ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-05-22
    Description: This archive disseminated through the GFZ-Data Service includes both results and information as-sociated to Bindi et al. (2023). In particular, the archive includes a seismic catalogue reporting ener-gy magnitude Me estimated form vertical P-waves recorded at teleseismic distances in the range 20°≤ D ≤ 98°, following Di Giacomo et al (2008, 2010). The catalogue is built considering 6349 earth-quakes included in the GEOFON (Quinteros et al, 2021) catalogue with moment magnitude Mw larger than 5 and occurring after 2011. Tools used to compute the energy magnitude are free available. In particular, we used stream2segment (Zaccarelli, 2018) to download data from IRIS (https://ds.iris.edu/ds) and EIDA (Strollo et al., 2021) repositories, and me-compute [Zaccarelli, 2023) to process waveforms and compute Me. The methodology applied to me-compute is also implemented as add-on for SeicomP (GFZ and Gempa, 2020) in order to allow the real time computation of Me (https://github.com/SeisComP/scmert).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-10
    Description: Understanding physical processes prior and during eruptions remains challenging, due to uncertainties about subsurface structures and undetected processes within the volcano. Here, the authors use a dedicated fibre-optic cable to obtain strain data and identify volcanic events and image hidden near-surface volcanic structural features at Etna volcano, Italy. In the paper Jousset et al. (2022), we detect and characterize strain signals associated with explosions, and we find evidences for non-linear grain interactions in a scoria layer of spatially variable thickness. We also demonstrate that wavefield separation allows us to incrementally investigate the ground response to various excitation mechanisms, and we identify very small volcanic events, which we relate to fluid migration and degassing. We recorded seismic signals from natural and man-made sources with 2-m spacing along a 1.5-km-long fibre-optic cable layout near the summit of actives craters of Etna volcano, Italy. Those results provide the basis for improved volcano monitoring and hazard assessment using DAS. This data publication contains the full data set used for the analysis. This data set comprises strain-rate data from 1 iDAS interrogator (~750 traces), velocity data from 15 geophones and 4 broadband seismometers, and infrasonic pressure data from infrasound sensors. For further explanation of the data and related processing steps, please refer to Jousset et al. (2022).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-18
    Description: This data set is part 2 of this series and compiles whole-rock chemical data for late-Variscan low-F biotite and two-mica granites in the German Erzgebirge, in the Saxothuringian Zone of the Variscan Orogen. The group of F-poor biotite granites is represented by the composite massifs of Kirchberg and Niederbobritzsch, the Plohn Granite Suite (PGS), the Aue Granite Suite (AGS), and the subsurface granites of Beiersdorf und Bernsbach. For the group of two-mica granites, compositional data for the multi-stage Bergen massif and the granites from Lauter and Schwarzenberg are reported (Figure 1). Crystal-melt fractionation was the dominant process controlling the evolution of bulk composition in the course of massif/pluton formation. However, metasomatic and hydrothermal processes involving late-stage residual melts and high-T late- to post-magmatic fluids became increasingly more important in highly evolved units and have variably modified the abundances of mobile elements. Interaction with the various metamorphic country rocks and infiltration of meteoric low-T fluids have further disturbed the initial chemical patterns in the endocontact zones and zones influenced by surface weathering. The data set reports whole-rock geochemical analyses for enclaves, granites, aplites, endocontact rocks, and some facial varieties. The data are presented as Excel (xlsx) and machine-readable txt formats. The content of the excel sheet and further information on the granites and regional geology are provided in the data description file.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AEA
    In:  Association for Environmental Archaeology (AEA) Newsletter
    Publication Date: 2023-06-06
    Language: English
    Type: info:eu-repo/semantics/other
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-01-19
    Description: The profile 3A was recorded in 1990 as part of the DEKORP project, the German deep seismic reflection program. The focus of the DEKORP project was on deep crustal and lithospheric structures and therefore originally not on structures at shallower depths. From today's perspective, however, this depth range is of great interest for a wide range of possible technical applications (including medium-depth and deep geothermal projects). The original data is published by Stiller et al. (2021). On behalf of the Hessian Agency of Nature Conservation, Environment and Geology (HLNUG). From the 128 km long profile 3A the southernmost 104 km (plus additional 9 km northwards with decreasing CDP coverage to avoid boundary effects during migration) were reprocessed. As a particularity, also a set of 6 cross-lines, each ca. 9.6 km in length and perpendicular to the main line, were surveyed along DEKORP 3A to get information about possible cross-dips. Five of those short cross-lines (Q12-Q16) were reprocessed in 2D and 3D as well. The focus of reprocessing of the old data was on improving the resolution / mapping of geological structures down to a depth of 6 km (approx. 3 s TWT) to describe the prolongation of faults and geological structures in more detail than in previous studies. In order to achieve these goals and in view of the fact that today's processing and evaluation methods have been improved considerably compared to the 1990‘s, a state-of-the-art reprocessing was implemented. In comparison with the original processing (Stiller et al. (2021)), more sophisticated processing steps like CRS (Common Reflection Surface) instead of CDP (Common Depth Point) stacking, turning-ray tomography and prestack time and depth migration were carried out. The reprocessing results of the DEKORP 3A survey comprise all datasets newly achieved in addition to the datasets from the original processing (Stiller et al. (2021)), i.e. (1) the migrated CRS image gathers as unstacked data, and (2) the pure CRS stack, the poststack-time as well as prestack-time and prestack-depth migrated sections as stacked data. Moreover, (3) all velocity models used for the different versions including (4) the separate first-break tomography inversion, are contained. Additionally, the results of the 2D- and 3D-reprocessing of cross-lines Q12-Q16 are included. All reprocessed data come in SEGY trace format, the final sections additionally in PDF graphic format. A reprocessing report is included as well as again all meta information for each domain (source, receiver, CDP) like coordinates, elevations, locations and static corrections combined in ASCII-tables for geometry assignment purposes. Detailed information about acquisition and reprocessing parameters can be found in the accompanying Technical Report (Stiller & Agafonova, 2022). The DEKORP 3 survey was a combined seismic survey investigating the Variscan structures of the Rhenohercynian and the Saxothuringian. Consisting of three seismic lines it starts in the Rhenohercynian Hessian Depression (DEKORP 3A), crosses the Saxothuringian Mid-German Crystalline High (DEKORP 3B/MVE (West)) and runs parallel to the northern margin of the Moldanubian (DEKORP 3B/MVE (East)). The 128 km long DEKORP 3A profile runs N-S within the Hessian Depression from the Solling Dome in the Rhenohercynian to the Vogelsberg Volcano of the Saxothuringian Mid-German Crystalline High. The middle part of the profile crosses the "Northern Phyllite Zone". The reprocessed datasets contain a sub-section of the entire profile with a total length of 104.1 km of full CDP coverage, covering the territory of the state of Hesse. The reprocessed part of 3A is intersected by five short cross-lines along the profile at km 31.75, 53.55, 73.75, 89.85, 109.85 and by DEKORP 3B/MVE (West) at km 120.75 at its southern end. The DEKORP '90-3A profile is of particular interest to investigate the seismic resolution of the crust beneath the Permo-Mesozoic to Tertiary Hessian depression, the Kassel graben structure, as well as the tertiary volcanic fields of the Reinhardswald, Habichtswald, Knüll, Söhrewald and stopping just north of the large Cenozoic Vogelsberg complex.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...