ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • machine learning
  • thema EDItEUR::D Biography, Literature and Literary studies::D Biography, Literature and Literary studies::DS Literature: history and criticism
  • English  (4)
  • French
  • Swedish
  • 2020-2022  (4)
Collection
Keywords
Language
  • English  (4)
  • French
  • Swedish
Years
Year
  • 1
    Publication Date: 2021-10-27
    Description: Wheat production plays an important role in Morocco. Current wheat forecast systems use weather and vegetation data during the crop growing phase, thus limiting the earliest possible release date to early spring. However, Morocco's wheat production is mostly rainfed and thus strongly tied to fluctuations in rainfall, which in turn depend on slowly evolving climate dynamics. This offers a source of predictability at longer time scales. Using physically guided causal discovery algorithms, we extract climate precursors for wheat yield variability from gridded fields of geopotential height and sea surface temperatures which show potential for accurate yield forecasts already in December, with around 50% explained variance in an out-of-sample cross validation. The detected interactions are physically meaningful and consistent with documented ocean-atmosphere feedbacks. Reliable yield forecasts at such long lead times could provide farmers and policy makers with necessary information for early action and strategic adaptation measurements to support food security.
    Keywords: 551.6 ; causal discovery algorithms ; teleconnections ; seasonal forecast ; machine learning ; wheat forecast ; climate precursors
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-07
    Description: The quantification of factors leading to harmfully high levels of particulate matter (PM) remains challenging. This study presents a novel approach using a statistical model that is trained to predict hourly concentrations of particles smaller than 10  μm (PM10) by combining satellite-borne aerosol optical depth (AOD) with meteorological and land-use parameters. The model is shown to accurately predict PM10 (overall R 2 = 0.77, RMSE = 7.44  μg/m 3) for measurement sites in Germany. The capability of satellite observations to map and monitor surface air pollution is assessed by investigating the relationship between AOD and PM10 in the same modeling setup. Sensitivity analyses show that important drivers of modeled PM10 include multiday mean wind flow, boundary layer height (BLH), day of year (DOY), and temperature. Different mechanisms associated with elevated PM10 concentrations are identified in winter and summer. In winter, mean predictions of PM10 concentrations 〉35  μg/m 3 occur when BLH is below ∼500 m. Paired with multiday easterly wind flow, mean model predictions surpass 40  μg/m 3 of PM10. In summer, PM10 concentrations seemingly are less driven by meteorology, but by emission or chemical particle formation processes, which are not included in the model. The relationship between AOD and predicted PM10 concentrations depends to a large extent on ambient meteorological conditions. Results suggest that AOD can be used to assess air quality at ground level in a machine learning approach linking it with meteorological conditions.
    Keywords: 551.5 ; aerosol optical depth ; air quality ; PM10 ; machine learning ; drivers of air pollution ; MAIAC
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-06
    Description: Access to credible estimates of water use is critical for making optimal operational decisions and investment plans to ensure reliable and affordable provisioning of water. Furthermore, identifying the key predictors of water use is important for regulators to promote sustainable development policies to reduce water use. In this paper, we propose a data-driven framework, grounded in statistical learning theory, to develop a rigorously evaluated predictive model of state-level, per capita water use in the United States as a function of various geographic, climatic, and socioeconomic variables. Specifically, we compare the accuracy of various statistical methods in predicting the state-level, per capita water use and find that the model based on the random forest algorithm outperforms all other models. We then leverage the random forest model to identify key factors associated with high water-usage intensity among different sectors in the United States. More specifically, irrigated farming, thermoelectric energy generation, and urbanization were identified as the most water-intensive anthropogenic activities, on a per capita basis. Among the climate factors, precipitation was found to be a key predictor of per capita water use, with drier conditions associated with higher water usage. Overall, our study highlights the utility of leveraging data-driven modeling to gain valuable insights related to the water use patterns across expansive geographical areas.
    Keywords: 333.91 ; machine learning ; sustainable water-use ; water analytics ; water consumption
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-09-24
    Description: Data-driven approaches, most prominently deep learning, have become powerful tools for prediction in many domains. A natural question to ask is whether data-driven methods could also be used to predict global weather patterns days in advance. First studies show promise but the lack of a common data set and evaluation metrics make intercomparison between studies difficult. Here we present a benchmark data set for data-driven medium-range weather forecasting (specifically 3–5 days), a topic of high scientific interest for atmospheric and computer scientists alike. We provide data derived from the ERA5 archive that has been processed to facilitate the use in machine learning models. We propose simple and clear evaluation metrics which will enable a direct comparison between different methods. Further, we provide baseline scores from simple linear regression techniques, deep learning models, as well as purely physical forecasting models. The data set is publicly available at https://github.com/pangeo-data/WeatherBench and the companion code is reproducible with tutorials for getting started. We hope that this data set will accelerate research in data-driven weather forecasting.
    Keywords: 551.6 ; machine learning ; NWP ; artificial intelligence ; benchmark
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...