ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (5)
  • Other Sources  (3)
  • LC QA9  (5)
  • ddc:549  (3)
  • English  (8)
  • Finnish
  • 2020-2023  (3)
  • 2010-2014
  • 2005-2009
  • 1980-1984
  • 1975-1979
  • 1970-1974
  • 1950-1954  (5)
  • 1935-1939
  • 2022  (3)
  • 2020
  • 1951  (5)
  • 1936
Collection
  • Books  (5)
  • Other Sources  (3)
Language
  • English  (8)
  • Finnish
Years
  • 2020-2023  (3)
  • 2010-2014
  • 2005-2009
  • 1980-1984
  • 1975-1979
  • +
Year
Topic
  • 1
    Unknown
    Amsterdam : North-Holland Pub. Co
    Keywords: DDC 510/.01 ; LC QA9
    Pages: Online-Ressource (vii, 122 pages)
    ISBN: 9780444703583
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Unknown
    Amsterdam : North-Holland Pub. Co
    Keywords: DDC 510/.01 ; LC QA9
    Pages: Online-Ressource (x, 79 pages)
    ISBN: 9780444533661
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Unknown
    Amsterdam : North-Holland Pub. Co
    Keywords: DDC 510/.01 ; LC QA9
    Pages: Online-Ressource (vi, 195 pages)
    ISBN: 9780444533692
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Unknown
    Amsterdam : North-Holland Pub. Co
    Keywords: DDC 510/.01 ; LC QA9
    Pages: Online-Ressource (vi, 90 pages)
    ISBN: 9780444533708
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Unknown
    Amsterdam : North-Holland Pub. Co
    Keywords: DDC 510/.01 ; LC QA9
    Pages: Online-Ressource (vii, 75 pages)
    ISBN: 9780444533685
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-06-24
    Description: Four zircon Raman bands were previously calibrated to give consistent estimates of the accumulated self‐irradiation α‐dose in unannealed volcanic samples. Partial annealing of radiation damage produces inconsistent values because of differences in the relative annealing sensitivities. The damage estimates based on the external rotation band (DER) at ∼356 cm−1 and that based on the ν2(SiO4) band (D2) at ∼438 cm−1 are the most and least sensitive to damage annealing. The D2/DER‐ratio thus provides a numerical estimate of the extent of geologic annealing that a zircon sample has experienced. This ratio characterizes the thermal history of a zircon sample but also its state of radiation damage during the course of its geologic history, and thus the manner in which this state influences other thermochronologic methods. Meaningful interpretation of the zircon Raman age requires that the spectra are free of measurement artifacts. The major artifacts result from micrometer‐scale gradients of the damage densities within a zircon grain due to uranium and thorium zoning. The micrometer‐sized sampled volume may span different densities, producing overlapping spectra, causing apparent peak broadening, overestimated damage densities, and zircon Raman ages. The D3/D2‐ratio of the damage densities calculated from the ν3(SiO4) and ν2(SiO4) bands, most and least affected by overlap, is an efficient indicator of a meaningless signal. It reveals overlap in annealed and unannealed samples, because the used bands have similar responses to annealing. Multi‐band Raman maps can be converted to damage‐ratio maps for screening zircon mounts, and selecting spots for thermochronologic investigations.
    Description: Plain Language Summary: Radioactive processes cause damage to the lattice of zircon crystals. This damage can be measured with a Raman instrument. Such measurements are important for methods determining the ages and thermal histories of zircon grains in rocks. Thus, the Raman measurements must be reliable and meaningful. This work proposes tools for detecting effects that hinder the interpretation of zircon Raman data. These effects are mixed signals and loss of damage due to exposure to elevated temperatures in the geologic environment. Zircon Raman spectra have different bands that respond differently to mixed signals and temperature. The ratio of the damage estimates from the least and most temperature‐sensitive bands thus indicates partial annealing. Raman spectra of zoned zircons often straddle areas with different lattice damage. Their overlapping signals cause artificial band broadening, and a damage overestimation. The ratio of the damage estimated from the least and the most affected bands identifies mixed signals and allows to reject unsuitable samples. The damage ratios can also be plotted in maps for damage screening and for selecting optimal spots for measurements.
    Description: Key Points: Annealing and inhomogeneous damage are two main factors hindering radiation‐damage estimation for zircon Raman dating. Comparison of internal and external Raman bandwidths allows to detect partial annealing of radiation damage in zircon. Comparison of internal Raman bandwidths allows to detect artifactual broadening in zoned zircon.
    Description: Studienstiftung des Deutschen Volkes (Studienstiftung) http://dx.doi.org/10.13039/501100004350
    Description: http://dx.doi.org/10.25532/OPARA-155
    Keywords: ddc:549 ; ddc:551.9
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-09-27
    Description: Calcareous foraminifer shells (tests) represent one of the most important archives for paleoenvironmental and paleoclimatic reconstruction. To develop a mechanistic understanding of the relationship between environmental parameters and proxy signals, knowledge of the fundamental processes operating during foraminiferal biomineralization is essential. Here, we apply microscopic and diffraction‐based methods to address the crystallographic and hierarchical structure of the test wall of different hyaline foraminifer species. Our results show that the tests are constructed from micrometer‐scale oriented mesocrystals built of nanometer‐scale entities. Based on these observations, we propose a mechanistic extension to the biomineralization model for hyaline foraminifers, centered on the formation and assembly of units of metastable carbonate phases to the final mesocrystal via a non‐classical particle attachment process, possibly facilitated by organic matter. This implies the presence of metastable precursors such as vaterite or amorphous calcium carbonate, along with phase transitions to calcite, which is relevant for the mechanistic understanding of proxy incorporation in the hyaline foraminifers.
    Description: Plain Language Summary: Foraminifers are single celled marine organisms typically half a millimeter in size, which form shells made of calcium carbonate. During their life, the chemical composition of their shells records environmental conditions. By analyzing fossil shells, past conditions can be reconstructed to understand ancient oceans and climate change. To do that correctly, we need to know exactly how foraminifers form their shell. We find that foraminifers build micrometer‐sized mesocrystals which are made of smaller building blocks. This means that the smallest building blocks form first and assemble to form a larger grain, which is oriented in a specific direction. To align all the building blocks, it is possible that they are first unstable and undergo transformation on assembly, during which their composition may change. By understanding and quantifying this process, the composition of the final fossil shell may be understood, ultimately leading to more reliable reconstructions of past environmental change.
    Description: Key Points: Hyaline foraminiferal shells are built of micrometer sized mesocrystalline units. Biomineralization likely includes the formation and assembly of nanoparticles. Nanometer sized units suggest non‐classical crystal growth.
    Description: https://doi.org/10.17617/3.D7HN3I
    Keywords: ddc:561.9 ; ddc:549
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-09-30
    Description: Greigite (Fe3S4) is a ferrimagnetic iron‐sulfide mineral that forms in sediments during diagenesis. Greigite growth can occur diachronously within a stratigraphic profile, complicating or overprinting environmental and paleomagnetic records. An important objective for paleo‐ and rock‐magnetic studies is to identify the presence of greigite and to discern its formation conditions. Greigite detection remains, however, challenging and its magnetic properties obscure due to the lack of pure, stable material of well‐defined grain size. To overcome these limitations, we report a new method to selectively transform lepidocrocite to greigite via the intermediate phase mackinawite (FeS). In‐situ magnetic characterization was performed on discrete samples with different sediment substrates. Susceptibility and chemical remanent magnetization increased proportionally over time, defining two distinct greigite growth regimes. Temperature dependent and constant initial growth rates indicate a solid‐state FeS to greigite transformation with an activation energy of 78–90 kJ/mol. Low and room temperature magnetic remanence and coercivity ratios match with calculated mixing curves for superparamagnetic (SP) and single domain (SD) greigite and suggest ∼25% and ∼50% SD proportions at 300 and 100 K, respectively. The mixing trend coincides with empirical data reported for natural greigite‐bearing sediments, suggesting a common SP endmember size of 5–10 nm that is likely inherited from mackinawite crystallites. The average particle size of 20–50 nm determined by X‐ray powder diffraction and electron microscopy accords with theoretical predictions of the SP/SD threshold size in greigite. The method constitutes a novel approach to synthesize greigite and to investigate its formation in sediments.
    Description: Plain Language Summary: Sediments provide continuous records of Earth's ancient magnetic field, which lend insights into the workings of the geodynamo and help to establish the geologic time scale through global magnetostratigraphic correlation. Greigite is a magnetic iron sulfide mineral that commonly forms after deposition, thereby remagnetizing the sediment and complicating interpretation of the magnetic record. Understanding greigite formation and detecting its presence is fundamental for obtaining reliable records of the paleomagnetic field, yet knowledge of how greigite grows and how its magnetic properties evolve during growth remains limited. This article outlines a novel approach to form greigite in sediments and to monitor its growth kinetics, grain size and magnetic remanence acquisition. The magnetic properties of the synthetic sediments resemble those of natural greigite‐bearing sediments and match well with theoretical calculations, which can help quantify grain sizes in sedimentary greigite. The reported method and our results contribute to a better understanding of greigite formation and chemical magnetic remanence acquisition in sediments.
    Description: Key Points: We present a new method to grow greigite in aqueous sediments and create a chemical remanent magnetization under controlled conditions. Greigite grain sizes of 20–50 nm span the superparamagnetic to single domain threshold, consistent with theoretical predictions. Our experimental hysteresis data coincide with calculated mixing curves allowing better quantification of greigite particle sizes in nature.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://doi.org/10.5281/zenodo.6521653
    Keywords: ddc:549
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...