ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (4)
  • Mars  (3)
  • General Chemistry
  • Inorganic Chemistry
  • machine learning
  • English  (4)
  • 2020-2024  (4)
  • 2024  (4)
Collection
Source
Language
  • English  (4)
Years
  • 2020-2024  (4)
Year
  • 1
    Publication Date: 2024-04-19
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The Ismenius Lacus region of Mars has a diverse geological history, and we present the first high‐resolution map of Deuteronilus Cavus (36.2°N; 14.0°E, ∼120 km diameter) in the fretted terrain south of the dichotomy boundary. Strong evidence suggests a volcanic origin of the regional plains, based on the ∼50 m thick volcanic bed underlying 180–300 m of sublimation residue associated with Amazonian plateau glaciation. Pervasive external volcanic flooding, internal erosional modification, and enlargement of a pre‐existing crater by up to 175%–200% resulted in the cavus' present shape. The phyllosilicates detected within Deuteronilus Cavus could be primary materials associated with the surficial aqueous activity, subsurface alteration products excavated by impacts, or a combination of both. We observe branching fluvial channels that are more recent than the traditional valley networks and may be related to fretted terrain resurfacing during the waning period of a high‐obliquity glaciation phase. This is consistent with our interpretation of the ∼600 m thick lobate and lineated deposits, which are remnants of receding glaciers. The glacial ice, protected by a 15–20 m insulating layer of debris cover, is of significant interest for future landing missions because of its potential to preserve biological and climatological signatures, to provide a critical test of Amazonian plateau glaciation, and to be used for in situ resource utilization. With our detailed geological mapping, we improved our understanding of the geological evolution and climatic conditions in the enigmatic fretted terrain near the dichotomy boundary.〈/p〉
    Description: Plain Language Summary: The ∼120 km long Deuteronilus Cavus was initiated by an impact event. The resulting impact crater was modified by glacial erosional and fluvial processes, leading to the enlargement of 175%–200% of the pre‐existing crater. In addition, we find strong evidence for recent glaciation (〈1 Ga) that left 180–300 m of sublimation residue on the plateau superimposed on a ∼50 m thick volcanic bed, suggesting a volcanic origin of the regional plains. During the waning period of a high‐glacial phase, the meltwater ponded on the surface of the cavus, altered surface rocks to produce phyllosilicates, formed channels (now observed as inverted sinuous ridges), and locally distributed branched fluvial channels that are more recent than the traditional valley networks. Glacial landforms still contain up to 600 m of remnant ice from the retreating glaciers at the end of the last glacial period. The relatively pure ice, protected by a 15–20 m insulating layer of debris cover, is critical for future landing missions because of its potential to preserve biological and climatological signatures and to be used for in situ resource utilization. Overall, this research enhances our understanding of the geological evolution and climatic history of Mars.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉We have produced the first high‐resolution map of Deuteronilus Cavus in the fretted terrain south of the Martian dichotomy boundary〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The region records a complex erosional and depositional history, including fluvial and glacial processes in the Amazonian period〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉This study provides a framework for exploration of high‐obliquity mid‐latitude plateau glaciation〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Deutsches Zentrum für Luft‐ und Raumfahrt http://dx.doi.org/10.13039/501100002946
    Description: https://doi.org/10.5281/zenodo.8205276
    Description: https://doi.org/10.17189/1520332
    Description: https://doi.org/10.17189/1520266
    Description: https://doi.org/10.17189/1520303
    Description: https://doi.org/10.5270/esa-pm8ptbq
    Keywords: ddc:523 ; Mars ; Deuteronilus Cavus ; geological mapping ; glaciation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-25
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The seasonal deposition and sublimation of CO〈sub〉2〈/sub〉 constitute a major element in the Martian volatile cycle. Here, we propose to use the shadow variations of the ice blocks at the foot of the steep scarps of the North Polar Layered Deposits (NPLD) to infer the vertical evolution of the seasonal deposits. We conduct an experiment at a steep scarp centered at (85.0°N, 151.5°E). We assume that no snowfall remains on top of the selected ice blocks, the frost ice layer is homogeneous around the ice blocks and their surroundings, and no significant moating is present. We show that the average thickness of the seasonal deposits due to snowfalls in Mars Year 31 is 0.97 ± 0.13 m at Ls = 350.7° in late winter. The large depth measured makes us wonder if snowfalls are more frequent and violent than previously thought. Meanwhile, we show that the average frost thickness in Mars Year 31 reaches 0.64 ± 0.18 m at Ls = 350.7° in late winter. Combined, the total thickness of the seasonal cover in Mars Year 31 reaches 1.63 ± 0.22 m at Ls = 350.7° in late winter, continuously decreases to 0.45 ± 0.06 m at Ls = 42.8° in middle spring and 0.06 ± 0.05 m at Ls = 69.6° in late spring. These estimates are up to 0.8 m lower than the existing Mars Orbiter Laser Altimeter results during the spring. Meanwhile, we observe that snow in the very early spring of Mars Year 36 can be 0.36 ± 0.13 m thicker than that in Mars Year 31. This study demonstrates the dynamics of the Martian climate and emphasizes the importance of its long‐term monitoring.〈/p〉
    Description: Plain Language Summary: Like Earth, Mars also has seasons. Up to one third of the atmospheric CO〈sub〉2〈/sub〉 annually exchanges with the polar surface through seasonal deposition/sublimation processes. Deposition can be either atmospheric precipitation as snowfall or direct surface condensation as frost. At the steep scarps of the North Polar Layered Deposits (NPLD), fractured ice fragments can detach and fall to form ice blocks. We propose to use variations in the shadows of these ice blocks, observed in the High Resolution Imaging Science Experiment images, to infer the thickness evolution of the seasonal deposits. We make reasonable assumptions about the distribution of snowfall and frost around the ice blocks and their surroundings, which allow us to separately measure the thickness of snowfall and frost. Meanwhile, we introduce a novel approach that allows us to estimate the thickness of the seasonal deposits during late winter and early spring when image quality is insufficient. This approach also enables us to peer into the interannual thickness variations of snowfall. We carry out a successful experiment at a scarp centered at (85.0°N, 151.5°E). The obtained thickness measurements demonstrate the dynamics of the Martian volatile cycling and can be used to constrain the Martian climate models.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉We propose to examine the shadow variations of the ice blocks at the Martian polar region to infer the thickness of the seasonal deposits〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Maximum thickness of the seasonal deposits at the study scarp in MY31 is 1.63 ± 0.22 m to which snowfalls contribute 0.97 ± 0.13 m〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Seasonal deposits at the study scarp are up to 0.8 m shallower than previous measurements during spring〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: HX, LML, and PJG
    Description: https://doi.org/10.17189/1520303
    Description: https://doi.org/10.17632/5yy475dbry.1
    Description: https://doi.org/10.17632/x953mzxxvv.1
    Description: https://doi.org/10.17189/1520101
    Description: http://www.msss.com/moc_gallery/2001
    Keywords: ddc:523 ; Mars ; seasonal polar caps ; thickness ; ice blocks ; HiRISE ; CO2
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-22
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Mineral dust is one of the most abundant atmospheric aerosol species and has various far‐reaching effects on the climate system and adverse impacts on air quality. Satellite observations can provide spatio‐temporal information on dust emission and transport pathways. However, satellite observations of dust plumes are frequently obscured by clouds. We use a method based on established, machine‐learning‐based image in‐painting techniques to restore the spatial extent of dust plumes for the first time. We train an artificial neural net (ANN) on modern reanalysis data paired with satellite‐derived cloud masks. The trained ANN is applied to cloud‐masked, gray‐scaled images, which were derived from false color images indicating elevated dust plumes in bright magenta. The images were obtained from the Spinning Enhanced Visible and Infrared Imager instrument onboard the Meteosat Second Generation satellite. We find up to 15% of summertime observations in West Africa and 10% of summertime observations in Nubia by satellite images miss dust plumes due to cloud cover. We use the new dust‐plume data to demonstrate a novel approach for validating spatial patterns of the operational forecasts provided by the World Meteorological Organization Dust Regional Center in Barcelona. The comparison elucidates often similar dust plume patterns in the forecasts and the satellite‐based reconstruction, but once trained, the reconstruction is computationally inexpensive. Our proposed reconstruction provides a new opportunity for validating dust aerosol transport in numerical weather models and Earth system models. It can be adapted to other aerosol species and trace gases.〈/p〉
    Description: Plain Language Summary: Most dust and sand particles in the atmosphere originate from North Africa. Since ground‐based observations of dust plumes in North Africa are sparse, investigations often rely on satellite observations. Dust plumes are frequently obscured by clouds, making it difficult to study the full extent. We use machine‐learning methods to restore information about the extent of dust plumes beneath clouds in 2021 and 2022 at 9, 12, and 15 UTC. We use the reconstructed dust patterns to demonstrate a new way to validate the dust forecast ensemble provided by the World Meteorological Organization Dust Regional Center in Barcelona, Spain. Our proposed method is computationally inexpensive and provides new opportunities for assessing the quality of dust transport simulations. The method can be transferred to reconstruct other aerosol and trace gas plumes.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉We present the first fast reconstruction of cloud‐obscured Saharan dust plumes through novel machine learning applied to satellite images〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The reconstruction algorithm utilizes partial convolutions to restore cloud‐induced gaps in gray‐scaled Meteosat Second Generation‐Spinning Enhanced Visible and Infrared Imager Dust RGB images〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉World Meteorological Organization dust forecasts for North Africa mostly agree with the satellite‐based reconstruction of the dust plume extent〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: GEOMAR Helmholtz Centre for Ocean Research Kiel
    Description: University of Cologne
    Description: https://doi.org/10.5281/zenodo.6475858
    Description: https://github.com/tobihose/Masterarbeit
    Description: https://dust.aemet.es/
    Description: https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=overview
    Description: https://navigator.eumetsat.int/product/EO:EUM:DAT:MSG:DUST
    Description: https://navigator.eumetsat.int/product/EO:EUM:DAT:MSG:CLM
    Description: https://doi.org/10.5067/KLICLTZ8EM9D
    Description: https://disc.gsfc.nasa.gov/datasets?project=MERRA-2
    Description: https://doi.org/10.5067/MODIS/MOD08_D3.061
    Description: https://doi.org/10.5067/MODIS/MYD08_D3.061
    Description: https://doi.org/10.5281/ZENODO.8278518
    Keywords: ddc:551.5 ; mineral dust ; North Africa ; MSG SEVIRI ; machine learning ; cloud removal ; satellite remote sensing
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-22
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Regardless of the steady increase of computing power during the last decades, numerical models in a 3D spherical shell are only used in specific setups to investigate the thermochemical convection in planetary interiors, while 2D geometries are typically favored in most exploratory studies involving a broad range of parameters. The 2D cylindrical and the more recent 2D spherical annulus geometries are predominantly used in this context, but the extent to how well they reproduce the 3D spherical shell results in comparison to each other and in which setup has not yet been extensively investigated. Here we performed a thorough and systematic study in order to assess which 2D geometry reproduces best the 3D spherical shell. In a first set of models, we investigated the effects of the geometry on thermal convection in steady‐state setups while varying a broad range of parameters. Additional thermal evolution models of three terrestrial bodies, namely Mercury, the Moon, and Mars, which have different interior structures, were used to compare the 2D and 3D geometries. Our investigations show that the 2D spherical annulus geometry provides results closer to models in a 3D spherical shell compared to the 2D cylindrical geometry. Our study indicates where acceptable differences can be expected when using a 2D instead of a 3D geometry and where to be cautious when interpreting the results.〈/p〉
    Description: Plain Language Summary: In geodynamic modeling, numerical models are used in order to investigate how the interior of a terrestrial planet evolves from the earliest stage, after the planetary formation, up to present day. Often, the mathematical equations that are used to model the physical processes in the interior of rocky planets are discretized and solved using geometric meshes. The most commonly applied geometries are the 3D spherical shell, the 2D cylinder, and the 2D spherical annulus. While being the most accurate and realistic, the 3D geometry is expensive in terms of computing power and time of execution. On the other hand, 2D geometries provide a reduced accuracy but are computationally faster. Here we perform an extensive comparison between 2D and 3D geometries in scenarios of increasing complexity. The 2D spherical annulus geometry shows much closer results to the 3D spherical shell when compared to the 2D cylinder and should be given preference in 2D modeling studies.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Interior dynamics models using the 2D spherical annulus geometry match the results of a 3D spherical shell better than the 2D cylinder〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The difference between 2D and 3D geometries decreases when models are heated from below by the core and from within by radioactive elements〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The 2D spherical annulus shows negligible differences to 3D for the thermal evolution of Mercury and the Moon, and acceptable values for Mars〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Ministry of Science, Research and the Arts Baden‐Württemberg
    Description: Federal Ministry of Education and Research
    Description: https://doi.org/10.5281/zenodo.8047757
    Keywords: ddc:523 ; mantle convection ; thermal evolution ; spherical annulus ; Mars ; Moon ; Mercury
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...