ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (542)
  • Data
  • Berlin ; Heidelberg : Springer  (542)
  • English  (542)
Collection
  • Books  (542)
  • Data
Language
Classification
Branch Library
Reading Room Location
  • 1
    Monograph available for loan
    Monograph available for loan
    Berlin ; Heidelberg : Springer
    Associated volumes
    Call number: M 23.95061
    In: Ecological studies
    Type of Medium: Monograph available for loan
    Pages: X, 484 Seiten , Illustrationen
    Edition: Softcover reprint of the original 1st ed. 1985
    ISBN: 978-3-642-70292-1 , 978-3-642-70292-1
    Series Statement: Ecological studies 53
    Language: English
    Note: A. Introduction.- Obituary.- Purpose of this Book.- Synopsis.- B. General Framework of Hypersaline Environments with Special Reference to the Red Sea.- 1. Introduction and Definitions.- 2. The Northern Red Sea, a Historical Sketch.- 3. Gulf of Elat (Aqaba). Geological and Sedimentological Framework.- 4. Coastal Evaporite Systems.- 5. Hypersaline Sea-marginal Flats of the Gulfs of Elat and Suez.- 6. Anchialine Pools — Comparative Hydrobiology.- 7. Botanical Studies on Coastal Salinas and Sabkhas of the Sinai.- C. The Gavish Sabkha — A Case Study.- 8. Introduction.- 9. Geomorphology, Mineralogy and Groundwater Geochemistry as Factors of the Hydrodynamic System of the Gavish Sabkha.- 10. The Ras Muhammad Pool: Implications for the Gavish Sabkha.- 11 Salinity and Water Activity Related Zonation of Microbial Communities and Potential Stromatolites of the Gavish Sabkha.- 12. Structure and Physiology of Square-shaped and Other Halophilic Bacteria from the Gavish Sabkha.- 13. Photoactive Pigments in Halobacteria from the Gavish Sabkha.- 14. Photosynthetic Microorganisms of the Gavish Sabkha.- 15. The Fauna of the Gavish Sabkha and the Solar Lake — a Comparative Study.- 16. Trace Metal Concentrations in Sediments from the Gavish Sabkha.- 17. Biogeochemistry of Gavish Sabkha Sediments I. Studies on Neutral Reducing Sugars and Lipid Moieties by Gas Chromatography-Mass Spectrometry.- 18. Biogeochemistry of Gavish Sabkha Sediments II. Pyrolysis Mass Spectrometry of the Laminated Microbial Mat in the Permanently Water-Covered Zone Before and After the Desert Sheetflood of 1979.- 19. Carbon Isotope Geochemistry and 14C Ages of Microbial Mats from the Gavish Sabkha and the Solar Lake.- D. Applied Aspects and Paleoecology.- 20. Introduction.- 21. A Paleobiological Perspective on Sabkhas.- 22. Applied and Economic Aspects of Sabkha Systems — Genesis of Salt, Ore and Hydrocarbon Deposits, and Biotechnology.- Acknowledgements.- References.- Taxonomic Index.
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Berlin ; Heidelberg : Springer
    Call number: 12/M 00.0197 ; PIK N 456-99-0012
    Type of Medium: Monograph available for loan
    Pages: XI, 179 S.
    ISBN: 3540657843
    Classification:
    Meteorology and Climatology
    Language: English
    Location: Reading room
    Location: A 18 - must be ordered
    Branch Library: GFZ Library
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Unknown
    Berlin ; Heidelberg : Springer
    Description / Table of Contents: PREFACE Following the economical and social development of the local communities, mountain regions of temperate climates are increasingly becoming the site of valuable infrastructures and important urban and industrial settlements. As the catastrophic events of last years in the European Alps have clearly shown, the vulnerability of these territories has correspondingly increased, in terms of both property damage and losses of human life. Until recently, the hydraulic scientific community has paid little attention to mountain watersheds, except perhaps during the period if the hydropower development. Nevertheless attention was then focused on problems and methodologies somewhat different from the issues of actual environmental concern. More recently, however, hydraulic engineers have joined their colleagues from forest and rural engineering, who have traditionally dealt with erosion control in mountain areas, to bring in their own methodology, already experienced in lowland rivers. At the same time, academic people focused an interest in some phenomena, like massive transport, which is typical of mountain environment. To bring together all these contributions and to make the state of the art of the mountain river science (oropotamology) and technology, an International Workshop was called at the University of Trent (Italy), on October 1989, under the sponsorship of Fluvial Hydraulic Section of the IAHR. Three main topics have been recognized as particularly relevant from the point of view of both research and professivnal people: a) Hydrodynamics of steep channels and local scale process; b) Sediment movement and sediment training, with special emphasis on massive transport; c) Particular features of sediment transport related to non-uniform grain-size. However, as it is the case in these circumstances, the contest of several contributions often spread over more than one topic. In the following Introduction to papers, the three topics were split into 11 Sections, each one devoted to a more particular aspect recurrently addressed during the discussion. The same paper, thus, may be mentioned in different Sections of the Introduction.
    Pages: Online-Ressource (468 Seiten)
    ISBN: 9783540544913
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Unknown
    Berlin ; Heidelberg : Springer
    Description / Table of Contents: INTRODUCTION In the context of evolutionary studies, it is the privilege of paleontologists to trace the actual course of evolutionary change over time spans that are adequate for such a slow process. At the same time it is their crux that they can not always hope to do this with the resolution necessary to reveal the causal relationships involved. The Tübingen Sonderforschungsbereich 53, "Palökologie", was primarily geared to study the interrelationships between organisms and environments in the fossil record. As is pointed out in this volume, such an approach will necessarily emphasize the static aspect of this relationship, all the more since this is what we need for the practical purposes of facies recognition. This was clone during a time interval of thirteen years at the level of individual species and taxonomic groups ("Konstruktions-Morphologie"), of characteristic facies complexes ("Fossil-Lagerstätten") and of assemblages ("Fossil- VergeseIlschaftungen") with the aim to recognize general patterns that persist in spite of the historical and evolutionary changes in the biosphere. But as our project came closer to its end, the possible causal relationships between physical and evolutionary changes became more tangible. This trend is expressed by symposia devoted to the biological effects of long term tectonic changes (KULLMANN & SCHÖNENBERG, eds., 1983) and of short term physical events (EINSELE & SEILACHER, eds., 1982). But in retrospect it appears that the time scales of the environmental changes chosen were either too large or too small to reveal the mechanisms of evolutionary response. The present volume is the outcome of a symposium of the projects B 20 ("Bankungsrhythmen in sedimentologischer, ökologischer und diagenetischer Sicht", directed by U. BAYER), D 40 ("Analoge Gehäuse-Aberrationen bei Ammonoideen", directed by J. WIEDMANN) and D 60 ("Substratwechsel im marinen Benthos", directed by A. SEILACHER) in September, 1983. tt addresses environmental changes at time scales large enough to produce more than a local ecological response and short enough to observe evolutionary and/or migratory changes at the species and genus levels. It also focusses on basins which by various degrees of isolation provided suitable sites for "evolutionary experiments", such as lakes and marginal epicontinental basins. In a way, this book is a successor of the previous one on "Cyclic and event stratification" (EINSELE & SEILACHER, eds., 1982). Small scale cycles and events are the 'primitives' of a sedimentary sequence, the lowermost scale from which it can be deciphered. However, medium and long term physical cycles commonly impress sedimentological and lithological trends on the stratigraphic column which are accompanied by faunal replacements and cycles. But since sedimentation is controlled both by physical and biological processes, which are intercorrelated in complicated ways, we also need to decode the stratigraphic text. In this effort, paleontological and sedimentological interpretation must go hand in hand. On the 'megascale' of global sea-level changes faunal and species evolution is triggered by opening and closing of migration pathways, sometimes providing us with malor biostratigraphic boundaries. As it turns out, however, integrated research and the choice of suitable scales do not free us from problems of resolution. Thus our inability to distinguish local speciation from ecophenotypic modification and from immigration in the fossil record excludes definite evolutionary answers even in well studied cases. Nevertheless we hope that this approach opens a fruitful discussion, in which stratigraphy, systematic paleontology and paleoecology will be reconciled in a concerted effort to eventually understand the evolutionary mechanisms of our biosphere.
    Pages: Online-Ressource (465 Seiten)
    ISBN: 9783540139829
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Unknown
    Berlin ; Heidelberg : Springer
    Keywords: Fehlersuche ; Geophysikalische Methoden ; entropy ; environment ; error analysis ; exploration ; geophysical methods ; geophysics ; inversion ; modeling ; signal processing
    Description / Table of Contents: Introduction / Pages 1-32 --- Interpretation using nomograms / Pages 33-47 --- Linear parameters / Pages 49-114 --- Non-linear parameters / Pages 115-173 --- Maximum likelihood and maximum entropy / Pages 175-193 --- Analytic inversion / Pages 195-211 --- Advanced inversion methods / Pages 213-227 --- Error analysis / Pages 229-243 --- Parallel computation in modelling and inversion / Pages 245-255
    Pages: Online-Ressource (262 Seiten) , Illustrationen, Diagramme
    ISBN: 9783540472636
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Unknown
    Berlin ; Heidelberg : Springer
    Description / Table of Contents: INTRODUCTION Over the past 18 years the author and several colleagues have developed a mathematical model designed to predict the propagation characteristics of acoustic waves in marine sediments. The model is based on the classical work of Maurice Biot who developed a comprehensive theory for the mechanics of porous, deformable media in a series of papers spanning the time period from 1941 to 1973. Since our objective was to develop a practical working model that could be used as a guide in planning and interpreting experimental work, we began with the simplest possible form of the model and added various complexities only as they were needed to explain new variations in the data that were obtained. Thus the number of material parameters that had to be measured or assumed at any stage in the development of the model was kept to a minimum. Since the first version of the model was introduced in 1970, we have published over twenty technical papers covering various stages of its development and many papers have been published by colleagues who have utilized our work in various ways. This monograph is an attempt to summarize the development and use of the model to date. Acoustic waves in ocean sediments may be considered as a limiting case in the more general category of mechanical waves that can propagate in fluid-saturated porous media. The general problem of wave motion in this kind of material has been studied extensively over the past thirty years by engineers, geophysicists and acousticians for a variety of reasons. In some cases, interest is focused on low-frequency waves of rather large amplitude, such as those that arise near the source of an earthquake or near a building housing heavy, vibrating machinery. At other times, the main interest is in waves of low frequency and amplitude that have traversed long distances through the sediment. In still another category, high-frequency waves that are able to resolve thin layering and other fine structural details are of interest in studying near-bottom sediments. Thus the full spread of frequency and amplitude has been studied for geological materials ranging from soft, unconsolidated sediments to rock. Because of the almost limitless combinations of different types of sediment, stratification and structure, accurate mathematical description of the wave field produced by a particular source can be constructed only if accurate descriptions of the acoustic properties of individual components can be specified. These properties depend on the geological history of the sediment deposit, on the frequency content of the wave field and on a number of other factors that depend on the environment in situ. A survey of the literature suggests that there are a number of parameters that play principal roles in controlling the dynamic response of saturated sediments...
    Pages: Online-Ressource (153 Seiten)
    ISBN: 9780387971919
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Unknown
    Berlin ; Heidelberg : Springer
    Description / Table of Contents: PREFACE This book represents the first attempt in three decades to marshall out available information on the regional geology of Africa for advanced undergraduates and beginning graduate students. Geologic education in African universities is severely hampered by the lack of a textbook on African regional geology. This situation is greatly exacerbated by the inability of most African universities to purchase reference books and maintain journal subscriptions. Besides, geologic information about Africa is so widely dispersed that a balanced and comprehensive course content on Africa is beyond the routine preparation of lecture notes by university teachers. Since geology is a universal subject and Africa is one of the largest landmasses on Earth with one of the longest continuous records of Earth history, there is no doubt that geologic education in other parts of the world will benefit from a comprehensive presentation of African geologic case histories. The scope of this text also addresses the need of the professional geologist, who may require some general or background information about an unfamiliar African geologic region or age interval. Africa occupies a central position in the world's mineral raw materials trade. Because of its enormous extent and great geologic age, the diversity and size of Africa's mineral endowment is unparalleled. Africa is the leading source of gold, diamond, uranium, and dominates the world's supply of strategic minerals such as chromium, manganese, cobalt, and platinum. Consequently, African nations from Algeria to Zimbabwe depend solely on mineral exports for economic survival. The geologic factors which govern economic mineral deposits are stressed in this text. The geological history of Africa spans 3.8 billion years, a record that is unique both in duration and continuity. Few other parts of our planet match the plethora of geologic phenomena and processes that are displayed in the African continent. From the various stages of crustal evolution decipherable from the Archean of southern Africa, through the plate tectonics scenarios in the ubiquitous Late Proterozoic-Early Paleozoic Pan-African mobile belts and in the Hercynian and Alpine orogenies of northwest Africa, to the East African Rift Valley, Africa is replete with excellent examples and problems for a course on regional tectonics. Teachers of igneous and metamorphic petrology can hardly ignore Africa's anorogenic magmatism (e.g.. layered ultramafic intrusives such as the Great Dyke and the Bushveld Complex; the Tete gabbro-anorthosite pluton; alkaline complexes; basaltic volcanism), or tantalizing highgrade metamorphic terranes such as the Limpopo belt, the Namaqua mobile belt, and the Mozambique belt. From the extensive Precambrian supracrustal sequences throughout the continent with enormous thicknesses of sedimentary rocks that have hardly been deformed or metamorphosed, to the stratigraphic evolution of Africa's present-day passive continental margin, there is a complete spectrum of facies models upon which to base a course on basin analysis and stratigraphy. To maintain its integrity a course on historical geology anywhere in the world must address the theory of Continental Drift beyond invoking past continuities between West Africa and South America. Past connections between West Africa and eastern North America must equally be explored, so also connections between northeast Africa and Arabia, and the paleogeography of southern Gondwana where Africa occupied centre stage. The Precambrian fossil record, the transitions from reptiles to the earliest mammals and dinosaurs, and the evolution of Man are among Africa's unique contributions to the history of life and the story of organic evolution. Although it lies today in the tropics Africa was the theatre of the Earth's most-spectacular glaciations. Even after the scene of continental glaciation had shifted to the northern continents only lately during the Pleistocene, Africa still witnessed spectacular climatic fluctuations during the Quaternary. Certainly students of archeology and paleoanthropology cannot overlook the Quaternary paleoenvironmental record of the Olduvai Gorge in Tanzania, the Lake Turkana basin in Kenya, the Nile valley, the Sahara, and southern Africa. But since African examples have already been cited in standard geologic textbook, I have often been asked why it has become necessary to revive the idea of a full-length textbook on African geology, 30 years after this idea was abandoned by the geologic community. My simple answer, as already stated, is that the wealth of available geologic information about Africa is so enormous and fascinating, but so diffuse, that an attempt must be made to assemble and pass on this knowledge.
    Pages: Online-Ressource (722 Seiten)
    ISBN: 9783540545286
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Description / Table of Contents: PREFACE Sedimentation as a Three-Component System describes the most common styles of deposition in marine environments as they relate to sediment composition. Three components, organic matter, carbonate, and siliciclastic sediment, may settle concurrently, but at different rates, intermixing on the sea floor to form a particular sediment composition. A change in the flux of one component is capable of relatively diluting or concentrating the other two components, which can be expressed in the characteristic ratio of organic carbon to carbonate in the resulting sediment. The basic concept of this book is to address organic carbon-carbonate associations in terms of depositional inputs and time spans. In addition, the three-component system describes organic carbon changes related to major facies transitions. Examples include models of the genesis of carbonaceous sediments, with their various laminated to bioturbated lithotypes, and numerical organic carbon prediction. I hope that this book will encourage stimulating discussions and promote a new approach to quantitative stratigraphy...
    Pages: Online-Ressource (211 Seiten)
    ISBN: 9783540573869
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Description / Table of Contents: PREFACE It is to-day generally recognized by environmental scientists that the particular behaviour of trace metals in the environment is determined by their specific physico-chemical forms rather than by their total concentration. With the introduction, several years ago, of atomic absorption spectrometry at many laboratories involved in environmental studies, a technique for simple, rapid and cheap determination of total metal concentrations in environmental samples became available. As a consequence, there is a plethora of scientific papers and reports where metal concentrations in the environment are only reported as total concentrations. It appears that the simplicity of making accurate determinations of total metal contents in water, sediment and biological samples has somewhat masked the need for improved knowledge about the various forms of metals occurring in the environment as well as the bioavailahility of these forms. In other words, the need for metal speciation in studies of metals in the environment does not seem to have become obvious to most environmental scientists until relatively recently. As a matter of fact, it was only in the middle of the 1970s that the first systematic attempts were made to obtain information about the various metal species occurring in environmental samples. During the last ten years, however, a revolutionary change of attitude towards the importance of metal speciation has occurred and considerable research effort has been devoted by environmental scientists to measuring the concentrations of biologically important trace metals in surface waters. There is currently an increasing effort to couple the development of chemical analytical techniques to process-related biological problems. Concurrently, a new focus is being imposed on ecological impact studies, that of determining which active trace metal species merit the most intensive research from the standpoint of environmental perturbation. Current efforts are directed towards the development of chemical speciation schemes which can be related directly to measures of bioavailability...
    Pages: Online-Ressource (190 Seiten)
    ISBN: 9783540180715
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Description / Table of Contents: INTRODUCTION - WHY THIS BOOK? Why study Numerical Geology? Although geologists have dabbled in numbers since the time of Hutton and Playfair, 200 years ago (Merriam 1981e), geology until recently lagged behind other sciences in both the teaching and geological application of mathematics, statistics and computers. Geology Departments incorporating these disciplines in their undergraduate courses are still few (particularly outside the USA). Only two international geomathematical/computing journals are published (Computers & Geosciences; Mathematical Geology), compared with dozens covering, say, petrology or mineralogy. It also remains common practice for years (and $1000s) to be spent setting up computerized machines to produce large volumes of data in machine-readable form, and then for geologists to plot these by hand on a sheet of graph paper! Despite this, the use of numerical methods in geology has now begun to increase at a rate which implies a revolution of no less importance than the plate tectonic revolution of the 1960's -- one whose impact is beginning to be felt throughout the academic, commercial, governmental and private consultative geological communities (Merriam 1969, 1981c). Although a few pioneers have been publishing benchmark papers for some years, the routine usage of machine-based analytical techniques, and the advent of low-priced desk-top microcomputers, have successively enabled and now at last persuaded many more geologists to become both numerate and computerate. Merriam (1980) estimated that two decades of increasing awareness had seen the percentage of geomathematical papers (sensu lato) rise to some 15% of all geological literature; meanwhile, mineralogy-petrology and geochemistry had both fallen to a mere 5% each! In these Notes, geomathematics and numerical geology are used interchangeably, to cover applications of mathematics, statistics and computing to processing real geological data. However, as applications which primarily store or retrieve numbers (e.g. databases) are included, as well as those involving actual mathematical calculations, 'Numerical Geology' is preferred in the title. 'Geomathematics' in this sense should not be confused with 'geostatistics', now usually restricted to a specialised branch of geomathematics dealing with ore body estimation (§20). Reasons for studying Numerical Geology can be summarised as follows: (1) Volumes of new and existing numerical data: The British Geological Survey, the world's oldest, recently celebrated its 150th anniversary by establishing a National Geoscience data-centre, in which it is hoped to store all accumulated records on a computer (Lumsden & Flowarth 1986). Information already existing in the Survey's archives is believed to amount to tens or hundreds of Gb (i.e. = 1010-11 characters) and to be increasing by a few percent annually. The volumes of valuable data existing in the worM's geological archives, over perhaps 250 years of geological endeavour, must therefore be almost immeasurably greater. It is now routine even for students to produce hundreds or thousands of multi-element analyses for a single thesis, while national programs of geochemical sampling easily produce a million individual dement values. Such volumes of data simply cannot be processed realistically by manual means; they require mathematical and statistical manipulation on computers -- in some cases large computers. (2) Better use of coded/digitised data: In addition to intrinsically numerical (e.g. chemical) data, geology produces much information which can be more effectively used if numerically coded. For example, relatively little can be done with records of, say, 'limestone' and 'sandstone' in a borehole log, but very much more can be done if these records are numerically coded as 'limestone = 1' and 'sandstone = 2'. Via encoding, enormous volumes of data are opened to computer processing which would otherwise have lain dormant. More importantly, geological maps - perhaps the most important tool of the entire science - can themselves be digitised (turned into large sets of numbers), opening up vast new possibilities for manipulation, revision, scale-change and other improvements. (3) Intelligent data use: It is absurd to acquire large volumes of data and then not to interpret them fully. Field geologists observing an outcrop commonly split into two (or more) groups, arguing perhaps over the presence or absence of a preferred orientation in kyanite crystals on a schist foliation surface. The possibility of actually measuring these orientations and analyzing them statistically (§17) is rarely aired-- at last in this author's experience! Petrologists are equally culpable when they rely on X-Y or, at maximum 'sophistication', X-Y-Z (triangular) variation diagrams, in representing the evolution of igneous rocks which have commonly been analyzed for up to 50 elements! Whereas some geological controversies (especially those based on interpretation of essentially subjective field observations) cannot be resolved numerically, many others can and should be. This is not to say (as Lord Kelvin did) that quantitative science is the only good science, but qualitative treatment of quantitative data is rarely anything but bad science. (4) Literature search and data retrieval: Most research projects must begin with reviews of the literature and, frequently, with exhaustive compilations of existing data. These are essential if informed views on the topic are to be reached, existing work is not merely to be duplicated, and optimum use is to be made of available funding, The ever-expanding geological literature, however, makes such reviews and compilations increasingly time-consuming and expensive via traditional manual means. Use of the increasing number of both bibliographical and analytical databases (§3) is therefore becoming a prequisite for well-informed, high-quality research. (5) Unification of interests: In these days of inexorably increasing specialisation in ever narrower topics, brought about by the need to keep abreast of the exploding literature, numerical geology forms a rare bridge between different branches not only of geology but of diverse other sciences. The techniques covered in this book are equally applicable (and in many cases have been in routine use for far longer) in biology, botany, geography, medicine, psychology, sociology, zoology, etc. Within geology itself, most topics covered here are as valuable to the stratigrapher as to the petrologist. 'Numerical geologists' are thus in the unique (and paradoxical) position of being both specialists and non-specialists; they may have their own interests, but their numerical and computing knowledge can often help all of their colleagues. (6) Employment prospects: There is a clear and increasing demand for computerate/numerate geologists in nearly all employment fields. In Australia, whose economy is dominated by geology-related activities (principally mining), a comprehensive national survey (AMIRA 1985) estimated that A$40M per annum could be saved by more effective use of computers in geology. Professional computer scientists are also of course in demand, but the inability of some of their number to communicate with 'laymen' is legendary! Consequently, many finns have perpetual need for those rare animals who combine knowledge of computing and mathematics with practical geological experience. Their unique bridging role also means that numerical geologists are less likely to be affected by the vaguaries of the employment market than are more specialised experts. Rationale and aims of this book This is a highly experimental book, constituting the interim text for new (1988) courses in 'Numerical Geology' at the University of Western Australia. It is published in the Springer Lecture Notes in Earth Sciences series precisely because, as the rubric for this series has it, "the timeIiness of a manuscript is more important than its form, which may be unfinished or tentative." Readers are more than welcome to send constructive comments to the author, such that a more seasoned, comprehensive version can be created in due course. Readers' indulgence is meanwhile craved for the number of mistakes which must inevitably remain in a work involving so many citations and cross-references. Emphasis is particularly placed on the word Notes in the series rifle: this book is not a statistical or mathematical treatise. It is not intended to stand on its own, but rather to complement and target the existing literature. It is most emphatically not a substitute for sound statistical knowledge, and indeed, descriptions of each technique are deliberately minimized such that readers shouM never be tempted to rely on this book alone, but should rather read around the subject in the wealth of more authoritative statistical and geomathematical texts cited. In other words, this is a synoptic work, principally about 'how to do', 'when not to do', 'what are the alternatives' and 'where to find out more'. It aims specifically: (1) to introduce geologists to the widest possible range of numerical methods which have already appeared in the literature; and thus (2) to infuse geologists with just sufficient background knowledge that they can: (a) locate more detailed sources of information; (b) understand the broad principles behind interpreting most common geological problems quantitatively; (c) appreciate how to take best advantage of computers; and thereby (d) cope with the "information overload" (Griffiths 1974) which they increasingly face. Even these aims require the reader to become to some extent geologist, computer scientist, mathematician and statistician rolled into one, and a practical balance has therefore been attempted, in which just enough information is hopefully given to expedite correct interpretation and avoidance of pitfalls, but not too much to confuse or deter the reader. Despite the vast literature in mathematics, statistics and computing, and that growing in geomathematics, no previous book was found to fulfill these alms on its own. The range of methods covered here is deliberately much wider than in previous geomathematical textbooks, to provide at least an introduction to most methods geologists may encounter, but other books are consequently relied on for the detail which space here precludes. These Notes adopt a practical approach similar to that in language guidebooks -- at the risk of emulating the 'recipe book' abhorred in some quarters. Every Topic provides a minimum of highly condensed sketch-notes (fuller descriptions are included only where topics are not well covered in existing textbooks), complemented by worked examples using real data from as many fields of geology as space permits. Specialists should thereby be able to locate at least one example close to their problems of the moment. In the earlier (easier) topics, simple worked examples are calculated in full, and equations are given wherever practicable (despite their sometimes forbidding appearance), to enable readers not only to familiarise themselves with the calculations but also to experiment with their own data. In the later (multivariate) topics (where few but the sado-masochistic would wish to try the calculations by hand!), the worked examples comprise simplified output from actual software, to familiarise readers with the types of computer output they may have to interpret in practice. Topics were arranged in previous geomathematical textbooks by statistical subject: 'analysis of variance', 'correlation', 'regression', etc., while nonparametric (rank) methods were usually dealt with separately from classical methods (if at all). Here, topics are arranged by operation (what is to be done), and both classical and rank techniques are covered together, with similar emphasis. When readers know what they want to do, therefore, they need only look in one Topic for all appropriate techniques. The main difficulty of this work is the near impossibility of its goal-- though other books with similarly ambitious goals have been well enough received (e.g.J.Math.Geol. 18(5), 511-512). Some constraints have necessarily been imposed to keep the Notes of manageable size. Geophysics, for example, is sketchily covered, because (i) numerical methods are already far more integrated into most geophysics courses than geology courses; (ii) several recent textbooks (e.g. Cantina & Janecek 1984) cover the corresponding ground for geophysicists. Structural geology is less comprehensively covered or cited than, say, stratigraphy, because (a) it commands many applications of statistics and computing unto itself alone (e.g. 3-D modelling, 'unravelling' of folds), whereas these Notes aim at techniques equally applicable to most branches of geology; (b) excellent comprehensive reviews of structural applications are already available (e.g. Whitten 1969,1981). Remote sensing is also barely covered, since comprehensive source guides similar in purpose to the present one already exist (Carter 1986). For the sake of brevity, phrases throughout this book which refer to males are, with apologies to any whose sensitivities are thereby offended, taken to include females!
    Pages: Online-Ressource (427 Seiten)
    ISBN: 9783540500704
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...