ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ddc:551.46  (1)
  • ddc:551.9  (1)
  • ddc:550.78
  • Hoboken, USA  (2)
  • English  (2)
  • Russian
  • 2020-2023  (2)
Collection
Keywords
Language
  • English  (2)
  • Russian
Years
Year
  • 1
    Publication Date: 2022-03-30
    Description: Fjords are recognized as hotspots of organic carbon (OC) burial in the coastal ocean. In fjords with glaciated catchments, glacier discharge carries large amounts of suspended matter. This sedimentary load includes OC from bedrock and terrigenous sources (modern vegetation, peat, soil deposits), which is either buried in the fjord or remineralized during export, acting as a potential source of CO2 to the atmosphere. In sub‐Antarctic South Georgia, fjord‐terminating glaciers have been retreating during the past decades, likely as a response to changing climate conditions. We determine sources of OC in surface sediments of Cumberland Bay, South Georgia, using lipid biomarkers and the bulk 14C isotopic composition, and quantify OC burial at present and for the time period of documented glacier retreat (between 1958 and 2017). Petrogenic OC is the dominant type of OC in proximity to the present‐day calving fronts (60.4 ± 1.4% to 73.8 ± 2.6%) and decreases to 14.0 ± 2.7% outside the fjord, indicating that petrogenic OC is effectively buried in the fjord. Beside of marine OC, terrigenous OC comprises 2.7 ± 0.5% to 7.9 ± 5.9% and is mostly derived from modern plants and Holocene peat and soil deposits that are eroded along the flanks of the fjord, rather than released by the retreating fjord glaciers. We estimate that the retreat of tidewater glaciers between 1958 and 2017 led to an increase in petrogenic carbon accumulation of 22% in Cumberland West Bay and 6.5% in Cumberland East Bay, suggesting that successive glacier retreat does not only release petrogenic OC into the fjord, but also increases the capacity of OC burial.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:552 ; ddc:551.9
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-01
    Description: Bacteria play a key role in sustaining the chemodiversity of marine dissolved organic matter (DOM), yet there is limited direct evidence of a major contribution of bacterial exometabolites to the DOM pool. This study tests whether molecular formulae of intact exometabolites can be detected in natural DOM via untargeted Fourier‐transform ion cyclotron resonance mass spectrometry (FT‐ICR‐MS). We analyzed a series of quantitative mixtures of solid‐phase extracted DOM from the deep ocean, of a natural microbial community and selected model strains of marine bacteria. Under standard instrument settings (200 broadband scans, mass range 92–1000 Da), 77% of molecular formulae were shared between the mesocosm and marine DOM. However, there was 〈 10% overlap between pure bacterial exometabolome with marine DOM, and in mixing ratios closest to mimicking natural environments (1% bacterial DOM, 99% marine DOM), only 4% of the unique bacterial exometabolites remained detectable. Further experiments with the bacterial exometabolome DOM mixtures using enhanced instrument settings resulted in increased detection of the exometabolites at low concentrations. At 1000 and 10,000 accumulated scans, 23% and 29% of the unique molecular formulae were detectable at low concentrations, respectively. Moreover, windowing a specific mass range encompassing a representative fraction of exometabolites tripled the number of unique detected formulae at low concentrations. Routine FT‐ICR‐MS settings are thus not always sufficient to distinguish bacterial exometabolome patterns from a seawater DOM background. To observe these patterns at higher sensitivity, we recommend a high scan number coupled with windowing a characteristic region of the molecular fingerprint.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551.46 ; ddc:579.3 ; ddc:
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...