ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-04-08
    Description: Effective policies to mitigate climate change need to be accompanied by a socially just transition. Based on experiences of past and ongoing transition policies in coal regions in Europe and with indications to the specificity of framework conditions and challenges and to the potential effectiveness and transferability of approaches, this paper presents lessons learnt which can be inspirational for similar transitions in other coal regions and for transitions in other sectors.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-04-08
    Description: This case study examined the structural change in Lusatia caused by the system change from a centrally planned economy to a market economy in the period 1990-2015. It analysed the structural change process and the structural policies implemented as a reaction to this process with the objective to make this knowledge available for future structural change processes in other (coal) regions by deploying various qualitative and quantitative methods of empirical social and economic research. A discourse analysis helped to recognise who supported which structural policy approaches and why - and thus gives indications of the possible relevance of experiences for other regions.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-04-04
    Description: Focused fluid flow shapes the evolution of marine sedimentary basins by transferring fluids and pressure across geological formations. Vertical fluid conduits may form where localized overpressure breaches a cap rock (permeability barrier) and thereby transports overpressured fluids towards shallower reservoirs or the surface. Field outcrops of an Eocene fluid flow system at Pobiti Kamani and Beloslav Quarry (ca 15 km west of Varna, Bulgaria) reveal large carbonate‐cemented conduits, which formed in highly permeable, unconsolidated, marine sands of the northern Tethys Margin. An uncrewed aerial vehicle with an RGB sensor camera produces ortho‐rectified image mosaics, digital elevation models and point clouds of the two kilometre‐scale outcrop areas. Based on these data, geological field observations and petrological analysis of rock/core samples, fractures and vertical fluid conduits were mapped and analyzed with centimetre accuracy. The results show that both outcrops comprise several hundred carbonate‐cemented fluid conduits (pipes), oriented perpendicular to bedding, and at least seven bedding‐parallel calcite cemented interbeds which differ from the hosting sand formation only by their increased amount of cementation. The observations show that carbonate precipitation likely initiated around areas of focused fluid flow, where methane entered the formation from the underlying fractured subsurface. These first carbonates formed the outer walls of the pipes and continued to grow inward, leading to self‐sustaining and self‐reinforcing focused fluid flow. The results, supported by literature‐based carbon and oxygen isotope analyses of the carbonates, indicate that ambient seawater and advected fresh/brackish water were involved in the carbonate precipitation by microbial methane oxidation. Similar structures may also form in modern settings where focused fluid flow advects fluids into overlying sand‐dominated formations, which has wide implications for the understanding of how focusing of fluids works in sedimentary basins with broad consequences for the migration of water, oil and gas.
    Description: Integrated School of Ocean Sciences (ISOS) Kiel
    Description: European Union’s Horizon 2020 http://dx.doi.org/10.13039/100010661
    Description: Bulgarian Science Fund
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-04-07
    Description: The decomposition of thawing permafrost organic matter (OM) to the greenhouse gases (GHG) carbon dioxide (CO2) and methane forms a positive feedback to global climate change. Data on in situ GHG fluxes from thawing permafrost OM are scarce and OM degradability is largely unknown, causing high uncertainties in the permafrost‐carbon climate feedback. We combined in situ CO2 and methane flux measurements at an abrupt permafrost thaw feature with laboratory incubations and dynamic modeling to quantify annual CO2 release from thawing permafrost OM, estimate its in situ degradability and evaluate the explanatory power of incubation experiments. In July 2016 and 2019, CO2 fluxes ranged between 0.24 and 2.6 g CO2‐C m−2 d−1. Methane fluxes were low, which coincided with the absence of active methanogens in the Pleistocene permafrost. CO2 fluxes were lower three years after initial thaw after normalizing these fluxes to thawed carbon, indicating the depletion of labile carbon. Higher CO2 fluxes from thawing Pleistocene permafrost than from Holocene permafrost indicate OM preservation for millennia and give evidence that microbial activity in the permafrost was not substantial. Short‐term incubations overestimated in situ CO2 fluxes but underestimated methane fluxes. Two independent models simulated median annual CO2 fluxes of 160 and 184 g CO2‐C m−2 from the thaw slump, which include 25%–31% CO2 emissions during winter. Annual CO2 fluxes represent 0.8% of the carbon pool thawed in the surface soil. Our results demonstrate the potential of abrupt thaw processes to transform the tundra from carbon neutral into a substantial GHG source.
    Description: Plain Language Summary: Thawing of permanently frozen soils (permafrost) in the northern hemisphere forms a threat to global climate since these soils contain large amounts of frozen organic carbon, which might be decomposed to the greenhouse gases (GHGs) carbon dioxide (CO2) and methane upon thaw. How fast these GHGs are produced is largely unknown, since field observations of greenhouse gas fluxes from thawing permafrost are too sparse. Consequently, simulations on the effect of thawing permafrost soils on future climate are highly uncertain. We measured CO2 and methane fluxes from soils affected by abrupt permafrost thaw in Siberia during two summer seasons. We used these field observations and long‐term incubation data to calibrate two models that simulate the CO2 release over a whole year. We found that greenhouse gas fluxes were dominated by CO2 and that the minor importance of methane was due to the absence of methane producing microorganisms in the Pleistocene permafrost. The CO2 release in the first year accounted for 0.8% of thawed permafrost carbon but decomposition rates decreased after the depletion of the rapidly decomposable organic matter. Abrupt permafrost thaw turned the tundra into a substantial source of CO2, of which 25%–31% was released in the non‐growing season.
    Description: Key Points: Abrupt permafrost thaw turned the tundra into a substantial annual source of CO2 of which 25%–31% were released in the non‐growing season. About 0.8% of thawed permafrost carbon was decomposed to CO2 in one year but decomposition rates declined after the loss of labile carbon. Methane contributed a minor fraction to total greenhouse gas fluxes also because of a low methanogen abundance in Pleistocene permafrost.
    Description: German Ministry for Education and Research
    Description: German Research Foundation
    Description: https://doi.org/10.5281/zenodo.5584710
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-04-07
    Description: Hydrogen isotope ratios of sedimentary leaf waxes (δ2HWax values) are increasingly used to reconstruct past hydroclimate. Here, we add δ2HWax values from 19 lakes and four swamps on 15 tropical Pacific islands to an updated global compilation of published data from surface sediments and soils. Globally, there is a strong positive linear correlation between δ2H values of mean annual precipitation (δ2HP values) and the leaf waxes n‐C29‐alkane (R2 = 0.74, n = 665) and n‐C28‐acid (R2 = 0.74, n = 242). Tropical Pacific δ2HWax values fall within the predicted range of values based on the global calibration, and the largest residuals from the global regression line are no greater than those observed elsewhere, despite large uncertainties in δ2HP values at some Pacific sites. However, tropical Pacific δ2HWax values in isolation are not correlated with estimated δ2HP values from isoscapes or from isotope‐enabled general circulation models. Palynological analyses from these same Pacific sediment samples suggest no systematic relationship between any particular type of pollen distribution and deviations from the global calibration line. Rather, the poor correlations observed in the tropical Pacific are likely a function of the small range of δ2HP values relative to the typical residuals around the global calibration line. Our results suggest that δ2HWax values are currently most suitable for use in detecting large changes in precipitation in the tropical Pacific and elsewhere, but that ample room for improving this threshold exits in both improved understanding of δ2H variability in plants, as well as in precipitation.
    Description: Plain Language Summary: Past precipitation patterns are difficult to reconstruct, limiting our ability to understand Earth’s climate system. Geochemists reconstruct past precipitation by measuring the amount of heavy hydrogen naturally incorporated into the waxy coating of leaves, which is preserved in mud that accumulates in lakes, soils, and oceans. Heavy hydrogen in leaf waxes is strongly correlated with local precipitation, allowing us to learn about rainfall intensity, temperature, and cloud movement. However, no existing calibration studies include sites from the tropical Pacific, home to the most intense rainfall on the planet and populations that rely on rain for drinking water and farming. We measured heavy hydrogen in leaf waxes from tropical Pacific islands and show that although values are within the global calibration error, no precipitation relationship exists within the region. Plant type distributions do not explain the lack of correlation, which is best attributed to poorly constrained estimates of heavy hydrogen in local rain and the relatively small range of variability within the region. At present, heavy hydrogen from ancient leaf waxes can show large changes in past precipitation, but improved process‐level understanding is needed to use this tool to understand smaller changes in the tropical Pacific and elsewhere.
    Description: Key Points: Leaf wax 2H/1H ratios are correlated with mean annual precipitation 2H/1H ratios globally, but not in the tropical Pacific. Deviations from the global relationship between precipitation leaf wax 2H/1H ratios cannot be predicted from palynological assemblages. Small range and large uncertainties in estimates of tropical Pacific precipitation 2H/1H ratios likely account for poor correlations.
    Description: Swiss National Science Foundation
    Description: National Science Foundation (NSF) http://dx.doi.org/10.13039/100000001
    Description: Natural Environment Research Council (NERC) http://dx.doi.org/10.13039/501100000270
    Description: Department of Education and Training, Australian Research Council (ARC) http://dx.doi.org/10.13039/501100000923
    Description: http://10.0.15.89/ethz-b-000412154
    Keywords: ddc:551 ; ddc:577.7
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-04-07
    Description: The role of soil moisture for organic matter decomposition rates remains poorly understood and underrepresented in Earth System Models (ESMs). We apply the Dual Arrhenius Michaelis‐Menten (DAMM) model to a selection of ESM soil temperature and moisture outputs to investigate their effects on decomposition rates, at different soil depths, for a historical period and a future climate period. Our key finding is that the inclusion of soil moisture controls has diverging effects on both the speed and direction of projected decomposition rates (up to ±20%), compared to a temperature‐only approach. In the top soil, the majority of these changes is driven by substrate availability. In deeper soil layers, oxygen availability plays a relatively stronger role. Owing to these different moisture controls along the soil depth, our study highlights the need for depth‐resolved inclusion of soil moisture effects on decomposition rates within ESMs. This is particularly important for C‐rich soils in regions which may be subject to strong future warming and vertically opposing moisture changes, such as the peat soils at northern high latitudes.
    Description: Plain Language Summary: Soils contain a lot of carbon (C). Earth System Models (ESMs) predict that the amount of C released from soils into the atmosphere as CO2 will increase in response to increased warming and microbial activity. Soil moisture also controls microbial C decomposition, but most ESMs do not yet describe this process very well. In this study we apply a simple equation to different ESMs, to see how both temperature and soil moisture change microbial decomposition under future climate. First, we show that the speed of C released into the atmosphere changes when we include soil moisture changes, compared to what is expected due to warming alone. Second, we found that the future speed at which carbon that can be decomposed in the topsoil mainly depends on how much carbon microbes have access to, but that in the deeper soil this process becomes much more affected by the absence/presence of oxygen. Including these soil moisture interactions in ESMs for different soil depths is important to predict whether soils will store more or less C in the future. Our findings are particularly relevant for high latitude soils which store large amounts of C, will warm fast, and experience frequent (re)wetting and drying.
    Description: Key Points: Considering soil moisture effects can change modeled decomposition rates by up to ±20% compared to considering only temperature effects. The majority of these changes are driven by substrate availability, in particular in the top soil. In the subsoil, oxygen availability becomes an increasingly important factor.
    Description: Norwegian Research Council
    Description: https://doi.org/10.5281/zenodo.5654554
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-04-01
    Description: The interaction between the land surface and the atmosphere is a crucial driver of atmospheric processes. Soil moisture and precipitation are key components in this feedback. Both variables are intertwined in a cycle, that is, the soil moisture – precipitation feedback for which involved processes and interactions are still discussed. In this study the soil moisture – precipitation feedback is compared for the sempiternal humid Ammer catchment in Southern Germany and for the semiarid to subhumid Sissili catchment in West Africa during the warm season, using precipitation datasets from the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), from the German Weather Service (REGNIE) and simulation datasets from the Weather Research and Forecasting (WRF) model and the hydrologically enhanced WRF‐Hydro model. WRF and WRF‐Hydro differ by their representation of terrestrial water flow. With this setup we want to investigate the strength, sign and variables involved in the soil moisture – precipitation feedback for these two regions. The normalized model spread between the two simulation results shows linkages between precipitation variability and diagnostic variables surface fluxes, moisture flux convergence above the surface and convective available potential energy in both study regions. The soil moisture – precipitation feedback is evaluated with a classification of soil moisture spatial heterogeneity based on the strength of the soil moisture gradients. This allows us to assess the impact of soil moisture anomalies on surface fluxes, moisture flux convergence, convective available potential energy and precipitation. In both regions the amount of precipitation generally increases with soil moisture spatial heterogeneity. For the Ammer region the soil moisture – precipitation feedback has a weak negative sign with more rain near drier patches while it has a positive signal for the Sissili region with more rain over wetter patches. At least for the observed moderate soil moisture values and the spatial scale of the Ammer region, the spatial variability of soil moisture is more important for surface‐atmosphere interactions than the actual soil moisture content. Overall, we found that soil moisture heterogeneity can greatly affect the soil moisture – precipitation feedback.
    Description: WRF and WRF‐hydro model simulations are used to determine the sign and analyse the mechanisms of the soil moisture ‐ precipitation feedback for the sempiternal humid Ammer catchment in Southern Germany and for the semiarid to subhumid Sissili catchment in West Africa during the warm season. The generation of moist convection is favoured over surfaces with moderately high soil moisture gradients in the Ammer region, while for the Sissili region the location of precipitation tends to be related to areas with high soil moisture gradients. For the Ammer region the soil moisture – precipitation feedback has a weak negative sign with more rain near drier patches while it has a positive signal for the Sissili region with more rain over wetter patches.
    Description: Untersuchung des Klimas des südlichen Afrikas – ein Brückenschlag vom frühen Holozän bis heute
    Description: Transregional Collaborative Research Center
    Keywords: ddc:551.57 ; ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-04-01
    Description: In designed experiments, different sources of variability and an adequate scale of measurement need to be considered, but not all approaches in common usage are equally valid. In order to elucidate the importance of sources of variability and choice of scale, we conducted an experiment where the effects of biochar and slurry applications on soil properties related to soil fertility were studied for different designs: (a) for a field‐scale sampling design with either a model soil (without natural variability) as an internal control or with composited soils, (b) for a design with a focus on amendment variabilities, and (c) for three individual field‐scale designs with true field replication and a combined analysis representative of the population of loess‐derived soils. Three silty loam sites in Germany were sampled and the soil macroaggregates were crushed. For each design, six treatments (0, 0.15 and 0.30 g slurry‐N kg−1 with and without 30 g biochar kg−1) were applied before incubating the units under constant soil moisture conditions for 78 days. CO2 fluxes were monitored and soils were analysed for macroaggregate yields and associated organic carbon (C). Mixed‐effects models were used to describe the effects. For all soil properties, results for the loess sites differed with respect to significant contributions of fixed effects for at least one site, suggesting the need for a general inclusion of different sites. Analysis using a multilevel model allowed generalizations for loess soils to be made and showed that site:slurry:biochar and site:slurry interactions were not negligible for macroaggregate yields. The use of a model soil as an internal control enabled observation of variabilities other than those related to soils or amendments. Experiments incorporating natural variability in soils or amendments resulted in partially different outcomes, indicating the need to include all important sources of variability. Highlights Effects of biochar and slurry applications were studied for different designs and mixed‐effects models were used to describe the effects. Including an internal control allowed observation of, e.g., methodological and analytical variabilities. The results suggested the need for a general inclusion of different sites. Analysis using a multilevel model allowed generalizations for loess soils. The results indicated the need to include all important sources of variability.
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-04-05
    Description: Human alteration of nutrient cycles has caused persistent and widespread degradation of water quality around the globe. In many regions, including Western Europe, elevated nitrate (NO3−) concentration in surface waters contributes to eutrophication and noncompliance with environmental legislation. Discharge, NO3− concentrations and the vulnerability of the aquatic ecosystems to eutrophication often exhibit a distinct seasonality. Understanding spatial patterns and long‐term trends in this seasonality is crucial to improve water quality management. Here, we hypothesized that NO3− concentrations during high‐flow periods would respond faster to changes in nutrient inputs than low‐flow concentrations because of greater connectivity of shallow diffuse NO3− sources with the river network. To test this hypothesis, we compiled long‐term NO3− and discharge time series from 290 Western European catchments. To characterize the long‐term trajectories of seasonal NO3− concentration, we propose a novel hysteresis approach comparing low‐ and high‐flow NO3− concentration in the context of multi‐decadal N input changes. We found synchronous winter maxima of NO3− and discharge in 84% of the study catchments. However, contrary to our hypothesis, there were surprisingly diverse long‐term trajectories of seasonal NO3− concentration. Both clockwise (faster high‐flow NO3− response) and counterclockwise hysteresis (faster low‐flow NO3− response) occurred in similar proportions, potentially due to a high complexity in the underlying processes. Spatial variability of seasonality in NO3− concentration across the catchments was more pronounced and better predictable than its long‐term variability. This work demonstrates the value of seasonal and inter‐annual hydrochemical analysis and provides new tools for water quality monitoring and management.
    Description: Plain Language Summary: Nitrogen is an essential element of all living organisms and has thus often been used excessively as fertilizer to secure food production. However, surface waters can suffer from elevated nutrients inputs, causing toxic algal blooms and impairing drinking water quality, especially during summer low flows. To manage water quality, it is crucial to understand these seasonal variations of nitrogen and discharge and the underlying processes. We used data from 290 catchments in France and Germany to characterize average seasonality patterns and their long‐term evolution across the variety of landscapes and human influences. This allowed classifying catchment behavior and linking them to controls. As expected, both nitrogen and discharge peak during winter in most catchments (84%). However, there are well explainable deviations, for example, in mountainous regions. The long‐term evolution of seasonality was more diverse than expected suggesting a complex interplay of various processes with the long input history from fertilization and wastewater being part of the controls. We found that the differences among catchments were greater than the long‐term changes of seasonality within most catchments. By identifying catchment typologies, our study increases the understanding of nitrate seasonality patterns across a large extent and thus supports ecological water quality management.
    Description: Key Points: Spatial patterns of nitrate and discharge seasonality are linked to topography and hydroclimate with winter maxima dominating for both. After decreasing nutrient inputs, cases with decreases in river nitrate preceding during low‐ and high‐flow seasons occurred equally often. Spatial variability of nitrate seasonality is greater and more predictable from catchment characteristics than its long‐term variability.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: Helmholtz Association http://dx.doi.org/10.13039/501100009318
    Description: US National Science Foundation (NSF)
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-03-30
    Description: Abstract The number of newly discovered and confirmed impact structures on earth is growing continuously. In this review paper, the main attributes of 198 confirmed impact structures and 10 further structures, for which final confirmation based on the identification of shock features is not yet entirely satisfying, are presented. The impact craters are compared statistically, with regard to their morphology, structure, and status of erosion or burial. The size– and age–frequency distributions of terrestrial impact structures are presented. Additional aspects concern target petrography and shock effects found in the craters. Based on the discovery statistics of presently known crater structures, an estimate can be made of the number of craters that await discovery. The paper is complementary to the recently published atlas of terrestrial impact structures by Gottwald et al. (2020).
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-03-30
    Description: The prevailing view suggests that the Eemian interglacial on the European Plain was characterized by largely negligible geomorphic activity beyond the coastal areas. However, systematic geomorphological studies are sparse. Here we present a detailed reconstruction of Eemian to Early Weichselian landscape evolution in the vicinity of a small fingerlake on the northern margin of the Salzwedel Palaeolake in Lower Saxony (Germany). We apply a combination of seismics, sediment coring, pollen analysis and luminescence dating on a complex sequence of colluvial, paludal and lacustrine sediments. Results suggest two pronounced phases of geomorphic activity, directly before the onset and at the end of the Eemian period, with an intermediate period of pronounced landscape stability. The dynamic phases were largely driven by incomplete vegetation cover, but likely accentuated by fluvial incision in the neighbouring Elbe Valley. Furthermore, we discovered Neanderthal occupation at the lakeshore during Eemian pollen zone (PZ) E IV, which is chronologically in line with other known Eemian sites of central Europe. Our highly‐resolved spatio‐temporal data substantially contribute to the understanding of climate‐induced geomorphic processes throughout and directly after the last interglacial period. It helps unraveling the landscape dynamics between the coastal areas to the north and the loess belt to the south.
    Description: Two phases of channel incision at the Saalian‐Eemian transition and in the late Eemian. Incisions closely followed by rising water tables. Long‐lasting phase of geomorphic stability in the mid‐Eemian, characterized by: very dense forest cover. the formation of a fingerlake within the paleochannel with gradually sinking water table. no influx of clastic sediments, but deposition of peat and lake‐marl deposits.
    Description: Max‐Planck‐Gesellschaft http://dx.doi.org/10.13039/501100004189
    Keywords: ddc:554.3 ; ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-03-31
    Description: Although previous findings support an origin of the Shatsky Rise igneous plateau (Northwest Pacific) through interaction of a mantle plume with a mid‐ocean ridge triple junction, the evidence for the involvement of a mantle plume is equivocal. The identification of an intraplate hotspot track emanating from the plateau could solve this controversy. Here we present major and trace element geochemical data from two different bathymetric features that emanate from the youngest end of Shatsky Rise: Papanin Ridge and the Ojin Rise Seamount province. Combining our results with plate tectonic reconstructions, we conclude that Papanin Ridge represents a hotspot track formed by plume‐ridge interaction. Whereas the southwestern part was formed along the path of the retreating Pacific‐Farallon‐Izanagi triple junction, the northeastern part was built by preferential drainage into its Pacific‐Farallon branch. In contrast, the Ojin Rise Seamounts formed as a true intraplate hotspot track of the Shatsky plume tail. Our wide‐ranging study reveals systematic spatial geochemical variations, consistent with a lithospheric thickness control on magma composition derived from melting a heterogeneous plume source. The recognition of two hotspot tracks and in particular of the Ojin Rise Seamounts as an intraplate hotspot track that is directly linked to Shatsky plateau volcanism both in terms of geochemistry and plate tectonic reconstructions confirms the long‐disputed involvement of a mantle plume for the formation of Shatsky Rise.
    Description: Plain Language Summary: The origin of Shatsky Rise, a large igneous plateau in the NW Pacific, has long been debated. It could have either formed by shallow mantle melting due to its confirmed creation along a mid‐ocean ridge or with additional contribution of deeper mantle material that upwelled as so‐called mantle plume beneath the spreading ridge (“plume‐ridge interaction”). The identification of an intraplate hotspot track emanating from Shatsky Rise and related to the plateau could answer this question. Here we present major and trace element geochemical data from lava samples dredged from two different structures that arise from the youngest end of the Shatsky Rise plateau: Papanin Ridge and the Ojin Rise Seamount province. By combining our results with plate tectonic reconstructions, we conclude that Papanin Ridge formed, like the main Shatsky Rise, by continued plume‐ridge interaction. In contrast, the Ojin Rise Seamounts formed as a true intraplate hotspot track by the drift of the Pacific Plate over the stationary Shatsky hotspot (plume tail). The recognition of an intraplate hotspot track that is directly linked to the Shatsky plateau volcanism both in terms of geochemistry and plate tectonic reconstructions also confirms the involvement of a mantle plume for the formation of Shatsky Rise.
    Description: Key Points: The Ojin Rise Seamounts are identified as intraplate hotspot track of the same mantle plume that formed the Shatsky Rise oceanic plateau. Papanin Ridge formed by plume‐ridge interaction and represents the northeastern continuation of the Shatsky plateau. Linking an intraplate hotspot track to the Shatsky plateau confirms the involvement of a mantle plume for its formation.
    Description: Bundesministerium für Bildung und Forschung (BMBF) http://dx.doi.org/10.13039/501100002347
    Description: GEOMAR Helmholtz Centre for Ocean Research Kiel
    Description: https://doi.org/10.26022/IEDA/111976
    Keywords: ddc:551 ; ddc:552.2
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-03-25
    Description: Fast and accurate large‐scale localization and quantification of harmfully compacted soils in recultivated post‐mining landscapes are of particular importance for mining companies and the following farmers. The use of heavy machinery during recultivation imposes soil stress and can cause irreversible subsoil compaction limiting crop growth in the long term. To overcome or guide classical point‐scale methods to determine compaction, fast methods covering large areas are required. In our study, a recultivated field of the Garzweiler mine in North Rhine‐Westphalia, Germany, with known variability in crop performance was intensively studied using non‐invasive electromagnetic induction (EMI) and electrode‐based electrical resistivity tomography (ERT). Additionally, soil bulk density, volumetric soil water content and soil textures were analysed along two transects covering different compaction levels. The results showed that the measured EMI apparent electrical conductivity (ECa) along the transects was highly correlated (R2 〉 .7 for different dates and depths below 0.3 m) to subsoil bulk density. Finally, the correlations established along the transects were used to predict harmful subsoil compaction within the field, whereby a spatial probabilistic map of zones of harmful compaction was developed. In general, the results revealed the feasibility of using the EMI derived ECa to predict harmful compaction. They can be the basis for quick monitoring of the recultivation process and implementation of necessary melioration to return a well‐structured soil with good water and nutrient accessibility, and rooting depths for increased crop yields to the farmers.
    Description: BonaRes (Module A)
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-03-25
    Description: The Miocene period saw substantially warmer Earth surface temperatures than today, particularly during a period of global warming called the Mid Miocene Climatic Optimum (MMCO; ∼17–15 Ma). However, the long‐term drivers of Miocene climate remain poorly understood. By using a new continuous climate‐biogeochemical model (SCION), we can investigate the interaction between volcanism, climate and biogeochemical cycles through the Miocene. We identify high tectonic CO2 degassing rates and further emissions associated with the emplacement of the Columbia River Basalt Group as the primary driver of the background warmth and the MMCO respectively. We also find that enhanced weathering of the basaltic terrane and input of explosive volcanic ash to the oceans are not sufficient to drive the immediate cooling following the MMCO and suggest that another mechanism, perhaps the change in ocean chemistry due to massive evaporite deposition, was responsible.
    Description: Plain Language Summary: The Miocene period was much warmer than today, with the Mid Miocene Climatic Optimum (MMCO, roughly 17–15 million years ago) especially warm. Due to the high surface temperatures, comparisons to projected climatic conditions as a result of anthropogenic climate change have been drawn. However, the drivers of climate during the Miocene are not well understood. By using a new type of climate model, we investigate the impact volcanic eruptions had on the period, and link the extreme warmth of the MMCO with greenhouse gas release from the eruption of the Columbia River Basalts Group (CRBG). We find weathering of the CRBG does not explain the cooling at the end of the MMCO, and so discuss other potential explanations such as evaporite deposition.
    Description: Key Points: A new climate‐biogeochemical model allows investigation of drivers of climate change in the Miocene. Columbia River Basalt Group (CRBG) degassing is sufficient to have caused the Mid Miocene Climatic Optimum (MMCO). Weathering of CRBG insufficient to drive cooling after the MMCO. This may be linked to evaporite deposition and changes to marine chemistry.
    Description: UK Natural Environment Research Council
    Description: French Research Agency (ANR)
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-03-28
    Description: Glacial landforms are abundant in the North Sea basin and are often used to reconstruct the impact and dynamics of ice sheets during the Pleistocene. Geophysical methods have allowed the mapping and structural analysis of glacial landforms at the surface and in the subsurface to estimate the position of former ice margins in the North Sea. However, the glacial history of the southeastern North Sea remains underexplored. In this study, we present a structural analysis of Late Pliocene to Late Pleistocene sediments based on a dense grid of 2D high‐resolution multi‐channel reflection seismic data from the German sector of the southeastern North Sea. We show that the Heligoland Glacitectonic Complex (HGC) is larger than previously assumed (700 km2, 32×22 km) and characterized by three distinct zones of thrusting and deformation on two décollements. The kinematic restoration of seismic cross‐sections and dip measurements of thrust faults demonstrate that the HGC was formed by an ice lobe advancing from the southeast. To explain the origin of the HGC, we provide alternative models for its formation during a single ice advance or two ice advances in the study area. Furthermore, we validate the early or pre‐Elsterian age of the HGC based on nearby Elsterian tunnel valleys, and conclude that salt structures in the subsurface may have influenced its location.
    Description: Schleswig‐Holstein Agency for Coastal Defence, National Park and Marine Conservation (LKN.SH) and the State Agency for Agriculture, Environment and Rural Areas of Schleswig‐Holstein (LLUR)
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-04-22
    Description: Quantitative environmental assessments are crucial in working effectively towards sustainable production and consumption patterns. Over the last decades, life cycle assessments (LCA) have been established as a viable means of measuring the environmental impacts of products along the supply chain. In regard to user and consumption patterns, however, methodological weaknesses have been reported and, several attempts have been made to improve LCA accordingly, for example, by including higher order effects and behavioural science support. In a discussion of such approaches, we show that there has been no explicit attention to the concepts of consumption, often leading to product-centred assessments. We introduce social practice theories in order to make consumption patterns accessible to LCA. Social practices are routinised actions comprising interconnected elements (materials, competences, and meanings), which make them conceivable as one entity (e.g. cooking). Because most social practices include some sort of consumption (materials, energy, air), we were able to develop a framework which links social practices to the life cycle inventory of LCA. The proposed framework provides a new perspective of quantitative environmental assessments by switching the focus from products or users to social practices. Accordingly, we see the opportunity in overcoming the reductionist view that people are just users of products, and instead we see them as practitioners in social practises. This change could enable new methods of interdisciplinary research on consumption, integrating intend-oriented social sciences and impact-oriented assessments. However, the framework requires further revision and, especially, empirical validation.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-02-18
    Description: Wolfgang Sachs wrote a seminal series of essays for the New Internationalist in 1992 called "Development: a guide to the ruins". The concept of development lives on - and takes on new shapes as it is reframed by the UN, reinterpreted by the Vatican or hijacked by authoritarian populists to serve their own nationalist agenda. But, he argues now, we need to move beyond its misguided assumptions into a new post-development era based on eco-solidarity.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: contributiontoperiodical , doc-type:contributionToPeriodical
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-02-18
    Description: Digitalisation is disrupting business practices worldwide and transforming consumption patterns. While a global increase in wealth is leading to higher consumption rates, consumption-related decisions are increasingly based on digital information and marketing; furthermore, shopping increasingly takes place online and products and services are more and more digitalised. The transformative character of digitalisation calls for political action in order to ensure sustainable consumption in a new and dynamically changing context. Focusing on consumption is imperative in combatting many global challenges. Take climate change: consumption-based emissions (i.e. emissions from domestic final consumption and emissions caused by the production of imported goods) are rising more rapidly than production-based emissions in high-income countries. Meanwhile most political measures target production-based emissions (i.e. territorial emissions). The German council for sustainable development (Rat für Nachhaltige Entwicklung) has called for the §principle of sustainable development [to] serve as the political framework for digital transformation" as "digitalisation has the potential to engender disruptive developments in the business world as well as society as a whole that carry both great opportunities and significant risks". Thus, to implement the 2030 Agenda, in particular SDG 12, and the National Program Sustainable Consumption, it is key to seize the opportunities that digitalisation presents for sustainable consumption and tackle the challenges. This assessment report thus examines the following key question: "What are the implications of the digital transformation of consumption patterns for the implementation of the German sustainability strategy in, by and with Germany?"
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-02-18
    Description: For achieving a transition towards sustainable development, central importance is attached to science and education, and especially higher education. Suitable formats are needed for empowering students to perform transformative research. On the basis of transdisciplinary and transformative real-world laboratory research and futures studies, we develop encompassing learning and teaching module: the Transformative Innovation Lab (til). The lab builds on insights into five key competencies and three types of knowledge needed for developing socially robust sustainability innovations. In this paper, the main features of this experiential and reflexive format are presented and linked to a handbook for facilitating the lab. Central learnings for implementing the format in existing study programmes from two test runs at two German universities are shared and discussed.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-02-18
    Description: This assessment report identifies six key areas of sustainable consumption. Transforming those areas is associated with a significant, positive impact on sustainable development. In this way, those key areas lay the foundation to set clear priorities and formulate concrete policy measures and recommendations. The report describes recent developments and relevant actors in those six fields, outlines drivers and barriers to reach a shift towards more sustainability in those specific areas, and explores international good-practice examples. On top of this, overarching topics in the scientific discourse concerning sustainable consumption (e.g. collaborative economy, behavioural economics and nudging) are revealed by using innovative text-mining techniques. Subsequently, the report outlines the contributions of these research approaches to transforming the key areas of sustainable consumption. Finally, the report derives policy recommendations to improve the German Sustainable Development Strategy (DNS) in order to achieve a stronger stimulus effect for sustainable consumption.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-02-18
    Description: Effective actions to mitigate climate change are urgently needed, especially in the context of cities, which are major sources of global CO2 emissions. Establishing and managing knowledge systems that integrate local knowledge can contribute to establishing more effective responses to climate change as well as transformative change towards sustainability. However, it is still unclear how new forms of urban governance should acquire, store, create, or disseminate knowledge for fostering sustainability transitions effectively. In this study, we present a multilevel knowledge system approach based on design principles informed especially by the knowledge management literature. These address (i) working environments across multiple levels, (ii) knowledge forms and types, and (iii) knowledge processes. We apply this approach to municipal climate action in the German energy transition. In particular, we focus on the operational work of municipal climate action managers of regional centers of Lower Saxony, one of the largest of the 16 federal states, and investigate their involvement in knowledge processes. Based on semi-structured interviews in 14 of the 17 regional centers, we show that structural pre-conditions for successful knowledge management and organizational learning are present. However, we also show that there is a need for improvement regarding (i) the multilevel coordination for accelerating routine operation, (ii) the persistence of local operational knowledge, and (iii) the exploitation of local innovations. Relying on these results, we offer general recommendations for municipal climate action and suggest that policies should (i) rely on local knowledge for effective decision-making, (ii) foster multilevel exchanges of explicit and tacit knowledge for implementation, and (iii) enable open-ended learning processes that leverage local innovations for creating usable transformational knowledge.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-03-29
    Description: The Late Holocene marks a substantial cultural and economic transition in the eastern Eurasian Steppe and Altai Region with the dispersal of nomadic pastoralism. So far, paleoclimate conditions during this time remain unclear and controversial. Here, we present a high‐resolution 4.2 ka paleoclimate record from Lake Khar Nuur in the Mongolian Altai that is based on lake sediment proxies and biomarker compound‐specific δ2H analyses. Our results document increased aridity before ∼3.7 cal. ka BP, followed by two pronounced phases of warm and wet conditions from ∼3.5–2.8 to ∼2.3–1.5 cal. ka BP, and a strong increase in aridity since ∼1.5 cal. ka BP. Phases of warmer and wetter conditions coincide with a negative North Atlantic Oscillation, which has been responsible for advecting moisture into the region by more southerly‐displaced Westerlies and possibly favored the expansion of mobile nomadic pastoralism in the region.
    Description: Plain Language Summary: Nomadic pastoralism is the dominant subsistence practice in the eastern Eurasian Steppe and Altai Region since the Late Bronze Age. Whether this had climatic reasons is one of the most intriguing question, because former climatic conditions are poorly understood in this important but understudied region. To address this issue, we established a hydrological record for the last ∼4.2 ka from a high‐altitude lake in the Mongolian Altai. Our findings provide evidence of exceptionally warm and wet conditions from ∼3.5–2.8 and ∼2.3–1.5 cal. ka BP. Those favorable climate conditions likely favored productive grasslands and the widespread dispersal of nomadic pastoralism in the eastern Eurasian Steppe and Altai Region.
    Description: Key Points: A high‐resolution 4.2 ka paleoclimate record from Lake Khar Nuur in the Mongolian Altai, based on biomarker compound‐specific δ2H analyses. Our hydrological proxies record distinct changes in warm/wet and cold/dry conditions during the Late Holocene in the Altai Region: Pronounced warm/wet conditions from ∼3.5 to 2.8 cal. ka BP probably favored the widespread dispersal of nomadic pastoralism in the region.
    Description: Ernst Abbe Stiftung
    Description: https://doi.org/10.1594/PANGAEA.936512
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-03-29
    Description: Although submarine landslides have been studied for decades, a persistent challenge is the integration of diverse geoscientific datasets to characterize failure processes. We present a core‐log‐seismic integration study of the Tuaheni Landslide Complex to investigate intact sediments beneath the undeformed seafloor as well as post‐failure landslide deposits. Beneath the undeformed seafloor are coherent reflections underlain by a weakly‐reflective and chaotic seismic unit. This chaotic unit is characterized by variable shear strength that correlates with density fluctuations. The basal shear zone of the Tuaheni landslide likely exploited one (or more) of the low shear strength intervals. Within the landslide deposits is a widespread “Intra‐debris Reflector”, previously interpreted as the landslide's basal shear zone. This reflector is a subtle impedance drop around the boundary between upper and lower landslide units. However, there is no pronounced shear strength change across this horizon. Rather, there is a pronounced reduction in shear strength ∼10–15 m above the Intra‐debris Reflector that presumably represents an induced weak layer that developed during failure. Free gas accumulates beneath some regions of the landslide and is widespread deeper in the sedimentary sequence, suggesting that free gas may have played a role in pre‐conditioning the slope to failure. Additional pre‐conditioning or failure triggers could have been seismic shaking and associated transient fluid pressure. Our study underscores the importance of detailed core‐log‐seismic integration approaches for investigating basal shear zone development in submarine landslides.
    Description: Plain Language Summary: Submarine landslides move enormous amounts of sediment across the seafloor and have the potential to generate damaging tsunamis. To understand how submarine landslides develop, we need to be able to image and sample beneath the seafloor in regions where landslides have occurred. To image beneath the seafloor we generate sound waves in the ocean and record reflections from those waves, enabling us to produce “seismic images” of sediment layers and structures beneath the seafloor. We then use scientific drilling to sample the sediment layers and measure physical properties. In this study, we combine seismic images and drilling results to investigate a submarine landslide east of New Zealand's North Island. Drilling next to the landslide revealed a ∼25 m‐thick layer of sediment (from ∼75–95 m below the seafloor) that has strong variations in sediment strength and density. We infer that intervals of relatively low strength within this layer developed into the main sliding surface of the landslide. Additionally, results from within the landslide suggest that the process of landslide emplacement has induced a zone of weak sediments closer to the seafloor. Our study demonstrates how combining seismic images and drilling data helps to understand submarine landslide processes.
    Description: Key Points: We integrate scientific drilling data with seismic reflection data to investigate the submarine Tuaheni Landslide Complex. Basal shear zone of the landslide likely exploited a relatively low shear strength interval within an older (buried) mass transport deposit. Landslide emplacement seems to have induced an additional weak zone that is shallower than the interpreted base of the landslide deposit.
    Description: Marsden Fund (Royal Society of New Zealand Marsden Fund) http://dx.doi.org/10.13039/501100009193
    Description: European Consortium for Ocean Research Drilling
    Description: International Ocean Drilling Program, Science Support Program
    Description: New Zealand Ministry for Business Innovation and Employment
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: https://doi.pangaea.de/10.1594/PANGAEA.928073
    Keywords: ddc:622.15 ; ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    Wuppertal : Transzent, Zentrum für Transformationsforschung und Nachhaltigkeit
    Publication Date: 2022-02-18
    Description: In current German debates on sustainable urbanisation and urbanism, new urban actors reviving buildings, brownfields or whole neighbourhoods are discussed as potential drivers of urban transformation towards sustainability as well as potential co-producers for conventional actors in urban development and planning. These actor's projects can be understood as spatially confined niches for experimentation with (built) urban space itself. Building upon the concepts of niche entrepreneurship (Pesch et al., 2017) and the framework of strategic action field theory (Fligstein & McAdam, 2011; 2015), we ask how these actors secure support for their projects and how these projects in turn are altered in this process. Based upon a case study from Wuppertal, Germany, we show that in struggling for support of powerful actors, these actors often have to significantly compromise, and that these compromises can be understood as contextualisation in the project's spatial and institutional environment.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-02-18
    Description: Consumption by private households in various areas of demand - housing, mobility, nutrition, services and products - contributes to around 10 % of total emissions in Germany. Of this, higher-income households are responsible for a disproportionate share. At the same time, many households often lack the knowledge, time, or motivation to deal with their own energy-relevant and climate-impacting behaviours. In this context, energy advice services play an important role for raising awareness, activating consumers and imparting knowledge about available options for action. However, conventional energy advice services are mostly limited to the topics of building and appliance energy efficiency - especially for middle- and high-income households - without considering private consumption behaviour and the related social practices as a whole. In practice, there has been little differentiation to date in addressing target groups in a way that takes into account different lifestyles and realities and the underlying values and motivations in a pluralistic society. The present paper presents a methodological approach to develop targeted energy advice approaches in urban environments that are oriented towards the motivations of different types of households with medium and high incomes. It proposes a three-step approach consisting of 1) a microdata-based population analysis to identify and categorize target subgroups, 2) an inventory of existing advice offers with regard to their coverage and approach and 3) a gap analysis based on the results of the preceding steps. Applied to a large city in Germany, the analysis finds that gaps are rarely found with regard to communicated facts but rather the way in which information is conveyed. Accordingly, recommendations relate to more effectively use windows of opportunity and framing of measures to match target group motivations.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-06-26
    Description: Physical weathering in cold, steep bedrock hillslopes occurs at rates that are thought to depend on temperature, but our ability to quantify the temperature‐dependence of erosion remains limited when integrating over geomorphic timescales. Here, we present results from a 1D numerical model of in‐situ cosmogenic 10Be, 14C, and 3He concentrations that evolve as a function of erosion rate, erosion style, and ground surface temperature. We used the model to explore the suitability of these nuclides for quantifying erosion rates in areas undergoing non‐steady state erosion, as well as the relationship between bedrock temperature, erosion rate, and erosional stochasticity. Our results suggest that even in stochastically eroding settings, 10Be‐derived erosion rates of amalgamated samples can be used to estimate long‐term erosion rates, but infrequent large events can lead to bias. The ratio of 14C to 10Be can be used to evaluate erosional stochasticity, and to determine the offset between an apparent 10Be‐derived erosion rate and the long‐term rate. Finally, the concentration of 3He relative to that of 10Be, and the paleothermometric interpretations derived from it, are unaffected by erosional stochasticity. These findings, discussed in the context of bedrock hillslopes in mountainous regions, indicate that the 10Be‐14C‐3He system in quartz offers a method to evaluate the temperature‐sensitivity of bedrock erosion rates in cold, high‐alpine environments.
    Description: Plain Language Summary: All mountains erode, but not all mountains erode in the same way and at the same rate. In cold mountainous landscapes, temperature is thought to be an important control on erosion. Previous research suggests that rocks fracture by frost most effectively at temperatures between −3°C and −8°C, and that the warming and thawing of permanently frozen ground (permafrost) destabilizes hillslopes and leads to more and larger rockfalls. However, our ability to test these hypotheses is limited, due to difficulties in measuring or estimating erosion rates and linking them with the temperatures that rocks experience. In this paper we present the results of a computer modeling study that tests the suitability of geochemical tools as measures of erosion rate, erosion style, and long‐term bedrock temperature. We find that these geochemical tracers, called cosmogenic nuclides, can be used to determine erosion rates, even in places that are prone to rare rockfalls, together with the long‐term bedrock temperature. They are therefore uniquely suitable for evaluating the link between temperatures and erosion rates in cold bedrock hillslopes over long timescales.
    Description: Key Points: Cosmogenic 10Be, 14C, and 3He is used to determine erosion rates, erosion styles, and bedrock temperatures in cold regions. 14C/10Be ratios of surface samples reflect the depth at which material was previously eroded, allowing for determination of erosion style. 14C/10Be ratios combined with 10Be‐derived erosion rates improve erosion rate estimates in stochastically eroding environments.
    Description: European Research Council Horizon 2020
    Description: https://doi.org/10.5880/GFZ.3.3.2022.001
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-06-24
    Description: We investigate the chemical budget of subduction zones at sub‐solidus conditions using a thermodynamic‐numerical simulation in which all major rock components are treated as soluble and potentially mobile in aqueous fluids. This new strategy significantly improves the accuracy of predicted fluid‐rock equilibrium compositions in open petrological systems. We show that all slabs release volatiles and nonvolatiles to the mantle wedge, contributing to its refertilization. But some mobile constituents, such as alkali and alumina, may be trapped along layer boundaries or traverse without interaction depending on chemical contrasts between adjacent lithologies. The accumulation of igneous alumina and silica in the limestones of the central‐eastern Pacific slabs drives their decarbonation and is marked by metasomatic garnet growth. Those slabs are also predicted to lose much of their alkalis before sub‐arc depth. Even when they are produced in the altered mafic and ultramafic layers, fluids reach the slab/mantle wedge interface with distinct compositional signatures that are typical of the sedimentary cover. We distinguished supply and transport limited regimes of element subduction by testing the sensitivity of our mass balance to changes in slab hydration state (HS). Transport limited slabs sensitive to HS include notably a hotspot of carbon release to the mantle wedge (e.g., Costa Rica). Finally, we show that the quantitative budgets do depend on the geometry of fluid flows, and on assuming that slabs are mechanically continuous structures, which is questionable. Taken together, these insights will help better constrain the long‐term chemical evolution of the shallow planetary interior, and the thermomechanical behavior of the subduction interface.
    Description: Plain Language Summary: Subduction zones return chemical elements from the surface to the deep Earth. But quantifying this transfer has been challenging. Here, we present a model where all major elements are partly mobile in the fluid phase, enabling us to compile a chemical budget for subduction zones in which only fluids mediate mass transport. We identify transport and supply regimes of element subduction as a function of lithospheric hydration state, rock compositions, and slab temperature. We show that the transport of many rock‐forming elements such as SiO2, CaO, and Al2O3, within and out of the slab, modifies rock composition and contributes to the efficiency of slab decarbonation. Our model of subduction fluid and rock compositions has important implications to understand the role of slab‐derived metasomatic fluid in modifying the composition of the mantle wedge over time, the mechanical properties of deeply subducted rocks, and it will inform future investigations for the high‐pressure petrology of rocky planets in general.
    Description: Key Points. Inter dependence of element transfers in subduction zones. Thermodynamics of intra‐slab metasomatism of major elements. Transport‐ and supply limited regimes of carbonate subduction.
    Description: Alexander von Humboldt‐Stiftung (Humboldt‐Stiftung) http://dx.doi.org/10.13039/100005156
    Description: Branco Weiss Fellowship—Society in Science
    Description: Swiss National Science Foundation
    Description: https://osf.io/y84d2/
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-06-22
    Description: Oceanic transform faults (OTFs) are an inherent part of seafloor spreading and plate tectonics, whereas the process controlling their morphology remains enigmatic. Here, we systematically quantify variations in transform morphology and their dependence on spreading rate and age‐offset, based on a compilation of shipborne bathymetric data from 94 OTFs at ultraslow‐ to intermediate‐spreading ridges. In general, the length, width and depth of OTFs scale systematically better with age‐offset rather than spreading rate. This observation supports recent geodynamic models proposing that cross‐transform extension scaling with age‐offset, is a key process of transform dynamics. On the global scale, OTFs with larger age‐offsets tend to have longer, wider, and deeper valleys. However, at small age‐offsets (〈5 Myr), scatters in the depth and width of OTFs increase, indicating that small age‐offset OTFs with weak lithospheric strength are easily affected by secondary tectonic processes.
    Description: Plain Language Summary: In the past 5 decades, studies on oceanic transform faults (OTFs) have revealed significant complexity in their morphology, which calls for detailed quantitative analysis to study the processes controlling the morphology of OTFs. Using the most complete and advanced compilation of bathymetric data from ultraslow‐ to intermediate‐spreading ridges, we parameterized the morphological characteristics of OTFs and extracted length, width and depth for each transform fault from the compiled bathymetric data. Moreover, correlations between these morphological parameters and related tectonic factors (e.g., spreading rate, age‐offset) were investigated in this study. We find that correlations between morphological features and spreading rate are rather weak. Comparison of correlations suggests that age‐offset scales better with the morphological parameters, along with scatters mostly at small age‐offsets, indicating small‐age‐offset OTFs are unstable due to their weak lithospheric strength. Our observation evidences extensional tectonics at OTFs.
    Description: Key Points: We compiled multibeam bathymetric data of 94 oceanic transform faults (OTFs) to quantify their morphological characteristics. Morphology of OTFs is dominated by age‐offset rather than spreading rate. Transform valleys get systematically deeper and wider with increasing age‐offset, implying extensional tectonics at OTFs.
    Description: China Scholarship Council
    Description: http://doi.org/10.5281/zenodo.4774185
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-06-23
    Description: This Best Practice Guideline was been initiated by the Working Group Soil Gases (AG Bodengase) of the German Soil Science Society (Deutsche Bodenkundliche Gesellschaft). Our intention was to collect and aggregate the expertise of different working groups in our field. As a compendium, this guideline may help both beginners and experts to meet the practical and theoretical challenges of measuring soil gas fluxes with non-steady state chamber systems.
    Description: German Soil Science Society, Working Group Soil Gases
    Description: manual
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:book
    Format: 70
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-10-24
    Description: When dealing with the Great Transformation towards a sustainable world (WBGU 2011), one defining factor is the stark contradiction in the availability of knowledge: While there is almost unlimited knowledge on many technical and economic aspects of the sustainability transformation, while in some way all the tools are available and we, in theory, know exactly how to use them, there is a lack of action at all levels. If we assume that in principle a majority of decision-makers has understood the necessity to act, this ultimately points to a lack of knowledge on how major transformations can be triggered. To use a common distinction, we have solid knowledge of the systems at play, we know the targets society should be heading for, and these targets have been globally and politically agreed to, but our knowledge on transformations, while growing, is obviously lacking. While this is true for all forms of knowledge to some extent, especially transformation knowledge requires more than just disciplinary or interdisciplinary research because it depends on transdisciplinary approaches that integrate the knowledge of practitioners from politics, administration, civil society and business.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: bookpart , doc-type:bookPart
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-10-24
    Description: Impact chains are used in many different fields of research to depict the various impacts of an activity and to visualize the system in which this activity is embedded. Research has not yet conceptualized impact chains specifically for energy sufficiency policies. We develop such a concept based on current evaluation approaches and extend these by adding qualitative elements such as success factors and barriers. Furthermore, we offer two case studies in which we test this concept with the responsible climate action managers. We also describe options for integrating these impact chains into different types of energy models, which are key tools in policy consulting.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-11-10
    Description: This thesis conceptualizes the school as a socio-technical system, in which change towards sustainable development and a transition towards more climate awareness are necessary. The multi-level perspective (MLP) framework is applied to the German school system and to climate protection projects (CPPs) as examples of niche activities integrating climate protection (CP) in the school. The thesis utilizes the analytical levels of the MLP (landscape, regime, and niche) and the concept of regulative, cognitive, and normative rules and addresses the question: How do actors in CPPs perceive drivers and barriers for transitioning towards more climate awareness in the German school system? The data were collected through expert interviews and analyzed by conducting a qualitative content analysis. The results show that the German school system is characterized by an inherent rigidity, deep-set normative role dynamics, and an unappreciated role of schools in society. They also highlight the importance of public pressure, strategic CP orientation, and hands-on approaches. CPPs can be a driving force for this in individual schools, but, overall, CP needs to be addressed more systematically in the school and more substantial efforts and reforms are necessary. Highly motivated niche actors play an important role and represent key drivers for such developments. This thesis reveals the complex and systemic nature of the challenges the German school system is faced with. It highlights the difficulties of integrating CP and the importance of substantial and transformative political action. The thesis demonstrates the crucial need to recognize the significance of schools and their actors for society and to integrate new methods and approaches into the school. This thesis also contributes to the body of literature on socio-technical systems and sustainability transitions. It offers an operationalization of the MLP and reveals strengths and limits as well as future research outlooks.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: masterthesis , doc-type:masterThesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-09-29
    Description: Megathrust earthquakes impose changes of differential stress and pore pressure in the lithosphere‐asthenosphere system that are transiently relaxed during the postseismic period primarily due to afterslip, viscoelastic and poroelastic processes. Especially during the early postseismic phase, however, the relative contribution of these processes to the observed surface deformation is unclear. To investigate this, we use geodetic data collected in the first 48 days following the 2010 Maule earthquake and a poro‐viscoelastic forward model combined with an afterslip inversion. This model approach fits the geodetic data 14% better than a pure elastic model. Particularly near the region of maximum coseismic slip, the predicted surface poroelastic uplift pattern explains well the observations. If poroelasticity is neglected, the spatial afterslip distribution is locally altered by up to ±40%. Moreover, we find that shallow crustal aftershocks mostly occur in regions of increased postseismic pore‐pressure changes, indicating that both processes might be mechanically coupled.
    Description: Plain Language Summary: Large earthquakes modify the state of stress and pore pressure in the upper crust and mantle. These changes induce stress relaxation processes and pore pressure diffusion in the postseismic phase. The two main stress relaxation processes are postseismic slip along the rupture plane of the earthquake and viscoelastic deformation in the rock volume. These processes decay with time, but can sustain over several years or decades, respectively. The other process that results in volumetric crustal deformation is poroelasticity due to pore pressure diffusion, which has not been investigated in detail. Using postseismic surface displacement data acquired by radar satellites after the 2010 Maule earthquake, we show that poroelastic deformation may considerably affect the vertical component of the observed geodetic signal during the first months. Poroelastic deformation also has an impact on the estimation of the postseismic slip, which in turn affects the energy stored at the fault plane that is available for the next event. In addition, shallow aftershocks within the continental crust show a good, positive spatial correlation with regions of increased postseismic pore‐pressure changes, suggesting they are linked. These findings are thus important to assess the potential seismic hazard of the segment.
    Description: Key Points: A poro‐viscoelastic deformation model improves the geodetic data misfit by 14% compared to an elastic model that only accounts for afterslip. Poroelastic deformation mainly produces surface uplift and landward displacement patterns on the coastal forearc region. Neglecting poroelastic effects may locally alter the afterslip amplitude by up to ±40% near the region of maximum coseismic slip.
    Description: Helmholtz Association (亥姆霍兹联合会致力) http://dx.doi.org/10.13039/501100009318
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-10-01
    Description: Copper (Cu) is an essential element for plants and microorganisms and at larger concentrations a toxic pollutant. A number of factors controlling Cu dynamics have been reported, but information on quantitative relationships is scarce. We aimed to (i) quantitatively describe and predict soil Cu concentrations (CuAR) in aqua regia considering site‐specific effects and effects of pH, soil organic carbon (SOC) and cation exchange capacity (CEC), and (ii) study the suitability of mixed‐effects modelling and rule‐based models for the analysis of long‐term soil monitoring data. Thirteen uncontaminated long‐term monitoring soil profiles in southern Germany were analysed. Since there was no measurable trend of increasing CuAR concentrations with time in the respective depth ranges of the sites, data from different sampling dates were combined and horizon‐specific regression analyses including model simplifications were carried out for 10 horizons. Fixed‐ and mixed‐effects models with the site as a random effect were useful for the different horizons and significant contributions (either of main effects or interactions) of SOC, CEC and pH were present for 9, 8 and 7 horizons, respectively. Horizon‐specific rule‐based cubist models described the CuAR data similarly well. Validations of cubist models and mixed‐effects models for the CuAR concentrations in A horizons were successful for the given population after random splitting into calibration and validation samples, but not after independent validations with random splitting according to sites. Overall, site, CEC, SOC and pH provide important information for a description of CuAR concentrations using the different regression approaches. Highlights: Information on quantitative relationships for factors controlling Cu dynamics is scarce. Site, CEC, SOC and pH provide important information for a description of Cu concentrations. Validations of cubist models and mixed‐effects models for A horizons were successful for a closed population of sites.
    Description: Bavarian State Ministry of the Environment and Consumer Protection http://dx.doi.org/10.13039/501100010219
    Description: Ministry of Agriculture and Environment Mecklenburg‐Western Pomerania
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-10-04
    Description: Climate change affects the stability and erosion of high‐alpine rock walls above glaciers (headwalls) that deliver debris to glacier surfaces. Since supraglacial debris in the ablation zone alters the melt behaviour of the underlying ice, the responses of debris‐covered glaciers and of headwalls to climate change may be coupled. In this study, we analyse the beryllium‐10 (10Be)‐cosmogenic nuclide concentration history of glacial headwalls delivering debris to the Glacier d'Otemma in Switzerland. By systematic downglacier‐profile‐sampling of two parallel medial moraines, we assess changes in headwall erosion through time for small, well‐defined debris source areas. We compute apparent headwall erosion rates from 10Be concentrations ([10Be]), measured in 15 amalgamated medial moraine debris samples. To estimate both the additional 10Be production during glacial debris transport and the age of our samples we combine our field‐based data with a simple model that simulates downglacier debris trajectories. Furthermore, we evaluate additional grain size fractions for eight samples to test for stochastic mass wasting effects on [10Be]. Our results indicate that [10Be] along the medial moraines vary systematically with time and consistently for different grain sizes. [10Be] are higher for older debris, closer to the glacier terminus, and lower for younger debris, closer to the glacier head. Computed apparent headwall erosion rates vary between ~0.6 and 10.8 mm yr−1, increasing over a maximum time span of ~200 years towards the present. As ice cover retreats, newly exposed headwall surfaces may become susceptible to enhanced weathering and erosion, expand to lower elevations, and contribute formerly shielded bedrock of likely different [10Be]. Hence, we suggest that recently lower [10Be] reflect the deglaciation of the debris source areas since the end of the Little Ice Age.
    Description: In glacial landscapes, systematic downglacier‐sampling of medial moraine debris holds the potential to assess changes in headwall erosion through time. Cosmogenic beryllium‐10 (10Be) concentrations within the medial moraines of Glacier d'Otemma, Switzerland, broadly increase downglacier and translate into increasing headwall erosion rates towards the present. These trends may reflect processes associated with the exposure of new bedrock surfaces across recently deglaciating source headwalls.
    Description: European Research Council (ERC) H2020‐EU.1.1.
    Description: https://doi.org/10.5880/GFZ.3.3.2021.007
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-10-04
    Description: Greenhouse gas fluxes (CO2, CH4, and N2O) from African streams and rivers are under‐represented in global datasets, resulting in uncertainties in their contributions to regional and global budgets. We conducted year‐long sampling of 59 sites in a nested‐catchment design in the Mara River, Kenya in which fluxes were quantified and their underlying controls assessed. We estimated annual basin‐scale greenhouse gas emissions from measured in‐stream gas concentrations, modeled gas transfer velocities, and determined the sensitivity of up‐scaling to discharge. Based on the total annual CO2‐equivalent emissions calculated from global warming potentials (GWP), the Mara basin was a net greenhouse gas source (294 ± 35 Gg CO2 eq yr−1). Lower‐order streams (1–3) contributed 81% of the total fluxes, and higher stream orders (4–8) contributed 19%. Cropland‐draining streams also exhibited higher fluxes compared to forested streams. Seasonality in stream discharge affected stream widths (and stream area) and gas exchange rates, strongly influencing the basin‐wide annual flux, which was 10 times higher during the high and medium discharge periods than the low discharge period. The basin‐wide estimate was underestimated by up to 36% if discharge was ignored, and up to 37% for lower stream orders. Future research should therefore include seasonality in stream surface areas in upscaling procedures to better constrain basin‐wide fluxes. Given that agricultural activities are a major factor increasing riverine greenhouse gas fluxes in the study region, increased conversion of forests and agricultural intensification has the possibility of increasing the contribution of the African continent to global greenhouse gas sources.
    Description: Deutscher Akademischer Austauschdienst http://dx.doi.org/10.13039/501100001655
    Description: IHE Delft Institute for Water Education
    Description: Federal Ministry of Education and Research http://dx.doi.org/10.13039/501100002347
    Description: Helmholtz Association http://dx.doi.org/10.13039/501100009318
    Description: TERENO Bavarian Alps/ Pre‐Alps Observatory
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-10-04
    Description: Changes to the carbon content of the deep ocean, the largest reservoir in the surficial carbon cycle, are capable of altering atmospheric carbon dioxide concentrations and thereby Earth's climate. While the role of the deep ocean's carbon inventory in the last ice age has been thoroughly investigated, comparatively little is known about whether the deep ocean contributed to the change in the pacing and intensity of ice ages around 1 million years ago during the Mid‐Pleistocene Transition (MPT). Qin et al. (2022, https://doi.org/10.1029/2021GL097121) provide new reconstructions of deep ocean carbonate ion saturation, a proxy for carbon content, from the deep Pacific Ocean across the MPT. Intriguingly, their results show that a reduction in deep Pacific carbonate ion saturation across the MPT occurred at different intervals from carbonate ion saturation decline in the deep Atlantic Ocean. These results suggest a more nuanced contribution of whole‐ocean carbon sequestration to the climate changes reconstructed across the MPT.
    Description: Plain Language Summary: Earth's periodic ice ages became longer and more intense around 1 million years ago. While the underlying reasons for this climate change remain debated, it is widely understood that the deep ocean may have played an important role by storing the potent greenhouse gas carbon dioxide away from the atmosphere. New research by Qin et al. (2022, https://doi.org/10.1029/2021gl097121) shows that the deep Pacific Ocean did indeed accumulate additional carbon around the time of this million‐year old climate transition. However, the new results also show that Pacific Ocean accumulated carbon over different intervals than the Atlantic Ocean, deepening the mystery around how and why this carbon uptake occurred.
    Description: Key Points: The deep Atlantic and Pacific Oceans accumulated carbon at different intervals during the mid‐Pleistocene transition.
    Description: National Science Foundation http://dx.doi.org/10.13039/100000001
    Description: https://doi.org/10.1029/2021GL097121
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-10-04
    Description: Soil aeration is a critical factor for oxygen‐limited subsoil processes, as transport by diffusion and advection is restricted by the long distance to the free atmosphere. Oxygen transport into the soil matrix is highly dependent on its connectivity to larger pore channels like earthworm and root colonised biopores. Here we hypothesize that the soil matrix around biopores represents different connectivity depending on biopore genesis and actual coloniser. We analysed the soil pore system of undisturbed soil core samples around biopores generated or colonised by roots and earthworms and compared them with the pore system of soil, not in the immediacy of a biopore. Oxygen partial pressure profiles and gas relative diffusion was measured in the rhizosphere and drilosphere from the biopore wall into the bulk soil with microelectrodes. The measurements were linked with structural features such as porosity and connectivity obtained from X‐ray tomography and image analysis. Aeration was enhanced in the soil matrix surrounding biopores in comparison to the bulk soil, shown by higher oxygen concentrations and higher relative diffusion coefficients. Biopores colonised by roots presented more connected lateral pores than earthworm colonised ones, which resulted in enhanced aeration of the rhizosphere compared to the drilosphere. This has influenced biotic processes (microbial turnover/mineralization or root respiration) at biopore interfaces and highlights the importance of microstructural features for soil processes and their dependency on the biopore's coloniser.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-10-04
    Description: Lithium has limited biological activity and can readily replace aluminium, magnesium and iron ions in aluminosilicates, making it a proxy for the inorganic silicate cycle and its potential link to the carbon cycle. Data from the North Pacific Ocean, tropical Indian Ocean, Southern Ocean and Red Sea suggest that salinity normalized dissolved lithium concentrations vary by up to 2%–3% in the Indo‐Pacific Ocean. The highest lithium concentrations were measured in surface waters of remote North Pacific and Indian Ocean stations that receive relatively high fluxes of dust. The lowest dissolved lithium concentrations were measured just below the surface mixed layer of the stations with highest surface water concentrations, consistent with removal into freshly forming aluminium rich phases and manganese oxides. In the North Pacific, water from depths 〉2,000 m is slightly depleted in lithium compared to the initial composition of Antarctic Bottom Water, likely due to uptake of lithium by authigenically forming aluminosilicates. The results of this study suggest that the residence time of lithium in the ocean may be significantly shorter than calculated from riverine and hydrothermal fluxes.
    Description: Key Points: Li/Na ratios vary by up to 2%–3% in the Indian and Pacific Oceans. Authigenic formation of aluminosilicates slightly deplete deep‐water lithium concentrations in the North Pacific. The residence time of lithium in the ocean is 240,000 ± 70,000 years, based on removal from North Pacific deep‐water.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: MoES, Indian National Centre for Ocean Information Services http://dx.doi.org/10.13039/501100004814
    Description: National Science Foundation USA
    Description: https://doi.pangaea.de/10.1594/PANGAEA.941888
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    Stockholm : European Council for an Energy Efficient Economy
    Publication Date: 2022-08-23
    Description: The Fit for 55 package stipulates a fair, competitive and green transition by 2030 and beyond. As part of this, increasing attention is given to the decarbonisation of the building stock: only 1 % of buildings in Europe are retrofitted each year, a number which must double if the EU is to meet its 2050 targets. Significant energy efficiency investments are needed, whilst the planned expansion of the EU-ETS to the building sector in 2026 will likely pass the carbon cost onto the consumer. This will increase the cost burden placed on low-income households, exacerbating energy poverty, if these two strategies are not counterbalanced by adequate policies and support mechanisms. The European Private Rented Sector (PRS) is often side-lined by policymakers when implementing energy efficiency policies to tackle energy poverty. As many as 1 in 10 Europeans spend 40 % or more of their income on housing costs, with those in the PRS struggling with energy-related problems, such as poor energy efficiency and maintenance, to a much greater degree than the general population. Understanding these challenges and creating targeted policies is of critical scientific and policy importance. To date, a pan-European policy on how to address energy poverty and energy efficiency improvements in the PRS is lacking; current European Union instruments to address such issues (including the Fit for 55, and the Clean Energy Package that preceded it) lack a dedicated approach towards the complex structural issues embedded in the European PRS. What is more, there is a limited understanding of the character of energy poverty in such residential dwellings, as well as policies to address energy injustices. We therefore examine current and historical disparities in energy poverty between the EU's PRS tenants and the general population by analysing a variety of quantitative indicators which reflect different dimensions of energy poverty. We then take stock of the policy landscape, identifying energy efficiency policies tailored to alleviate energy poverty in the PRS and common challenges. We subsequently interrogate possible solutions, drawing on existing good practice policies. In so doing, we aim to reduce the sector's political invisibility by addressing the lack of disaggregated, targeted data and dismantling barriers that currently lead to the PRS being disproportionately affected by energy poverty.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-06-17
    Description: Volcanic crises are often associated with magmatic intrusions or the pressurization of magma chambers of various shapes. These volumetric sources deform the country rocks, changing their density, and cause surface uplift. Both the net mass of intruding magmatic fluids and these deformation effects contribute to surface gravity changes. Thus, to estimate the intrusion mass from gravity changes, the deformation effects must be accounted for. We develop analytical solutions and computer codes for the gravity changes caused by triaxial sources of expansion. This establishes coupled solutions for joint inversions of deformation and gravity changes. Such inversions can constrain both the intrusion mass and the deformation source parameters more accurately.
    Description: Plain Language Summary: Volcanic crises are usually associated with magmatic fluids that intrude and deform the host rocks before potentially breaching the Earth's surface. It is important to estimate how much fluid (mass and volume) is on the move. Volume can be determined from the measured surface uplift. Mass can be determined from surface gravity changes. The fluid intrusion increases the mass below the volcano, thereby increasing the gravity and pressurizing the rocks. This dilates parts of the host rock and compresses other parts, changing the rock density and redistributing the rock mass. This causes secondary gravity changes, called deformation‐induced gravity changes. The measured gravity change is always the sum of the mass and deformation‐induced contributions. Here, we develop mathematical equations for the rapid estimation of these deformation‐induced gravity changes caused by arbitrary intrusion shapes. This way we can take the mass contribution apart from the deformation contribution. We show that by using this solution not only the intrusion mass, but also other intrusion parameters, including the volume, depth, and shape can be calculated more accurately.
    Description: Key Points; We develop analytical solutions for gravity changes due to the point Compound Dislocation Model simulating triaxial expansions. Rapid coupled inversions of deformation and gravity changes, accounting for deformation‐induced gravity changes are now possible. For shallow sources, estimation errors in the chamber volume change may lead to large biases in the simulated gravity changes.
    Description: EU Horizon 2020 programme NEWTON‐g project, under the FETOPEN‐ Grant Agreement No.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: https://volcanodeformation.com/onewebmedia/pCDMgravity.zip
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-06-17
    Description: We examine the historical evolution and projected changes in the hydrography of the deep basin of the Arctic Ocean in 23 climate models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6). The comparison between historical simulations and observational climatology shows that the simulated Atlantic Water (AW) layer is too deep and thick in the majority of models, including the multi‐model mean (MMM). Moreover, the halocline is too fresh in the MMM. Overall our findings indicate that there is no obvious improvement in the representation of the Arctic hydrography in CMIP6 compared to CMIP5. The climate change projections reveal that the sub‐Arctic seas are outstanding warming hotspots, causing a strong warming trend in the Arctic AW layer. The MMM temperature increase averaged over the upper 700 m at the end of the 21st century is about 40% and 60% higher in the Arctic Ocean than the global mean in the SSP245 and SSP585 scenarios, respectively. Salinity in the upper few hundred meters is projected to decrease in the Arctic deep basin in the MMM. However, the spread in projected salinity changes is large and the tendency toward stronger halocline in the MMM is not simulated by all the models. The identified biases and projection uncertainties call for a concerted effort for major improvements of coupled climate models.
    Description: Plain Language Summary: Coupled climate models are crucial tools for understanding and projecting climate change, especially for the Arctic where the climate is changing at unprecedented rates. A cold fresh layer of water (aka halocline) has been protecting sea‐ice at the surface from the warm layer of water (aka Atlantic Water layer) which flows underneath and could potentially accelerate sea ice melting from below. Climate change disturbs this vertical structure by changing the temperature and salinity of the Arctic Ocean (in a process known as Atlantification and Pacification) which may lead to additional sea ice basal melting and accelerate sea ice decline. We examined the simulated temperature and salinity in the Arctic Ocean deep basin in state‐of‐the‐art climate model simulations which provided the basis for the IPCC Assessment Report. We found that although there are persistent inaccuracies in the representation of Arctic temperature and salinity, the Arctic Ocean below 100 m is subject to much stronger warming than the average global ocean. On the other hand, the upper Arctic Ocean salinity is projected to decrease, which on average may strengthen the isolation of sea ice from Atlantic Water heat in the Arctic deep basin area.
    Description: Key Points: A too deep and thick Arctic Atlantic Water layer continues to be a major issue in contemporary climate models contributing to the CMIP6. The Arctic Ocean below the halocline is subject to much stronger warming than the global mean during the 21st century. The multi‐model mean upper ocean salinity is projected to decrease in the future but with high uncertainty.
    Description: European union's Horizon 2020 research and innovation programme
    Description: German Helmholtz climate initiative REKLIM
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: https://esgf-data.dkrz.de/projects/esgf-dkrz/
    Description: http://psc.apl.washington.edu/nonwp_projects/PHC/Data3.html
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-06-09
    Description: This article enriches the existing literature on the importance and role of the social sciences and humanities (SSH) in renewable energy sources research by providing a novel approach to instigating the future research agenda in this field. Employing a series of in-depth interviews, deliberative focus group workshops and a systematic horizon scanning process, which utilised the expert knowledge of 85 researchers from the field with diverse disciplinary backgrounds and expertise, the paper develops a set of 100 priority questions for future research within SSH scholarship on renewable energy sources. These questions were aggregated into four main directions: (i) deep transformations and connections to the broader economic system (i.e. radical ways of (re)arranging socio-technical, political and economic relations), (ii) cultural and geographical diversity (i.e. contextual cultural, historical, political and socio-economic factors influencing citizen support for energy transitions), (iii) complexifying energy governance (i.e. understanding energy systems from a systems dynamics perspective) and (iv) shifting from instrumental acceptance to value-based objectives (i.e. public support for energy transitions as a normative notion linked to trust-building and citizen engagement). While this agenda is not intended to be—and cannot be—exhaustive or exclusive, we argue that it advances the understanding of SSH research on renewable energy sources and may have important value in the prioritisation of SSH themes needed to enrich dialogues between policymakers, funding institutions and researchers. SSH scholarship should not be treated as instrumental to other research on renewable energy but as intrinsic and of the same hierarchical importance.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    Bonn : Missionszentrale der Franziskaner
    Publication Date: 2022-06-09
    Description: Which of Pope Francis' countless appearances will posterity consider truly iconic? Probably neither his journey to the shipwrecked in Lampedusa nor his encounter with the indigenous peoples of the Amazon, although both are characteristic of the pontificate - rather, it will be his appearance in the deserted St. Peter's Square during the coronavirus pandemic. A single figure in white, alone, laboriously climbing the steps to St. Peter's Basilica, then offering the Urbi et Orbi blessing with the monstrance - that image will be in the history books. This view undoubtedly thrives on contrast: the image of the Pope standing alone in the rain at nightfall in contrast to the image familiar to television viewers from all over the world where the Pope appears in St Peter's Square amidst the cheering of tens or hundreds of thousands under Bernini's colonnades. And then, in March 2020, a formidable showing of vulnerability that touched even non-believers.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: bookpart , doc-type:bookPart
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2022-07-04
    Description: As the worldwide remaining carbon budget decreases rapidly, countries across the globe are searching for solutions to limit greenhouse gas emissions. As the production and use of coal is among the most carbon-intensive processes, it is foreseeable that coal regions will be particularly affected by the consequences of a transformation towards a climate-neutral economy and energy system. Challenges arise in the area of energy production, environmental protection, but also for economic and social aspects in the transforming regions - often coined with the term "Just Transition". For the decision makers in coal regions, there is an urgent need for support tools that help to kick off measures to diversify the local economies while at the same time supporting the local workers and communities. The Wuppertal Institute aims to support coal regions worldwide by developing a Just Transition Toolbox, which illustrates the challenges and opportunities of a sustainable transition for a global audience. It comprises information about strategy development, sets recommendations for governance structures, fostering sustainable employment, highlights technology options and sheds light on the environmental rehabilitation and repurposing of coal-related sites and infrastructure. The toolbox builds on the work of the Wuppertal Institute for the EU Initiative for Coal Regions in Transition and takes into account country-specific findings from the SPIPA-partner countries India, Indonesia, South Africa, Japan, South Korea, Canada and the USA. The acronym SPIPA is short for "Strategic Partnerships for the Implementation of the Paris Agreement" an EU-BMU programme co-financed by the GIZ.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-08-09
    Description: Organic matter management can improve soil structural properties. This is crucial for agricultural soils in tropical regions threatened by high rainfall intensities. Compared to conventional farming, organic farming is usually deemed to increase organic carbon and improve soil structural properties such as stability and permeability. However, how much, if any, buildup of organic carbon is possible or indeed occurring also depends on soil type and environmental factors. We compared the impact of seven years of organic farming (annually 13.6 t ha−1 of composted manure) with that of conventional practices (2 t ha−1 of farmyard manure with 150–170 kg N ha−1 of mineral fertilizers) on soil structural properties. The study was conducted on a Vertisol in India with a two‐year crop rotation of cotton soybean wheat. Despite large differences in organic amendment application, organic carbon was not significantly different at 9.6 mg C g−1 on average in the topsoil. However, the size distribution of water‐stable aggregates shifted toward more aggregates 〈137 μm in the organic systems. Cumulative water intake was lower compared to the conventional systems, leading to higher runoff and erosion. These changes might be related to the lower pH and higher exchangeable sodium in the organic systems. Our results indicate that higher application of organic amendments did not lead to higher soil organic carbon and associated improvement in soil structures properties compared to integrated fertilization in this study. Chemical properties may dominate soil aggregation retarding the uptake and integration of organic amendments for sustainable agricultural intensification in tropical, semiarid climates.
    Description: Biovision Foundation for Ecological Development http://dx.doi.org/10.13039/501100015593
    Description: Coop Sustainability Fund
    Description: Swiss Agency for Development and Cooperation (SDC)
    Description: Foundation fiat panis http://dx.doi.org/10.13039/501100011087
    Description: Liechtenstein Development Service http://dx.doi.org/10.13039/501100015698
    Description: https://doi.org/10.6084/m9.figshare.18665612
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    Vienna : CORP - Competence Center of Urban and Regional Planning
    Publication Date: 2022-08-08
    Description: Urban development faces numerous challenges in the 21st century and a central task is the sustainable and liveable design of the city. Can the concept of a Smart City be a tool to making cities more liveable and sustainable? To find out, we chose a biographical method to analyse the steps towards a successful Smart City and to better understand the structures behind it. We combine the innovation biography method with a process model from sustainability governance research, namely Steurer's sustainability governance model and apply them to Vienna's Smart City, especially the preparation of the Vienna Smart City framework strategy (Steurer & Trattnigg, 2010). On the one hand, this article shows that a transfer of the innovation biography method to urban research can generate deeper insights on urban development processes in general. On the other hand, the approach chosen can show that Vienna integrates the sustainable urban design into the process of Smart City design. So the smart and sustainable city design, often called for in theoretical contributions, is practised in Vienna. Due to its reconstructive character, the biographical method has revealed that it is possible to govern sustainability by using Smart City as an umbrella strategy, as long as one manages it in an integrated and holistic way, recognises trends and is able to acquire and use research funds effectively and efficiently. The knowledge gained from the new method for urban and Smart City research is twofold. Firstly, the transfer of the method previously developed in the human sciences and subsequently for organisations, institutions and products and services also works in urban research. Second, the innovation biography provides in-depth insights into the process towards the Smart City and the stakeholders involved. The use of the biographical method highlights the relevance of good governance in terms of interdisciplinary cooperation on the one hand and high political commitment on the other through the micro-level perspective and is also sensitive enough to highlight the importance of an appropriate narrative in and for the process towards the Smart City.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-07-20
    Description: The war in Ukraine is changing the political landscape at breakneck speed. How should politics and society react to high energy prices and a precarious dependence on fossil fuels imports? Can modern societies get by with much less energy? Energy sufficiency can play an important role in answering these questions. The contributions in this Special topic explore sufficiency as an interdisciplinary research topic for energy modeling, scenarios, and policy.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-07-26
    Description: Application of farmyard manure (FYM) is common practice to improve physical and chemical properties of arable soil and crop yields. However, studies on effects of FYM application mainly focussed on topsoils, whereas subsoils have rarely been addressed so far. We, therefore, investigated the effects of 36‐year FYM application with different rates of annual organic carbon (OC) addition (0, 469, 938 and 1875 g C m−2 a−1) on OC contents of a Chernozem in 0–30 cm (topsoil) and 35–45 cm (subsoil) depth. We also investigated its effects on soil structure and hydraulic properties in subsoil. X‐ray computed tomography was used to analyse the response of the subsoil macropore system (≥19 μm) and the distribution of particulate organic matter (POM) to different FYM applications, which were related to contents in total OC (TOC) and water‐extractable OC (WEOC). We show that FYM‐C application of 469 g C m−2 a−1 caused increases in TOC and WEOC contents only in the topsoil, whereas rates of ≥938 g C m−2 a−1 were necessary for TOC enrichment also in the subsoil. At this depth, the subdivision of TOC into different OC sources shows that most of the increase was due to fresh POM, likely by the stimulation of root growth and bioturbation. The increase in subsoil TOC went along with increases in macroporosity and macropore connectivity. We neither observed increases in plant‐available water capacity nor in unsaturated hydraulic conductivity. In conclusion, only very high application of FYM over long periods can increase OC content of subsoil at our study site, but this increase is largely based on fresh, easily degradable POM and likely accompanied by high C losses when considering the discrepancy between OC addition rate by FYM and TOC response in soil. Highlights A new image processing procedure to distinguish fresh and decomposed POM. The increase of subsoil C stock based to a large extend on fresh, labile POM. Potential of arable subsoils for long‐term C storage by large FYM application rates is limited. The increase in TOC has no effect on hydraulic properties of the subsoil.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-12-06
    Description: Molecular‐biological data and omics tools have increasingly been used to characterize microorganisms responsible for the turnover of reactive compounds in the environment, such as reactive‐nitrogen species in groundwater. While transcripts of functional genes and enzymes are used as measures of microbial activity, it is not yet clear how they are quantitatively related to actual turnover rates under variable environmental conditions. As an example application, we consider the interface between rivers and groundwater which has been identified as a key driver for the turnover of reactive‐nitrogen compounds, that cause eutrophication of rivers and endanger drinking water production from groundwater. In the absence of measured data, we developed a reactive‐transport model for denitrification that simultaneously predicts the distributions of functional‐gene transcripts, enzymes, and reaction rates. Applying the model, we evaluate the response of transcripts and enzymes at the river‐groundwater interface to stable and dynamic hydrogeochemical regimes. While functional‐gene transcripts respond to short‐term (diurnal) fluctuations of substrate availability and oxygen concentrations, enzyme concentrations are stable over such time scales. The presence of functional‐gene transcripts and enzymes globally coincides with the zones of active denitrification. However, transcript and enzyme concentrations do not directly translate into denitrification rates in a quantitative way because of nonlinear effects and hysteresis caused by variable substrate availability and oxygen inhibition. Based on our simulations, we suggest that molecular‐biological data should be combined with aqueous geochemical data, which can typically be obtained at higher spatial and temporal resolution, to parameterize and calibrate reactive‐transport models.
    Description: Plain Language Summary: Molecular‐biological tools can detect how many enzymes, functional genes, and gene transcripts (i.e., precursors of enzyme production) associated with a microbial reaction exist in a sample from the environment. Although these measurements contain valuable information about the number of bacteria and how active they are, they do not directly say how quickly a contaminant like nitrate disappears. Nitrate, from agriculture and other sources, threatens groundwater quality and drinking water production. In the process of denitrification, bacteria can remove nitrate by converting it into harmless nitrogen gas using specialized enzymes. The interface between rivers and groundwater is known as a place where denitrification takes place. In this study, we use a computational model to simulate the coupled dynamics of denitrification, bacteria, transcripts, and enzymes when nitrate‐rich groundwater interacts with a nearby river. The simulations yield complex and nonunique relationships between the denitrification rates and the molecular‐biological variables. While functional‐gene transcripts respond to daily fluctuations of environmental conditions, enzyme concentrations and genes are stable over such time scales. High levels of functional‐gene transcripts therefore provide a good qualitative indicator of reactive zones. Quantitative predictions of nitrate turnover, however, will require high‐resolution measurements of the reacting compounds, genes, and transcripts.
    Description: Key Points: We simulate the distributions of functional‐gene transcripts and enzymes related to denitrification at the river‐groundwater interface. Functional‐gene transcripts respond quickly to diurnal fluctuations of substrate and oxygen concentrations. Substrate limitation and oxygen inhibition impede the direct prediction of denitrification rates from transcript or enzyme concentrations.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://doi.org/10.5281/zenodo.6584591
    Description: https://gitlab.com/astoeriko/nitrogene
    Description: https://doi.org/10.5281/zenodo.6584641
    Description: https://gitlab.com/astoeriko/adrpy
    Description: https://doi.org/10.5281/zenodo.5213947
    Description: https://github.com/aseyboldt/sunode
    Keywords: ddc:551 ; reactive‐transport modeling ; denitrification ; groundwater‐river interface ; functional genes ; transcripts ; molecular biology
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-12-05
    Description: To explore the dynamic mechanism of continental rifting within a convergent setting, we determine the first P wave radial anisotropic tomography beneath the Woodlark rift in southeastern Papua New Guinea, which develops within the obliquely colliding zone between the Australian and southwest Pacific plates. The rift zone is depicted as localized low‐velocity anomalies with positive radial anisotropy, which rules out a dominant role of active mantle upwelling in promoting the rift development and favors passive rifting with decompression melting as main processes. Downwelling slab relics in the upper mantle bounding the rift zone are revealed based on observed high‐velocity anomalies and negative radial anisotropy, which may contribute to the ultra‐high pressure rock exhumations and rift initiation. Our observations thus indicate that the Woodlark rift follows a passive model and is mainly driven by slab pull from the northward subduction of the Solomon plate.
    Description: Plain Language Summary: The Woodlark rift in Papua New Guinea develops within the shear zone between the Australian and southwest Pacific plates and is one of the youngest and most rapidly extending continental rifts in the world. In this work, we analyze teleseismic P wave arrivals to study both 3‐D velocity and radial anisotropy structures of the upper mantle, offering new evidence to understand rift initiation under a generally convergent setting. Slab remnants in the upper mantle bordering the rift zone are detected and sinking into the deeper mantle. Downwelling of these slab segments may induce small scale return flows in the mantle and contribute to exhumation of the ultra‐high pressure rocks and rift development. Significant low‐velocity anomalies are revealed beneath the rift zone and have consistently positive radial anisotropy, which indicates a dominant strain in the horizontal plane and supports a passive rifting model, where mantle material is brought to shallower depths simply as a result of the extension of the lithosphere and melt is produced due to the lowered melting point at reduced pressure (decompression melting). Tensional stresses transferred from slab pull of the northward Solomon subduction are probably driving the rifting.
    Description: Key Points: P wave radial anisotropic structure beneath the young and highly extended Woodlark rift is constrained from teleseismic tomography. Downwelling of slab relics bordering the rift zone may contribute to ultra‐high pressure rock exhumation and rift development. Slab‐pull drives rift initiation and induces decompression melting in the upper mantle under the rift zone by horizontal stress transfer.
    Description: National Natural Science Foundation of China (NSFC) http://dx.doi.org/10.13039/501100001809
    Description: National Science Foundation (NSF) http://dx.doi.org/10.13039/100000001
    Description: MEXT | Japan Society for the Promotion of Science (JSPS) http://dx.doi.org/10.13039/501100001691
    Description: Alexander von Humboldt‐Stiftung (Humboldt‐Stiftung) http://dx.doi.org/10.13039/100005156
    Description: https://doi.org/10.7914/SN/XD_1999
    Description: https://doi.org/10.7914/SN/ZN_2010
    Keywords: ddc:551 ; Woodlark rift ; radial anisotropy ; decompression melting ; slab‐pull ; slab downwelling ; ultra‐high pressure rock
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-12-05
    Description: Data from profiling floats in the Black Sea revealed complex temporal and spatial relationships between physical variables and oxygen, chlorophyll and the backscattering coefficient at 700 nm, as well as some limits in understanding the details of biogeochemistry dynamics. To account for different interdependences between physical and biogeochemical properties, a feedforward backpropagation neural network (NN) was used. This NN learns from data recorded by profiling floats and predicts biogeochemical states using physical measurements only. The performance was very high, particularly for oxygen, but it decreased when the NN was applied to older data because the interrelationships between the physical and biogeochemical properties have changed recently. The biogeochemical states reconstructed by the NN using physical data produced by a coupled physical–biogeochemical operational model were better than the biogeochemical outputs of the same coupled model. Therefore, the use of data from profiling floats, physical properties from numerical models and NNs appears to be a powerful approach for reconstructing the 4D dynamics of the euphotic zone. Basin‐wide patterns and temporal variabilities in oxygen, backscattering coefficient and chlorophyll were also analyzed. Of particular interest is the reconstruction of short‐lived biogeochemical features, particularly in coastal anticyclone areas, which are difficult to observe with available floats at the basin scale.
    Description: Plain Language Summary: This study addresses the biogeochemical dynamics of the euphotic layer in the Black Sea. Observations are provided from profiling floats, and the observed biogeochemical parameters include oxygen, the backscattering coefficient at 700 nm and chlorophyll‐a. Data analysis showed complex temporal and spatial relationships between physical and biogeochemical variables and some limits in understanding the details of biogeochemical dynamics. A feedforward backpropagation neural network was developed, which can be considered an input–output mapping in which the neurons combine the input data in such a way that the output can be considered a nonlinear combination of input data. When applied to older data, the reconstruction performance decreases, suggesting a change in the dependency of biogeochemical characteristics on physical drivers caused by known climate change. A comparison with simulations from a coupled operational biogeochemical model shows that the neural network outperforms the numerical model. The newly proposed method, combining data from profiling floats, physical properties from numerical models and a backpropagation neural network, allows us to reconstruct the 4D dynamics of the euphotic layer over the period 2013–2020.
    Description: Key Points: Machine learning helps identify fundamental biogeochemical mechanisms in the Black Sea. A feedforward backpropagation neural network performs better than a coupled physical‐biogeochemical model. Data from profiling floats, physical data from numerical models and machine learning enabled the analysis of 4D biogeochemical dynamics.
    Description: MASRI
    Description: National Roadmap for Scientific Infrastructure
    Description: European Horizon 2020 project DOORS
    Description: https://resources.marine.copernicus.eu/product-detail/BLKSEA_MULTIYEAR_PHY_007_004/INFORMATION
    Description: https://resources.marine.copernicus.eu/product-detail/BLKSEA_REANALYSIS_BIO_007_005/INFORMATION
    Description: http://www.coriolis.eu.org/Data-Products/Data-selection
    Description: https://zenodo.org/record/6860705
    Keywords: ddc:551 ; biogeochemistry ; neural networks ; profiling floats ; euphotic zone
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-12-07
    Description: Future precipitation levels remain uncertain because climate models have struggled to reproduce observed variations in temperature‐precipitation correlations. Our analyses of Holocene proxy‐based temperature‐precipitation correlations and hydrological sensitivities from 2,237 Northern Hemisphere extratropical pollen records reveal a significant latitudinal dependence and temporal variations among the early, middle, and late Holocene. These proxy‐based variations are largely consistent with patterns obtained from transient climate simulations (TraCE21k). While high latitudes and subtropical monsoon areas show mainly stable positive correlations throughout the Holocene, the mid‐latitude pattern is temporally and spatially more variable. In particular, we identified a reversal from positive to negative temperature‐precipitation correlations in the eastern North American and European mid‐latitudes from the early to mid‐Holocene that mainly related to slowed down westerlies and a switch to moisture‐limited convection under a warm climate. Our palaeoevidence of past temperature‐precipitation correlation shifts identifies those regions where simulating past and future precipitation levels might be particularly challenging.
    Description: Plain Language Summary: Predicting future precipitation levels reliably is more challenging than predicting temperature change. Accordingly, we need to understand the relationship between temperature and precipitation and its changes in space and time. We used climate proxy‐data derived from 2,237 pollen records from lake sediments and peats from the Northern Hemisphere extratropics for the early, middle, and late Holocene (i.e., 12,000–8,000, 8,000–4,000, 4,000–0 years before present, respectively). Our results reveal a significant latitudinal dependence and temporal variation of the temperature‐precipitation relationship. These proxy‐based variations are largely consistent with patterns obtained from simulations using climate models. While high latitudes and subtropical monsoon areas show mainly stable positive correlations throughout the Holocene (i.e., warm conditions co‐occur with wet conditions), the mid‐latitude pattern is temporally and spatially more variable. In particular, we identified a reversal to negative temperature‐precipitation correlations in the eastern North American and European mid‐latitudes from the early to middle Holocene. We hypothesize that weak westerly circulation, warm climate, and climate‐soil feedbacks limited evaporation and as such reduced convection during the middle Holocene which led to a negative relationship between temperature and precipitation. Our analysis of past temperature‐precipitation correlation shifts identifies regions where past changes in the temperature‐precipitation relationships are variable and thus where predicting precipitation might be particularly challenging in a warming climate.
    Description: Key Points: We analyzed Holocene temperature‐precipitation correlations and hydrological sensitivities using climate proxy (pollen) and model data from Northern Hemisphere extratropics. We found reversals to negative temperature‐precipitation correlations from the cold early Holocene to the warm mid‐Holocene likely related to moisture‐limited convection. Correlations and hydrological sensitivities were mostly stable positive in polar and extratropical monsoon‐areas.
    Description: EC European Research Council http://dx.doi.org/10.13039/501100000781
    Description: PALMOD
    Description: China Scholarship Council http://dx.doi.org/10.13039/501100004543
    Description: https://doi.pangaea.de/10.1594/PANGAEA.930512
    Description: https://doi.org/10.5281/zenodo.5910989
    Description: https://zenodo.org/record/7038402%23.YxBL1uzP3V8
    Keywords: ddc:551 ; ddc:561 ; Holocene ; pollen ; Northern Hemisphere ; temperature-precipation correlations
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-12-07
    Description: The characterization of the karst conduit network is an essential task to understand the complex flow system within karst aquifers. However, this task is challenging and often associated with uncertainty. Equivalent porous media approaches for modeling flow in karst aquifers fall short of capturing the hydraulic effect of individual karst features, while process‐oriented karst evolution models imply major computational efforts. In this study, we apply the Stochastic Karst Simulator (SKS) developed by Borghi et al. (2012) to generate karst conduit networks at a regional scale of a highly karstified carbonate aquifer located in the Eastern Mediterranean region and extensively used for water supply. The SKS generates conduit network geometries reasonably quick, using a mathematical proxy that mimics conduit evolution. The conduit simulation is based on a conceptual model of the genesis of the aquifer, consisting of different karstification phases. The stochastic approach of the algorithm enables us to generate an ensemble of conduit network realizations and to represent the uncertainties of these simulations in a Karst Probability Map. With only soft input information to constrain conduit evolution, multiple equivalent realizations yield similar resulting network geometries, indicating a robust approach. The presented methodology is numerically efficient, and its input can be easily adjusted. Subsequently, the resulting stochastic spatial distribution of conductivities can be employed for the parametrization of regional karst groundwater models.
    Description: Key Points: We statistically generate multiple sets of karst conduit network geometries using input data based on soft information. The resulting Karst Probability Map accounts for uncertainty in the spatial distribution of the karst conduit network. Our approach can assist in the integration of soft information into the parametrization of karst groundwater models.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: https://doi.org/10.14279/depositonce-16021
    Keywords: ddc:551 ; karst conduit modeling ; stochastic modeling ; structural uncertainty ; karst probability mapping ; groundwater modeling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-12-10
    Description: Understanding the temporal variability of plate tectonics is key to unraveling how mantle convection transports heat, and one critical factor for the formation and evolution of plate boundaries is rheological “memory,” that is, the persistence of weak zones. Here, we analyze the impact of such damage memory in global, oceanic‐lithosphere‐only models of visco‐plastic mantle convection. Self‐consistently‐formed weak zones are found to be reactivated in distinct ways, and convection preferentially selects such damaged zones for new plate boundaries. Reactivation of damage zones increases the frequency of plate reorganizations, and hence reduces the dominant periods of surface heat loss. The inheritance of distributed lithospheric damage thus dominates global surface dynamics over any local boundary stabilizing effects of weakening. In nature, progressive generation of weak zones may thus counteract and perhaps overcome any effects of reduced convective vigor throughout planetary cooling, with implications for the frequency of orogeny and convective transport throughout Wilson cycles.
    Description: Plain Language Summary: Understanding how and why the motion of the lithosphere changes over time is important since this is telling us how planets with a plate tectonic style of heat transport evolve by thermo‐chemical mantle convection. One important factor for the evolution of plate boundaries is hysteresis, that is, memory of past deformation. Inherited weak zones, such as sutures, and progressive weakening are well documented in the geological record. Convection with damage shows dynamical behavior that is different from pure plastic failure without memory, or homogenous lithosphere that is being newly broken. We analyze the impact of damage with global, oceanic‐lithosphere‐only models of plate‐like mantle convection. Weak zones that are formed in an initially homogenous material are found to be reactivated subsequently in distinct ways. Within our tectonic system model, convection preferentially selects pre‐damaged zones for new, active plate boundaries. This reactivation increases the frequency of plate reorganizations compared to models without damage, and also changes the time‐dependence of cyclic surface heat loss. In nature, the progressive generation of weak zones over planetary history may counteract and perhaps overcome any effects of reduced convective vigor during cooling. This has implications for the frequency of mountain building and understanding Wilson cycles.
    Description: Key Points: Results from global, plate‐generating convection models with damage. Self‐consistently formed persistent weak zones lead to more frequent plate reorganizations. Accumulation of weak zones might counteract decrease in convective vigor for tectonic variability.
    Description: NSF EAR
    Description: Division of Earth Sciences http://dx.doi.org/10.13039/100000160
    Description: https://geodynamics.org/resources/citcoms
    Description: https://doi.org/10.5281/zenodo.6546322
    Keywords: ddc:551 ; plate tectonics ; visco-plastic convection models
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-12-10
    Description: Deception Island is one of the most active and best‐documented volcanoes in Antarctica. Since its last eruption in 1970, several geophysical surveys have targeted reconstructing its magmatic systems. However, geophysics fails to reconstruct the pathways magma and fluids follow from depth to erupt at the surface. Here, novel data selection strategies and multi‐frequency absorption inversions have been framed in a Geographical Information System, using all available geological (vents and faults distribution), geochemical and geophysical knowledge of the volcano. The result is the detection of these eruptive pathways. The model offers the first image of the magma and associated fluids pathways feed the 1967, 1969, and 1970 eruptions. Results suggest that future ascending paths might lead to active research bases and zones of planned helicopter rescue. The connection between seismic absorption, temperature, and fluid content makes it a promising attribute for detecting and monitoring eruptions at active calderas.
    Description: Plain Language Summary: Deception Island is the gateway for tourists to Antarctica and a laboratory to understand ice‐capped volcanoes and their eruptions. While the Island has been the target of many geophysical studies, no clear tomographic model shows how deep eruptive pathways of its last eruptions have reached the surface in the 1960s and 1970s. This is a recurrent topic in volcano geophysics: dikes and fluid migrations develop across structures considered too small to be detected by tomographic techniques. This paper demonstrates that seismic absorption has sufficient sensitivity to temperature and fluid content to detect these pathways. Once integrated within a Geographical Information System with all the information we have on the volcano, the models resolve the feeding systems of these eruptions, from a tectonically deformed deep magma chamber to shallow cold dyke intrusions and fluid migrations still feeding the volcano today. The correlation between seismic absorption, temperature, and fluid content offers a new tool for detecting and monitoring shallow volcanic hazards.
    Description: Key Points: High absorption detects deep eruptive pathways from the caldera center to its rim. Absorption imaging reconstructs shallow pathways of hazardous materials. Seismic absorption is sensitive to thermal anomalies at depth.
    Description: https://doi.org/10.5281/zenodo.6561124
    Description: https://zenodo.org/badge/latestdoi/493744216
    Keywords: ddc:551 ; seismic absorption ; seismic tomography ; Deception Island ; Volcanology ; remote sensing
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-12-10
    Description: Faults and fractures can be permeable pathways for focused fluid flow in structurally controlled ore‐forming hydrothermal systems. However, quantifying their role in fluid flow on the scale of several kilometers with numerical models typically requires high‐resolution meshes. This study introduces a modified numerical representation of m‐scale fault zones using lower‐dimensional elements (here, one‐dimensional [1D] elements in a 2D domain) to resolve structurally controlled fluid flow with coarser mesh resolutions and apply the method to magmatic‐hydrothermal ore‐forming systems. We modeled horizontal and vertical structure‐controlled magmatic‐hydrothermal deposits to understand the role of permeability and structure connectivity on ore deposition. The simulation results of vertically extended porphyry copper systems show that ore deposition can occur along permeable vertical structures where ascending, overpressured magmatic fluids are cooled by downflowing ambient fluids. Structure permeability and fault location control the distribution of ore grades. In highly permeable structures, the mineralization can span up to 3 km vertically, resulting in heat‐pipe mechanisms that promote the ascent of a magmatic vapor phase to an overlying structurally controlled epithermal system. Simulations for the formation of subhorizontal vein‐type deposits suggest that the major control on fluid flow and metal deposition along horizontal structures is the absence of vertical structures above the injection location but their presence at greater distances. Using a dynamic permeability model mimicking crack‐seal mechanisms within the structures leads to a pulsating behavior of fracture‐controlled hydrothermal systems and prevents the inflow of ambient fluids under overpressured conditions.
    Description: Plain Language Summary: Faults and fractures can serve as permeable pathways for focused fluid flow in the subsurface and therefore be essential geological features for the formation of economic mineral deposits. However, quantifying their role in the hydrothermal systems on the scale of several kilometers with numerical models typically requires high‐resolution meshes. This study presents a modified numerical representation of m‐scale fault zones with variable orientations to understand the hydrology of magmatic‐hydrothermal ore‐forming systems. The vertically extended systems simulation results show that ore deposition can occur along permeable vertical structures where ascending magmatic fluids are cooled by downflowing ambient fluids. Structure permeability and fault location can directly control the distribution of ore grades. In contrast, mineralization in horizontal structures requires the absence of vertical structures above the injection location of metal‐bearing magmatic volatiles but their presence at greater distances. Our model also shows how dynamic opening and closing of the structures in response to magmatic degassing can lead to a pulsating behavior and prevent the downflow of ambient fluids.
    Description: Key Points: We describe structurally controlled fluid flow by representing faults and fractures as one‐dimensional line elements within a 2D modeling domain. Vertical structures are efficient pathways for focused fluid flow and formation of high‐grade mineralization. Ore formation in horizontal fractures requires a hydraulic connection to distal vertical fault zones.
    Description: German Federal Ministry of Education and Research
    Description: Deutsche Forschungsgemeinschaft, DFG http://dx.doi.org/10.13039/501100001659
    Description: Helmholtz Recruitment Initiative
    Keywords: ddc:551 ; magmatic‐hydrothermal systems ; ore deposits ; fluid flow ; numerical simulations ; faults and fractures
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-12-19
    Description: To address climate change, the decarbonisation of Germany's existing building stock urgently needs to be prioritised. However, the rate and depth of refurbishment has lagged behind official targets for years. This is a particular problem in the rental sector, where the costs and benefits of energy efficiency measures tend to be unevenly distributed between landlords and tenants (the so-called "landlord-tenant dilemma"). Within the context of the current policy landscape, investments in energy efficiency consequently make most sense for landlords if the upfront costs can be refinanced via increased rental income or reduced vacant periods. This paper seeks to investigate the validity of this statement at city level by using a large dataset from one of Germany’s main internet property platforms to examine how the willingness of tenants to pay for energy efficiency varies across residential locations in the city of Wuppertal. The small-scale spatial analysis highlights the existence of a price premium for energy efficiency in the rental market for apartments; however, this premium is generally small (especially in comparison to other property enhancements, especially visible improvements) or even non-existent in some residential areas. Consequently, investing in energy efficiency is rarely an attractive option for landlords. Therefore, strong policy action, aligned with social and urban development policy objectives, is necessary to establish an effective incentive structure in the market and make investing in energy efficiency more attractive for both landlords and tenants.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-11-11
    Description: Urban transitions and transformations research fosters a dialogue between sustainability transitions theory an inter- and transdisciplinary research on urban change. As a field, urban transitions and transformations research encompasses plural analytical and conceptual perspectives. In doing so, this field opens up sustainability transitions research to new communities of practice in urban environments, including mayors, transnational municipal networks, and international organizations.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2022-11-11
    Description: The European Landscape Convention urges countries to involve stakeholders including citizens in the governance of ordinary (urban) landscapes. This paper studies conflicting stakeholder perspectives on urban landscape quality in the context of urban sustainability transitions in six European urban regions in the Netherlands, Italy, France, Croatia, Belarus and the Russian Federation. Repertory grid technique helped to identify the dimensions through which persons evaluate urban landscape quality. Ninety-three (93) interviewees elicited 1400 bipolar constructs, such as "Edible green - Concrete" or "Community, group - Loneliness". They then selected two constructs they consider most relevant in the context of urban sustainability transitions, and ranked all pictures on a 10-points scale. The rankings were analyzed using Multiple Correspondence Analysis. We find that, in spite of the many social and cultural differences between the regions, stakeholders largely agree on the preferred direction of urban transitions; more green and blue spots where people can meet and undertake joint (leisure) activities. The main conflict is between, on the one hand, a preference for organized development and beautification and, on the other hand, naturalness (permeability of soil) and organic development. The paper considers several challenges for transition governance.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...