ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MBL  (1)
  • advective flux  (1)
  • agricultural land use  (1)
  • Blackwell Publishing Ltd  (3)
  • American Chemical Society
  • English  (3)
Collection
Publisher
Language
  • English  (3)
Years
  • 1
    Publication Date: 2023-12-12
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Infrared spectroscopy in the visible to near‐infrared (vis–NIR) and mid‐infrared (MIR) regions is a well‐established approach for the prediction of soil properties. Different data fusion and training approaches exist, and the optimal procedures are yet undefined and may depend on the heterogeneity present in the set and on the considered scale. The objectives were to test the usefulness of partial least squares regressions (PLSRs) for soil organic carbon (SOC), total carbon (C〈sub〉t〈/sub〉), total nitrogen (N〈sub〉t〈/sub〉) and pH using vis–NIR and MIR spectroscopy for an independent validation after standard calibration (use of a general PLSR model) or using memory‐based learning (MBL) with and without spiking for a national spectral database. Data fusion approaches were simple concatenation of spectra, outer product analysis (OPA) and model averaging. In total, 481 soils from an Austrian forest soil archive were measured in the vis–NIR and MIR regions, and regressions were calculated. Fivefold calibration‐validation approaches were carried out with a region‐related split of spectra to implement independent validations with n ranging from 47 to 99 soils in different folds. MIR predictions were generally superior over vis–NIR predictions. For all properties, optimal predictions were obtained with data fusion, with OPA and spectra concatenation outperforming model averaging. The greatest robustness of performance was found for OPA and MBL with spiking with 〈italic toggle="no"〉R〈/italic〉〈sup〉2〈/sup〉 ≥ 0.77 (N), 0.85 (SOC), 0.86 (pH) and 0.88 (C〈sub〉t〈/sub〉) in the validations of all folds. Overall, the results indicate that the combination of OPA for vis–NIR and MIR spectra with MBL and spiking has a high potential to accurately estimate properties when using large‐scale soil spectral libraries as reference data. However, the reduction of cost‐effectiveness using two spectrometers needs to be weighed against the potential increase in accuracy compared to a single MIR spectroscopy approach.〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:631.4 ; data fusion ; independent validation ; infrared spectroscopy ; MBL ; nitrogen ; outer product analysis ; pH ; soil organic carbon ; spiking ; total carbon
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-22
    Description: Soil fauna drives crucial processes of energy and nutrient cycling in agricultural systems, and influences the quality of crops and pest incidence. Soil tillage is the most influential agricultural manipulation of soil structure, and has a profound influence on soil biology and its provision of ecosystem services. The objective of this study was to quantify through meta‐analyses the effects of reducing tillage intensity on density and diversity of soil micro‐ and mesofaunal communities, and how these effects vary among different pedoclimatic conditions and interact with concurrent management practices. We present the results of a global meta‐analysis of available literature data on the effects of different tillage intensities on taxonomic and functional groups of soil micro‐ and mesofauna. We collected paired observations (conventional vs. reduced forms of tillage/no‐tillage) from 133 studies across 33 countries. Our results show that reduced tillage intensity or no‐tillage increases the total density of springtails (+35%), mites (+23%), and enchytraeids (+37%) compared to more intense tillage methods. The meta‐analyses for different nematode feeding groups, life‐forms of springtails, and taxonomic mite groups showed higher densities under reduced forms of tillage compared to conventional tillage on omnivorous nematodes (+53%), epedaphic (+81%) and hemiedaphic (+84%) springtails, oribatid (+43%) and mesostigmatid (+57%) mites. Furthermore, the effects of reduced forms of tillage on soil micro‐ and mesofauna varied with depth, climate and soil texture, as well as with tillage method, tillage frequency, concurrent fertilisation, and herbicide application. Our findings suggest that reducing tillage intensity can have positive effects on the density of micro‐ and mesofaunal communities in areas subjected to long‐term intensive cultivation practices. Our results will be useful to support decision making on the management of soil faunal communities and will facilitate modelling efforts of soil biology in global agroecosystems. HIGHLIGHTS Global meta‐analysis to estimate the effect of reducing tillage intensity on micro‐ and mesofauna Reduced tillage or no‐tillage has positive effects on springtail, mite and enchytraeid density Effects vary among nematode feeding groups, springtail life forms and mite suborders Effects vary with texture, climate and depth and depend on the tillage method and frequency
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: https://doi.org/10.20387/bonares-eh0f-hj28
    Keywords: ddc:631.4 ; agricultural land use ; conservation agriculture ; conventional agriculture ; soil biodiversity ; soil cultivation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-09
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Gas transport in soils is usually assumed to be purely diffusive, although several studies have shown that non‐diffusive processes can significantly enhance soil gas transport. These processes include barometric air pressure changes, wind‐induced pressure pumping and static air pressure fields generated by wind interacting with obstacles. The associated pressure gradients in the soil can cause advective gas fluxes that are much larger than diffusive fluxes. However, the contributions of the respective transport processes are difficult to separate. We developed a large chamber system to simulate pressure fields and investigate their influence on soil gas transport. The chamber consists of four subspaces in which pressure is regulated by fans that blow air in or out of the chamber. With this setup, we conducted experiments with oscillating and static pressure fields. CO〈sub〉2〈/sub〉 concentrations were measured along two soil profiles beneath the chamber. We found a significant relationship between static lateral pressure gradients and the change in the CO〈sub〉2〈/sub〉 profiles (R〈sup〉2〈/sup〉 = 0.53; 〈italic toggle="no"〉p〈/italic〉‐value 〈2e‐16). Even small pressure gradients between −1 and 1 Pa relative to ambient pressure resulted in an increase or decrease in CO〈sub〉2〈/sub〉 concentrations of 8% on average in the upper soil, indicating advective flow of air in the pore space. Positive pressure gradients resulted in decreasing, negative pressure gradients in increasing CO〈sub〉2〈/sub〉 concentrations. The concentration changes were probably caused by an advective flow field in the soil beneath the chamber generated by the pressure gradients. No effect of oscillating pressure fields was observed in this study. The results indicate that static lateral pressure gradients have a substantial impact on soil gas transport and therefore are an important driver of gas exchange between soil and atmosphere. Lateral pressure gradients in a comparable range can be induced under windy conditions when wind interacts with terrain features. They can also be caused by chambers used for flux measurements at high wind speed or by fans used for head‐space mixing within the chambers, which yields biased flux estimates.〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:631.4 ; advective flux ; chamber flux measurements ; static air pressure fields ; wind‐induced pressure pumping
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...