ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-04-04
    Description: Sewage disposal onto agricultural land may result in the high accumulation of organic wastes, which questions the applicability of typical elemental analysis used for the soil components. To monitor the contamination status of agricultural soils at a former sedimentation basin, after the long‐term cessation of wastewater irrigation, 110 locations (15–20 cm depth) and 4 boreholes (up to 100 cm depth) were sampled to determine pH, loss on ignition, and concentration of Ni, Cu, Pb, Zn, and Cr. Additionally, the applicability of portable X‐ray fluorescence (pXRF) for the soil samples highly influenced by the organic wastes was evaluated. The study revealed the presence of a relatively homogenous sewage waste layer (depth of 20 cm), characterized by slightly acidic to neutral pH (6.3–7.5), high organic matter (OM) accumulation (up to 49%), and elevated concentration (mg kg −1) ranges between: Pb (5–321), Cu (31–2828), Ni (10–193), Cr (14–966), and Zn (76–6639). The pXRF analysis revealed metal concentration increase in mineral samples (up to 50%). The regression models and correction factors demonstrated high correlation and significance of pXRF measurement with response to increasing OM content, with the lowest r 2 = 0.86 obtained for Ni. Correlation of pXRF and AES measurement illustrated element‐dependent response for soils high in organics. Zn, Cu, and Cr pXRF analysis led to a slight underestimation in lower values, but overall good correlations (0.87; 0.89; and 0.88 respectively). Pb and Ni pXRF measurement revealed higher deviation from the reference in both lower and higher concentrations (0.74 and 0.70, respectively).
    Description: German Federation of Industrial Research Associations http://dx.doi.org/10.13039/501100002723
    Description: Federal Ministry for Economic Affairs and Energy http://dx.doi.org/10.13039/501100006360
    Keywords: ddc:577.14
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-04-07
    Description: Many large rivers used for navigation have lost their hydromorphological heterogeneity, which has led to the widespread loss of native biodiversity and the concurrent establishment of non‐native communities. While the effects on biodiversity are well‐described, we know little about how the loss of natural habitats and the restructuring of communities cumulate into effects on riverine food webs. We constructed binary and ingestion webs for benthic macroinvertebrates and their resources in the Elbe River (Germany) and compared if food chain length, food web complexity, robustness, ingestion rates, and consumer‐resource interaction strength differ among three shoreline engineering practices. Food webs at profoundly altered shorelines were significantly less complex and had significantly shorter food chains than the food web at the semi‐natural shoreline. However, food web robustness to a simulated loss of species was comparable at all shorelines. Total ingestion rates were up to eight times lower at highly altered shorelines due to significantly lower ingestion rates by native species. Predator–prey interaction strength was comparable among shorelines due to higher shares of non‐native predators, indicating that non‐native predators can be functionally equivalent to native predators. We attributed the observed food web differences to the absence of complex habitats at profoundly altered shorelines and the accompanied absence of specialized consumers. Our study provides empirical evidence that hydromorphological modifications reduce the efficiency of food webs to control organic matter dynamics and may ultimately affect the provisioning of riverine ecosystem services.
    Keywords: ddc:339.95 ; ddc:551.483
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-04-01
    Description: Using a household and plot‐level survey conducted in Ethiopia, this study analyses the difference in farmers' adoption of sustainable land management (SLM) practices between their rainfed and irrigated plots. The paper also investigates the varying influence of different types of irrigation water management systems and associated irrigation technologies on the adoption of SLM practices in irrigated plots. After controlling for heterogeneity among different irrigation water management systems and technologies, we found that access to irrigation play major role in enhancing farmers' motivation to adopt more SLM practices. Furthermore, the combined effect of irrigation water management system and irrigation technology on type and number of SLM practices adopted is quite varied and very significant. The evidence highlights that farmers adopt more SLM practices in their plots with pump irrigation compared with those plots where gravity irrigation is applied because pump irrigation systems enhance complementarities with SLM practices. Finally, the findings underscore that the type of irrigation water management and the irrigation technology applied play an important role in restoring degraded lands and maintaining soil fertility, even when farmers' adoption of irrigation was not explicitly triggered by concerns for soil health.
    Description: Center for Development Research (ZEF), University of Bonn
    Description: CGIAR Research Program on Water, Land, and Ecosystems
    Description: Deutscher Akademischer Austauschdienst (DAAD) http://dx.doi.org/10.13039/501100001655
    Description: Dr. Hermann Eiselen Doctoral Program of the Foundation Fiat
    Description: Federal Ministry for Economic Cooperation and Development (BMZ) of Germany, The Water‐Energy‐Food Nexus: Global, Basin and Local Case Studies of Resource Use Efficiency Under Growing Natural Resource Scarcity
    Keywords: ddc:631
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-04-01
    Description: Increased deposition of fine sediments in rivers and streams affects a range of key ecosystem processes across the sediment–water interface, and it is a critical aspect of river habitat degradation and restoration. Understanding the mechanisms leading to fine sediment accumulation along and across streambeds and their effect on ecological processes is essential for comprehending human impacts on river ecosystems and informing river restoration. Here, we introduce the HydroEcoSedimentary tool (HEST) as an integrated approach to assess hydro‐sedimentary and ecologically relevant processes together. The HEST integrates the estimation of sedimentary processes in the interstitial zone, as well as hydraulic, geochemical and ecological assessments, with a focus on brown trout early life stages. Compared to other methods, the HEST expands the possibilities to monitor and quantify fine sediment deposition in streambeds by differentiating between vertical, lateral and longitudinal infiltration pathways, and distinguishing between the depth (upper vs. lower layers) at which interstitial processes occur within the sediment column. By testing the method in two rivers with different degrees of morphological degradation, we detail the possible measurements and uses of the HEST, demonstrate its feasibility and discuss its reliability.
    Description: Alexander von Humboldt‐Stiftung http://dx.doi.org/10.13039/100005156
    Description: Bavarian State Ministry of Science and Arts (Bayerisches Staatsministerium für Wissenschaft und Kunst)
    Keywords: ddc:551.48 ; ddc:550.724
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-04-01
    Description: In thermally stratified reservoirs, inflows form density currents according to the interplay between inflow temperature and reservoir stratification. The temperature of inflowing water is affected by catchment properties, including shading by riparian vegetation. We hypothesize that the degree of shading in the catchment can affect the inflow dynamics in downstream reservoirs by changing inflow temperature and consequently the nature of the density current. We test it for a subtropical drinking water reservoir by combining catchment‐scale hydrological and stream temperature modeling with observations of reservoir stratification. We analyze the formation of density currents, defined as under, inter and overflow, for scenarios with contrasting shading conditions in the catchment. Inflow temperatures were simulated with the distributed water‐balance model LARSIM‐WT, which integrates heat‐balance and water temperature. River temperature measurements and simulations are in good agreement with a RMSE of 0.58°C. In simulations using the present state of shading, underflows are the most frequent flow path, 63% of the annual period. During the remaining time, river intrusion form interflows. In a scenario without stream shading, average inflow temperature increased by 2.2°C. Thus, interflows were the most frequent flow path (51%), followed by underflows (34%) and overflows (15%). With this change, we would expect a degradation of reservoir water quality, as overflows promote longer periods of anoxia and nutrient loads would be delivered to the photic zone, a potential trigger for algae blooms. This study revealed a potentially important, yet unexplored aspect of catchment management for controlling reservoir water quality.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: https://doi.org/10.5281/zenodo.4746288
    Keywords: ddc:628.1 ; ddc:551.48
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-04-01
    Description: Large artificial lakes and reservoirs affect the meteorological regime of the shore area and the local climate takes on a number of new features that were previously absent. This work focuses on the weather impact of the Alqueva reservoir, the largest artificial lake in Western Europe. An extensive set of numerical simulations using Meso‐NH mesoscale atmospheric model coupled with FLake (Freshwater Lake) scheme was carried out. The simulations covered a 12‐month period that was chosen to compose a so‐called Typical Meteorological Year. This artificial time period is meant to represent the typical meteorological conditions in the region and the model results are used to assess the changes in the local climate. To evaluate the raw impact of the reservoir, two different scenarios of simulations were compared: (A) with the reservoir as it exists nowadays and (B) without the reservoir using the older surface dataset. The results show decrease of air temperature during daytime (10–9°C) and nighttime increase (up to 10°C). In nearest towns, daily maximum temperature decreased and daily minimum temperature increased, which refers to milder weather conditions. Alqueva mainly showed suppression in fog formation in the nearby area. Local breeze regime was studied and monthly lake/land breezes were described.
    Description: Large lakes and artificial reservoirs can affect the meteorological regime of their coastal areas and impact the local climate. This work focuses on the weather impact of the Alqueva reservoir, the largest artificial lake in Western Europe, studied on the basis of mesoscale atmospheric modelling data over the 12‐month period composed in a typical meteorological year for the region of interest.
    Description: ALOP project
    Description: COMPETE 2020 ICT project
    Description: Fundação para a Ciência e a Tecnologia http://dx.doi.org/10.13039/501100001871
    Description: TOMAQAPA
    Description: http://mesonh.aero.obs-mip.fr/mesonh54/Download
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-03-31
    Description: The local ensemble transform Kalman filter (LETKF) suggested by Hunt et al., 2007 is a very popular method for ensemble data assimilation. It is the operational method for convective‐scale data assimilation at Deutscher Wetterdienst (DWD). At DWD, based on the LETKF, three‐dimensional volume radar observations are assimilated operationally for the operational ICON‐D2. However, one major challenge for the LETKF is the situation where observations show precipitation (reflectivity) whereas all ensemble members do not show such reflectivity at a given point in space. In this case, there is no sensitivity of the LETKF with respect to the observations, and the analysis increment based on the observed reflectivity is zero. The goal of this work is to develop a targeted covariance inflation (TCI) for the assimilation of 3D‐volume radar data based on the LETKF, adding artificial sensitivity and making the LETKF react properly to the radar observations. The basic idea of the TCI is to employ an additive covariance inflation as entrance point for the LETKF. Here, we construct perturbations to the simulated observation which are used by the core LETKF assimilation step. The perturbations are constructed such that they exhibit a correlation between humidity and reflectivity. This leads to a change in humidity in such a way that precipitation is more likely to occur. We describe and demonstrate the theoretical basis of the method. We then present a case study where targeted covariance inflation leads to a clear improvement of the LETKF and precipitation forecast. All examples are based on the German radar network and the ICON‐D2 model over Central Europe.
    Description: The goal of this work is to develop a targeted covariance inflation (TCI) for the assimilation of 3D‐volume radar data based on the local ensemble transform Kalman filter (LETKF), adding artificial sensitivity and making the LETKF react properly to the radar observations. Perturbations to the simulated observations are constructed such that they exhibit an empirically derived correlation between humidity and reflectivity. This leads to a change in humidity in such a way that precipitation is more likely to occur.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-03-28
    Description: We use symbolic regression to estimate daily precipitation amounts at six stations in the Alpine region from a global reanalysis. Symbolic regression only prescribes the set of mathematical expressions allowed in the regression model, but not its structure. The regression models are generated by genetic programming (GP) in analogy to biological evolution. The two conflicting objectives of a low root‐mean‐square error (RMSE) and consistency in the distribution between model and observations are treated as a multi‐objective optimization problem. This allows us to derive a set of downscaling models that represents different achievable trade‐offs between the two conflicting objectives, a so‐called Pareto set. Our GP setup limits the size of the regression models and uses an analytical quotient instead of a standard or protected division operator. With this setup we obtain models that have a generalization performance comparable with generalized linear regression models (GLMs), which are used as a benchmark. We generate deterministic and stochastic downscaling models with GP. The deterministic downscaling models with low RMSE outperform the respective stochastic models. The stochastic models with low IQD, however, perform slightly better than the respective deterministic models for the majority of cases. No approach is uniquely superior. The stochastic models with optimal IQD provide useful distribution estimates that capture the stochastic uncertainty similar to or slightly better than the GLM‐based downscaling.
    Description: We have fitted deterministic and stochastic empirical‐statistical downscaling models that represent different possible compromises between two conflicting objectives: (a) a low RMSE and (b) consistency in the distribution between downscaled series and reference observations. The graphic shows the skill of our downscaling models w.r.t. the two objectives (larger is better) for the station Sonnblick.
    Description: CRC/TR32: Patterns in Soil‐Vegetation‐Atmosphere Systems: Monitoring, Modelling and Data Assimilation; funded by the German Research Foundation (Deutsche Forschungsgemeinschaft DFG) http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551.577 ; ddc:550.2
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-03-23
    Description: The modeling of the atmospheric boundary layer over sea ice is still challenging because of the complex interaction between clouds, radiation and turbulence over the often inhomogeneous sea ice cover. There is still much uncertainty concerning sea ice roughness, near‐surface thermal stability and related processes, and their accurate parameterization. Here, a regional Arctic climate model forced by ERA‐Interim data was used to test the sensitivity of climate simulations to a modified surface flux parameterization for wintertime conditions over the Arctic. The reference parameterization as well as the modified one is based on Monin–Obukhov similarity theory, but different roughness lengths were prescribed and the stability dependence of the transfer coefficients for momentum, heat and moisture differed from each other. The modified parameterization accounts for the most comprehensive observations that are presently available over sea ice in the inner Arctic. Independent of the parameterization used, the model was able to reproduce the two observed dominant winter states with respect to cloud cover and longwave radiation. A stepwise use of the different parameterization assumptions showed that modifications of both surface roughness and stability dependence had a considerable impact on quantities such as air pressure, wind and near‐surface turbulent fluxes. However, the reduction of surface roughness to values agreeing with those observed during the Surface Heat Budget of the Arctic Ocean campaign led to an improvement in the western Arctic, while the modified stability parameterization had only a minor impact. The latter could be traced back to the model's underestimation of the strength of stability over sea ice. Future work should concentrate on possible reasons for this underestimation and on the question of generality of the results for other climate models.
    Description: The modeling of the atmospheric boundary layer over sea ice is challenging. This is, among others, due to the distinct sea ice surface roughness and pressure ridges as shown in the image, and the often stably stratified atmosphere. We quantified the impact of used parameterizations and show that both surface roughness and stability dependence have a considerable impact on near‐surface turbulent fluxes and atmospheric circulation in Arctic climate simulations.
    Description: German Research Foundation (DFG)
    Description: Helmholtz Association (HGF), POLEX http://dx.doi.org/10.13039/100003872
    Description: Russian Science Foundation (RSF) http://dx.doi.org/10.13039/501100006769
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-03-29
    Description: The Tianshan Mountains, with their status as ‘water tower’, receive quantities of precipitation that are among the highest in Central Asia. There are considerable knowledge gaps regarding the understanding of spatial and temporal patterns of precipitation over this water‐scarce region. Based on the Global Precipitation Climatology Centre (GPCC) data set, this study evaluated the precipitation variations over Tianshan Mountains on different time scales by using Mann‐Kendall (M‐K) test approaches and the ensemble empirical mode decomposition (EEMD) method. The results show that (a) most parts of Tianshan experienced increasing annual precipitation during 1950–2016 while Western Tianshan, which is the wettest region, faced a downtrend of precipitation during the same 67 years; (b) the annual precipitation in the Tianshan Mountains has exhibited high‐frequency variations with 3‐ and 6‐year quasi‐periods and low‐frequency variations with 12‐, 27‐year quasi‐periods. On the decadal scale, Tianshan had two dry periods (1950–1962 and 1973–1984) and two wet periods (1962–1972 and 1985–2016) and has experienced a tendency of continuous humidification since 2004; (c) the precipitation over the Tianshan Mountains shows a strong seasonality. In total, 63.6% of all precipitation falls in spring and summer. Distinctive differences are found in seasonal precipitation variations among the sub‐Tianshan regions. Obvious upward trends of precipitation over Eastern Tianshan were found in all seasons, with Eastern Tianshan entering a humid period as early as 1986. Northern and Central Tianshan experienced a decreasing trend in summer and spring. However, in the other seasons, those two sub‐Tianshan regions have been in humid periods since the 1990s. The precipitation over Western Tianshan showed an upward trend in summer and autumn. The obvious downward trends in spring and winter have led to dry periods in these two seasons from 1997–2014 to 2008–2016, respectively.
    Description: Most parts of Tianshan experienced increasing annual precipitation during 1950–2016 while Western Tianshan, which is the wettest region, faced a downtrend of precipitation during the same 67 years. Distinctive differences are found in seasonal precipitation variations among the sub‐Tianshan regions.
    Description: Humboldt‐Universität zu Berlin National Natural Science Foundation of China
    Description: China Scholarship Council (CSC)
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...