das Kapitel in den weiteren Ausführungen die allgemein üblichen Verfahren zusammen. Aus der Fülle der Methoden im zuvorliegenden Abschnitt werden nun die für die Geo-Interpretation geeigneten Verfahren ausgewählt (Kap. 5) und zu einem Interpretationssystem kombiniert. Das Kapitel begründet die Methodenauswahl und gibt einen Überblick über die interne Arbeitsweise des Prototypen, seine Funktionalität und seine Handhabung. Während der beschriebene Modellansatz das Werkzeug zur Interpretation darstellt, setzt sich das letzte und wesentlichste Kapitel (Kap.6) mit der Wissensformalisierung für die Geo-Interpretation auseinander Es beschreibt die Vorgehensweise und die Probleme bei der Entwicklung der Wissensbasis und führt eine detaillierte Untersuchung der einzubindenden Wissensgebiete und ihrer Parameter durch. Die Methodik wird anhand eines seismischen Profilabschnittes getestet und die Ergebnisse abschließend diskutiert. Alle Bestandteile des Prototypen wurden eigenständig entwickelt und programmiert. Das in Kapitel 5 beschriebene Werkzeug ist weitestgehend allgemein gehalten, so daß es nach Austausch der Wissensbasis auch für andere Bereiche nutzbar ist.
    Description: In the last years, the technique which is used for geophysical measurements has developed enormously. Highly sensitive and specialized measuring and registration equipment increases the accuracy of the signals received from the earth thereby enabling a penetration into ever deeper areas of the earth's crust. While the technical equipment is subject to the process of constant advancement, the interpretation of the data, however, is mostly still a manual problem. Today the geosciences (in particular data-intensive areas such as seismology, gravimetry, magnetics) already use highly developed computers for the handling and analysis of measurement results; however in order to better the geophysical-geological interpretation process, its underlying methodology must be fundamentally revised and extended. Since conventional data evaluation cannot process generally symbolic knowledge which is mostly used during the interpretation process, it is absolutely necessary to use knowledge-based methodology in addition to the conventional procedures to eliminate this shortcoming. The integration of symbolic knowledge means a thorough analysis of the process which is to be modelled, its underlying principles, factors, and operational sequence. In the work presented here, which discusses the transfer of manual interpretation methodology into a knowledge-based system, the process of analysis takes much room due to its complexity and enormous importance. The introductory chapter 2 of the work describes the linkage of geosciences and computer science. This section gives an overview of the knowledge-based methodology and regards the geophysical-geological interpretation process under the criteria of knowledge processing. The usual interpretation procedure, its shortcomings and weak points are described briefly in the third section. Subsequently, the section "Abstraktion des Interpretationsprozesses" examines the methodology of the interpreting scientist and defines so the function range of the system which is to be developed. Knowledge-based methodology is multi-faceted; in order to be able to select the methods suitable for the interpretation, this section further summarizes the most important knowledge-based procedures. From the abundance of methods described in the past section, the procedures suitable for the geointerpretation are selected (chapter 5) and combined to form an interpretation system. This section justifies the method of selection and gives an overview of the internal structure of the prototype, its functionality and its use. While the described basic approach represents the tool for interpretation, the last and most substantial section (chapter 6) regards knowledge formalisation for geointerpretation. This section describes the methodology and the problems during the development of the knowledge base and analyzes thoroughly the fields of knowledge which are to be integrated and their parameters. Methodology is tested with a part of a seismic profile; and finally the results are discussed. All modules of the prototype were developed and programmed by myself. The tool described in chapter 5 is as far as possible general, so that it can also be used in other areas – after the exchange of the knowledge base.
    Description: thesis
    Description: DFG, SUB Göttingen
    Keywords: ddc:550 ; Geophysik
    Language: German
    Type: doc-type:book
    Format: 120
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Selbstverlag Fachbereich Geowissenschaften, FU Berlin
    In:  Herausgeberexemplar
    Publication Date: 2024-05-03
    Description: Die mit der Drehwaage gemessenen Ableitungen des Schwerepotentials, insbesondere der Horizontalgradient und die Krümmungsgröße, begründeten ganz wesentlich den kommerziellen Erfolg der Geophysik bei der Suche nach Kohlenwasserstoffen. Die Bedeutung der Drehwaage - und damit die Weiterentwicklung der Auswertemethodik - nahm jedoch mit der weiten Verbreitung von Gravimetern seit etwa 1950 immer mehr ab. Die vorliegende Arbeit befaßt sich mit der Frage, mit welchen Methoden die Berechnung von Schwerewerten aus Drehwaagemessungen am besten gelingt und verfolgt den Ansatz, eine Synthese aus klassischen Verfahren mit computergestützten numerischen Methoden herzustellen. Bei Lösung dieser Aufgabe dienen die Horizontalgradienten Wxz und Wyz als Eingangsparameter, während die Krümmungsgrößen Wxy und Wyy-xx keine Verwendung finden. Die verschiedenen Methoden werden dazu zunächst an einem synthetischen Modell und später mit Drehwaagedaten von BEB Erdgas und Erdöl GmbH (Hannover) getestet. Dazu sind insgesamt 39 Meßtischblätter im Gebiet Soltau bzw. Wathlingen (Norddeutschland) mit 35000 Drehwaagemessungen digitalisiert worden. Das Verfahren von Haalck liefert trotz seines simplifizierten Ansatzes eine recht gute Übereinstimmung zwischen der aus den Gradienten berechneten Schwere und der Modellschwere (etwa 0.4 x 10-5 ms-2), reagiert jedoch sehr empfindlich auf Datenfehler, die sich in ausgeprägten Verbiegungen der Isolinien der Schwere äußern. Durch nachträgliche Glättung läßt sich jedoch eine Verbesserung erzielen. Nachteilig bei diesem Verfahren ist die Abhängigkeit des Ergebnisses von der vorher durchzuführenden Interpolation der Gradienten auf ein regelmäßiges Gitter und die methodenbedingte Mittelwertbildung zweier unabhängig voneinander berechneten Schwerefelder. Diese Nachteile lassen vermeiden, wenn die Berechnung der Schwere aus den Horizontalgradienten als Ausgleichungsproblem formuliert wird, bei dem die vorherige Interpolation der Horizontalgradienten auf ein Gitter entfallen kann und eine gewisse Filterung von Fehlern in den Daten implizit durchgeführt wird. Die hiermit erreichbaren Genauigkeiten betragen bis zu 0.1 x 10-5 ms-2 und liegen in der Größenordnung der Genauigkeit einer Schweremessung. Eine noch flexiblere Berechnungsmethode bietet die Methode der kleinsten Quadrate, bei der sowohl „Rauschen“ in den Daten als auch die gleichzeitige Berücksichtigung von Horizontalgradienten und Schwerewerten möglich wäre. Die hiermit erreichte Genauigkeit beträgt etwa 0.5 x 10-5 ms-2. Die berechneten Schwerewerte lassen einfach sich in bestehende Datensätze integrieren, um Datenlücken zu füllen bzw. die Stationsdichte zu verdichten. In einem vier Meßtischblätter umfassenden Gebiet (Salzstock Wathlingen) konnte auf diese Weise für Teilgebiete eine verbesserte, detailreichere Schwerekarte generiert werden. Eine unmittelbare Verwendung der Horizontalgradienten - ohne vorherige Umrechnung in Schwerewerte - erlaubt die Modellierung von Dichte und Geometrie eines dreidimensionalen Untergrundmodells. Das aus der Modellierung über- und untertägiger Schweremessungen entstandene Dichtemodell des Salzstocks von Wathlingen zeigt auch eine prinzipielle Übereinstimmung zwischen gemessenen und berechneten Horizontalgradienten. Geringfügige Abweichungen sind durch Vernachlässigung von Strukturen in Oberfiächennähe zu erklären. Deren Berücksichtigung und die damit verbundene Modellierung der Horizontalgradienten könnte jedoch eine Verbesserung des bestehenden Modells erbringen.
    Description: Torsion balance measurements of derivatives of gravitational potential - especially horizontal gradient and curvature - were a significant factor in the commercial success of exploration geophysics in detecting hydrocarbons. However, with the widespread use of gravimeters since about 1950, there has been a continuous decrease in the importance of the torsion balance and hence in the improvement of methods of analysis. This study aims to establish which are the best methods of determining gravity values from torsion balance measurements. Its approach is to synthesize classical procedures with computer-based numerical methods, taking horizontal gradients Wxz and Wyz as input parameters, but not using the curvature values Wxy and Wyy - xx . The various methods were first tested in a synthetic model and again using torsion balance data supplied by BEB Erdgas and Erdöl GmbH (Hanover). A total of 39 topographical maps (1:25,000) of the Soltau and Wathlingen areas (northern Germany) were digitzed with 35,000 torsion balance measurements. Despite its simplified approach, the Haalck procedure yields a good agreement between theoretical gravity and gravity calculated from gradients (about 0.4 x 10-5 ms-2 ); however it shows a highly sensitive response to data errors, expressed in pronounced deformations of the gravity contour lines. This can be improved by subsequent smoothing. The disadvantage of this procedure is that results depend on prior interpolation of the gradients to a regular grid and taking the mean of two independently calculated gravity fields. These disadvantages may be avoided by formulating the gravity calculation from the horizontal gradients as a least squares adjustment problem, leaving out the prior interpolation of the horizontal gradients to a grid and implicitly filtering errors in the data. Accuracies of 0.1 x 10-5 ms-2 may be obtained in this way and are in the order of magnitude of gravity measurement accuracy. A more flexible method of calculation is the method of least squares collocation by which both "noise” in the data and simultaneous allowance for horizontal gradients and gravity values are possible. Here the accuracy is about 0.5 x 10-5 ms-2. The computed gravity values can be readily integrated in existing datasets in order to fill data gaps or enhance station density. In the case of an area covered by four topographical maps (the Wathlingen salt dome) this method allowed us to create an improved, more detailed gravity map for specific sub-areas. The direct use of horizontal gradients - without prior conversion into gravity values - allows the modeling of density and geometry of a three-dimensional subsurface model. The density model of the Wathlingen salt dome generated by the modeling of surface and subsurface gravity measurements also shows a basic agreement between measured and computed horizontal gradients. Slight deviations are due to the disregard of near-surface structures. However, their inclusion and the simultaneous modeling of horizontal gradients could improve the existing model.
    Description: thesis
    Description: DFG, SUB Göttingen
    Keywords: ddc:550 ; Schwerefeld ; Modellierung ; Gravimetrie ; Torsionswaage ; Geophysik
    Language: German
    Type: doc-type:book
    Format: 152
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Selbstverlag Fachbereich Geowissenschaften, FU Berlin
    In:  Herausgeberexemplar
    Publication Date: 2024-05-03
    Description: Diese Arbeit beruht auf der Nachbebenserie des Antofagasta-Bebens vom 30.07.1995. Die Nachbebenserie wurde während des CINCA ’95 Projektes in einer Zusammenarbeit zwischen den Instituten der Freien Universität Berlin und des GFZ Potsdam, im Rahmen des Sonderforschungsbereich 267, der BGR (Hannover), und des GEOMAR (Kiel) gemessen. Dazu wurde ein Netzwerk aus 50 Stationen on- und offshore im Zeitraum zwischen dem 10.08.1995 und dem 11.10.1995 betrieben. Das Netzwerk überdeckte insgesamt 310 km (22°10'S - 25°S) in Nord-Süd und 185 km (71°10'W - 69°20'W) in Ost- West-Richtung. Aus den gepickten P-und S-Einsätzen der Beben wurde mit dem Programm simulpsl2 ein 3D Geschwindigkeitsmodell berechnet. Das Modell zeigt Strukturen, die bereits früher mit aktiver Seismik gemessen wurden. So konnte entlang der Küste eine Hochgeschwindigkeitszone (vP ≈ 7.0 km/s) in 20 km, und eine Niedriggeschwindigkeitszone (vP ≈ 6.25 km/s) in 30 km Tiefe gemessen werden. Die Hochgeschwindigkeitszone wird als jurassische Unterkruste, die postjurassisch gehoben wurde, interpretiert. Im unteren Bereich kann die Hochgeschwindigkeitszone auch aus teilserpentinisierten jurassischen Mantelgestein bestehen. Als Interpretation für die Niedriggeschwindigkeitszone wird hydraulic fracturing favorisiert. Die Niedriggeschwindigkeitszone ist nicht durchgehend vorhanden. Bei 24°S befindet sich stattdessen ein Block hoher Geschwindigkeiten, der im oberen Bereich mit der Hochgeschwindigkeitszone verbunden ist. Der ozeanische Mantel konnte zwar in den Inversionen modelliert werden, jedoch war hier die Durchstrahlung nicht hinreichend, um genauere Angaben über seine Geschwindigkeit, oder seine Oberkante zu erhalten. Auch die oberen Bereiche der kontinentalen Kruste konnten nur unzureichend aufgelöst werden, da sich die Strahlen hier kaum kreuzten. Zusammen mit dem vP-Geschwindigkeitsmodell wurde auch das vP/vS- Verhältnis berechnet. Dabei konnte die Hochgeschwindigkeitszone mit einem vP/vS- Verhältnis von 1.76 - 1.81 korreliert werden. Die Niedriggeschwindigkeitszone kann mit einem vP/vS- Verhältnis von 1.67 - 1.76 korreliert werden. Mit dem 3D-Modell konnten fast alle Beben mit einer besseren Tiefengenauigkeit als 1 km lokalisiert werden. Der Hauptteil der Beben befindet sich in einem schmalen Bereich zwischen kontinentaler und ozeanischer Platte. Jedoch wurden auch einige krustale Beben detektiert. Desweiteren konnten einige Beben im ozeanischen Mantel gemessen werden. Die Bereiche, in denen das Modell gut bzw. schlecht bestimmt ist, wurden durch einen Vergleich verschiedener Modelle klassifiziert. Bei dieser Methode wurden Modelle mit verschiedenen Knotenebenen berechnet. Bereiche, in denen sich diese Modelle stark unterschieden, wurden über die Geometrische Spreizung als „schlecht aufgelöst“ klassifiziert. Weiterhin wurde die Wirkung verrauschter Daten auf die Inversion betrachtet, um den Einfluß ungenauer Picks auf das Modell zu erhalten. Zusätzlich wurden die Magnituden-Häufigkeits-Parameter für die Bebengebiete in ≈ 40 km, ≈ 100 km, sowie ≈ 200 km aus Daten verschiedener Kataloge berechnet. Es zeigte sich, daß die Beben in 100 km Tiefe nicht durch einen einzigen Magnituden-Häufigkeits-Gradienten („b-Wert“) beschreibbar sind. Dazu wurde vorgeschlagen, daß sich die tektonische Spannung hier aufbaut, und bei einer Magnitude von etwa 5.6 entlädt. Für die Beben in etwa 40 km Tiefe wurde weiterhin die zeitliche Änderung der Magnituden-Häufigkeits-Parameter zwischen 1973 und 1998 untersucht. Dabei konnte zum einen ein Trend von kleinen zu großen b- Werten zwischen 1977 und 1983 festgestellt werden. Für die nachfolgenden Jahre, bis 1995, wichen die Magnituden-Häufigkeits-Kurven fast immer so stark von einer Geraden ab, daß die Parameter nicht berechnet werden konnten. Als problematisch erwies sich die Umrechnung der Parameter zwischen den Lokalmagnituden (CINCA ’95) und den Raumwellenmagnituden (PDE-Katalog). Hier reichten die Beben, die in beiden Katalogen verzeichnet sind nicht aus, um eine Regressionsgerade zu erstellen. In Anbetracht dieser Problematik wurde in der Arbeit auch eine Methode formuliert, die Magnituden mittels der Magnituden-Häufigkeits-Parameter ineinander umzurechnen.
    Description: This work is based on aftershock series of the Antofagasta event (30.07.1995). The aftershocks were recorded within the project CINCA ’95, as a collaboration between the Freie Universität Berlin and the GFZ Potsdam (within the frame of the collaborative research center 267), the BGR (Hannover) and the Geomar (Kiel). The seismological part of CINCA ’95 was performed with a network of 50 stations (on- and offshore) 10.08.95 and 11.10.95. The itself network covered an area of 310 km (22°10'S – 25°S) by 185 km (71°10'W – 69°20'W). A 3D velocity model has been obtained with the use of the program simulpsl2 from the P- and S-onsets of the events. Several structures which were known from previous active seismic experiments were resolved by the 3D model: a high velocity zone (vP ≈ 7.0 km/s) at a depth of 20 km and a low velocity zone ( vP ≈ 6.25 km/s) at a depth of 30 km. Generally, the high velocity zone is corellated to a vP/vS-ratio of 1.76 - 1.81, whereas he low velocity zone is corellated to a vP/vS-ratio of 1.67 - 1.76. The high velocity zone was explained as jurassic lower crust which was elevated in post Jurassic times. In its lower parts the high velocity zone possibly consists of former mantle material which was partly serpentinized. The low velocity zone was interpreted as material which is modified by upwelling fluids (hydraulic fracturing). In the southern part of the model (24°S) the low velocity zone is absent. In this region a block of high velocities was found which is connected to the high velocity zone. The oceanic mantle was computed within the 2D inversion step. However, the ray density was not adequate to gain sufficient information from the 3D inversion about the seismic velocity or the upper edge of the oceanic mantle. The upper regions of the continental crust were not sufficiently resolved as well. The majority of earthquakes was localized with a precision higher than 1 km. Most earthquakes were found in a small region between the continental and the oceanic plate. However, several crustal events were detected in the continental plate. Moreover, several events were detected within the oceanic mantle. A comparison of models obtained from different inversions was used to classify the quality of the regions of the model. This method included the computation of models with varying grids. Regions where the seismic velocities varied strongly with respect to the different models were classified as “low resolved“. From this classification a threshold value of the geometrical spread was determined. The influence of inexact picks on the model was investigated by inversions with noisy data. Additionally, the magnitude - frequency parameters were computed for earthquakes at ≈ 40 km, ~ 100 km and ≈ 200 km depth. As a single straight line is not adequate to describe the magnitude - frequency distribution in ≈ 100 km depth, it was proposed that the tectonic stress in this region rarely exceeds values which generate earthquakes with a magnitude of roughly 5.6. For the region of ≈ 40 km depth the temporal (1973 to 1998) variation of the magnitude - frequency parameters was investigated. It was found that the b-values increase between 1977 and 1983. In subsequent times the magnitude - frequency distribution can not be described by a straight line. The large quantity of events which were recorded within CINCA ’95 lead to accurate magnitude - frequency parameters. However, only a few events were listed in both, the PDE and the CINCA catalogue. Thus, the local - magnitudes (CINCA) could not be transformed sufficiently to body wave magnitudes by the use of regression. A formula was derived which transforms the magnitudes if all events belong to the same set of magnitude frequency parameters.
    Description: thesis
    Description: DFG, SUB Göttingen
    Keywords: ddc:550 ; Geophysik ; Erdbeben
    Language: German
    Type: doc-type:book
    Format: 234
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-25
    Description: Die Toskana ist die stärkste geothermische Anomalie auf dem europäischen Kontinent. In dieser Anomalie finden sich zahlreiche lokale geothermische Felder mit hoher Enthalpie, wie z.B. das Feld von Travale. In diesem geothermischen Feld, das im Era-Graben liegt, wurden in den Jahren 1980/81 elektromagnetische Messungen durchgeführt. Es war das Ziel der Untersuchungen, die Quelle und die Ursache dieser teilweise bekannten Anomalie zu finden. Hierzu sollte die Verteilung der elektrischen Leitfähigkeit in der Erdkruste bis in Tiefen der Kruste-Mantel-Grenze mit den Methoden der Magnetotellurik und Erdmagnetischen Tiefensondierung untersucht werden. Parallel dazu wurde die geothermische Anomalie von Travale mit einer Vielzahl weiterer elektromagnetischer, seismischer und geochemischer Methoden untersucht. Das Ziel, die geothermische Anomalie in der Erdkruste zu lokalisieren, war nicht einfach zu erreichen. Deshalb war es notwendig, ein Modell der Anomalie zu erarbeiten, aus dem die Lokalität folgen sollte. Vor angegangene elektromagnetische Untersuchungen (HAAK & SCHWARZ 1981) hatten gezeigt, daß nahezu das gesamte Gebiet der Toskana als eine Anomalie der elektrischen Leitfähigkeit anzusehen ist: Gutleitende Deckschichten, mit bis zu 10 km Mächtigkeit, werden von einem hochohmigen Basement unterlagert. An einigen Meßorten deutet sich der Übergangsbereich Kruste / Mantel - in einer Tiefe zwischen 20 und 30 km - durch eine Zone hoher Leitfähigkeit an. Dieser Bereich zeichnet sich durch Lamellen hoher und extrem niedriger seismischer Wellengeschwindigkeiten aus. Petrologisch kann dieses durch eine Wechsellagerung von basischem und saurem Material gedeutet werden. Die zeitlichen Variationen des elektrischen und magnetischen Feldes wurden im geothermischen Feld von Travale in einem breiten Periodenbereich von 6 - 10.000 s registriert. Die Meßorte liegen überwiegend auf zwei Profilen, eines verläuft parallel zum Era-Graben aus der Anomalie heraus nach NW, das zweite schneidet die Anomalie senkrecht zum Graben. Der Meßpunktabstand war mit einigen hundert Metern bis zu mehreren Kilometern sehr dicht, um möglichst alle lateralen Variationen der scheinbaren spezifischen Widerstände beobachten zu können. Es zeigte sich, daß die lateralen Variationen der spezifischen Widerstände im Gebiet von Travale sehr groß waren. Bis zu Perioden von 50-100 s ist der Era-Graben die dominierende zweidimensionale Leitfähigkeitsstruktur. Die gemessenen scheinbaren spezifischen Widerstände sind bei längeren Perioden durch dreidimensionale Leitfähigkeitsstrukturen verzerrt. Die scheinbaren elektrischen Widerstände sind innerhalb der geothermischen Anomalie mit Werten bis zu 50 Qm äußerst klein, während sie nördlich des geothermischen Feldes auf 100-300 Qm ansteigen, um dann etwa 7 km NW der Anomalie wieder deutlich abzufallen. Selbst in der tieferen Kruste werden keine höheren Widerstände angetroffen. Die integrierte Leitfähigkeit weist das geothermische Feld ebenso als eine Anomalie der elektrischen Leitfähigkeit aus, während nördlich davon die "hochohmige Barriere" bestätigt wurde. Aus den Ergebnissen der Seismik und Magnetotellurik wurde ein Modell für die geothermische Anomalie von Travale und die Toskana abgeleitet, das sich in drei Stockwerke gliedert: - Das unterste Stockwerk, die Übergangszone zwischen Oberem Mantel und Unterkruste in 20-30 km Tiefe ist die Quelle auf steigender heißer Gase und Flüssigkeiten. Die Temperatur beträgt etwa 700° C. - Das mittlere Stockwerk ist von tief reichenden, vertikalen Störungen durchsetzt, die einen konvektiven Wärmetransport durch die hydrothermalen Phasen in das oberste Stockwerk erlauben. Im Gebiet von Travale hat sich durch längs- und zum Era-Graben querstreichende Störungen eine ausgeprägte Schwächezone in der Kruste gebildet, die einen besonders intensiven Wärmetransport zuläßt. Der Temperaturgradient wird mit 15° C/km angenommen. - Das oberste Stockwerk besteht aus Sedimenten und kristallinen Formationen, die im wesentlichen von horizontalen Abscherungs- und Störungsflächen durchzogen sind, in denen hydrothermale Phasen zirkulieren. Innerhalb der Basements hat sich so ein zweites Reservoir ausgebildet, welches das bekannte geothermische Reservoir in den Karbonaten in Tiefen von 1-2 km durch ein ausgeprägtes Bruchsystem speist. Die Temperatur ist in 4 km Tiefe mit 400° C sehr hoch. Die augenblicklich geförderten heißen Gase und Wässer sind meteorologischen Ursprungs und werden an der Oberkante des toskanischen Basements aufgeheizt. Aus tektonischer Sicht besteht das oberste Stockwerk aus allochthonen Decken, die während der Orogenese über die Toskana hinweggeschoben wurden. Dieser tektonischen Kompressionsphase folgte eine Phase starker lateraler Dehnungen, die bis heute andauern. Das System von Grabenbrüchen und tiefgreifenden Verwerfungen ist Ausdruck dieser Dehnungstektonik. Die damit verbundenen Störungszonen tragen zu einer Entwässerung und Entgasung der tiefen Erdkruste bei und lassen die hydrothermalen Phasen in das oberste Stockwerk aufs teigen. In ausgeprägte Schwächezonen, die die gesamte Kruste durchziehen und die durch undurchlässige Schichten nach oben abgeschlossen werden, kann sich so ein geothermisches Reservoir ausbilden.
    Description: Tuscany is the strongest geothermal anomaly in continental Europe. Numerous local high enthalpy geothermal fields are to be found within this anomaly, e.g. the Travale field. Electromagnetic soundings have been carried out in this geothermal field, which lies in the Era-Graben, in the years 1980 and 1981. The aim of this study was to find the origin as well as the cause of this partly known anomaly, using the methods of magnetotelluric- and geomagnetic depth soundings to study the distribution of electrical conductivity in the earth's crust downwards to the crust/mantle boundary, at least. Parallel to this study the geothermel anomaly of Travale has been studied with the help of various other methods, including electromagnetic, seismic and geochemical surveys. To localize the geothermal anomaly in the earth's crust was not an easy task. Therefore it seemed to be necessary to develop a model of the anomaly, first, and then to localize it. Earlier electromagnetic investigations (HAAK & SCHWARZ 1981) have shown, that nearly the whole area of Tuscany corresponds to an electrical conductivity anomaly: A well conducting cover, reaching down to 10 km depth is underlain by a high resistive basement. At some places within the geothermal anomaly a zone of high conductivity has been found at the depth of the crust/mantle-boundary (between 20 and 30 km) . Seismic refraction measurements are indicating a wide transition zone between the crust und upper mantle, displayed by alternating high- und extreme low-velocity layers. The time-varying electric- and magnetic fields have been recorded in the Travale area in a broad period range from 6-10.000 s, mainly on two profiles, the one parallel, the other perpendicular to the Era-Graben. The stations have been very close to each other, spacings varied between some hundreds of meters and a few kilometers, to study lateral variations of apparent resistivities within the Graben. In deed, lateral variations of apparent resistivities have been very large in the Travale area. Up to 50-100 s the Era-Graben is the dominating 2D-structure, but for longer periods of investigation the three-dimensionality of the electrical conductivity structure has to be considered. The apparent resistivities inside the geothermal anomaly are extremely low, reaching not more than 50 Gm, even in the lower crust, whereas going up to 100-300 firn north of the geothermal field. Further to NW apparent resistivities are coming down again to 5-5o Gm. Total conductance as well indicates the geothermal field as a local conductivity anomaly, whereas more to the north the poorly conducting "barrier" has been confirmed. Based on the results of the magnetotelluic soundings and those of the seismic survey a geothermal model for the anomaly of Travale as well as for Tuscany has been developed. The crust is built up by 3 stories: - The lowermost story of the transition from the mantle to the crust at 20-30 km depth has to be regarded as the origin of hot gases and fluids. Temperature amounts to 700° C. - The central story is more or less fractured vertically so that pathways allow convective transport of heat by means of hydrothermal fluids to the upper story. In the Travale area a weak crustal zone of faults crossing over has developed, allowing the transport of heat to be very intensive. The temperature gradient is assumed to reach not more than 15° C/km. - The uppermost story consists of sediments and more or less horizontally fractured crystalline formations, filled with hot, circulating fluids. Within the basement a second reservoir has evolved, which feeds the known geothermal reservoir in the carbonate series at 1-2 km depth through fractures and cracks in the top of the basement. The temperature of about 400° C in 4 km depth is extremely high. The actually exploited hot gases and fluids are of meterological origin and heated up at the top of the basement. From the tectonic point of view, the uppermost story consists of allochthonous nappes shifted across Tuscany during orogenesis. This compressive tectonic deformation was followed by strong dilatational forces, which are still active in the whole crust, expressed by the features of graben structures and deep reaching faults. This process gives volatiles and water generated by dehydration in the deep crust the chance to rise to the uppermost story. A basement fractured at the top and an impermeable cover in the uppermost layer will then favour the development of a geothermal reservoir.
    Description: thesis
    Description: DFG, SUB Göttingen
    Keywords: ddc:550 ; Geophysik ; Geothermie ; Magnetotellurik
    Language: German
    Type: doc-type:book
    Format: 103
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-18
    Description: Das Untersuchungsgebiet der vorliegenden Arbeit ist der westliche und nordwestliche Rand der Adriaplatte bis in den Bereich der Vortiefen nördlich und östlich des Apennins sowie der Kontaktbereich der Adriaplatte zur europäischen Platte im Westalpenbogen und im Gebiet des Ligurischen Meeres. Für dieses Areal werden Aufbau und Struktur der Erdkruste beschrieben.
    Description: thesis
    Description: DFG, SUB Göttingen
    Keywords: ddc:551.13 ; Geophysik ; Erdkruste ; Geothermische Anomalie
    Language: German
    Type: doc-type:book
    Format: 122
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...