ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (9)
  • ddc:538.7  (9)
  • English  (9)
  • en
  • 2020-2023  (9)
Collection
  • Other Sources  (9)
Source
Language
  • English  (9)
  • en
Years
Year
  • 1
    Publication Date: 2022-12-07
    Description: The recent spacecraft observations by MMS and Van Allen Probes associated with electromagnetic ion cyclotron (EMIC) waves in the Earth magnetosphere emphasize the important role of multi‐ion plasma composition for generation and characteristics of these emissions. We show that main properties of the coherent EMIC waves can be explained with the concept of “multi‐ion oscillitons” (Sauer et al., 2001, https://doi.org/10.1029/2001GL013047). In a plasma with two types of ions of different masses (e.g., protons and oxygen ions), oscillitons arise from the exchange of momentum and energy between the two ion components, with the electromagnetic field acting as a mediator. At frequencies near cross‐over frequencies of different wave modes in the multi‐ion plasma the nonlinear resonance which strongly amplifies the seed unstable mode can be excited. A small phase difference in oscillations of different ion species leads to a nonlinear wave beating and generation of wave packets. The “resonance” frequency is characterized by a local maximum of the phase velocity and the coincidence of phase and group velocity. It is suggested that the oscillitons are triggered by the instability due to the proton temperature anisotropy and may survive outside the source region for long distances. The generation of coherent waves by oscillitons is of a general nature and may contribute to understand the manifold of phenomena in other space plasma environments in which the dynamics of minor ion admixtures cannot be neglected. The concept of oscillitons can also be applied to the momentum exchange between particle groups of the same mass, but different temperature.
    Description: Plain Language Summary: The mode splitting of electromagnetic waves at oblique propagation in plasmas with multiple ion species leads to the creation of gap regions in omega‐k space. In these “forbidden regions” spatially growing waves exist whose nonlinear state represents a new type of solitons. These so‐called oscillitons, first described by Sauer et al. (2001, https://doi.org/10.1029/2001GL013047), arise from momentum and energy exchange between two or more ion components, with the electromagnetic field acting as a mediator. We suggest that multi‐ion oscillitons are the origin of the ion cyclotron electromagnetic waves (EMIC) in the magnetosphere, which have been known for a long time. Valuable insights have recently been gained through improved diagnostics on the satellites MMS and Van Allen Probes.
    Description: Key Points: Mode coupling of obliquely propagating waves in the range of the ion cyclotron frequencies is a characteristic feature in multi‐ion plasmas. Spatially growing waves may exist in the “forbidden (omega.k) areas” which arise as result of mode coupling. Magnetospheric electromagnetic ion cyclotron waves can be explained by multi‐ion oscillitons (Hall‐MHD solitons superimposed by spatially oscillating structures).
    Keywords: ddc:538.7 ; origin of EMIC waves ; multi‐ion oscillitons ; nonlinear waves ; Hall‐MHD equations
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-18
    Description: Storm sudden commencements (SSC) often precede geomagnetic storms. Commonly, it takes some hours from the step‐like change that marks the SSC to the start of the magnetic storm activity. In a subset of cases, however, auroral activity starts almost instantaneously after the SSC. To the authors knowledge, the conditions that enable this rapid activation have not been investigated in detail before. Here we consider all the sudden commencements (SC) during the years 2000–2020. Our focus is on the initial response of the auroral currents on the nightside. For that purpose, we make use of the IMAGE Magnetometer Network in Fennoscandia. In about 30% of SC events an initial activation of the westward electrojet is observed. Magnetic deflections of the northward component, surpassing frequently 1,000 nT, are observed only 4 min after the SC. These intense westward currents, flowing typically in narrow channels of 1°–2° latitudinal width, last some 10 min. The electrojets are conjugate to regions in the magnetosphere near geostationary orbits. In several cases geomagnetic substorm onsets are observed about 30 min after the SC. These start typically at fairly high latitude, around 71° magnetic latitude. This is an indication for rather quiet conditions preceding the onset. The magnetic pulse of the SC seems to play an important role in initiating the strong electrojets and the substorms. These initial activities are of relevance for space weather effects because of their strong and rapid variations. This paper provides detailed observations of the initial auroral activity following some SCs.
    Description: Key Points: First detailed study of intense electrojet activity at auroral latitudes on the nightside following immediately a sudden commencement (SC). Precondition for intense auroral activity is a southward interplanetary magnetic field Bz and a sufficiently large magnetic pulse caused by the SC. In a subset of events also an isolated substorm is initiated at relatively high magnetic latitudes shortly after the SC.
    Description: National Nature Science Foundation of China
    Description: https://spdf.gsfc.nasa.gov/pub/data/omni/high_res_omni/
    Keywords: ddc:538.7
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-08-05
    Description: Vlasov solvers that operate on a phase‐space grid are highly accurate but also numerically demanding. Coarse velocity space resolutions, which are largely unproblematic in particle‐in‐cell (PIC) simulations, can lead to numerical heating or oscillations in continuum Vlasov methods. To address this issue, we present a new dual Vlasov solver which is based on an established positivity preserving advection scheme for the update of the distribution function and an energy conserving partial differential equation solver for the kinetic update of mean velocity and temperature. The solvers work together via moment fitting during which the maximum entropy part of the distribution function is replaced by the solution from the partial differential equation solver. This numerical scheme makes continuum Vlasov methods competitive with PIC methods concerning computational cost and enables us to model large scale reconnection in Earth's magnetosphere with a fully kinetic continuum method. The simulation results agree well with measurements by the MMS spacecraft.
    Description: Key Points: A moment fitting continuum Vlasov solver is presented that preserves positivity of the distribution function and conserves total energy. The method behaves well at low velocity space resolutions, making it competitive with PIC methods concerning computational cost. There is good agreement of the simulations with measurements of magnetic reconnection by the MMS spacecraft.
    Description: Helmholtz Association (亥姆霍兹联合会致力) http://dx.doi.org/10.13039/501100009318
    Description: https://vlasov.tp1.ruhr-uni-bochum.de/data/paper-JGR-2021
    Keywords: ddc:550 ; ddc:538.7
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-09-29
    Description: Modeling studies have predicted that the acoustic resonance of the atmosphere during geophysical events such as earthquakes and volcanos can lead to an oscillation of the geomagnetic field with a frequency of about 4 mHz. However, observational evidence is still limited due to scarcity of suitable events. On 15 January 2022, the submarine volcano Hunga Tonga‐Hunga Ha'apai (20.5°S, 175.4°W, Tonga) erupted in the Pacific Ocean and caused severe atmospheric disturbance, providing an opportunity to investigate geomagnetic effects associated with acoustic resonance. Following the eruption, geomagnetic oscillation is observed at Apia, approximately 835 km from Hunga Tonga, mainly in the Pc 5 band (150–600 s, or 1.7–6.7 mHz) lasting for about 2 hr. The dominant frequency of the oscillation is 3.8 mHz, which is consistent with the frequency of the atmospheric oscillation due to acoustic resonance. The oscillation is most prominent in the eastward (Y) component, with an amplitude of ∼3 nT, which is much larger than those previously reported for other events (〈1 nT). Comparably large oscillation is not found at other stations located further away (〉2700 km). However, geomagnetic oscillation with a much smaller amplitude (∼0.3 nT) is observed at Honolulu, which is located near the magnetic conjugate point of Hunga Tonga, in a similar wave form as at Apia, indicating interhemispheric coupling. This is the first time that geomagnetic oscillations due to the atmospheric acoustic resonance are simultaneously detected at magnetic conjugate points.
    Description: Key Points: The effect of the January 2022 Hunga Tonga‐Hunga Ha’apai volcano eruption on the geomagnetic field is examined. Geomagnetic oscillation with a frequency of ∼3.8 mHz is observed simultaneously near the volcano and its magnetic conjugate point. The oscillation is attributed to the acoustic resonance of the atmosphere.
    Description: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior http://dx.doi.org/10.13039/501100002322
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://www.intermagnet.org/data-donnee/download-eng.php
    Keywords: ddc:538.7 ; ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-09-30
    Description: Van Allen Probes measurements revealed the presence of the most unusual structures in the ultra‐relativistic radiation belts. Detailed modeling, analysis of pitch angle distributions, analysis of the difference between relativistic and ultra‐realistic electron evolution, along with theoretical studies of the scattering and wave growth, all indicate that electromagnetic ion cyclotron (EMIC) waves can produce a very efficient loss of the ultra‐relativistic electrons in the heart of the radiation belts. Moreover, a detailed analysis of the profiles of phase space densities provides direct evidence for localized loss by EMIC waves. The evolution of multi‐MeV fluxes shows dramatic and very sudden enhancements of electrons for selected storms. Analysis of phase space density profiles reveals that growing peaks at different values of the first invariant are formed at approximately the same radial distance from the Earth and show the sequential formation of the peaks from lower to higher energies, indicating that local energy diffusion is the dominant source of the acceleration from MeV to multi‐MeV energies. Further simultaneous analysis of the background density and ultra‐relativistic electron fluxes shows that the acceleration to multi‐MeV energies only occurs when plasma density is significantly depleted outside of the plasmasphere, which is consistent with the modeling of acceleration due to chorus waves.
    Description: Plain Language Summary: The most energetic electrons in the Earth Van Allen radiation belts have not been accurately measured in the past. Observations for a recent NASA's Van Allen Probes missions reviled new unique structures, such as narrow rings, and posed further scientific questions. This review shows that, unlike relativistic electrons, ultra‐relativistic electrons can be very effectively locally scattered by plasma waves produced by ions, so‐called electromagnetic ion cyclotron waves. Observations also show that acceleration from MeV to multi‐MeV occurs locally by taking energy from another type of plasma wave. These waves are called whistler‐mode waves and can accelerate particles to such high energy when total plasma density is low. The difference between the relativistic and ultra‐relativistic particles justifies the classification of these particles into a different population from the bulk population of the outer radiation belt.
    Description: Key Points: Electromagnetic ion cyclotron waves effectively scatter ultra‐relativistic electrons in the radiation belts. The local acceleration produces acceleration from MeV to multi‐MeV in the regions of low density. The difference between MeV and multi‐MeV electrons justifies the classification of these particles into a new population.
    Description: EC, H2020, H2020 Priority Excellent Science, H2020 European Research Council http://dx.doi.org/10.13039/100010663
    Description: NASA
    Description: https://rbspgway.jhuapl.edu/
    Keywords: ddc:538.7
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-09-22
    Description: Based on the analysis of electron density Ne profiles (Grahamstown ionosonde), a case study of the height‐dependent ionospheric response to two 27‐day solar rotation periods in 2019 is performed. A well‐defined sinusoidal response is observed for the period from 27 April 2019 to 24 May 2019 and reproduced with a Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model simulation. The occurring differences between model and observations as well as the driving physical and chemical processes are discussed based on the height‐dependent variations of Ne and major species. Further simulations with an artificial noise free sinusoidal solar flux input show that the Ne delay is defined by contributions due to accumulation of O+ at the Ne peak (positive delay) and continuous loss of O2+ in the lower ionosphere (negative delay). The neutral parts' 27‐day signatures show stronger phase shifts. The time‐dependent and height‐dependent impact of the processes responsible for the delayed ionospheric response can therefore be described by a joint analysis of the neutral and ionized parts. The return to the initial ionospheric state (and thus the loss of the accumulated O+) is driven by an increase of downward transport in the second half of the 27‐day solar rotation period. For this reason, the neutral vertical winds (upwards and downwards) and their different height‐dependent 27‐day signatures are discussed. Finally, the importance of a wavelength‐dependent analysis, statistical methods (superposed epoch analysis), and coupling with the middle atmosphere is discussed to outline steps for future analysis.
    Description: Key Points: A response to solar 27‐day signatures is observed in ionosonde Ne height profiles and successfully reproduced with a Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model simulation. Height‐dependent variations of the delayed ionospheric response are driven by the respective contributions of O+ and O2+. Transport processes have a significant impact on the 27‐day signatures of neutral and ionized parts in the upper atmosphere.
    Keywords: ddc:538.7 ; ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-04-01
    Description: Observations by the Magnetospheric Multiscale spacecraft (MMS) of an unusual layer, located between the dayside magnetosheath and the magnetosphere, alternating with encounters with the magnetosheath during an extended time period between December 31, 2015 and January 01, 2016, when the interplanetary magnetic field was strongly southward and the Earth's dipole tilt large and negative, are presented. It appears to have been magnetically connected to both magnetosphere and magnetosheath. The layer appears to be located mostly on closed field lines and was bounded by a rotational discontinuity (RD) at its magnetosheath edge and by the magnetosphere on its earthward side. A separatrix layer, with heated magnetosheath electrons streaming unidirectionally along the field lines, was present sunward of the RD. We infer that the layer was started by a dominant reconnection site well north of the spacecraft and that it may have gained additional width, from a large drop in solar wind density and ram pressure, which preceded the beginning of the event by more than an hour. Relative to the magnetosheath, in which the magnetic field was strongly southward, this unusual layer was characterized by a less southward, more dawnward magnetic field of lower magnitude. The plasma density and flow speed in the region were lower than in the magnetosheath, albeit with Alfvénic jetting occurring at the magnetosheath edge as well as at the magnetospheric edge of the layer. The closing of the magnetic field lines requires the existence of another reconnection site, located southward/tailward of MMS.
    Description: Key Points: Magnetopause encounter for strongly southward interplanetary magnetic field, low solar wind Alfvén Mach number, and large dipole tilt. Persistent and broad magnetopause layer with magnetospheric O+ and heated magnetosheath plasma. Inferred dominant reconnection site near northern cusp, far from the Magnetospheric Multiscale spacecraft location.
    Description: MPE
    Description: NASA http://dx.doi.org/10.13039/100000104
    Description: Norwegian Research Council http://dx.doi.org/10.13039/501100005416
    Keywords: ddc:538.7
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-03-31
    Description: Radial diffusion is one of the dominant physical mechanisms driving acceleration and loss of radiation belt electrons. A number of parameterizations for radial diffusion coefficients have been developed, each differing in the data set used. Here, we investigate the performance of different parameterizations by Brautigam and Albert (2000), https://doi.org/10.1029/1999ja900344, Brautigam et al. (2005), https://doi.org/10.1029/2004ja010612, Ozeke et al. (2014), https://doi.org/10.1002/2013ja019204, Ali et al. (2015), https://doi.org/10.1002/2014ja020419; Ali et al. (2016), https://doi.org/10.1002/2016ja023002; Ali (2016), and Liu et al. (2016), https://doi.org/10.1002/2015gl067398 on long‐term radiation belt modeling using the Versatile Electron Radiation Belt (VERB) code, and compare the results to Van Allen Probes observations. First, 1‐D radial diffusion simulations are performed, isolating the contribution of solely radial diffusion. We then take into account effects of local acceleration and loss showing additional 3‐D simulations, including diffusion across pitch‐angle, energy, and mixed diffusion. For the L* range studied, the difference between simulations with Brautigam and Albert (2000), https://doi.org/10.1029/1999ja900344, Ozeke et al. (2014), https://doi.org/10.1002/2013ja019204, and Liu et al. (2016), https://doi.org/10.1002/2015gl067398 parameterizations is shown to be small, with Brautigam and Albert (2000), https://doi.org/10.1029/1999ja900344 offering the smallest averaged (across multiple energies) absolute normalized difference with observations. Using the Ali et al. (2016), https://doi.org/10.1002/2016ja023002 parameterization tended to result in a lower flux than both the observations and the VERB simulations using the other coefficients. We find that the 3‐D simulations are less sensitive to the radial diffusion coefficient chosen than the 1‐D simulations, suggesting that for 3‐D radiation belt models, a similar result is likely to be achieved, regardless of whether Brautigam and Albert (2000), https://doi.org/10.1029/1999ja900344, Ozeke et al. (2014), https://doi.org/10.1002/2013ja019204, and Liu et al. (2016), https://doi.org/10.1002/2015gl067398 parameterizations are used.
    Description: Key Points: 3‐D simulations using different radial diffusion coefficients, except Ali et al. (2016), produce similar results. Using Ali et al. (2016) DLL, simulated flux is significantly lower than observations. 3‐D modeling with Brautigam and Albert (2000) DLL results in a slightly smaller normalized difference (averaged over energies) to observations.
    Description: National Aeronautics and Space Administration (NASA) http://dx.doi.org/10.13039/100000104
    Description: European Union's Horizon 2020
    Description: https://doi.org/10.25346/S6/U9WFPD
    Keywords: ddc:538.7
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-03-24
    Description: The correct representation of global‐scale electron density is crucial for monitoring and exploring the space weather. This study investigates whether the ground‐based Global Navigation Satellite System (GNSS) tomography can be used to reflect the global spatial and temporal responses of the ionosphere under storm conditions. A global tomography of the ionosphere electron density is constructed based on data from over 2,700 GNSS stations. In comparison to previous techniques, advances are made in spatial and temporal resolution, and in the assessment of results. To demonstrate the capabilities of the approach, the developed method is applied to the March 17, 2015 geomagnetic storm. The tomographic reconstructions show good agreement with electron density observations from worldwide ionosondes, Millstone Hill incoherent scatter radar and in‐situ measurements from satellite missions. Also, the results show that the tomographic technique is capable of reproducing plasma variabilities during geomagnetically disturbed periods including features such as equatorial ionization anomaly enhancements and depletion. Validation results of this brief study period show that the accuracy of our tomography is better than the Neustrelitz Electron Density Model, which is the model used as background, and physics‐based thermosphere‐ionosphere‐electrodynamics general circulation model. The results show that our tomography approach allows us to specify the global electron density from ground to ∼900 km accurately. Given the demonstrated quality, this global electron density reconstruction has potential for improving applications such as assessment of the effects of the electron density on radio signals, GNSS positioning, computation of ray tracing for radio‐signal transmission, and space weather monitoring.
    Description: Plain Language Summary: Computerized tomography allows the 3D imaging of several objects based on radio frequency signal measurements. Given the measurements and geometry of the current GPS (Global Positioning System) satellite constellation, there is an opportunity to apply tomography techniques and extract 3D snapshots of the Earth's atmosphere. This work presents an advanced global‐scale tomography that can represent the electron density in the Earth's upper atmosphere in a relatively high spatial and temporal resolution in the region of ∼100–1,000 km above the Earth's surface; referred to as the ionosphere. The work also validates the tomography results with multiple ionospheric observations from satellites and ground‐based radar instruments and compares with empirical and physical models. It is usually a challenge for models to reproduce the ionospheric system dynamics accurately during active space weather conditions, such as geomagnetic storms. This work, using the severe geomagnetic storm on March 17, 2015 as a case‐study, shows that the tomography is well poised for this task. The developed method could be extended to benefit several applications, such as space weather monitoring, GPS positioning and navigation, as well as to improve our understanding of the morphology and dynamics of the ionosphere.
    Description: Key Points: Presents an advanced global‐scale tomography of ionospheric electron density. Demonstrates the capability of the tomography model to reproduce the system dynamics during a severe geomagnetic storm. Validates the tomography results with multiple ground‐ and space‐based data and compares with empirical and physical models.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: Helmholtz‐Fonds (Helmholtz‐Fonds e.V.) http://dx.doi.org/10.13039/501100013655
    Keywords: ddc:551.5 ; ddc:538.7
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...