ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Deutsches GeoForschungsZentrum GFZ  (32)
  • English  (32)
  • Italian
  • Polish
  • 2020-2024
  • 2015-2019  (14)
  • 2010-2014  (11)
  • 2000-2004  (7)
  • 1990-1994
  • 1965-1969
  • 1930-1934
  • 2015  (14)
  • 2014  (11)
  • 2003  (7)
  • 1990
  • 1
    Publication Date: 2020-02-12
    Description: The ability of any satellite gravity mission concept to monitor mass transport processes in the Earth system is typically tested well ahead of its implementation by means of various simulation studies. Those studies often extend from the simulation of realistic orbits and instrumental data all the way down to the retrieval of global gravity field solution time-series. Basic requirement for all these simulations are realistic representations of the spatio-temporal mass variability in the different sub-systems of the Earth, as a source model for the orbit computations. For such simulations, a suitable source model is required to represent (i) high-frequency (i.e., subdaily to weekly) mass variability in the atmosphere and oceans, in order to realistically include the effects of temporal aliasing due to non-tidal high-frequency mass variability into the retrieved gravity fields. In parallel, (ii) low-frequency (i.e., monthly to interannual) variability needs to be modelled with realistic amplitudes, particularly at small spatial scales, in order to assess to what extent a new mission concept might provide further insight into physical processes currently not observable. The new source model documented here attempts to fulfil both requirements: Based on ECMWF’s recent atmospheric reanalysis ERA-Interim and corresponding simulations from numerical models of the other Earth system components, it offers spherical harmonic coefficients of the time-variable global gravity field due to mass variability in atmosphere, oceans, the terrestrial hydrosphere including the ice-sheets and glaciers, as well as the solid Earth. Simulated features range from sub-daily to multiyear periods with a spatial resolution of spherical harmonics degree and order 180 over a period of 12 years. In addition to the source model, a de-aliasing model for atmospheric and oceanic high-frequency variability with augmented systematic and random noise is required for a realistic simulation of the gravity field retrieval process, whose necessary error characteristics are discussed. The documentation of the updated ESA Earth System Model (updated ESM) for gravity mission simulation studies is organized as follows: The characteristics of the updated ESM along with some basic validation is presented in Volume 1. A detailed comparison to the original ESA ESM (Gruber et al., 2011) is provided in Volume 2, while Volume 3 contains the description of a strategy to derive realistic errors for the de-aliasing model of high-frequency mass variability in atmosphere and ocean.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR - Data
    Publication Date: 2020-02-12
    Description: The integrated plate boundary in Chile (IPOC) combines 15 broadband stations with strong-motion sensors, GPS, strain sensors and magneto-telluric stations. The Chilean subduction zone setting provides a high background rate of seismicity (crustal, intermediate depth, and plate interface) in a region with exceptionally low ambient noise, particularly at higher frequencies. We have deployed seismic mini-arrays in the vicinity of IPOC stations PB02 and PB07, and installed a third array to the east of these stations near the village of Quillagua, such that all three arrays form a triangle. Each array has 10 elements and an aperture in the km range. The study area lies just to the north of the northern boundary of the rupture area of the Tocopilla earthquake of 2007 Mw=7.7) and just above or slightly to the east of the downdip limit of plate interface seismicity. Installing the mini-arrays in the area of the existing IPOC has the following advantages: • Independent knowledge of background structure and seismicity from existing and ongoing studies. • Should any transients or other unusual signals be found in the array data, we can look for anomalous signals in geodetic and MT recordings, which will help to narrow down possible underlying mechanisms.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Description: Passive continental margins offer the unique opportunity to study the processes involved in continental extension and break up as well as the role of hot-spot related magmatism. We conducted combined on- and offshore seismic experiments in Northern Namibia designed to characterize the Southern African passive margin at the interaction with the Walvis Ridge, to assess the interaction of the presumed plume with continental lithosphere and to determine the deep structure of the transition from the coastal fold belt to the stable craton, where the Walvis Ridge hits the African continent. The seismic project integrated three experiments, (A) an onshore, coast-parallel refraction seismic profile, (B) two onshore-offshore wide-angle seismic transects, and (C) a combined on- and offshore seismic experiment to image the sub-Moho velocity (Pn tomography) at the ocean-continent transition (Fig. 1). The knowledge of the lithospheric structure of the margin together with results from other geoscientific studies (e.g., conducted within the SPPSAMPLE, DFG Priority Program 1375, South Atlantic Margin Processes and Links with onshore Evolution) will help to address fundamental questions such as, how continental crust and plume head interact, what the extent and volumes of magmatic underplating is, and how and which inherited (continental) structures might have been involved and utilized in the break-up process.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report
    Publication Date: 2020-02-12
    Description: This publication is a result of the 12th TRACE conference (Tree Rings in Archaeology, Climatology and Ecology) organized by the Department of Agriculture, Forests, Nature and Energy (DAFNE) of the Università della Tuscia (Viterbo, Italy) on May 08th – 11th 2013 in Viterbo, Italy. [...] A total of 20 manuscripts were submitted. After review 19 short papers are published in this volume, giving an overview of the wide spectrum of fields in tree-ring research.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Description: The 2014 LoNNe (Loss of the Night Network) intercomparison campaign is the third of four campaigns planned during EU COST Action ES1204. This report provides a brief synopsis of the campaign and its preliminary outcomes. Section 2 describes the measurement locations, the activities of the participants, the instruments used, and the environmental conditions. Section 3 describes a public outreach event held during the campaign. Section 4 provides some preliminary results, outlines the ongoing analyses, and presents research questions for the next campaign to address. Section 5 provides recommendations for the final LoNNe intercomparison campaign in 2016. Section 6 concludes the report.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report
    Publication Date: 2020-02-12
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-12
    Description: The ability of any satellite gravity mission concept to monitor mass transport processes in the Earth system is typically tested well ahead of its implementation by means of various simulation studies. Those studies often extend from the simulation of realistic orbits and instrumental data all the way down to the retrieval of global gravity field solution time-series. Basic requirement for all these simulations are realistic representations of the spatio-temporal mass variability in the different sub-systems of the Earth, as a source model for the orbit computations. For such simulations, a suitable source model is required to represent (i) high-frequency (i.e., sub-daily to weekly) mass variability in the atmosphere and oceans, in order to realistically include the effects of temporal aliasing due to non-tidal high-frequency mass variability into the retrieved gravity fields. In parallel, (ii) low-frequency (i.e., monthly to interannual) variability needs to be modelled with realistic amplitudes, particularly at small spatial scales, in order to assess to what extent a new mission concept might provide further insight into physical processes currently not observable. The new source model documented here attempts to fulfil both requirements: Based on ECMWF’s recent atmospheric reanalysis ERA-Interim and corresponding simulations from numerical models of the other Earth system components, it offers spherical harmonic coefficients of the time-variable global gravity field due to mass variability in atmosphere, oceans, the terrestrial hydrosphere including the ice-sheets and glaciers, as well as the solid Earth. Simulated features range from sub-daily to multiyear periods with a spatial resolution of spherical harmonics degree and order 180 over a period of 12 years. In addition to the source model, a de-aliasing model for atmospheric and oceanic high-frequency variability with augmented systematic and random noise is required for a realistic simulation of the gravity field retrieval process, whose necessary error characteristics are discussed. The documentation is organized as follows: The characteristics of the updated ESM along with some basic validation are presented in Volume 1 of this report (Dobslaw et al., 2014). A detailed comparison to the original ESA ESM (Gruber et al., 2011) is provided in Volume 2 (Bergmann-Wolf et al., 2014), while Volume 3 (Forootan et al., 2014) contains a description of the strategy to derive a realistically noisy de-aliasing model for the high-frequency mass variability in atmosphere and oceans. The files of the updated ESA Earth System Model for gravity mission simulation studies are accessible at DOI:10.5880/GFZ.1.3.2014.001.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-12
    Language: English
    Type: info:eu-repo/semantics/other
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report - Data | GIPP Experiment- and Data Archive
    Publication Date: 2020-02-12
    Description: SEGY and supplementary data of the seismic reflection experiment in the Baza Basin (Southern Spain). Presented are unstacked and unmigrated data of three 2D vibroseis profiles which were carried out in October 2013 and all corresponding raw data.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-12
    Description: The ability of any satellite gravity mission concept to monitor mass transport processes in the Earth system is typically tested well ahead of its implementation by means of various simulation studies. Those studies often extend from the simulation of realistic orbits and instrumental data all the way down to the retrieval of global gravity field solution time-series. Basic requirement for all these simulations are realistic representations of the spatio-temporal mass variability in the different sub-systems of the Earth, as a source model for the orbit computations. For such simulations, a suitable source model is required to represent (i) high-frequency (i.e., sub-daily to weekly) mass variability in the atmosphere and oceans, in order to realistically include the effects of temporal aliasing due to non-tidal high-frequency mass variability into the retrieved gravity fields. In parallel, (ii) low-frequency (i.e., monthly to interannual) variability needs to be modelled with realistic amplitudes, particularly at small spatial scales, in order to assess to what extent a new mission concept might provide further insight into physical processes currently not observable. The new source model documented here attempts to fulfil both requirements: Based on ECMWF’s recent atmospheric reanalysis ERA-Interim and corresponding simulations from numerical models of the other Earth system components, it offers spherical harmonic coefficients of the time-variable global gravity field due to mass variability in atmosphere, oceans, the terrestrial hydrosphere including the ice-sheets and glaciers, as well as the solid Earth. Simulated features range from sub-daily to multiyear periods with a spatial resolution of spherical harmonics degree and order 180 over a period of 12 years. In addition to the source model, a de-aliasing model for atmospheric and oceanic high-frequency variability with augmented systematic and random noise is required for a realistic simulation of the gravity field retrieval process, whose necessary error characteristics are discussed. The documentation is organized as follows: The characteristics of the updated ESM along with some basic validation are presented in Volume 1 of this report (Dobslaw et al., 2014). A detailed comparison to the original ESA ESM (Gruber et al., 2011) is provided in Volume 2 (Bergmann-Wolf et al., 2014), while Volume 3 (Forootan et al., 2014) contains a description of the strategy to derive a realistically noisy de-aliasing model for the high-frequency mass variability in atmosphere and oceans. The files of the updated ESA Earth System Model for gravity mission simulation studies are accessible at DOI:10.5880/GFZ.1.3.2014.001.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...