ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books
  • Other Sources  (5)
  • English  (5)
  • 2020-2023  (5)
Collection
Language
  • English  (5)
Years
Year
  • 1
    Publication Date: 2022-11-23
    Description: The Andean-Amazon foothills region, one of the richest biodiversity eco-regions on earth, is threatened by climate change, in combination with unsustainable agricultural and extensive livestock farming. These land-use practices tend to reduce the diversification of rural farming, which in turn decreases households’ livelihood alternatives, rendering them more vulnerable to climate change. We studied the relationship between rural livelihood diversification and household-level vulnerability to climate change, in a sample of Andean-Amazon foothills households in Colombia and Peru. Firstly, we determined typologies of households, based on their rural livelihood diversification, including farming diversification (agrobiodiversity and farming activities) and agroecological management practices. Secondly, we evaluated each household typology’s vulnerability to climate change by assessing two components -sensitivity and adaptive capacity- based on the ‘livelihood assets pentagon’, which encompasses the five human ‘capitals’: natural; social; human; physical; and financial. We concluded that households with higher rural livelihood diversification are less vulnerable to climate change. However, it is not possible to draw major conclusions about the relationship between the factors of ‘diversification of management practices’ and ‘vulnerability to climate change’, because most households had few agroecological practices. Results may inform future interventions that aim to decrease Andean-Amazon foothills households’ sensitivity and strengthen their adaptive capacity to climate change.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-21
    Description: Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015–2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between −7.8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to present-day conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between −6.1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28 mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared to simulations done under present-day conditions for the two CMIP5 forcings used and display limited mass gain in East Antarctica.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-21
    Description: The past and future evolution of the Antarctic Ice Sheet is largely controlled by interactions between the ocean and floating ice shelves. To investigate these interactions, coupled ocean and ice sheet model configurations are required. Previous modelling studies have mostly relied on high resolution configurations, limiting these studies to individual glaciers or regions over short time scales of decades to a few centuries. We present a framework to couple the dynamic ice sheet model PISM with the global ocean general circulation model MOM5 via the ice-shelf cavity module PICO. Since ice-shelf cavities are not resolved by MOM5, but parameterized with the box model PICO, the framework allows the ice sheet and ocean model to be run at resolution of 16 km and 3 degree, respectively. This approach makes the coupled configuration a useful tool for the analysis of interactions between the entire Antarctic Ice Sheet and the Earth system over time spans on the order of centuries to millennia. In this study we describe the technical implementation of this coupling framework: sub-shelf melting in the ice sheet model is calculated by PICO from modeled ocean temperatures and salinities at the depth of the continental shelf and, vice versa, the resulting mass and energy fluxes from the melting at the ice-ocean interface are transferred to the ocean model. Mass and energy fluxes are shown to be conserved to machine precision across the considered model domains. The implementation is computationally efficient as it introduces only minimal overhead. The framework deals with heterogeneous spatial grid geometries, varying grid resolutions and time scales between the ice and ocean model in a generic way, and can thus be adopted to a wide range of model setups.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-03-21
    Description: There exists a range of subsystems in the climate system exhibiting threshold behaviour which could be triggered under global warming within this century resulting in severe consequences for biosphere and human societies. While their individual tipping thresholds are fairly well understood, it is of yet unclear how their interactions might impact the overall stability of the Earth's climate system. This cannot be studied yet with state-of-the-art Earth system models due to computational constraints as well as missing and uncertain process representations of some tipping elements. Here, we explicitly study the effects of known physical interactions between the Greenland and West Antarctic Ice Sheet, the Atlantic Meridional Overturning Circulation, the El-Nino Southern Oscillation and the Amazon rainforest using a conceptual network approach. We analyse the risk of domino effects being triggered by each of the individual tipping elements under global warming in equilibrium experiments, propagating uncertainties in critical temperature thresholds and interaction strengths via a Monte-Carlo approach. Overall, we find that the interactions tend to destabilise the network. Furthermore, our analysis reveals the qualitative role of each of the five tipping elements showing that the polar ice sheets on Greenland and West Antarctica are oftentimes the initiators of tipping cascades, while the AMOC acts as a mediator, transmitting cascades. This implies that the ice sheets, which are already at risk of transgressing their temperature thresholds within the Paris range of 1.5 to 2 °C, are of particular importance for the stability of the climate system as a whole.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-21
    Description: Societal transformations are necessary to address critical global challenges, such as mitigation of anthropogenic climate change and reaching UN sustainable development goals. Recently, social tipping processes have received increased attention, as they present a form of social change whereby a small change can shift a sensitive social system into a qualitatively different state due to strongly self-amplifying (mathematically positive) feedback mechanisms. Social tipping processes with respect to technological and energy systems, political mobilization, financial markets and sociocultural norms and behaviors have been suggested as potential key drivers towards climate action. Drawing from expert insights and comprehensive literature review, we develop a framework to identify and characterize social tipping processes critical to facilitating rapid social transformations. We find that social tipping processes are distinguishable from those of already more widely studied climate and ecological tipping dynamics. In particular, we identify human agency, social-institutional network structures, different spatial and temporal scales and increased complexity as key distinctive features underlying social tipping processes. Building on these characteristics, we propose a formal definition for social tipping processes and filtering criteria for those processes that could be decisive for future trajectories towards climate action. We illustrate this definition with the European political system as an example of potential social tipping processes, highlighting the prospective role of the FridaysForFuture movement. Accordingly, this conceptual framework for social tipping processes can be utilized to illuminate mechanisms for necessary transformative climate change mitigation policies and actions.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...