ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (6)
  • ddc:551.5  (6)
  • John Wiley & Sons, Ltd.  (6)
  • Institute for Advanced Sustainability Studies (IASS)
  • English  (6)
  • 2020-2023  (6)
Collection
  • Other Sources  (6)
Source
Publisher
Language
  • English  (6)
Years
Year
  • 1
    Publication Date: 2022-03-31
    Description: The local ensemble transform Kalman filter (LETKF) suggested by Hunt et al., 2007 is a very popular method for ensemble data assimilation. It is the operational method for convective‐scale data assimilation at Deutscher Wetterdienst (DWD). At DWD, based on the LETKF, three‐dimensional volume radar observations are assimilated operationally for the operational ICON‐D2. However, one major challenge for the LETKF is the situation where observations show precipitation (reflectivity) whereas all ensemble members do not show such reflectivity at a given point in space. In this case, there is no sensitivity of the LETKF with respect to the observations, and the analysis increment based on the observed reflectivity is zero. The goal of this work is to develop a targeted covariance inflation (TCI) for the assimilation of 3D‐volume radar data based on the LETKF, adding artificial sensitivity and making the LETKF react properly to the radar observations. The basic idea of the TCI is to employ an additive covariance inflation as entrance point for the LETKF. Here, we construct perturbations to the simulated observation which are used by the core LETKF assimilation step. The perturbations are constructed such that they exhibit a correlation between humidity and reflectivity. This leads to a change in humidity in such a way that precipitation is more likely to occur. We describe and demonstrate the theoretical basis of the method. We then present a case study where targeted covariance inflation leads to a clear improvement of the LETKF and precipitation forecast. All examples are based on the German radar network and the ICON‐D2 model over Central Europe.
    Description: The goal of this work is to develop a targeted covariance inflation (TCI) for the assimilation of 3D‐volume radar data based on the local ensemble transform Kalman filter (LETKF), adding artificial sensitivity and making the LETKF react properly to the radar observations. Perturbations to the simulated observations are constructed such that they exhibit an empirically derived correlation between humidity and reflectivity. This leads to a change in humidity in such a way that precipitation is more likely to occur.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-23
    Description: The modeling of the atmospheric boundary layer over sea ice is still challenging because of the complex interaction between clouds, radiation and turbulence over the often inhomogeneous sea ice cover. There is still much uncertainty concerning sea ice roughness, near‐surface thermal stability and related processes, and their accurate parameterization. Here, a regional Arctic climate model forced by ERA‐Interim data was used to test the sensitivity of climate simulations to a modified surface flux parameterization for wintertime conditions over the Arctic. The reference parameterization as well as the modified one is based on Monin–Obukhov similarity theory, but different roughness lengths were prescribed and the stability dependence of the transfer coefficients for momentum, heat and moisture differed from each other. The modified parameterization accounts for the most comprehensive observations that are presently available over sea ice in the inner Arctic. Independent of the parameterization used, the model was able to reproduce the two observed dominant winter states with respect to cloud cover and longwave radiation. A stepwise use of the different parameterization assumptions showed that modifications of both surface roughness and stability dependence had a considerable impact on quantities such as air pressure, wind and near‐surface turbulent fluxes. However, the reduction of surface roughness to values agreeing with those observed during the Surface Heat Budget of the Arctic Ocean campaign led to an improvement in the western Arctic, while the modified stability parameterization had only a minor impact. The latter could be traced back to the model's underestimation of the strength of stability over sea ice. Future work should concentrate on possible reasons for this underestimation and on the question of generality of the results for other climate models.
    Description: The modeling of the atmospheric boundary layer over sea ice is challenging. This is, among others, due to the distinct sea ice surface roughness and pressure ridges as shown in the image, and the often stably stratified atmosphere. We quantified the impact of used parameterizations and show that both surface roughness and stability dependence have a considerable impact on near‐surface turbulent fluxes and atmospheric circulation in Arctic climate simulations.
    Description: German Research Foundation (DFG)
    Description: Helmholtz Association (HGF), POLEX http://dx.doi.org/10.13039/100003872
    Description: Russian Science Foundation (RSF) http://dx.doi.org/10.13039/501100006769
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-08-04
    Description: The 2011/2012 summer drought in Southeastern South America (SESA) was a short but devastating event. What would this event have looked like under pre‐industrial conditions, or in a +2 degC world? We find that climate change causes the region to be at a higher risk of drought. However, we found no large‐scale changes in the half‐month water budgets. We show that the climate change induced positive precipitation trend in the region outweighs the increased temperatures and potential evapotranspiration during the 2011/2012 drought. image
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    John Wiley & Sons, Ltd. | Chichester, UK
    Publication Date: 2022-09-22
    Description: This note is framed as an open question to the community regarding parameterisation schemes using the blocking layer depth to reduce the orographic gravity wave drag. It is the purpose of this note to argue that the current orographic gravity wave drag parameterisation in the vicinity of blocking is inadequate. Reducing the gravity wave amplitude (and thereby reducing the gravity wave drag) by assuming an effective mountain height dependent on the blocking depth is not realistic. The arguments given here will hopefully spark a debate and new considerations, ultimately leading to improvements in current orographic gravity wave drag parameterisations. This note illustrates that low‐level blocking can induce more gravity waves or gravity waves with a higher momentum flux (compared to the current parameterisation schemes). More realistic parameterisation schemes are likely to improve the models' performance. However, the fact is complex theories are needed to describe gravity wave excitation by orography so that it is difficult to represent gravity wave nature by a ‘too simple’ parameterisation scheme.
    Description: The purpose of this letter is to provide arguments that the current gravity wave drag parameterisation in the vicinity of blocking is inadequate. Reducing the gravity wave drag depending on the blocking depth is not a realistic representation. The letter lists five ways in which the blocking layer can result in a greater amount of gravity wave drag.
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-08-09
    Description: High wind speed (U) is one of the most dangerous natural hazards in North America and Europe. As a result, spatially explicit, statistical estimation of extreme U is of particular relevance for many sectors. However, the most common sources of wind speed data such as reanalysis data and in situ measurements are limited for this purpose due to their coarse spatial resolution and low representativeness. Thus, the main goal was to develop a high spatial resolution (250 m × 250 m) model (GloWiSMo‐X) for monthly mapping of the maximum hourly U for a 10‐year return period (U10yr) in North America and Europe. The multistep development of GloWiSMo‐X is based on 2544 hourly U time series available from the integrated surface global hourly meteorological data set (UNCEI), U time series from ERA5 (UERA5), and mean wind speed from the Global Wind Speed Model (U¯GloWiSMo). Firstly, the block maxima method was applied to estimate monthly wind speed for a 10‐year return period for both UNCEI (U10yr,NCEI) and UERA5 (U10yr,ERA5). Secondly, the least squares boosting approach was used to predict the target variable U10yr,NCEI yielding the predictions Û10yr. The predictor variables U10yr,ERA5, U¯GloWiSMo, continent, and month were used as input. It was found that the highest monthly continental means of Û10yr (U¯10yr) in January are 16.4 m/s in North America and 16.3 m/s in Europe. U¯10yr dropped to 13.4 m/s and 12.5 m/s in August. The annual cycle of U¯10yr is more pronounced in Europe than in North America. The central parts of the USA and Western Europe were identified as intracontinental regions with the highest U¯10yr. GloWiSMo‐X proves to be very broadly applicable as it covers two different continents and all months. The model validation by the mean squared error (MSE) demonstrates its improved predictive power compared to ERA5.
    Description: A high spatial resolution (250 m × 250 m) model (GloWiSMo‐X) for monthly mapping of the maximum hourly wind speed for a 10‐year return period in North America and Europe was developed. The highest monthly continental means are 16.4 m/s in North America and 16.3 m/s in Europe. Due to the pronounced annual cycle, it drops to 13.4 m/s and 12.5 m/s in August. image
    Description: Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-12-05
    Description: Classification of atmospheric circulation patterns (CP) is a common tool for downscaling rainfall, but it is rarely used for West Africa. In this study, a two‐step classification procedure is proposed for this region, which is applied from 1989 to 2010 for the Sudan‐Sahel zone (Central Burkina Faso) with a focus on heavy rainfall. The approach is based on a classification of large‐scale atmospheric CPs (e.g., Saharan Heat Low) of the West African Monsoon using a fuzzy rule‐based method to describe the seasonal rainfall variability. The wettest CPs are further classified using meso‐scale monsoon patterns to better describe the daily rainfall variability during the monsoon period. A comprehensive predictor screening for the seasonal classification indicates that the best performing predictor variables (e.g., surface pressure, meridional moisture fluxes) are closely related to the main processes of the West African Monsoon. In the second classification step, the stream function at 700 hPa for identifying troughs and ridges of tropical waves shows the highest performance, providing an added value to the overall performance of the classification. Thus, the new approach can better distinguish between dry and wet CPs during the rainy season. Moreover, CPs are identified that are of high relevance for daily heavy rainfall in the study area. The two wettest CPs caused roughly half of the extremes on about 6.5% of days. Both wettest patterns are characterized by an intensified Saharan Heat Low and a cyclonic rotation near the study area, indicating a tropical wave trough. Since the classification can be used to condition other statistical approaches used in climate sciences and other disciplines, the presented classification approach opens many different applications for the West African Monsoon region.
    Description: A two‐step classification of daily atmospheric circulation patterns is used to describe seasonal and daily rainfall variability in West Africa. The approach clearly distinguishes between dry and wet patterns if sea level pressure and stream function at 700 hPa are used. The two wettest patterns trigger about half of heavy rainfall events in Central Burkina Faso. They are characterized by an intensified Saharan Heat Low and a cyclonic rotation indicating a tropical wave trough near the study area.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:551.5 ; circulation pattern ; classification ; downscaling ; heavy rainfall ; West Africa
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...