ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 551.48  (15)
  • FID-GEO-DE-7  (7)
  • English  (22)
  • Swedish
  • 2020-2022  (22)
  • 1950-1954
  • 2021  (22)
Collection
Keywords
Language
Years
Year
  • 1
    Publication Date: 2021-03-29
    Description: Geometric 3D models are a very efficient tool to visualize geological units and structural features that have been presented before just in two dimensions on maps or cross-sections. Most of the information of 3D models is presented as 3D views, virtual wells or horizontal or vertical cross-sections. However, are there further options to transfer as much as possible of the complex information of a 3D model in an adequate way to the user? Is it useful and promising to analyse 3D objects like surfaces or volumes in GIS software? In our investigation we performed a GIS based analysis of an existing geotechnical-geological 3D model of periglacial sediments. The two steps were multiple raster calculations to create geotechnical maps and a digital analysis of surface parameters based on geomorphological techniques and statistics. The investigation area is located in southern Lower Saxony and covers the city of Goettingen and surrounding regions within the valley of the river Leine. The valley is filled by unconsolidated, periglacial sediments of Quaternary age with a variable thickness ranging from 1 to 70 m. The analysed 3D model was constructed with GoCAD in a former project (Nix et al. 2009). The model is based on a heterogenous dataset comprising well data, thematic maps, and outcrop descriptions. Finally, the surfaces and volumes of the following units were modelled, with a special focus on their different geotechnical properties: (1) anthropogenic material, (2) floodplain and slope deposits, (3) freshwater limestone, peat and organic clay, (4) loess, displaced loess, and loess loam, (5) fluvial gravel, (6) outwash fan material, (7) solifluction material, (8) mixed, hetereougenous fillings of subrosion sinks and (9) the surface of the underlying hardrocks. Each top and bottom surface of the Gocad volumes was exported as raster file with additional information stored in an associated attribute table. In ArcGIS various geoprocessing tools were used to calculate and analyse these rasters and to develope thematic geotechnical and geological maps. The geomorphological analysis was subdivided in several steps. Firstly, the surfaces were described visually, concerning their outline, shape and distribution, as well as superficial structures like distinct edges, holes, channels. Secondarily, descriptive statistic parameters of thickness, area and elevation of each surface were calculated. Thirdly, geoprocessing tools of the Spatial Analyst were performed on each surface. Finally, several surfaces were combined to analyse them together, calculating ratios and overlay combinations. Seven thematical geoengineering and geological maps were created, each of them presenting one portion of the three-dimensional dataset: Map of the stratigraphy and depth of the Quaternary base, Map of the thickness of the Quaternary sediments, Distribution map of model units 1 m below ground level, Distribution map of model units 2 m below ground level, Maps of types of different foundation soils, Distribution map of sediments with low loading capacity and Map of distribution and quality of the wells. While the map creation focused on the geotechnical aspects of the model, the applied geomorphological analysis revealed various parameters and values that are related to the geological formation of the model units. Despite the complex dataset represented by the analysed 3D model, thematical information could be transfered into 2D as thematic maps. Some geological characteristics and parameters of the model units were extracted by the descriptive and GIS-based analysis. References Nix, T., Wagner, B., Lange, T. , Fritz, J., Sauter, M. (2009): 3D-Baugrundmodell der quartären Sedimente des Leinetals bei Göttingen. – 17. Tagung für Ingenieurgeologie, S. 223-227, Zittau
    Description: poster
    Keywords: 3D model ; Quaternary ; Lower Saxony ; geotechnical ; GIS ; FID-GEO-DE-7
    Language: English
    Type: conferencePaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-05
    Description: The mineralogy, chemical composition, and physical properties of cratonic mantle eclogites with oceanic crustal protoliths can be modified by secondary processes involving interaction with fluids and melts, generated in various slab lithologies upon subduction (auto‐metasomatism) or mantle metasomatism after emplacement into the cratonic lithosphere. Here we combine new and published data to isolate these signatures and evaluate their effects on the chemical and physical properties of eclogite. Mantle metasomatism involving kimberlite‐like, ultramafic carbonated melts (UM carbonated melts) is ubiquitous though not pervasive, and affected between ~20% and 40% of the eclogite population at the various localities investigated here, predominantly at ~60–150 km depth, overlapping cratonic midlithospheric seismic discontinuities. Its hallmarks include lower jadeite component in clinopyroxene and grossular component in garnet, an increase in bulk‐rock MgO ± SiO2, and decrease in FeO and Al2O3 contents, and LREE‐enrichment accompanied by higher Sr, Pb, Th, U, and in part Zr and Nb, as well as lower Li, Cu ± Zn. This is mediated by addition of a high‐temperature pyroxene from a UM carbonated melt, followed by redistribution of this component into garnet and clinopyroxene. As clinopyroxene‐garnet trace‐element distribution coefficients increase with decreasing garnet grossular component, clinopyroxene is the main carrier of the metasomatic signatures. UM carbonated melt‐metasomatism at 〉130–150 km has destroyed the diamond inventory at some localities. These mineralogical and chemical changes contribute to low densities, with implications for eclogite gravitational stability, but negligible changes in shear‐wave velocities, and, if accompanied by H2O‐enrichment, will enhance electrical conductivities compared to unenriched eclogites.
    Description: Plain Language Summary: Oceanic crust formed at spreading ridges is recycled in subduction zones and undergoes metamorphism to eclogite. Some of this material is captured in the overlying lithospheric mantle, where it is exhumed by passing magmas. Having formed in spreading ridges, these eclogites have proven invaluable archives for the onset of plate tectonics, for the construction of cratons during subduction/collision, as probes of the convecting mantle from which their precursors formed, and as generators of heterogeneity upon recycling into Earth's convecting mantle. During subduction and until exhumation, interaction with fluids and melts (called metasomatism) can change the mineralogy, chemical composition, and physical properties of mantle eclogites, complicating their interpretation, but a comprehensive study of these effects is lacking so far. We investigated mantle eclogites from ancient continents (cratons) around the globe in order to define hallmarks of metasomatism by subduction‐related fluids and small‐volume ultramafic carbonated mantle melts. We find that the latter is pervasive and occurs predominantly at midlithospheric depths where seismic discontinuities are detected, typically causing diamond destruction and a reduction in density. This has consequences for their gravitational stability and for the interpretation of shearwave velocities in cratons.
    Description: Key Points: Exploration of metasomatic effects during subduction of ancient oceanic crust and after its emplacement into cratonic lithospheric mantle. Metasomatism by kimberlite‐like ultramafic melt affected between 20% and 40% of mantle eclogite suites worldwide, mostly at 2–5 GPa. Metasomatism lowers FeO, hence density in eclogite; no significant effect on shearwave velocities.
    Description: German Research Foundation http://dx.doi.org/10.13039/501100001659
    Description: National Research Foundation (NRF) http://dx.doi.org/10.13039/501100001321
    Description: Wilhelm and Else Heraeus Foundation http://dx.doi.org/10.13039/501100011618
    Description: Deutsche Forschungsgemeinschaft (DFG, INST
    Description: research
    Keywords: 552.4 ; eclogites ; FID-GEO-DE-7
    Language: English
    Type: article , publishedVersion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-04-14
    Description: Pyrroloquinoline quinone (PQQ) is an important cofactor of calcium‐ and lanthanide‐dependent alcohol dehydrogenases, and has been known for over 30 years. Crystal structures of Ca–MDH enzymes (MDH is methanol dehydrogenase) have been known for some time; however, crystal structures of PQQ with biorelevant metal ions have been lacking in the literature for decades. We report here the first crystal structure analysis of a Ca–PQQ complex outside the protein environment, namely, poly[[undecaaquabis(μ‐4,5‐dioxo‐4,5‐dihydro‐1H‐pyrrolo[2,3‐f]quinoline‐2,7,9‐tricarboxylato)tricalcium(II)] dihydrate], {[Ca3(C14H3N2O8)2(H2O)11]·2H2O}n. The complex crystallized as Ca3PQQ2·13H2O with Ca2+ in three different positions and PQQ3−, including an extensive hydrogen‐bond network. Similarities and differences to the recently reported structure with biorelevant europium (Eu2PQQ2) are discussed.
    Description: Pyrroloquinoline quinone (PQQ) is an important cofactor of calcium‐ and lanthanide‐dependent alcohol dehydrogenases. The crystal structure of a Ca–PQQ complex (Ca3PQQ2·13H2O) is reported for the first time outside a protein environment. image
    Description: research
    Keywords: 548 ; pyrroloquinoline quinone ; calcium ; PQQ ; methanol dehydrogenase ; crystal structure ; FID-GEO-DE-7
    Language: English
    Type: article , publishedVersion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-29
    Description: In Structural Geology, many projects start with intensive field-based data acquisition campaigns, which might be performed in quite different types of natural or artificial outcrops. For some years, this field work has been substantially influenced and transformed by various close-range sensing techniques that allow the field geologist to create a digital outcrop model (DOM) and to take along plenty of geometrical and spectral information about the outcropping rocks. In general, DOMs can be utilized for outcrop visualization, documentation, manual outcrop analysis (“point-picking”), extraction of spectral data and/or semi-automatic extraction of geometric data. Within a structural investigation DOMs might be deployed for fold analysis, fault analysis, extraction of fracture networks, fracture roughness estimation, detection of neotectonic activities or digitization of geological features for 3D-models of various scales resulting in a large number of analyzing techniques. Latter might be carried out on point clouds or meshes (with or without spectral information) and may differ in pre-processing and processing steps as well as in software solution. Therefore, the analyzing structural geologist faces various tools, data formats, file types, operations and outcomes. Our investigation focus on the compilation of useful, transparent, sustainable and comparable workflows or “pipelines”, which can be executed by open-source/open-access solutions.
    Description: poster
    Keywords: Geologische Wissenschaften ; Structural Geology ; Digital outcrop model ; open-source ; FID-GEO-DE-7
    Language: English
    Type: conferencePaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-03-29
    Description: Quantitative fold structure analyses at different scales are essential for deducing deformation mechanisms and the reconstruction of the deformation history of orogens. However, not only the field surveying of fold structures, especially in view of their quantification in three dimensions with the classical tools as measuring tape, grid mapping with measuring tapes, geological compass, field book and camera is a time consuming and laborious job, but also the construction of a georeferenced 3D-model of fold structures based on classical data. Another crucial aspect of the classical field surveying of folds is the limitation by poor outcrop conditions. Reasons might be restricted or no accessibility due to high outcrop walls, water or fences, limited visibility because of vegetation, difficult measurability due to very smooth walls or complexity as a result of irregular outcrop walls or distant outcrops. Furthermore, inappropriate oriented outcrop surfaces in respect to the fold geometry can make a survey even worse. Over the past years modern 3D surveying techniques like terrestrial Lidar and digital photogrammetry became progressively affordable for geological field work and now start to complement or replace traditional methods. We started to utilize these techniques on fold structure surveying and to apply quantitative fold structure analysis on different outcrop settings in Central Germany. Different workflows were developed and tested to optimize data conversion, handling and representation. We applied a laser scanner and a single lens reflex camera, complemented by a differential GPS device and laser tachymeter. Data conversion, correction and analysis were done by means of different free as well as commercial software packages. To test different outcrop situations, different quarries, salt mines and steep cliffs, exposing from single fold to complex folds in limestone, greywacke, cherts, rock salt or potassium salt, were selected. As a result, exact 3D point clouds of all exposed folds could be generated by the use of both techniques. The resultant point clouds are suited as excellent visualisation objects as well as base for accurate geometrical measurements in the range of mm or cm of single and complex folds. In addition, the point clouds serve as input dataset for the construction of detailed geological 3D models comprising punctual, linear and plane fold elements. In summary, terrestrial Lidar and digital photogrammetry are excellent field techniques to survey and document exposed folds in the range of few meters to tens of meters, especially under poor outcrop conditions. Different fold sections can now easily be correlated in 3D space to construct complete fold structures with their 3D-fold geometry. Certain fold elements, e.g. axial planes, can be reconstructed much faster and much more accurate compared to the classical approach. The only limiting factor are the very large datasets and the processing power. As next steps, we seek (1) to involve drones for completing data sets from inaccessible areas and perspectives and (2) to incorporate 3D-microfabric analysis data in the fold models as e.g. grain shape an crystallographic preferred orientations to better understand stain paths and deformation mechanisms.
    Description: poster
    Keywords: Geologische Wissenschaften ; Lidar ; Virtual outcrop model ; Photogrammetry ; Fold analysis ; FID-GEO-DE-7
    Language: English
    Type: conferencePaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-03-29
    Description: Under certain conditions, ocean surface gravity waves (SGW) interact with the seafloor underneath to trigger relatively faint but measurable seismic waves known as ocean microseisms. Cyclonic storms (e.g. hurricanes, typhoons) wandering over the ocean are major (non-stationary) sources of the former, thus opening the possibility of tracking and studying cyclones by means of their corresponding microseims. For this purpose, we identified storm-related microseisms hidden in the ambient seismic wavefield via array processing. Polarization beamforming, a robust and well-known technique is implemented. The analyses hinge on surface waves (Love and Rayleigh) which, in contrast to P-waves, are stronger but only constrain direction of arrival (without source remoteness). We use a few land-based virtual seismic arrays surrounding the North Atlantic to investigate the signatures of major hurricanes in the microseismic band (0.05-0.16 Hz), in a joint attempt to continuously triangulate their tracks. Our findings show that storm microseisms are intermittently excited with modulated amplitude at localized oceanic regions, particularly over the shallow continental shelves and slopes, having maximum amplitudes virtually independent of storm category. In most cases no detection was possible over deep oceanic regions, nor at distant arrays. Additionally, the rear quadrants and trailing swells of the cyclone provide the optimum SGW spectrum for the generation of microseisms, often shifted more than 500 km off the "eye". As a result of the aforementioned and added to the strong attenuation of storm microseisms, the inversion of tracks or physical properties of storms using a few far-field arrays is discontinuous in most cases, being reliable only if benchmark atmospheric and/or oceanic data is available for comparison. Even if challenging due to the complexity of the coupled phenomena responsible for microseisms, the inversion of site properties, such as bathymetric parameters (e.g. depth, seabed geomorphology), near- bottom geology or SGW spectrum might be possible if storms are treated as natural sources in time-lapse ambient noise investigations. This will likely require near-field (land and underwater) observations using optimal arrays or dense, widespread sensor networks. Improved detection and understanding of ocean microseisms carries a great potential to contribute to mechanically coupled atmosphere-ocean-earth models.
    Description: Universität Hamburg
    Description: poster
    Keywords: 550 ; 621 ; 004 ; 534 ; Ambient seismic noise ; Seismology ; Oceanography ; Microseisms ; Cyclones ; Hurricanes ; Marine Geophysics ; Beamforming ; FID-GEO-DE-7
    Language: English
    Type: poster
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-11-03
    Description: The Gravity Recovery and Climate Experiment (GRACE) mission ended its operation in October 2017, and the GRACE Follow-On mission was launched only in May 2018, leading to approximately 1 year of data gap. Given that GRACE-type observations are exclusively providing direct estimates of total water storage change (TWSC), it would be very important to bridge the gap between these two missions. Furthermore, for many climate-related applications, it is also desirable to reconstruct TWSC prior to the GRACE period. In this study, we aim at comparing different data-driven methods and identifying the more robust alternatives for predicting GRACE-like gridded TWSC during the gap and reconstructing them to 1992 using climate inputs. To this end, we first develop a methodological framework to compare different methods such as the multiple linear regression (MLR), artificial neural network (ANN), and autoregressive exogenous (ARX) approaches. Second, metrics are developed to measure the robustness of the predictions. Finally, gridded TWSC within 26 regions are predicted and reconstructed using the identified methods. Test computations suggest that the correlation of predicted TWSC maps with observed ones is more than 0.3 higher than TWSC simulated by hydrological models, at the grid scale of 1° resolution. Furthermore, the reconstructed TWSC correctly reproduce the El Nino-Southern Oscillation (ENSO) signals. In general, while MLR does not perform best in the training process, it is more robust and could thus be a viable approach both for filling the GRACE gap and for reconstructing long-period TWSC fields globally when combined with statistical decomposition techniques.
    Keywords: 551.48 ; GRACE ; total water storage change ; predidicting method
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-10-28
    Description: Due to seasonal or interannual variability, the relevance of hydrological processes and of the associated model parameters can vary significantly throughout the simulation period. To achieve accurately identified model parameters, temporal variations in parameter dominance should be taken into account. This is not achieved if performance criteria are applied to the entire model output time series. Even when using complementary performance criteria, it is often only possible to identify some of the model parameters precisely. We present an innovative approach to improve parameter identifiability that exploits the information available regarding temporal variations in parameter dominance. Using daily parameter sensitivity time series, we construct a set of sensitivity-weighted performance criteria, one for each parameter, whereby periods of higher dominance of a model parameter and its corresponding process are assigned higher weights in the calculation of the associated performance criterion. These criteria are used to impose constraints on parameter values. We demonstrate this approach by constraining 12 model parameters for three catchments and examine ensemble hydrological simulations generated using these constrained parameter sets. The sensitivity-weighted approach improves in particular the identifiability for parameters whose corresponding processes are dominant only for short periods of time or have strong seasonal patterns. This results overall in slight improvement of model performance for a set of 10 contrasting performance criteria. We conclude that the sensitivity-weighted approach improves the extraction of hydrologically relevant information from data, thereby resulting in improved parameter identifiability and better representation of model parameters.
    Keywords: 551.48 ; parameter identifiability ; parameter constraints ; temporal diagnostic analysis ; sensitivity analysis ; performance criteria
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-09-27
    Description: The magnitudes of river floods in Europe have been observed to change, but their alignment with changes in the spatial coverage or extent of individual floods has not been clear. We analyze flood magnitudes and extents for 3,872 hydrometric stations across Europe over the past five decades and classify each flood based on antecedent weather conditions. We find positive correlations between flood magnitudes and extents for 95% of the stations. In central Europe and the British Isles, the association of increasing trends in magnitudes and extents is due to a magnitude-extent correlation of precipitation and soil moisture along with a shift in the flood generating processes. The alignment of trends in flood magnitudes and extents highlights the increasing importance of transnational flood risk management.
    Keywords: 551.48 ; flood ; synchrony ; magnitude ; climate change ; classification ; spatial statistics
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-09-27
    Description: This investigation attempts to understand the eco-hydrology of, and accordingly suggest an option to manage floodwater for agriculture in, the understudied and data-sparse ephemeral Baraka River Basin within the hyper-arid region of Sudan. Reference is made to the major feature of the basin, that is, the Toker Delta spate irrigation scheme. A point-to-pixel comparison of gridded and ground-based data sets is performed to enhance the estimates of rainfall. Analysis of remotely sensed land use/cover data is performed. The results show a significant reduction of the grassland and barren areas explained by a significant expansion of the cropland and open shrubland (invasive mesquite trees) areas in the delta. The cotton sown area is highly dependent on the flooded area and the discharge volume in the delta. However, the area of this major crop has declined since the early 1990s in favour of cultivation of more profitable food crops. Expansion of mesquite in the delta is problematic, taking hold under increased floodwater, and can only be manged by clearance to provide crop cultivation area. There is a great potential for floodwater harvesting during the rainfall season (June to September). A total seasonal runoff volume of around 4.6 and 10.8 billion cubic metres is estimated at 90 and 50% probabilities of exceedance (reliabilities), respectively. Rather than leaving the runoff generated from rainfall events to pass to the Red Sea or be consumed by mesquite trees, a location for runoff harvesting structure in a highly suitable area is proposed. Such a structure will support any policy shifts towards planning and managing the basin water resources for use in irrigating the agricultural scheme.
    Keywords: 551.48 ; Baraka River Basin ; eco-hydrology ; floodwater harvesting ; land-cover classification ; Mesquite ; Toker Delta
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2021-09-27
    Description: Droughts lead to falling river water levels and consequently expose river sediments. It is well known that from these exposed aquatic sediments, CO2 emits to the atmosphere, but upscaling of CO2 measurements from discrete point measurements to an entire river system remains challenging. Naturally occurring heterogeneous processes must be accounted for to obtain an overall CO2 flux and to assess its significance. We contribute to this challenge by incorporating a two stage scaling approach using in situ CO2 fluxes and remote sensing data. First, by combining optical airborne data with closed chamber measurements at a representative model site during a first scaling stage, we derive land cover type specific CO2 fluxes and identify distance to the water as the most suitable proxy for further upscaling. Second, we upscale derived spatial relations from the first scaling stage to the entire river system of the Elbe River using a satellite-based analysis. In this way, we derived area-weighted CO2 emissions from exposed river sediments of 56.6 ± 64.8 tC day−1 (corrected distance proxy) and 52.9 ± 44.6 tC day−1 (land cover proxy), respectively, for 1 day during the 2018 extreme drought. Given the intensification of droughts in terms of length and reoccurrence frequency, this result not only highlights the importance of drought-induced exposition of river sediment as a source of atmospheric CO2 but also underscores the ability to monitor CO2 emissions over an entire river system on a regular basis using remote sensing.
    Keywords: 551.48 ; carbon dioxide emission ; chamber measurements ; hydrological drought ; Sentinel-2 ; upscaling
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-10-15
    Description: As the Arctic coast erodes, it drains thermokarst lakes, transforming them into lagoons, and, eventually, integrates them into subsea permafrost. Lagoons represent the first stage of a thermokarst lake transition to a marine setting and possibly more saline and colder upper boundary conditions. In this research, borehole data, electrical resistivity surveying, and modeling of heat and salt diffusion were carried out at Polar Fox Lagoon on the Bykovsky Peninsula, Siberia. Polar Fox Lagoon is a seasonally isolated water body connected to Tiksi Bay through a channel, leading to hypersaline waters under the ice cover. The boreholes in the center of the lagoon revealed floating ice and a saline cryotic bed underlain by a saline cryotic talik, a thin ice-bearing permafrost layer, and unfrozen ground. The bathymetry showed that most of the lagoon had bedfast ice in spring. In bedfast ice areas, the electrical resistivity profiles suggested that an unfrozen saline layer was underlain by a thick layer of refrozen talik. The modeling showed that thermokarst lake taliks can refreeze when submerged in saltwater with mean annual bottom water temperatures below or slightly above 0°C. This occurs, because the top-down chemical degradation of newly formed ice-bearing permafrost is slower than the refreezing of the talik. Hence, lagoons may precondition taliks with a layer of ice-bearing permafrost before encroachment by the sea, and this frozen layer may act as a cap on gas migration out of the underlying talik.
    Keywords: 551.48 ; thermokarst lake ; talik ; lagoon ; subsea permafrost ; salt diffusion ; Siberia
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-10-15
    Description: Nowadays, national and international requirements and laws emphasize the “natural” development of river-floodplain systems. One goal is to increase the connectivity between the river and its floodplains and thus reactivate floodplains as flooding areas, which potentially increases the mobility of fine sediments. The objective of this study is to analyze the long-term effects of reactivated floodplains on the mobility of floodplain deposits of small rivers based on two river restoration scenarios: elevating the riverbed or lowering the floodplains. Past channel fixation and degradation as well as the subsequent increase in the floodplain elevation led to the decoupling of the channel and floodplain morphodynamics associated with the reduction of the habitat connectivity. Here, the floodplain sedimentation rates were determined using a numerical model based on the Delft3D software. The novelty of these numerical investigations is the morphological long-term analysis over timescales of decades, which is not comparable to other short-term hydrodynamic and morphodynamic studies for small meandering lowland rivers. The results of 11 river restoration scenarios show that lowering the floodplain and raising the riverbed elevation both lead to an increase in the fine sediment deposition on the floodplain. However, lowering the floodplain elevation is generally more effective. Based on the numerical model results and the assumption of a fixed river channel, only anthropogenic activity might have increased the amount of fine sediments deposited on floodplains and has accelerated the decoupling of the floodplains from the riverbed in the past centuries.
    Keywords: 551.48 ; Reactivation of floodplain sediment deposits ; Numerical modelling ; River restorations
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-10-13
    Description: Meltwater from glaciers is not only a stable source of water but also affects downstream streamflow dynamics. One of these dynamics is the interannual variability of streamflow. Glaciers can moderate streamflow variability because the runoff in the glacierized part, driven by temperature, correlates negatively with the runoff in the non-glacierized part of a catchment, driven by precipitation, thereby counterbalancing each other. This is also called the glacier compensation effect (GCE), and the effect is assumed to depend on relative glacier cover. Previous studies found a convex relationship between streamflow variability and glacier cover of different glacierized catchments, with lowest streamflow variability at a certain optimum glacier cover. In this study, we aim to revisit these previously found curves to find out if a universal relationship between interannual streamflow variability and glacier cover exists, which could potentially be used in a space-for-time substitution analysis. Moreover, we test the hypothesis that the dominant climate drivers (here precipitation and temperature) switch around the suggested optimum of the curve. First, a set of virtual nested catchments, with the same absolute glacier area but varying non-glacierized area, were modelled to isolate the effect of glacier cover on streamflow variability. The modelled relationship was then compared with a multicatchment data set of gauged glacierized catchments in the European Alps. In the third step, changes of the GCE curve over time were analysed. Model results showed a convex relationship and the optimum in the simulated curve aligned with a switch in the dominant climate driver. However, the multicatchment data and the time change analyses did not suggest the existence of a universal convex relationship. Overall, we conclude that GCE is complex due to entangled controls and changes over time in glacierized catchments. Therefore, care should be taken to use a GCE curve for estimating and/or predicting interannual streamflow variability in glacierized catchments.
    Keywords: 551.48 ; glacier compensation effect ; glacierized catchments ; interannual variability ; modelling experiment ; space-for-time substitution ; streamflow
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-10-14
    Description: This study proposes a new process-based framework to characterize and classify runoff events of various magnitudes occurring in a wide range of catchments. The framework uses dimensionless indicators that characterize space–time dynamics of precipitation events and their spatial interaction with antecedent catchment states, described as snow cover, distribution of frozen soils, and soil moisture content. A rigorous uncertainty analysis showed that the developed indicators are robust and regionally consistent. Relying on covariance- and ratio-based indicators leads to reduced classification uncertainty compared to commonly used (event-based) indicators based on absolute values of metrics such as duration, volume, and intensity of precipitation events. The event typology derived from the proposed framework is able to stratify events that exhibit distinct hydrograph dynamics even if streamflow is not directly used for classification. The derived typology is therefore able to capture first-order controls of event runoff response in a wide variety of catchments. Application of this typology to about 180,000 runoff events observed in 392 German catchments revealed six distinct regions with homogeneous event type frequency that match well regions with similar behavior in terms of runoff response identified in Germany. The detected seasonal pattern of event type occurrence is regionally consistent and agrees well with the seasonality of hydroclimatic conditions. The proposed framework can be a useful tool for comparative analyses of regional differences and similarities of runoff generation processes at catchment scale and their possible spatial and temporal evolution.
    Keywords: 551.48 ; event classification ; event type ; rainfall-runoff events ; event typology ; event characteristics ; runoff generation mechanisms
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-10-14
    Description: Projections of potential impacts of climate change and groundwater abstraction on gaining and losing streams, particularly in ephemeral river basins exhibiting sporadic and intricate flux exchanges, have remained largely unexplored. To fill this gap, we propose a promising modeling scheme based on the new fully integrated hydrological model SWAT-MODFLOW-NWT, calibrated and validated for 1978–2012, to quantify the intertwined surface-groundwater interactions under a conjuncture of three climatic emission scenarios (RCP 2.6, 4.5 and 8.5) and two groundwater pumping variants: “pumping” (extending current groundwater utilization into the future) and “nonpumping” (assuming a complete cease of pumping in the future). By forcing the integrated model with future downscaled climate predictors of CanESM2 under the aforementioned RCPs for three time slices up to year 2100, projections of various water resources components for the Gharehsoo River Basin (GRB), in northwestern Iran were made. Results demonstrate that because of a general decrease of future precipitation, though with ups and downs across the total projection period, most of the surface and -subsurface budget quantities and fluxes are substantially affected. In particular, future groundwater discharge (baseflow) to the gaining streams will be more influenced by the “pumping” variant (increasing and decreasing for “nonpumping” and “pumping”, respectively) than the concentrated groundwater recharge from the losing streams (decreasing and increasing for “nonpumping” and “pumping”, respectively). Future water yield and groundwater storage will also diminish and, surprisingly, this cannot be alleviated by future “nonpumping”, indicating the groundwater overutilization is the compelling reason for the future water scarcity in the GRB, rather than climate change alone.
    Keywords: 551.48 ; losing streams ; gaining streams ; climate change scenarios ; baseflow ; concentrated groundwater recharge ; pumping variants
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-09-03
    Description: research
    Keywords: 551.22 ; seismogram ; earthquake ; FID-GEO-DE-7
    Language: German , English
    Type: presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-10-02
    Description: Human activities, such as human water use, have been shown to directly influence terrestrial water fluxes and states. Simulations of soil moisture, river discharge, evapotranspiration, and groundwater storage are significantly improved, if human interactions, such as irrigation and groundwater abstraction, are incorporated. Yet improvements through the incorporation of human water use on the simulation of local and remote precipitation are rarely studied but may contribute to the skill of land surface fluxes. In this study, we evaluate the impact of human water use on the skill of evapotranspiration and precipitation in a fully coupled bedrock-to-atmosphere modeling platform. The results show that human water use can potentially increase the skill of the simulations across scales. However, observational uncertainty at the watershed scale limits the identification of model deficiencies and added value related to human water use. Locally, daily precipitation statistics potentially benefit from the incorporation of human water use. Although the incorporation of human water use does not remove the wet bias, it can increase the model skill.
    Keywords: 551.48 ; added value ; human water use ; precipitation ; integrated modeling ; evapotranspiration ; observational uncertainty
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-10-01
    Description: The streamflow drought hazard can be characterized in a variety of ways, including using different indices. Traditionally, percentile-based indices, such as Q95 (the flow exceeded 95% of time), have been used by the hydrological community. Recently, the use of anomaly indices such as the Standardized Streamflow Index (SSI), a probability index-based approach adopted from the climatological community, has increased in popularity. The SSI can be calculated based on various (non)parametric methods. Up to now, there is no consensus which method to use. This study aims to raise awareness how the inherent sensitivity of the SSI to the used method influences derived drought characteristics. We compared SSI time series computed with seven different probability distributions and two fitting methods as well as with different nonparametric methods for 369 rivers across Europe. Results showed that SSI time series and associated drought characteristics are indeed sensitive to the method of choice. A resampling experiment demonstrated the sensitivity of the parametric SSI to properties of both the low and high end of the sample. Such sensitivities might hinder a fair comparison of drought in space and time and highlight the need for a clear recommendation which method to use. We could recommend overall suitable methods, for example, from the parametric approaches, the Tweedie distribution has several advantageous properties such as a low rejection rate (2%) and a lower bound at zero. However, the most suitable method depends on the used evaluation criteria. Rather, we stress that shown approach-specific sensitivities and uncertainties should be carefully considered.
    Keywords: 551.48 ; drought ; parametric ; drought identification ; Standardized Streamflow Index ; sensitivity analyses ; nonparametric
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-12-03
    Description: Coupled groundwater flow and heat transport within hyporheic zones extensively affect water, energy, and solute exchange with surrounding sediments. The local and cumulative implications of this tightly coupled process strongly depend on characteristics of drivers (i.e., discharge and temperature of the water column) and modulators (i.e., hydraulic and thermal properties of the sediment). With this in mind, we perform a systematic numerical analysis of hyporheic responses to understand how the temporal variability of river discharge and temperature affect flow and heat transport within hyporheic zones. We identify typical time series of river discharge and temperature from gauging stations along the headwater region of Mississippi River Basin, which are characterized by different degrees of flow alteration, to drive a physics-based model of the hyporheic exchange process. Our modeling results indicate that coupled groundwater flow and heat transport significantly affects the dynamic response of hyporheic zones, resulting in substantial differences in exchange rates and characteristic time scales of hyporheic exchange processes. We also find that the hyporheic zone dampens river temperature fluctuations increasingly with higher frequency of temperature fluctuations. This dampening effect depends on the system transport time scale and characteristics of river discharge and temperature variability. Furthermore, our results reveal that the flow alteration reduces the potential of hyporheic zones to act as a temperature buffer and hinders denitrification within hyporheic zones. These results have significant implications for understanding the drivers of local variability in hyporheic exchange and the implications for the development of thermal refugia and ecosystem functioning in hyporheic zones.
    Keywords: 551.48 ; hyporheic exchange ; numerical analysis
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-12-06
    Description: We describe a low-cost three-dimensional underwater particle tracking velocimetry system to directly measure particle settling rate and flux in low-turbulence aquatic environments. The system consists of two waterproof cameras that acquire stereoscopic videos of sinking particles at 48 frames s−1 over a tunable sampling volume of about 45 × 25 × 24 cm. A dedicated software package has been developed to allow evaluation of particle velocities, concentration and flux, but also of morphometric parameters such as particle area, sinking angle, shape irregularity, and density. Our method offers several advantages over traditional approaches, like sediment trap or expensive in situ camera systems: (1) it does not require beforehand particle collection and handling; (2) it is not subjected to sediment trap biases from turbulence, horizontal advection, or presence of swimmers, that may alter particulate load and flux; (3) the camera system enables faster data processing and flux computation at higher spatial resolution; (4) apart from the particle settling rates, the particle size distribution, and morphology is determined. We tested the camera system in Lake Stechlin (Germany) in low turbulence and mean flow, and analyzed the morphological properties and settling rates of particles to determine their sinking behavior. The particle flux assessed from conventional sediment trap measurements agreed well with that determined by our system. By this, the low-cost approach demonstrated its reliability in low turbulence environments and a strong potential to provide new insights into particulate carbon transport in aquatic systems. Extension of the method to more turbulent and advective conditions is also discussed.
    Keywords: 551.48 ; aquatic environments ; particle velocity ; tracking system
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2021-10-26
    Description: The rate of biogeochemical processing associated with natural degradation and transformation processes in the hyporheic zone (HZ) is one of the largest uncertainties in predicting nutrient fluxes. We present a lumped parameter model that can be used to quantify the mass loss for nitrate in the HZ operating at the scale of river reaches to the entire catchments. The model is based on using exposure times (ET) to account for the effective timescales of reactive transport in the HZ. Reach scale ET distributions are derived by removing the portion of hyporheic residence times (RT) associated with flow through the oxic zone. The model was used to quantify nitrate removal for two scenarios: (1) a 100 m generic river reach and (2) a small agricultural catchment in Brittany (France). For the field site, hyporheic RT were derived from measured in-stream 222Rn activities and mass balance modeling. Simulations were carried out using different types of RT distributions (exponential, power law, and gamma-type) for which ET were derived. Mass loss of nitrate in the HZ for the field site ranged from 0 to 0.45 kg day−1 depending on the RT distribution and the availability of oxygen in the streambed sediments. Simulations with power law ET distribution models only show very little removal of nitrate due to the heavy weighting toward shorter flow paths that are confined to the oxic sediments. Based on the simulation results, we suggest that using ET will likely lead to more realistic estimates for nutrient removal in river and stream networks.
    Keywords: 551.48 ; Lumped parameter modeling of hyporheic nitrate removal by applying exposure times ; Exposure time distributions are derived from analytical residence time distributions ; Using exposure times is likely to lead to more realistic estimates for nutrient removal
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...