ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (13)
  • Maps
  • Amsterdam : Elsevier
  • Dordrecht : Springer
  • English  (13)
  • 1990-1994  (13)
  • 1
    Monograph available for loan
    Monograph available for loan
    Dordrecht : Springer | New York [u.a.] : Chapman & Hall
    Call number: AWI G3-20-93489
    Description / Table of Contents: Frozen Ground Engineering first introduces the reader to the frozen environment and the behavior of frozen soil as an engineering material. In subsequent chapters this information is used in the analysis and design of ground support systems, foundations, and embankments. These and other topics make this book suitable for use by civil engineering students in a one-semester course on frozen ground engineering at the senior or first-year-graduate level. Students are assumed to have a working knowledge of undergraduate mechanics (statics and mechanics of materials) and geotechnical engineering (usual two-course sequence). A knowledge of basic geology would be helpful but is not essential. This book will also be useful to advanced students in other disciplines and to engineers who desire an introduction to frozen ground engineering or references to selected technical publications in the field. BACKGROUND Frozen ground engineering has developed rapidly in the past several decades under the pressure of necessity. As practical problems involving frozen soils broadened in scope, the inadequacy of earlier methods for coping became increasingly apparent. The application of ground freezing to geotechnical projects throughout the world continues to grow as significant advances have been made in ground freezing technology. Freezing is a useful and versatile technique for temporary earth support, groundwater control in difficult soil or rock strata, and the formation of subsurface containment barriers suitable for use in groundwater remediation projects.
    Type of Medium: Monograph available for loan
    Pages: x, 352 Seiten , Illustrationen
    ISBN: 978-1-4757-2292-5
    Language: English
    Note: Contents PREFACE CHAPTER 1. FROZEN GROUND 1.1 Frozen ground support systems Frozen earth wall Design considerations 1.2 Seasonally and perennially frozen ground Cold regions: definition Subsurface temperatures Active layer, Permafrost 1.3 Terrain features in permafrost areas Ground ice features Patterned ground 1.4 Engineering considerations Freezing process Thawing of frozen ground Frost action Useful aspects of frozen ground Ice as a construction material Problems CHAPTER 2. PHYSICAL AND THERMAL PROPERTIES 2.1 Composition and structure of frozen ground Soil types Phase relationships Ice phase Particle size and size distribution Consistency of cohesive soils 2.2 Soil classification Unified soil classification system Frozen soil classification 2.3 Water-ice phase relationships Unfrozen water in frozen soil Effect of solutes on freezing 2.4 Soil frost action Frost action process Frost susceptibility of soils Frost-heave forces Freeze-thaw effects on permeability 2.5 Thermal properties Thermal conductivity Heat capacity Thermal diffusiuity Latent heat of fusion Thermal expansion (or contraction) Problems CHAPTER 3. HEAT FLOW IN SOILS 3.1 Heat transfer at the ground surface Climatic factors Freezing (or thawing) indices Surface n-factor 3.2 Seasonal ground freezing (or thawing) Frost depth Thawing of frozen soil Design implications 3.3 Temperature below cooled (or heated) areas Steady state heat flow Transient temperatures Periodic heat flow 3.4 Thermal analysis: frozen ground support systems Single freeze pipe Wall formation Multiple rows of freeze pipes Problems CHAPTER 4. THAW BEHAVIOR OF FROZEN GROUND 4.1 Thaw settlement 4.2 Consolidation of thawing soils Thaw consolidation Residual stress in thawing soils 4.3 Thaw-consolidation in some layered systems Two layer soil problems Compressible soil ouer discrete ice layers Problems CHAPTER 5. MECHANICAL PROPERTIES OF FROZEN SOILS 5.1 Stress-strain-time and strength behavior Hydrostatic pressure effect on frozen soil behavior Shear stress effect on frozen soil behavior 5.2 Factors influencing creep and strength Creep of frozen soil under constant stress Stress-strain behavior under constant strain rate Ice content effect on strength Normal pressure effect on strength Strain rate effect on strength Temperature effect on strength Frozen soil behauior at cryogenic temperatures 5.3 Analytical representation of creep and strength data General creep equation Strength of frozen soils Comparison with Vyalou's creep and strength equations Normal pressure effect on creep and strength Salinity effect on frozen soil creep and strength 5.4 Frozen soil behavior in uniaxial tension 5.5 Deformability of frozen soils 5.6 Compressibility of frozen soils Problems CHAPTER 6. CONSTRUCTION GROUND FREEZING 6.1 Design considerations Ground freezing applications Soil conditions Groundwater flow Ground movement 6.2 Freezing methods and system installation Primary plant and pumped loop secondary coolant Expendable liquid refrigerant Installation of the cooling system 6.3 Structural design of frozen earth walls Curved walls Straight walls and combinations Tunnels Finite-element method 6.4 Monitoring requirements Freeze hole deviation Temperature Frost boundary location and wall thickness 6.5 Other construction considerations Protection of exposed frozen earth Concrete placement against frozen earth Problems CHAPTER 7. FOUNDATIONS IN FROZEN SOILS 7.1 General considerations Foundations in seasonally frozen ground Foundations in permafrost 7.2 Shallow foundations Selection of foundation method Design of shallow foundations Bearing capacity Settlement considerations 7.3 Pile foundations Pile types Pile placement Pile freezeback Axially loaded piles Laterally loaded piles Anchors in frozen ground 7.4 Frost-heave forces on foundations Tangential forces on a vertical surface Design for frost heave Problems CHAPTER 8. STABILITY OF SOIL MASSES IN COLD REGIONS 8.1 Landslides in permafrost: classification 8.2 Slopes in thawing permafrost Low-angle planar flows Slides 8.3 Slopes in frozen soils 8.4 Slope stabilization methods Construction and design techniques Stabilization of planar slides Stabilization of cut slopes Problems CHAPTER 9. EARTHWORK IN COLD REGIONS 9.1 Site considerations Drainage Thermal and frost action factors Subsurface conditions Material sources 9.2 Excavation and transport Mechanical excavation Drilling and blasting Thawing frozen soil Hydraulic dredging 9.3 Field placement Compaction Placement in water 9.4 Water-retaining embankments on permafrost Unfrozen embankments Frozen embankments Maintaining the frozen state Thermal and stability considerations 9.5 Embankment performance Frost heave Settlement Stability Artificial islands CHAPTER 10. FIELD INVESTIGATIONS 10.1. Sampling frozen ground Sampling methods Sample protection 10.2 Ground-temperature measurement Temperature sensors and measuring equipment 10.3 Field testing of frozen soils Field test methods Pressuremeter test Deep static cone penetration test Other types of field tests 10.4 Geophysical methods Seismic velocities in frozen ground Electrical properties of frozen ground Geophysical techniques used in frozen ground High-frequency electrical methods Borehole logging in permafrost APPENDIX A. SYMBOLS APPENDIX B. SI UNITS APPENDIX C LABORATORY AND FIELD TESTS ON FROZEN SOILS C1 Handling, storage, and machining of specimens prior to testing C2 Uniaxial compression test C3 Uniaxial tensile test C.4 Salinity of soil pore water C5 Thermosiphon C6 Pile load test in permafrost REFERENCES AUTHOR INDEX SUBJECT INDEX
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Amsterdam : Elsevier
    Associated volumes
    Call number: 9/M 95.0460
    In: Developments in precambrian geology
    Type of Medium: Monograph available for loan
    Pages: XIV, 528 S.
    ISBN: 0444816216
    Series Statement: Developments in precambrian geology 11
    Classification:
    Lithosphere
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Unknown
    Amsterdam : Elsevier
    Pages: Online-Ressource (2111-3155 Seiten)
    ISBN: 9780444887665
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Pages: Online-Ressource (735-1520 Seiten)
    ISBN: 9780444894274
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISBN: 9780444878007
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Call number: M 93.0544
    In: Nuclear Physics B , Proceedings Supplement
    Type of Medium: Monograph available for loan
    Pages: xvi, 499 S.
    ISSN: 0920-5632
    Series Statement: Nuclear Physics B , Proceedings Supplement 31
    Classification:
    Astronomy and Astrophysics
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Pages: Online-Ressource (1-733 Seiten)
    ISBN: 9780444880987
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Monograph available for loan
    Monograph available for loan
    Amsterdam : Elsevier
    Associated volumes
    Call number: M 92.0468
    In: Studies in mathematical physics
    Type of Medium: Monograph available for loan
    Pages: xi, 309 S. : Abb.
    ISBN: 0444892583
    Series Statement: Studies in mathematical physics v. 2
    Classification:
    C.1.9.
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Unknown
    Amsterdam : Elsevier
    ISBN: 9780444874610
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Monograph available for loan
    Monograph available for loan
    Amsterdam : Elsevier
    Associated volumes
    Call number: 9454
    In: Developments in solid earth geophysics
    Type of Medium: Monograph available for loan
    Pages: 563 Seiten
    ISBN: 0444412220
    Series Statement: Developments in solid earth geophysics 7
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Call number: M 96.0441 ; AWI G6-92-0439
    In: Developments in sedimentology, 48
    Type of Medium: Monograph available for loan
    Pages: xvi, 707 Seiten , Illustrationen
    ISBN: 0444873910
    Series Statement: Developments in sedimentology 48
    Classification:
    Geochemistry
    Language: English
    Note: TABLE OF CONTENTS Preface Chapter 1. The CO2-Carbonic Acid System and Solution Chemistry Basic Concepts Activity Coefficients in Solutions Influences of Temperature and Pressure The Carbonic Acid System in Seawater Calculation of the Saturation State of Seawater with Respect to Carbonate Minerals Concluding Remarks Chapter 2. Interactions Between Carbonate Minerals and Solutions Sedimentary Carbonate Minerals Basic Concepts Characteristics of Sedimentary Carbonate Minerals Solubility Behavior of Carbonate Minerals General Considerations Calcite and Aragonite Solubility Methods for the Calculation of Equilibrium Solution Composition Under Different Conditions Surface Chemistry of Carbonate Minerals Basic Principles Adsorption of Ions on Carbonate Surfaces Carbonate Dissolution and Precipitation Kinetics Basic Principles Reaction Kinetics in Simple Solutions Reaction Kinetics in Complex Solutions Concluding Remarks Chapter 3. Coprecipitation Reactions and Solid Solutions of Carbonate Minerals General Concepts Background Information Basic Chemical Considerations Coprecipitation of "Foreign" Ions in Carbonate Minerals Examples of Coprecipitation Reactions General Models for Partition Coefficients in Carbonates Magnesian Calcite General Considerations The Fundamental Problems Experimental Observations Hypothesis of a Hydrated Magnesian Calcite Stable Isotope Chemistry General Considerations Oxygen Isotopes Carbon Stable Isotopes Concluding Remarks Chapter 4. The Oceanic Carbonate System and Calcium Carbonate Accumulation in Deep Sea Sediments An Overview of Major Processes The CO2 System in Oceanic Waters The Upper Ocean The Deep Sea Saturation State of Deep Seawater with Respect to CaCO3 Sources and Sedimentation of Deep Sea Carbonates Sources Sedimentation The Distribution of CaCO3 in Deep Sea Sediments and Carbonate Lithofacies General Considerations The Distribution of CaCO3 in Surface Sediments Factors Controlling the Accumulation of Calcium Carbonate in Deep Sea Sediments General Relations Factors Leading to Variability Near Interfacial Processes Variability of Calcium Carbonate Deposition in Deep Sea Sediments with Time Influence of Glacial Times The Impact of Fossil Fuel CO2 on the Ocean-Carbonate System Concluding Remarks Chapter 5. Composition and Source of Shoal-Water Carbonate Sediments Introduction Shoal-Water Carbonates in Space and Time Carbonate Grains and Skeletal Parts Overview and Examples Sediment Classification Depositional Environments Concluding Statement Biomineralization General Aspects Environmental Controls on Mineralogy Stable Isotopes Coprecipitation Precipitation of Carbonates from Seawater Carbonate Chemistry of Shallow Seawater Abiotic Precipitation of CaCO3 from Seawater Sources of Aragonite Needle Muds Formation of Oöids Concluding Remarks 238 Chapter 6. Early Marine Diagenesis of Shoal-Water Carbonate Sediments Introduction Some Preliminary Thermodynamic and Kinetic Considerations Very Early Diagenesis Major Diagenetic Processes Pore Water Chemistry Precipitation of Early Carbonate Cements Dissolution of Carbonates Concluding Remarks Chapter 7. Early Non-Marine Diagenesis of Sedimentary Carbonates Introduction Plate-Tectonic Controls on Diagenesis General Considerations for Early Non-Marine Diagenesis Major Types of Non-Marine Environments Water Chemistry Reactivity of Sedimentary Carbonates Major Phase Transformations The Transformation of Aragonite to Calcite Dolomite Formation Summary Remarks Mass Transfer During Diagenesis General Considerations Geochemical Constraints on Mass Transfer Beachrock Formation Lithification in the Meteoric Environment Introduction The Meteoric Environment and Cement Precipitates Bermuda: A Case Study of a Meteoric Diagenetic Environment Introduction Geological Framework Limestone Chemistry and Isotopic Composition Water Chemistry Carbonate Mass Transfer A Brief Synthesis of Meteoric Diagenesis Diagenetic Stages Effect of Original Mineralogy Climatic Effects Rock-Water Relationships Mixed Meteoric-Marine Regime Concluding Remarks Chapter 8. Carbonates as Sedimentary Rocks in Subsurface Processes Introduction P,T, and X and Carbonate Mineral Stability Subsurface Water Chemistry in Sedimentary Basins Continuous Processes Pressure Solution Dolomitization Mud to Spar Neomorphism Secondary Porosity Cementation in the Subsurface Examples of "Models" of Long-Term Diagenesis The Present Ocean Setting The Present Continental Setting Concluding Remarks Chapter 9. The Current Carbon Cycle and Human Impact Introduction Modern Biogeochemical Cycle of Carbon A Model for the Cycle of Carbon Methane and Carbon Monoxide Fluxes CO2 Fluxes Human Impact on Carbon Fluxes The Fossil Fuel and Land Use Fluxes Observed Atmospheric CO2 Concentration Increase Future'Atmospheric CO2 Concentration Trends Consequences of Increased Atmospheric CO2 Levels The Oceanic System Sources of Calcium, Magnesium, and Carbon for Modern Oceans Mass Balance of Ca, Mg, and C in Present Oceans Oceanic Mass Balance of Elements Interactive with Ca, Mg, and C Concluding Remarks Chapter 10. Sedimentary Carbonates in the Evolution of Earth's Surface Environment Introduction Sedimentary Rock Mass-Age Distributions Secular Trends in Sedimentary Rock Properties Lithologic Types Chemistry and Mineralogy Carbon Cycling Modeling Introduction and Development of a Global Model Glacial-Interglacial Changes of Carbon Dioxide Long-Term Changes of Atmospheric CO2 Phanerozoic Cycling of Sedimentary Carbonates Synopsis of the Origin and Evolution of the Hydrosphere-Atmosphere-Sedimentary Lithosphere Origin of the Hydrosphere The Early Stages The Transitional Stage Modern Conditions Concluding Remarks Epilogue Introduction The Road Traveled The State of the Art Ever Onward References Index
    Location: Upper compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Unknown
    Amsterdam : Elsevier
    ISBN: 9780444880253
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Unknown
    Amsterdam : Elsevier
    ISBN: 9780444880260
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...