ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (1,975)
  • Spanish  (19)
  • French  (10)
  • Italian  (2)
  • Miscellaneous languages
  • Slovenian
  • 2020-2024  (2,006)
  • 2020  (2,006)
Collection
Language
Year
  • 1
    Publication Date: 2024-07-02
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-07-02
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-07-02
    Description: Understanding fracturing processes and the hydromechanical relation to induced seismicity is a key question for enhanced geothermal systems (EGS). Commonly massive fluid injection, predominately causing hydroshearing, are used in large-scale EGS but also hydraulic fracturing approaches were discussed. To evaluate the applicability of hydraulic fracturing techniques in EGS, six in situ, multistage hydraulic fracturing experiments with three different injection schemes were performed under controlled conditions in crystalline rock at the A¨ spo¨ Hard Rock Laboratory (Sweden). During the experiments the near-field ground motion was continuously recorded by 11 piezoelectric borehole sensors with a sampling rate of 1 MHz. The sensor network covered a volume of 30×30×30 m around a horizontal, 28-m-long injection borehole at a depth of 410 m. To extract and characterize massive, induced, high-frequency acoustic emission (AE) activity from continuous recordings, a semi-automated workflow was developed relying on full waveform based detection, classification and location procedures. The approach extended the AE catalogue from 196 triggered events in previous studies to more than 19 600 located AEs. The enhanced catalogue, for the first time, allows a detailed analysis of induced seismicity during single hydraulic fracturing experiments, including the individual fracturing stages and the comparison between injection schemes. Beside the detailed study of the spatio-temporal patterns, event clusters and the growth of seismic clouds, we estimate relative magnitudes and b-values of AEs for conventional, cyclic progressive and dynamic pulse injection schemes, the latter two being fatigue hydraulic fracturing techniques. While the conventional fracturing leads to AE patterns clustered in planar regions, indicating the generation of a single main fracture plane, the cyclic progressive injection scheme results in a more diffuse, cloud-like AE distribution, indicating the activation of a more complex fracture network. For a given amount of hydraulic energy (pressure multiplied by injected volume) pumped into the system, the cyclic progressive scheme is characterized by a lower rate of seismicity, lower maximum magnitudes and significantly larger b-values, implying an increased number of small events relative to the large ones. To our knowledge, this is the first direct comparison of high resolution seismicity in a mine-scale experiment induced by different hydraulic fracturing schemes.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-07-01
    Description: The steady increase of ground-motion data not only allows new possibilities but also comes with new challenges in the development of ground-motion models (GMMs). Data classification techniques (e.g., cluster analysis) do not only produce deterministic classifications but also probabilistic classifications (e.g., probabilities for each datum to belong to a given class or cluster). One challenge is the integration of such continuous classification in regressions for GMM development such as the widely used mixed-effects model. We address this issue by introducing an extension of the mixed-effects model to incorporate data weighting. The parameter estimation of the mixed-effects model, that is, fixed-effects coefficients of the GMMs and the random-effects variances, are based on the weighted likelihood function, which also provides analytic uncertainty estimates. The data weighting permits for earthquake classification beyond the classical, expert-driven, binary classification based, for example, on event depth, distance to trench, style of faulting, and fault dip angle. We apply Angular Classification with Expectation–maximization, an algorithm to identify clusters of nodal planes from focal mechanisms to differentiate between, for example, interface- and intraslab-type events. Classification is continuous, that is, no event belongs completely to one class, which is taken into account in the ground-motionmodeling. The theoretical framework described in this article allows for a fully automatic calibration of ground-motionmodels using large databases with automated classification and processing of earthquake and ground-motion data. As an example, we developed a GMM on the basis of the GMM by Montalva et al. (2017) with data from the strong-motion flat file of Bastías and Montalva (2016) with ∼2400 records from 319 events in the Chilean subduction zone. Our GMMwith the data-driven classification is comparable to the expert-classification-based model. Furthermore, the model shows temporal variations of the between-event residuals before and after large earthquakes in the region.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Monograph available for loan
    Monograph available for loan
    Berlin : De Gruyter
    Call number: M 24.95740
    Type of Medium: Monograph available for loan
    Pages: XXVI, 372 Seiten , Illustrationen, Diagramme , 25 cm x 18 cm
    ISBN: 9783110298048 , 311029804X
    Series Statement: De Gruyter studies in mathematical physics volume 31
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-05-30
    Description: Past vegetation, fire, and climate dynamics, as well as human impact, have been reconstructed for the first time in the highlands of the Gilan province in the Alborz mountains (above the Hyrcanian forest) for the last 4,300 cal yrs bp. Multi-proxy analysis, including pollen, spores, non-pollen palynomorphs, charcoal, and geochemical analysis, has been applied to investigate the environmental changes at 2,280 m a.s.l., above the Hyrcanian forest. Dominant steppe vegetation occurred in the study area throughout the recorded period. The formation of the studied mire deposits, as well as vegetation composition, suggest a change to wetter climatic conditions after 4,300 until 1,700 cal yrs bp. Fires were frequent, which may imply long-lasting anthropogenic activities in the area. Less vegetation cover with a marked decrease of the Moisture Index (MI) suggests drier conditions between 1,700 and 1,000 cal yrs bp. A high proportion of Cichorioideae and Amaranthaceae, as well as the reduction of trees, in particular Fagus and Quercus, at lower elevations, indicate human activities such as intense livestock grazing and deforestation. Soil erosion as the result of less vegetation due to dry conditions and/or human activities can be reconstructed from a marked increase of Glomus spores and high values of K and Ti. Since 1,000 cal yrs bp, the increasing MI, as well as the rise of Poaceae and Cyperaceae together with forest recovery, suggest a change to wetter conditions. The occurrence of still frequent Cichorioideae and Plantago lanceolata along with Sordaria reflect continued intense grazing of livestock by humans.
    Description: Deutsche Forschungsgemeinschaft (DE)
    Description: Georg-August-Universität Göttingen (1018)
    Keywords: ddc:561 ; Late Holocene ; Northern Iran ; Multi-proxy studies ; Hyrcanian mountain vegetation ; Climate change ; Human impact
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-05-29
    Description: The geometry and evolution of fluvial systems are thought to be related to surface uplift. In eastern Tibet, rivers exhibit peculiar drainage patterns but how these patterns were established and their connection with the plateau uplift are still under debate. Here, we use detrital zircon U-Pb dating, bedrock (U-Th)/He thermochronometry, topographic analysis and numerical modeling to explore the paleo-drainage pattern of the Dadu and Anning Rivers, eastern Tibet. Our detrital data indicate that the Pliocene sources of sediments to the Anning River are different from the modern ones and they include a source similar to that of the modern Dadu River, implying a paleo-connection between the Dadu and the Anning Rivers and a subsequent cutoff of this connection after the deposition of the Pliocene sediments. Bedrock thermochronometric data along the Dadu River reveal rapid cooling at ∼10 Ma and a possible enhanced cooling at ∼2 Ma, which we interpret as a response to the regional plateau uplift in eastern Tibet and to the Dadu-Anning capture, respectively. Combined with topographic analysis and numerical modeling, our results indicate an Early Pleistocene capture between the Dadu and Anning Rivers, resulting in the changes in the sediment sources of the Anning River, enhanced incision of the Dadu, and the transience of the Dadu River profile. The Dadu-Anning capture is related to the motion along the active sinistral strike-slip Daliangshan fault that locally disrupts the river network. This event does not date the plateau uplift; rather, it indicates how river reorganization can effectively enhance river incision and affect landscape development independently from regional-scale uplift.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-05-15
    Description: Abstract
    Description: Version History:15 June 2020:Initial release of the data. Note that the initial version number is 0002 in order to reflect the consistent data processing of this data set and Version 0002 of the data set Sasgen et al. (2019, http://doi.org/10.5880/GFZ.GRAVIS_06_L3_ICE).---------------------------------------------------------------------------------------------GRACE/GRACE-FO Level-3 products based on COST-G RL01 Level-2B products (Dahle & Murböck, 2020) representing ice-mass changes for the Antarctic Ice Sheet (AIS) and the Greenland Ice Sheet (GIS). The ice-mass changes are provided both as basin average product and as gridded product.Basin-average ice-mass changes are obtained using the inversion procedure based on a forward modelling approach as described in Sasgen et al. (2013) for the AIS and Sasgen et al. (2012) for the GIS.Gridded ice-mass changes are provided at polar-stereographic grids with a grid spacing of 50 x 50 km^2. The applied algorithm is based on tailored sensitivity kernels (Groh & Horwath, 2016), and has also been used to generate gravimetric mass balance products within the ESA Climate Change Initiative (CCI) projects for the AIS and the GIS.These Level-3 products are visualized at GFZ's web portal GravIS (http://gravis.gfz-potsdam.de).Link to data products: ftp://isdcftp.gfz-potsdam.de/grace/GravIS/COST-G/Level-3/ICE
    Keywords: Gravity Recovery And Climate Experiment (GRACE) ; GRACE Follow-on (GRACE-FO) ; Level-3 ; Mass ; Mass Transport ; Ice-mass Change ; Time Variable Gravity ; Antarctic Mass Balance ; Greenland Mass Balance ; Sea-level Change ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD ; Earth Observation Satellites 〉 NASA Earth System Science Pathfinder 〉 GRACE
    Language: English
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-05-14
    Description: Observations of rift and rifted margin architecture suggest that significant spatial and temporal structural heterogeneity develops during the multiphase evolution of continental rifting. Inheritance is often invoked to explain this heterogeneity, such as pre‐existing anisotropies in rock composition, rheology, and deformation. Here, we use high‐resolution 3D thermal‐mechanical numerical models of continental extension to demonstrate that rift‐parallel heterogeneity may develop solely through fault network evolution during the transition from distributed to localized deformation. In our models, the initial phase of distributed normal faulting is seeded through randomized initial strength perturbations in an otherwise laterally homogeneous lithosphere extending at a constant rate. Continued extension localizes deformation onto lithosphere‐scale faults, which are laterally offset by 10’s of km and discontinuous along‐strike. These results demonstrate that rift‐ and margin‐parallel heterogeneity of large‐scale fault patterns may in‐part be a natural byproduct of fault network coalescence.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-05-14
    Description: Over the past few decades, azimuthal seismic anisotropy measurements have been widely used proxy to study past and present‐day deformation of the lithosphere and to characterize convection in the mantle. Beneath continental regions, distinguishing between shallow and deep sources of anisotropy remains difficult due to poor depth constraints of measurements and a lack of regional‐scale geodynamic modeling. Here, we constrain the sources of seismic anisotropy beneath Madagascar where a complex pattern cannot be explained by a single process such as absolute plate motion, global mantle flow, or geology. We test the hypotheses that either Edge‐Driven Convection (EDC) or mantle flow derived from mantle wind interactions with lithospheric topography is the dominant source of anisotropy beneath Madagascar. We, therefore, simulate two sets of mantle convection models using regional‐scale 3‐D computational modeling. We then calculate Lattice Preferred Orientation that develops along pathlines of the mantle flow models and use them to calculate synthetic splitting parameters. Comparison of predicted with observed seismic anisotropy shows a good fit in northern and southern Madagascar for the EDC model, but the mantle wind case only fits well in northern Madagascar. This result suggests the dominant control of the measured anisotropy may be from EDC, but the role of localized fossil anisotropy in narrow shear zones cannot be ruled out in southern Madagascar. Our results suggest that the asthenosphere beneath northern and southern Madagascar is dominated by dislocation creep. Dislocation creep rheology may be dominant in the upper asthenosphere beneath other regions of continental lithosphere.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...