ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie  (628)
  • Deutsches GeoForschungsZentrum GFZ  (95)
  • Basel, Boston, Berlin : Birkhäuser  (43)
  • Cambridge : Cambridge University Press
  • Springer Berlin Heidelberg
  • Washington, DC : Mineralogical Society of America
  • English  (789)
  • Japanese  (24)
  • 2010-2014  (477)
  • 2000-2004  (336)
Collection
Publisher
Language
Years
Year
  • 1
    Monograph available for loan
    Monograph available for loan
    Cambridge : Cambridge University Press
    Call number: AWI Bio-11-0010
    Description / Table of Contents: This much revised and expanded edition provides a valuable and detailed summary of the many uses of diatoms in a wide range of applications in the environmental and earth sciences. Particular emphasis is placed on the use of diatoms in analyzing ecological problems related to climate change, acidification, eutrophication, and other pollution issues. The chapters are divided into sections for easy reference, with separate sections covering indicators in different aquatic environments. A final section explores diatom use in other fields of study such as forensics, oil and gas exploration, nanotechnology, and archeology. Sixteen new chapters have been added since the first edition including introductory chapters on diatom biology and the numerical approaches used by diatomists. The extensive glossary has also been expanded and now includes over 1000 detailed entries, which will help non-specialists to use the book effectively
    Type of Medium: Monograph available for loan
    Pages: XVIII, 667 Seiten , Illustrationen
    Edition: Second edition
    ISBN: 9780521509961 , 0-521-50996-3
    Language: English
    Note: Contents: List of Contributors. - Preface. - Part I. Introduction: 1. Applications and uses of diatoms: prologue ; 2. The diatoms: a primer ; 3. Numerical methods for the analysis of diatom assemblage data ; Part II. Diatoms as indicators of environmental change in flowing waters and lakes: 4. Assessing environmental conditions in rivers and streams with diatoms ; 5. Diatoms as indicators of long-term environmental change in rivers, fluvial lakes and impoundments ; 6. Diatoms as indicators of surface-water acidity ; 7. Diatoms as indicators of lake eutrophication ; 8. Diatoms as indicators of environmental change in shallow lakes ; 9. Diatoms as indicators of water-level change in freshwater lakes ; 10. Diatoms as indicators of hydrologic and climatic change in saline lakes ; 11. Diatoms in ancient lakes ; Part III. Diatoms as Indicators in Arctic, Antarctic and alpine lacustrine environments: 12. Diatoms as indicators of environmental change in subarctic and alpine regions ; 13. Freshwater diatoms as indicators of environmental change in the High Arctic ; 14. Diatoms as indicators of environmental change in Antarctic and subantarctic freshwaters ; Part IV. Diatoms as indicators in marine and estuarine environments: 15. Diatoms and environmental change in large brackish-water ecosystems ; 16. Applied diatom studies in estuaries and shallow coastal environments ; 17. Estuarine paleoenvironmental reconstructions using diatoms ; 18. Diatoms on coral reefs and in tropical marine lakes ; 19. Diatoms as indicators of former sea levels, earthquakes, tsunamis and hurricanes ; 20. Marine diatoms as indicators of modern changes in oceanographic conditions ; 21. Holocene marine diatom records of environmental change ; 22. Diatoms as indicators of paleoceanographic events ; 23. Reconsidering the meaning of biogenic silica accumulation rates in the glacial Southern Ocean ; Part V. Other applications: 24. Diatoms of aerial habitats ; 25. Diatoms as indicators of environmental change in wetlands and peatlands ; 26. Tracking fish, seabirds, and wildlife population dynamics with diatoms and other limnological indicators ; 27. Diatoms and archaeology ; 28. Diatoms in oil and gas exploration ; 29. Forensic science and diatoms ; 30. Toxic marine diatoms ; 31. Diatoms as markers of atmospheric transport ; 32. Diatoms as nonnative species ; 33. Diatomite ; 34. Stable isotopes from diatom silica ; 35. Diatoms and nanotechnology: early history and imagined future as seen through patents ; Part IV. Conclusions: 36. Epilogue: a view to the future ; Glossary, acronyms, and abbreviations ; Index.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Cambridge : Cambridge University Press
    Call number: M 14.0133 ; M 14.0159
    Description / Table of Contents: This book presents an innovative new approach to studying source mechanisms of earthquakes, combining theory and observation in a unified methodology, with a key focus on the mechanics governing fault failures. It explains source mechanisms by building from fundamental concepts such as the equations of elasticity theory to more advanced problems including dislocation theory, kinematic models and fracture dynamics. The theory is presented first in student-friendly form using consistent notation throughout, and with full, detailed mathematical derivations that enable students to follow each step. Later chapters explain the widely-used practical modelling methods for source mechanism determination, linking clearly to the theoretical foundations, and highlighting the processing of digital seismological data. Providing a unique balance between application techniques and theory, this is an ideal guide for graduate students and researchers in seismology, tectonophysics, geodynamics and geomechanics, and a valuable practical resource for professionals working in seismic hazard assessment and seismic engineering.
    Type of Medium: Monograph available for loan
    Pages: x, 302 S. : Ill., graph. Darst.
    ISBN: 9781107040274
    Classification:
    Seismology
    Language: English
    Note: Earthquakes and fault motion. pp. 1-21. doi:10.1017/CBO9781139628792.002 --- Processing and analysis of recorded seismic signals. pp. 22-40. doi:10.1017/CBO9781139628792.003 --- Mathematical representation of the source. pp. 41-62. doi:10.1017/CBO9781139628792.004 --- Point source models. pp. 63-89. doi:10.1017/CBO9781139628792.005 --- The seismic moment tensor. pp. 90-107. doi:10.1017/CBO9781139628792.006 --- Determination of point source mechanisms. pp. 108-134. doi:10.1017/CBO9781139628792.007 --- Kinematics of extended sources. pp. 135-162. doi:10.1017/CBO9781139628792.008 --- Determination of source dimensions. pp. 163-188. doi:10.1017/CBO9781139628792.009 --- Simple dynamic models. pp. 189-204. doi:10.1017/CBO9781139628792.010 --- Dynamics of fracture. Homogeneous models. pp. 205-231. doi:10.1017/CBO9781139628792.011 --- Fracture dynamics. Heterogeneous models. pp. 232-258. doi:10.1017/CBO9781139628792.012 --- Modeling earthquakes using fracture dynamics. pp. 259-283. doi:10.1017/CBO9781139628792.013
    Location: Upper compact magazine
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Monograph available for loan
    Monograph available for loan
    Cambridge : Cambridge University Press
    Call number: AWI G3-11-0064
    Description / Table of Contents: This is the first textbook to address all the components of the Earth's cryosphere - all forms of snow and ice, both terrestrial and marine. It provides a concise but comprehensive summary of snow cover, glaciers, ice sheets, lake and river ice, permafrost, sea ice and icebergs - their past history and projected future state. It is designed for courses at upper undergraduate and graduate level in environmental science, geography, geology, glaciology, hydrology, water resource engineering and ocean sciences. It also provides a superb up-to-date summary for researchers of the cryosphere. The book includes an extensive bibliography, numerous figures and color plates, thematic boxes on selected topics and a glossary. The book builds on courses taught by the authors for many decades at the University of Colorado and the University of Alberta. Whilst there are many existing texts on individual components of the cryosphere, no other textbook covers the whole cryosphere.
    Type of Medium: Monograph available for loan
    Pages: XV, 472 Seiten , Illustrationen , 25x19x2 cm
    Edition: First published
    ISBN: 9780521156851
    Language: English
    Note: Contents Preface Ackowledgements 1 Introduction 1.1 Definition and extent 1.2 The role of the cryosphere in the climate system 1.3 The organization of cryospheric observations and research 1.4 Remote sensing of the cryosphere Part I The terrestrial cryosphere 2A Snowfall and snow cover 2.1 History 2.2 Snow formation 2.3 Snow cover 2.4 Snow cover modeling in land surface schemes of GCMs 2.5 Snow interception by the canopy 2.6 Sublimation 2.7 Snow metamorphism 2.8 In situ measurements of snow 2.9 Remote sensing of snowpack properties and snow-cover area 2.10 Snowmelt modeling 2.11 Recent observed snow cover changes 2B Avalanches 2.12 History 2.13 Avalanche characteristics 2.14 Avalanche models 2.15 Trends' in avalanchf:' conditions 3 Glaciers and ice caps 3.1 History 3.2 Definitions 3.3 Glacier characteristics 3.4 Mass balance 3.5 Remote sensing 3.6 Glacier flow and flowlines 3.7 Scaling 3.8 Glacier modeling 3.9 Ice caps 3.10 Glacier hydrology 3.11 Changes in glaciers and ice caps 4 Ice sheets 4.1 History of exploration 4.2 Mass balance 4.3 Remote sensing 4.4 Mechanisms of ice sheet changes 4.5 The Greenland Ice Sheet 4.6 Antarctica 4.7 Overall ice sheet changes 4.8 Ice sheet models 4.9 Ice sheet and ice shelf interaction 4.10 Ice sheet contributions to sea level change 5 Frozen ground and permafrost 5.1 History 5.2 Frozen ground definitions and extent 5.3 Thermal relationships 5.4 Vertical characteristics of permafrost 5.5 Remote sensing 5.6 Ground ice 5.7 Permafrost models 5.8 Geomorphological features associated with permafrost 5.9 Changes in permafrost and soil freezing 6 Freshwater ice 6.1 History 6.2 Lake ice 6.3 Changes in lake ice cover 6.4 River ice 6.5 Trends in river ice cover 6.6 Icings Part II The marine cryosphere 7 Sea ice 7.1 History 7.2 Sea ice characteristics 7.3 Ice drift and ocean circulation 7.4 Sea ice models 7.5 Leads, polynyas, and pressure ridges 7.6 Ice thickness 7.7 Trends in sea ice extent and thickness 8 Ice shelves and icebergs 8.1 History 8.2 Ice shelves 8.3 Ice streams 8.4 Conditions beneath ice shelves 8.5 Ice shelf buttressing 8.6 Icebergs 8.7 Ice islands Part Ill The cryosphere past and future 9 The cryosphere in the past 9.1 Introduction 9.2 Snowball Earth and ice-free Cretaceous 9.3 Phanerozoic glaciations 9.4 Late Cenozoic polar glaciations 9.5 The Quaternary 9.6 The Holocene 10 The future cryosphere: impacts of global warming 10.1 Introduction 10.2 General observations 10.3 Recent cryospheric changes 10.4 Climate projections 10.5 Projected changes to Northern Hemisphere snow cover 10.6 Projected changes in land ice 10.7 Projected permafrost changes 10.8 Projected changes in freshwater ice 10.9 Projected sea ice changes Part IV Applications 11 Applications of snow and ice research 11.1 Snowfall 11.2 Freezing precipitation 11.3 Avalanches 11.4 Ice avalanches 11.5 Winter sports industry 11.6 Water resources 11.7 Hydropower 11.8 Snow melt floods 11.9 Freshwater ice 11.10 Ice roads 11.11 Sea ice 11.12 Glaciers and ice sheets 11.13 Icebergs 11.14 Permafrost and ground ice I 1.15 Seasonal ground freezing Glossary References Index
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Monograph available for loan
    Monograph available for loan
    Cambridge : Cambridge University Press
    Call number: AWI A13-12-0036
    Description / Table of Contents: The modeling of the past, present, and future climates is of fundamental importance to the issue of climate change and variability. Climate change and climate modeling provides a solid foundation for science students in all disciplines for our current understanding of global warming and important natural climate variations such as El Niño, and lays out the essentials of how climate models are constructed. As issues of climate change and impacts of climate variability become increasingly important, climate scientists must reach out to science students from a range of disciplines. Climate models represent one of our primary tools for predicting and adapting to climate change. An understanding of their strengths and limitations - and of what aspects of climate science are well understood and where quantitative uncertainities arise - can be communicated very effectively to students from a broad range of the sciences. This book will provide a basis for students to make informed decisions concerning climate change, whether they go on to study atmospheric science at a higher level or not. The book has been developed over a number of years form the course that the author teaches at UCLA. It has been extensively class-tested by hundreds of students, and assumes no previous background in atmospheric science except basic calculus and physics.
    Type of Medium: Monograph available for loan
    Pages: XV, 282 Seiten , Illustrationen
    Edition: 1. published 2011, reprinted 2012
    ISBN: 9780521602433
    Language: English
    Note: Contents: Preface. - 1. Overview of climate variability and climate science. - 1.1 Climate dynamics, climate change and climate prediction. - 1.2 The chemical and physical climate system. - 1.2.1 Chemical and physical aspects of the climate system. - 1.2.2 El Niño and global warming. - 1.3 Climate models: a brief overview. - 1.4 Global change in recent history. - 1.4.1 Trace gas concentrations. - 1.4.2 A word on the ozone hole. - 1.4.3 Some history of global warming studies. - 1.4.4 Global temperatures. - 1.5 El Niño: an example of natural climate variability. - 1.5.1 Some history of El Niño studies. - 1.5.2 Observations of El Niño: the 1997-98 event. - 1.5.3 The first El Niño forecast with a coupled ocean-atmosphere model. - 1.6 Paleoclimate variability. - Notes. - 2. Basics of global climate. - 2.1 Components and phenomena in the climate system. - 2.1.1 Time and space scales. - 2.1.2 Interactions among scales and the parameterization problem. - 2.2 Basics of radiative forcing. - 2.2.1 Blackbody radiation. - 2.2.2 Solar energy input. - 2.3 Globally averaged energy budget: first glance. - 2.4 Gradients of radiative forcing and energy transports. - 2.5 Atmospheric circulation. - 2.5.1 Vertical structure. - 2.5.2 Latitude structure of the circulation. - 2.5.3 Latitude-Iongitude dependence of atmospheric climate features. - 2.6 Ocean circulation. - 2.6.1 Latitude-longitude dependence of oceanic climate features. - 2.6.2 The ocean vertical structure. - 2.6.3 The ocean thermohaline circulation. - 2.7 Land surface proeesses. - 2.8 The carbon cycle. - Notes. - 3. Physical processes in the climate system. - 3.1 Conservation of momentum. - 3.1.1 Coriolis force. - 3.1.2 Pressure gradient force. - 3.1.3 Velocity equations. - 3.1.4 Application: geostrophic wind. - 3.1.5 Pressure-height relation: hydrostatic balance. - 3.1.6 Application: pressure coordinates. - 3.2 Equation of state. - 3.2.1 Equation of state for the atmosphere: ideal gas law. - 3.2.2 Equation of state for the ocean. - 3.2.3 Application: atmospheric height-pressure-temperature relation. - 3.2.4 Application: thermal circulations. - 3.2.5 Application: sea level rise due to oceanic thermal expansion. - 3.3 Temperature equation. - 3.3.1 Ocean temperature equation. - 3.3.2 Temperature equation for air. - 3.3.3 Application: the dry adiabatic lapse rate near the surface. - 3.3.4 Application: decay of a sea surface temperature anomaly. - 3.3.5 Time derivative following the parcel. - 3.4 Continuity equation. - 3.4.1 Oceanic continuity equation. - 3.4.2 Atmospheric continuity equation. - 3.4.3 Application: coastal upwelling. - 3.4.4 Application: equatorial upwelling. - 3.4.5 Application: conservation of warm water mass in an idealized layer above the thermocline. - 3.5 Conservation of mass applied to moisture. - 3.5.1 Moisture equation for the atmosphere and surface. - 3.5.2 Sources and sinks of moisture, and latent heat. - 3.5.3 Application: surface melting on an ice sheet. - 3.5.4 Salinity equation for the ocean. - 3.6 Moist processes. - 3.6.1 Saturation. - 3.6.2 Saturation in convection; lifting condensation level. - 3.6.3 The moist adiabat and lapse rate in convective regions. - 3.6.4 Moist convection. - 3.7 Wave processes in the atmosphere and ocean. - 3.7.1 Gravity waves. - 3.7.2 Kelvin waves. - 3.7.3 Rossby waves. - 3.8 Overview. - Notes. - 4. El Niño and year-to-year climate prediction. - 4.1 Recap of El Niño basics. - 4.1.1 The Bjerknes hypothesis. - 4.2 Tropical Pacific climatology. - 4.3 ENSO mechanisms I: extreme phases. - 4.4 Pressure gradients in an idealized upper layer. - 4.4.1 Subsurface temperature anomalies in an idealized upper layer. - 4.5 Transition into the 1997-98 El Niño. - 4.5.1 Subsurface temperature measurements. - 4.5.2 Subsurface temperature anomalies during the onset of El Niño. - 4.5.3 Subsurface temperature anomalies during the transition to La Niña. - 4.6 El Niño mechanisms II: dynamics of transition phases. - 4.6.1 Equatorial jets and the Kelvin wave. - 4.6.2 The Kelvin wave speed. - 4.6.3 What sets the width of the Kelvin wave and equatorial jet?. - 4.6.4 Response of the ocean to a wind anomaly. - 4.6.5 The delayed oscillator model and the recharge oscillator model. - 4.6.6 ENSO transition mechanism in brief. - 4.7 El Niño prediction. - 4.7.1 Limits to skill in ENSO forecasts. - 4.8 El Niño remote impacts: teleconnections. - 4.9 Other interannual climate phenomena. - 4.9.1 Hurricane season forecasts. - 4.9.2 Sahel drought. - 4.9.3 North Atlantic oscillation and annular modes. - Notes. - 5. Climate models. - 5.1 Constructing a climate model. - 5.1.1 An atmospheric model. - 5.1.2 Treatment of sub-grid-scale processes. - 5.1.3 Resolution and computational cost. - 5.1.4 An ocean model and ocean-atmosphere coupling. - 5.1.5 Land surface, snow, ice and vegetation. - 5.1.6 Summary of principal climate model equations. - 5.1.7 Climate system modeling. - 5.2 Numerical representation of atmospheric and oceanic equations. - 5.2.1 Finite-difference versus spectral models. - 5.2.2 Time-stepping and numerical stability. - 5.2.3 Staggered grids and other grids. - 5.2.4 Parallel computer architecture. - 5.3 Parameterization of small-scale processes. - 5.3.1 Mixing and surface fluxes. - 5.3.2 Dry convection. - 5.3.3 Moist convection. - 5.3.4 Land surface processes and soil moisture. - 5.3.5 Sea ice and snow. - 5.4 The hierarchy of climate models. - 5.5 Climate simulations and climate drift. - 5.6 Evaluation of climate model simulations for present-day climate. - 5.6.1 Atmospheric model climatology from specified SST. - 5.6.2 Climate model simulation of climatology. - 5.6.3 Simulation of ENSO response. - Notes. - 6. The greenhouse effect and climate feedbacks. - 6.1 The greenhouse effect in Earth's current climate. - 6.1.1 Global energy balance. - 6.1.2 A global-average energy balance model with a one-layer atmosphere. - 6.1.3 Infrared emissions from a layer. - 6.1.4 The greenhouse effect: example with a completely IR-absorbing atmosphere. - 6.1.5 The greenhouse effect in a one-layer atmosphere, global-average model. - 6.1.6 Temperatures from the one-layer energy balance model. - 6.2 Global warming I: example in the global-average energy balance model. - 6.2.1 Increases in the basic greenhouse effect. - 6.2.2 Climate feedback parameter in the one-layer global-average model. - 6.3 Climate feedbacks. - 6.3.1 Climate feedback parameter. - 6.3.2 Contributions of climate feedbacks to global-average temperature response. - 6.3.3 Climate sensitivity. - 6.4 The water vapor feedback. - 6.5 Snow/ice feedback. - 6.6 Cloud feedbacks. - 6.7 Other feedbacks in the physical climate system. - 6.7.1 Stratospheric cooling. - 6.7.2 Lapse rate feedback. - 6.8 Climate response time in transient climate change. - 6.8.1 Transient climate change versus equilibrium response experiments. - 6.8.2 A doubled-CO2 equilibrium response experiment. - 6.8.3 The role of the oceans in slowing warming. - 6.8.4 Climate sensitivity in transient climate change. - Notes. - 7. Climate model scenarios for global warming. - 7.1 Greenhouse gases, aerosols and other climate forcings. - 7.1.1 Scenarios, forcings and feedbacks. - 7.1.2 Forcing by sulfate aerosols. - 7.1.3 Commonly used scenarios. - 7.2 Global-average response to greenhouse warming scenarios. - 7.3 Spatial patterns of warming for time-dependent scenarios. - 7.3.1 Comparing projections of different climate models. - 7.3.2 Multi-model ensemble averages. - 7.3.3 Polar amplification of warming. - 7.3.4 Summary of spatial patterns of the response. - 7.4 Ice, sea level, extreme events. - 7.4.1 Sea ice and snow. - 7.4.2 Land ice. - 7.4.3 Extreme events. - 7.5 Summary: the best-estimate prognosis. - 7.6 Climate change observed to date. - 7.6.1 Temperature trends and natural variability: scale dependence. - 7.6.2 Is the observed trend consistent with natural variability or anthropogenic forcing?. - 7.6.3 Sea ice, land ice, ocean heat storage and sea level rise. - 7.7 Emissions
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Call number: 12/M 01.0458 ; PIK N 071-01-0551 ; PIK N 071-01-0569 ; PIK N 071-01-0552 ; PIK N 071-02-0350
    In: Climate change 2001
    Type of Medium: Monograph available for loan
    Pages: X, 752 S. : graph. Darst.
    ISBN: 0521015022
    Series Statement: Climate change 2001
    Classification:
    Meteorology and Climatology
    Language: English
    Location: Reading room
    Location: A 18 - must be ordered
    Location: A 18 - must be ordered
    Location: A 18 - must be ordered
    Location: A 18 - must be ordered
    Branch Library: GFZ Library
    Branch Library: PIK Library
    Branch Library: PIK Library
    Branch Library: PIK Library
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Monograph available for loan
    Monograph available for loan
    Cambridge : Cambridge University Press
    Associated volumes
    Call number: M 02.0075
    In: The seismic wavefield
    Type of Medium: Monograph available for loan
    Pages: X, 370 S.
    Edition: 1st publ.
    ISBN: 0521006635
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Call number: 12/M 01.0453 ; AWI A3-01-0215 ; PIK N 071-01-0481 ; PIK N 071-0115 ; PIK N 071-02-0351 ; PIK N 071-01-0564
    In: Climate change 2001
    Type of Medium: Monograph available for loan
    Pages: X, 881 S.
    Edition: 1st publ.
    ISBN: 0521014956
    Classification:
    Meteorology and Climatology
    Language: English
    Note: Contents: Foreword. - Preface. - Summary for Policymakers. - Technical Summary. - 1 The Climate System: an Overview. - 2 Observed Climate Variability and Change. - 3 The Carbon Cycle and Atmospheric Carbon Dioxide. - 4 Atmospheric Chemistry and Greenhouse Gases. - 5 Aerosols, their Direct and Indirect Effects. - 6 Radiative Forcing of Climate Change. - 7 Physical Climate Processes and Feedbacks. - 8 Model Evaluation. - 9 Projections of Future Climate Change. - 10 Regional Climate Information - Evaluation and Projections. - 11 Changes in Sea Level. - 12 Detection of Climate Change and Attribution of Causes. - 13 Climate Scenario Development. - 14 Advancing Our Understanding. - Appendix I Glossary. - Appendix II SRES Tables. - Appendix Ill Contributors to the IPCC WGI Third Assessment Report. - Appendix IV Reviewers of the IPCC WGI Third Assessment Report. - Appendix V Acronyms and Abbreviations. - Appendix VI Units. - Appendix VII Some Chemical Symbols used in this Report. - Appendix VIII Index.
    Location: Reading room
    Location: Reading room
    Location: A 18 - must be ordered
    Location: A 18 - must be ordered
    Location: A 18 - must be ordered
    Location: A 18 - must be ordered
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Branch Library: PIK Library
    Branch Library: PIK Library
    Branch Library: PIK Library
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Monograph available for loan
    Monograph available for loan
    Cambridge : Cambridge University Press
    Call number: 9/M 02.0223 ; M 02.0318 ; M 03.0558
    Type of Medium: Monograph available for loan
    Pages: xiii, 456 S.
    Edition: 2nd ed.
    ISBN: 0521666244
    Classification:
    A. 2.10.
    Language: English
    Location: Reading room
    Location: Upper compact magazine
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Monograph available for loan
    Monograph available for loan
    Cambridge : Cambridge University Press
    Associated volumes
    Call number: 5/M 03.0184 ; M 04.0033
    In: The seismic wavefield
    Type of Medium: Monograph available for loan
    Pages: xii, 534 S.
    ISBN: 0521006651
    Language: English
    Location: Reading room
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Call number: AWI A6-04-0011 ; PIK N 456-03-0069
    In: Large-scale atmosphere-ocean dynamics, Volume 1
    Description / Table of Contents: Numerical weather prediction is a problem of mathematical physics. The complex flows in the atmosphere and oceans are modelled by the Navier-Stokes based equations of fluid mechanics together with classical thermodynamics. However, due to the enormous complexity of these equations, meteorologists and oceanographers appeal to asymptotic methods, variational principles and conservation laws to construct models of the dominant large-scale flows that control our weather. Simplified models are often amenable to analytical and numerical solution. The lectures in these volumes explain why such simplifications to Newton's second law produce accurate, useful models and, just as meteorologists seek patterns in the weather, mathematicians use geometrical thinking to understand the structure behind the governing equations. Here constrained Hamiltonian mechanics, transformation groups, and convex analysis are used to control the potentially chaotic dynamics in the numerical simulations, and to suggest optimal ways to exploit observational data. This book and its companion show how geometry and analysis quantify the concepts behind the fluid dynamics, and thus facilitate new solution strategies.
    Type of Medium: Monograph available for loan
    Pages: xxx, 370 Seiten , Illustrationen
    ISBN: 052180681X
    Language: English
    Note: Contents: Contributors. - Preface. - Introduction and Scientific Background / J.C.R. Hunt, J. Norbury and I. Roulstone. - 1. A view of the equations of meteorological dynamics and various approximations / A. A. White. - 2. Extended-geostrophic Euler-Poincare models for mesoscale oceanographic flow / J. S. Allen, D. D. Holm and P. A. Newberger. - 3. Fast singular oscillating limits of stably-stratified 3D Euler and Navier-Stokes equations and ageostrophic wave fronts / A. Babin, A. Mahalov and B. Nicolaenko. - 4. New mathematical developments in atmosphere and ocean dynamics, and their application to computer simulations / M. J. P. Cullen. - 5. Rearrangements of functions with applications to meteorology and ideal fluid flow / R. J. Douglas. - 6. Statistical methods in atmospheric dynamics: probability metrics and discrepancy measures as a means of defining balance / S. Baigent and J. Norbury.
    Location: AWI Reading room
    Location: A 18 - must be ordered
    Branch Library: AWI Library
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...