ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Stockholm : European Council for an Energy Efficient Economy
    Publication Date: 2019-07-12
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-02-18
    Description: In spite of differences in energy policies and supply, Japan and Germany have to master similar challenges: To reorganize the energy supply system towards - in the long term - being reliable, affordable, low in risks and resource use, and climate-neutral. At the same time, the ecological modernization should maintain or even strengthen international competitiveness. To better address these challenges, a bi-national expert council has been established between the two high-tech countries in 2016 - the GJETC. The aim of the GJETC is to show that despite different starting points, a national energy transition can be more successful, if both countries learn from their strengths and also weaknesses, to avoid the latter. If the implementation of an energy transition in the two countries is socially and economically sound and advances technology innovation and deployment, it may not only double success, but can also serve as blue prints for other countries, especially due to learning from similarities and differences. For example: Why is per capita energy consumption higher in transport in Germany, but energy intensity higher in Japan's building sector? How can variable renewable energies be integrated in an efficient energy system at lowest costs? The Council meets twice a year, holds stakeholder dialogues and outreach events, and prepares policy papers on strategic topics of mutual interest. Four comprehensive studies, each in cooperation of a German and a Japanese research institute, have been the basis for 15 joint key recommendations during the 1st phase. The 2nd phase to 2020 will study the role of hydrogen and digitalisation for the energy transition, as well as other topics. The paper presents the findings and recommendations of the GJETC of the first phase 2016-18 as well as first results of the second phase. It also reviews the setup of the GJETC and the way it works, to assess if and how it can serve as a role model of bilateral cooperation on the energy transition.
    Keywords: ddc:320
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-02-18
    Description: This paper analyses and compares industry sector transformation strategies as envisioned in recent German, European and global deep decarbonisation scenarios. The first part of the paper identifies and categorises ten key strategies for deep emission reductions in the industry sector. These ten key strategies are energy efficiency, direct electrification, use of climateneutral hydrogen and/or synthetic fuels, use of biomass, use of CCS, use of CCU, increases in material efficiency, circular economy, material substitution and end-use demand reductions. The second part of the paper presents a meta-analysis of selected scenarios, focusing on the question of which scenario relies to what extent on the respective mitigation strategies. The key findings of the meta-analysis are discussed, with an emphasis on identifying those strategies that are commonly pursued in all or the vast majority of the scenarios and those strategies that are only pursued in a limited number of the scenarios. Possible reasons for differences in the choice of strategies are investigated. The paper concludes by deriving key insights from the analysis, including identifying the main uncertainties that are still apparent with regard to the future steps necessary to achieve deep emission reductions in the industry sector and how future research can address these uncertainties.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Stockholm : European Council for an Energy Efficient Economy
    Publication Date: 2022-02-18
    Description: The emission reduction potential of energy efficiency and energy supply in buildings is estimated in various energy and climate action plans, scenarios, and potential analyses. But the third pillar of sustainability - sufficiency - is neglected in most studies.The increasing demand of space per person in the residential sector is a trend in most European countries. Its implication on energy use, demand for resources like land, building material, equipment, and waste production is enormous. Next to the ecological impact, the distribution of space has social and societal effects. Thus, sufficiency policies in the building sector complementing efficiency and energy policy are needed for a sustainable development of the European building stock. But how can a sufficiency potential in the building sector be estimated? How much space and equipment is needed for a decent living and how much is too much? The paper proposes four areas of sufficiency in buildings: space, design and construction, equipment, and use. It presents a set of indicators, a quantitative estimate of energy savings from reduced per capita floor area, and visualises the sufficiency potential in European countries in an experimental approach. The final discussion focuses on the question: What does this mean for policy making?
    Keywords: ddc:320
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-02-18
    Description: Technological innovations in energy-intensive industries (EIIs) have traditionally emerged within the boundaries of a specific sector. Now that these industries are facing the challenges of deep decarbonisation and a significant reduction in greenhouse gas (GHG) emissions is expected to be achieved across sectors, cross-industry collaboration is becoming increasingly relevant for low-carbon innovation. Accessing knowledge and other resources from other industrial sectors as well as co-developing innovative concepts around industrial symbiosis can be mutually beneficial in the search for fossil-free feedstocks and emissions reductions. In order to harness the potential of this type of innovation, it is important to understand not only the technical innovations themselves, but in particular the non-technical influencing factors that can drive the successful implementation of cross-industry collaborative innovation projects. The scientific state of the art does not provide much insight into this particular area of research. Therefore, this paper builds on three separate strands of innovation theory (cross-industry innovation, low-carbon innovation and innovation in EIIs) and takes an explorative case-study approach to identify key influencing factors for cross-industry collaboration for low-carbon innovation in EIIs. For this purpose, a broad empirical database built within the European joint research project REINVENT is analysed. The results from this project provide deep insights into the dynamics of low-carbon innovation projects of selected EIIs. Furthermore, the paper draws on insights from the research project SCI4Climate.NRW. This project serves as the scientific competence centre for IN4Climate.NRW, a unique initiative formed by politicians, industry and science to promote, among other activities, cross-industry collaboration for the implementation of a climate-neutral industry in the German federal state of North Rhine-Westphalia (NRW). Based on the results of the case study analysis, five key influencing factors are identified that drive the implementation of cross-industry collaboration for low-carbon innovation in EIIs: Cross-industry innovation projects benefit from institutionalised cross-industry exchange and professional project management and coordination. Identifying opportunities for regional integration as well as the mitigation of financial risk can also foster collaboration. Lastly, clear political framework conditions across industrial sectors are a key driver.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-02-18
    Description: The reduction of greenhouse gas (GHG) emissions by energyintensive industries to a net zero level is a very ambitious and complex but still feasible challenge, as recent studies show for the EU level. "Industrial Transformation 2050" by Material Economics (2019) is of particular relevance, as it shows how GHG-neutrality can be achieved in Europe for the sectors chemicals (plastics and ammonia), steel and cement, based on three main decarbonisation strategies. The study determines the resulting total demands for renewable electricity, hydrogen and for the capture and storage of CO2 (CCS). However, it analyses neither the regional demand patterns that are essential for the required infrastructure nor the needed infrastructure itself. Against this background the present paper determines the regional distribution of the resulting additional demands for electricity, hydrogen and CCS in Europe in the case that the two most energy and CCS intensive decarbonisation strategies of the study above will be realised for the existing industry structure. It explores the future infrastructure needs and identifies and qualitatively assesses different infrastructure solutions for the largest industrial cluster in Europe, i.e. the triangle between Antwerp, Rotterdam and Rhine-Ruhr. In addition, the two industrial regions of Southern France and Poland are also roughly examined. The paper shows that the increase in demand resulting from a green transformation of industry will require substantial adaptation and expansion of existing infrastructures. These have not yet been the subject of infrastructure planning. In particular, the strong regional concentration of additional industrial demand in clusters (hot spots) must be taken into account. Due to their distance from the high-yield but remote renewable power generation potentials (sweet spots), these clusters further increase the infrastructural challenges. This is also true for the more dispersed cement production sites in relation to the remote CO2 storage facilities. The existing infrastructure plans should therefore be immediately expanded to include decarbonisation strategies of the industrial sector.
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-02-18
    Description: The paper describes quantitative scenarios on a possible evolution of the EU petrochemical industry towards climate neutrality. This industry will be one of the remaining sectors in a climate neutral economy still handling hydrocarbon material to manufacture polymers. Concepts of a climate neutral chemical industry stress the need to consider the potential end-of-life emissions of polymers produced from fossil feedstock and draft the vision of using renewable electricity to produce hydrogen and to use renewable (hydro)carbon feedstock. The latter could be biomass, CO2 from the air or recycled feedstock from plastic waste streams. The cost-optimization model used to develop the scenarios describes at which sites investments of industry in the production stock could take place in the future. Around 50 types of products, the related production processes and the respective sites have been collected in a database. The processes included cover the production chain from platform chemicals via intermediates to polymers. Pipelines allowing for efficient exchange of feedstock and platform chemicals between sites are taken into account as well. The model draws on this data to simulate capacity change at individual plants as well as plant utilization. Thus, a future European production network for petrochemicals with flows between the different sites and steps of the value chain can be sketched. The scenarios described in this paper reveal how an electrification strategy could be implemented by European industry over time with minimized societal costs. Today's existing assets as well as geographical variance of energy supply and the development of demand for different plastic sorts are the major model drivers. Finally, implications for the chemical industry, the energy system and national or regional governments are discussed.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-02-18
    Description: For some time, 3D printing has been a major buzzword of innovation in industrial production. It was considered a game changer concerning the way industrial goods are produced. There were early expectations that it might reduce the material, energy and transport intensity of value chains. However for quite a while, the main real world applications of additive manufacturing (AM) have been some rapid prototyping and the home-based production of toys made from plastics. On this limited basis, any hypotheses regarding likely impacts on industrial energy efficiency appeared to be premature. Notwithstanding the stark contrast between early hype and practical use, the diffusion of AM has evolved to an extent that at least for some applications allows for a preliminary assessment of its likely implications for energy efficiency. Unlike many cross-cutting energy efficiency technologies, energy use of AM may vary substantially depending on industry considered and material used for processing. Moreover, AM may have much greater repercussions on other stages of value chains than conventional cross-cutting energy efficiency technologies. In case of AM with metals the following potential determinants of energy efficiency come to mind: - A reduction of material required per unit of product and used during processing; - Changes in the total number and spatial allocation of certain stages of the value chain; and - End-use energy efficiency of final products. At the same time, these various streams of impact on energy efficiency may be important drivers for the diffusion of AM with metals. This contribution takes stock of AM with metals concerning applications and processes used as well as early evidence on impacts on energy efficiency and combine this into a systematic overview. It builds on relevant literature and a case study on Wire Arc Additive Manufacturing performed within the REINVENT project.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-02-18
    Description: Improvements in energy efficiency have numerous impacts additional to energy and greenhouse gas savings. This paper presents key findings and policy recommendations of the COMBI project ("Calculating and Operationalising the Multiple Benefits of Energy Efficiency in Europe"). This project aimed at quantifying the energy and non-energy impacts that a realisation of the EU energy efficiency potential would have in 2030. It covered the most relevant technical energy efficiency improvement actions in buildings, transport and industry. Quantified impacts include reduced air pollution (and its effects on human health, eco-systems), improved social welfare (health, productivity), saved biotic and abiotic resources, effects on the energy system and energy security, and the economy (employment, GDP, public budgets and energy/EU-ETS prices). The paper shows that a more ambitious energy efficiency policy in Europe would lead to substantial impacts: overall, in 2030 alone, monetized multiple impacts (MI) would amount to 61 bn Euros per year in 2030, i.e. corresponding to approx. 50% of energy cost savings (131 bn Euros). Consequently, the conservative CBA approach of COMBI yields that including MI quantifications to energy efficiency impact assessments would increase the benefit side by at least 50-70%. As this analysis excludes numerous impacts that could either not be quantified or monetized or where any double-counting potential exists, actual benefits may be much larger. Based on these findings, the paper formulates several recommendations for EU policy making: (1) the inclusion of MI into the assessment of policy instruments and scenarios, (2) the need of reliable MI quantifications for policy design and target setting, (3) the use of MI for encouraging inter-departmental and cross-sectoral cooperation in policy making to pursue common goals, and (4) the importance of MI evaluations for their communication and promotion to decision-makers, stakeholders, investors and the general public.
    Keywords: ddc:320
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Stockholm : European Council for an Energy Efficient Economy
    Publication Date: 2022-02-18
    Description: "400,000 new homes per year are needed in German cities." This figure has been cited repeatedly in political discussions, media, and statements of different groups for a couple of years now. Living space is needed to mitigate the (further) inordinate increase of rents in some cities and regions and to ease finding appropriate flats at affordable prices for low- and medium-income households. But how to activate investors and the real estate market? Having the triangle of sustainability in mind with its ecologic, social and economic cornerstones the discussion - metaphorically spoken - currently pulls the three corners: Which should have the highest priority? The economically driven most favourable solution is lowering the requirements for new buildings such as the energy performance to make building cheaper. The social perspective prefers an increase of public social housing investments regardless of efficiency standards. And the ecological side argues that a high performance is needed to reach energy and climate targets in the buildings sector. Starting at this point of discussion, firstly, the paper reflects the assumptions behind the numbers of new homes needed against a sufficiency background. Secondly, it presents current changes in German building policies: a new legislation for energy supply and efficiency is currently in preparation. It discusses the potential to integrate sufficiency aspects in building policies, focussing specifically on the new regulation, financial incentives, and energy advice. The paper analyses if and to what extent it is likely to balance the three cornerstones of sustainability by integrating sufficiency aspects into efficiency policies. Household experiences with prepayment meters are used as an example to illustrate the potential for tapping efficiency and sufficiency potentials in low-income households considering social, economic, and ecological aspects. Based on the identified (in)consistencies, thirdly, it suggests further development in German policies to make better use of synergies between the ecologic, social and economic demands on buildings.
    Keywords: ddc:320
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...