ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (4,743)
  • Spanish  (17)
  • German  (1)
  • 2010-2014  (4,324)
  • 1950-1954  (439)
Collection
Keywords
Language
Years
Year
  • 1
    Call number: MOP Per 800(36)
    In: WMO, 36
    In: Technical Paper, 12
    In: Technical note, 7
    Type of Medium: Series available for loan
    Pages: 35 S.
    Series Statement: WMO / World Meteorological Organization 36
    Language: English
    Location: MOP - must be ordered
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Series available for loan
    Series available for loan
    Wilmette, Ill. : Snow, Ice and Permafrost Research Establishment
    Associated volumes
    Call number: ZSP-201-11
    In: SIPRE report, 11
    Description / Table of Contents: A commercial deep-freeze unit was modified to serve as a laboratory for growing single crystals, cutting specimens of a given orientation, testing these specimens in compressive creep, and studying thin-sections of the results on a universal stage. A method of growing single crystals of adequate size was developed by adapting the Bridgman method. Fortyone creep tests were made at temperatures ranging from -1° to -18°C. These gave an unexpected form of creep-curve in which the rate of strain continuously increases with time. The mechanism of deformation is dominantly basal translation—consistent with earlier work. The dependence on temperature and stress is expressed empirically.
    Type of Medium: Series available for loan
    Pages: 24 Seiten , Illustrationen
    Series Statement: SIPRE report 11
    Language: English
    Note: Contents Introduction Use of the deep-freeze as a cold laboratory Growing single crystals Creep tests Conclusions References cited
    Location: AWI Archive
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Monograph available for loan
    Monograph available for loan
    Stuttgart : Borntraeger
    Call number: AWI A14-10-0064
    Description / Table of Contents: Measurement Methods in Atmospheric Sciences provides a comprehensive overview of in-situ and remote sensing measurement techniques for probing the Earth's atmosphere. The methods presented in this book span the entire range from classical meteorology via atmospheric chemistry and micrometeorological flux determination to Earth observation from space. Standard instruments for meteorological and air quality monitoring methods, as well as specialized instrumentation predominantly used in scientific experiments, are covered. The presented techniques run from simple mechanical sensors to highly sophisticated electronic devices. Special emphasis is placed on the rapidly evolving field of remote sensing techniques. Here, active ground-based remote sending techniques such as SODAR and LIDAR find a detailed coverage. The book conveys the basic principles of the various observational and monitoring methods, enabling the user to identify the most appropriate method. An introductory chapter covers general principles (e.g. inversion of measured data, available platforms, statistical properties of data, data acquisition). Later chapters each treat methods for measuring a specific property (e.g. humidity, wind speed, wind direction). Long chapters provide an introductory tabular list of the methods treated. More than 100 figures and 400 references, mostly to the recent scientific literature, aid the reader in reading up on the details of the various methods at hand. Recommendations at the end of each major chapter provide additional hints on the use of some instruments in order to facilitate the selection of the proper instrument for a successful measurement. A large number of national and international standards, providing precise guidelines for measuring and acquiring reliable, reproducible and comparable data sets are listed in the appendix. A dedicated index allows easy access to this valuable information. The book is of interest to undergraduate and graduate students in meteorology, physical geography, ecology, environmental sciences and related disciplines as well as to scientists in the process of planning atmospheric measurements in field campaigns or working with data already acquired. Practitioners in environmental agencies and similar institutions will benefit from instrument descriptions and the extended lists in the appendix.
    Type of Medium: Monograph available for loan
    Pages: XIV, 257 Seiten , Illustrationen
    ISBN: 9783443010669 , 3-443-01066-0
    Series Statement: Quantifying the environment
    Language: English
    Note: Contents Preface 1 Introduction 1.1 The necessity for measurements 1.2 Definition of a measurement 1.3 Historical aspects 2 Measurement basics 2.1 Overview of methods 2.1.1 Direct and indirect methods 2.1.2 In-situ and remote sensing methods 2.1.3 Instantaneous and integrating methods 2.1.4 On-line and off-line methods, post-processing 2.1.5 Flux measurements 2.2 Main measurement principles 2.3 Measurements by inversion 2.3.1 Inversion with one variable 2.3.2 Inversion with more than one variable 2.3.3 Well-posed and ill-posed problems 2.4 Measurement instruments 2.4.1 Active and passive instruments 2.4.2 Analogue and digital instruments 2.5 Measurement platforms 2.6 Measurement variables 2.7 General characteristics of measured data 2.8 Data logging 2.9 Quality assurance/quality control 3 In-situ measurements of state variables 3.1 Thermometers 3.1.1 Liquid-in-glass thermometers 3.1.2 Bimetal thermometers 3.1.3 Resistance thermometers, thermistors 3.1.4 Thermocouples, thermopiles 3.1.5 Sonic thermometry 3.1.6 Measurement of infrared radiation 3.1.7 Soil thermometer 3.1.8 Recommendations for temperature measurements 3.2 Measuring moisture 3.2.1 Hygrometer 3.2.2 Psychrometers 3.2.3 Dewpoint determination 3.2.4 Capacitive methods 3.2.5 Recommendations for humidity measurements 3.3 Pressure sensors 3.3.1 Barometers 3.3.2 Hypsometers 3.3.3 Electronic barometers 3.3.4 Microbarometer 3.3.5 Pressure balance 3.3.6 Recommendations for pressure measurements 3.4 Wind measurements 3.4.1 Estimation from visual observations 3.4.2 Wind direction 3.4.3 Cup anemometer 3.4.4 Pressure tube 3.4.5 Hot wire anemometer 3.4.6 Ultrasonic anemometer 3.4.7 Propeller anemometer 3.4.8 Recommendations for wind measurements 4 In-situ methods for observing liquid water and ice 4.1 Precipitation 4.1.1 Rain sensors (Present Weather Sensors) 4.1.2 Rain gauges (totalisators) 4.1.3 Pluviographs 4.1.4 Disdrometer 4.1.5 Special instruments for snow 4.1.6 Recommendations for precipitation measurements 4.2 Soil moisture 4.2.1 Gravimetric methods 4.2.2 Neutron probes 4.2.3 Time domain reflectrometry (TDR) 4.2.4 Tensiometers 4.2.5 Resistance block tensiometer 4.2.6 Recommendations for soil moisture measurements 5 In-situ measurement of trace substances 5.1 Measurement of trace gases 5.1.1 Physical methods 5.1.2 Chemical methods 5.1.3 Recommendations for the measurement of trace gases 5.2 Particle measurements 5.2.1 Determination of the particle mass 5.2.2 Measuring particle size distributions 5.2.3 Measurement of the chemical composition of particles 5.2.4 Measuring the particle structure 5.2.5 Saltiphon 5.2.6 Recommendations for particle measurements 5.3 Olfactometry 5.4 Radioactivity 5.4.1 Counter tubes 5.4.2 Scintillation counters 5.4.3 Recommendations for radioactivity monitoring 6 In-situ flux measurements 6.1 Measuring radiation 6.1.1 Measuring direct solar radiation 6.1.2 Measuring shortwave irradiance 6.1.3 Measuring longwave irradiance 6.1.4 Measuring the total irradiance 6.1.5 Measuring chill 6.1.6 Sunshine recorder 6.1.7 Recommendations for radiation measurements 6.2 Visual range 6.3 Micrometeorological flux measurements 6.3.1 Cuvettes 6.3.2 Surface chambers 6.3.3 Mass balance method 6.3.4 Inferential method 6.3.5 Gradient method 6.3.6 Bowen-ratio method 6.3.7 Flux variance method 6.3.8 Dissipation method 6.3.9 Eddy covariance method 6.3.10 Eddy accumulation methods 6.3.11 Disjunct eddy covariance method 6.3.12 Recommendations for the measurement of turbulent fluxes 6.4 Evaporation Atmometers 6.4.2 Lysimeters 6.4.3 Evaporation pans and tanks 6.4.4 Recommendations for evaporation measurements 6.5 Soil heat flux 6.6 Inverse emission flux modelling 7 Remote sensing methods 7.1 Basics of remote sensing 7.2 Active sounding methods 7.2.1 RADAR 7.2.2 Windprofilers 7.2.3 SODAR 7.2.4 RASS 7.2.5 LIDAR 7.2.6 Further LIDAR techniques 7.3 Active path-averaging methods 7.3.1 Scintillometers 7.3.2 FTIR 7.3.3 DOAS 7.3.4 Quantum cascade laser 7.4 Passive methods 7.4.1 Radiometers 7.4.2 Photometers 7.4.3 Infrared-Interferometer 7.5 Tomography 7.5.1 Simultaneous Iterative Reconstruction Technique 7.5.2 Algebraic Reconstruction Technique (ART) 7.5.3 Smooth Basis Function Minimization (SBFM) 8 Remote sensing of atmospheric state variables 8.1 Temperature 8.1.1 Near-surface temperatures 8.1.2 Temperature profiles 8.2 Gaseous humidity 8.2.1 Integral water vapour content 8.2.2 Vertical profiles 8.2.3 Large-scale humidity distribution 8.3 Wind and turbulence 8.3.1 Small-scale near-surface turbulence 8.3.2 Horizontal wind fields 8.3.3 Vertical wind profiles 8.3.4 Turbulence profiles 8.3.5 Cloud winds 8.3.6 Ionospheric winds 8.4 Mixing-layer heights 8.4.1 LIDAR 8.4.2 SODAR 8.5 Turbulent fluxes 8.6 Ionospheric electron densities 8.7 Recommendations for remote sensing of state variables 9 Remote sensing of water and ice 9.1 Precipitation 9.1.1 RADAR 9.1.2 Precipitation measurements from satellites 9.2 Clouds 9.2.1 Cloud base 9.2.2 Cloud cover 9.2.3 Cloud movement 9.2.4 Water content 9.3 Recommendations for remote sensing of liquid water and ice 10 Remote sensing of trace substances 10.1 Trace gases 10.1.1 Horizontal path-averaging methods 10.1.2 Vertical column densities 10.1.3 Sounding methods 10.2 Aerosols 10.2.1 Aerosol optical depths (AOD) 10.2.2 Sounding methods 10.3 Recommendations for remote sensing of trace substances 11 Remote sensing of surface properties 11.1 Properties of the solid surface 11.1.1 Surface roughness 11.1.2 Land surface temperature 11.1.3 Soil moisture 11.1.4 Vegetation 11.1.5 Snow and ice 11.1.6 Fires 11.2 Properties of the ocean surface 11.2.1 Altitudes of the sea surface 11.2.2 Wave heights 11.2.3 Sea surface temperature 11.2.4 Salinity 11.2.5 Ocean currents 11.2.6 Ice cover, size of ice floes 11.2.7 Algae and suspended sediment concentrations 12 Remote sensing of electrical phenomena 12.1 Spherics 12.1.1 Directional analyses 12.1.2 Distance analyses 12.2 Optical lightning detection 13 Outlook on new developments Literature Subject index Appendix: Technical guidelines and standards Index to the Appendix
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Call number: M 11.0097
    In: Nova Hedwigia / Beiheft, 136
    Description / Table of Contents: The present volume contains 21 papers presented at the Seventh International Chrysophyte Symposium 2008 spanning a broad range of topics on chrysophytes and related heterokont organisms. The contributions include ones on ecology, taxonomy, floristic works, phylogeny and evolution, molecular biology, physiology and paleolimnology. Of special interest are a group of papers that use geometric morphometric analyses to address taxonomic, biogeographic and phylogenetic questions related to chrysophytes and other microalgae. Ecological and floristic contributions include ones on lakes from the polar Ural Mountains, the Mesopotamia region of South America, the Pine Barrens of southern New Jersey, and the Swiss Alps. Gene sequences are used to study hidden diversity in Synura and differences between two geographically distinct Heterosigma isolates, and production of polyunsaturated aldehydes is examined in Thalassiosira. Other contributions include ones on mixotrophy, biofilm dynamics, the recent invasion of Mallomonas pseudocoronata into lakes in Sweden, use of cysts in climate change research, paleolimnology of eastern North American lakes, an evaluation of the age of the Hueyatlaco early man site in Mexico, a comparison of the architecture of Mallomonas scale coverings between modern and 40 Ma specimens and bloom dynamics. Papers outlining the establishment of a Wiki for chrysophyte cysts, an on-line database for Eocene chrysophyte fossils, and ideas f
    Type of Medium: Monograph available for loan
    Pages: 331 S. , Ill., graph. Darst., Kt.
    ISBN: 9783443510589
    Series Statement: Nova Hedwigia / Beiheft 136
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Monograph available for loan
    Monograph available for loan
    Cambridge [u.a.] : Cambridge Univ. Press
    Call number: PIK B 160-11-0103
    Description / Table of Contents: Contents: Introduction: the opera house of Manaus ; 1. Climate risk ; 2. Some like it hot (climate change adaptation) ; 3. Building a low-carbon energy future ; 4. Pricing carbon: the economics of cap-and-trade ; 5. Agricultural intensification to preserve forests ; 6. Pricing carbon: the economics of offsets ; 7. Macroeconomic impacts: distributing the carbon rent ; 8. International climate change negotiations ; 9. Conclusion: risk of taking action, risk of inaction ; Bibliography: thirty references ; Thirty key facts ; Greenhouse gas emissions in the world
    Type of Medium: Monograph available for loan
    Pages: X, 250 S.
    ISBN: 9780521175685
    Uniform Title: Et pour quelques degrés de plus.
    Language: English
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Monograph available for loan
    Monograph available for loan
    Cambridge : Cambridge University Press
    Call number: AWI A13-12-0036
    Description / Table of Contents: The modeling of the past, present, and future climates is of fundamental importance to the issue of climate change and variability. Climate change and climate modeling provides a solid foundation for science students in all disciplines for our current understanding of global warming and important natural climate variations such as El Niño, and lays out the essentials of how climate models are constructed. As issues of climate change and impacts of climate variability become increasingly important, climate scientists must reach out to science students from a range of disciplines. Climate models represent one of our primary tools for predicting and adapting to climate change. An understanding of their strengths and limitations - and of what aspects of climate science are well understood and where quantitative uncertainities arise - can be communicated very effectively to students from a broad range of the sciences. This book will provide a basis for students to make informed decisions concerning climate change, whether they go on to study atmospheric science at a higher level or not. The book has been developed over a number of years form the course that the author teaches at UCLA. It has been extensively class-tested by hundreds of students, and assumes no previous background in atmospheric science except basic calculus and physics.
    Type of Medium: Monograph available for loan
    Pages: XV, 282 Seiten , Illustrationen
    Edition: 1. published 2011, reprinted 2012
    ISBN: 9780521602433
    Language: English
    Note: Contents: Preface. - 1. Overview of climate variability and climate science. - 1.1 Climate dynamics, climate change and climate prediction. - 1.2 The chemical and physical climate system. - 1.2.1 Chemical and physical aspects of the climate system. - 1.2.2 El Niño and global warming. - 1.3 Climate models: a brief overview. - 1.4 Global change in recent history. - 1.4.1 Trace gas concentrations. - 1.4.2 A word on the ozone hole. - 1.4.3 Some history of global warming studies. - 1.4.4 Global temperatures. - 1.5 El Niño: an example of natural climate variability. - 1.5.1 Some history of El Niño studies. - 1.5.2 Observations of El Niño: the 1997-98 event. - 1.5.3 The first El Niño forecast with a coupled ocean-atmosphere model. - 1.6 Paleoclimate variability. - Notes. - 2. Basics of global climate. - 2.1 Components and phenomena in the climate system. - 2.1.1 Time and space scales. - 2.1.2 Interactions among scales and the parameterization problem. - 2.2 Basics of radiative forcing. - 2.2.1 Blackbody radiation. - 2.2.2 Solar energy input. - 2.3 Globally averaged energy budget: first glance. - 2.4 Gradients of radiative forcing and energy transports. - 2.5 Atmospheric circulation. - 2.5.1 Vertical structure. - 2.5.2 Latitude structure of the circulation. - 2.5.3 Latitude-Iongitude dependence of atmospheric climate features. - 2.6 Ocean circulation. - 2.6.1 Latitude-longitude dependence of oceanic climate features. - 2.6.2 The ocean vertical structure. - 2.6.3 The ocean thermohaline circulation. - 2.7 Land surface proeesses. - 2.8 The carbon cycle. - Notes. - 3. Physical processes in the climate system. - 3.1 Conservation of momentum. - 3.1.1 Coriolis force. - 3.1.2 Pressure gradient force. - 3.1.3 Velocity equations. - 3.1.4 Application: geostrophic wind. - 3.1.5 Pressure-height relation: hydrostatic balance. - 3.1.6 Application: pressure coordinates. - 3.2 Equation of state. - 3.2.1 Equation of state for the atmosphere: ideal gas law. - 3.2.2 Equation of state for the ocean. - 3.2.3 Application: atmospheric height-pressure-temperature relation. - 3.2.4 Application: thermal circulations. - 3.2.5 Application: sea level rise due to oceanic thermal expansion. - 3.3 Temperature equation. - 3.3.1 Ocean temperature equation. - 3.3.2 Temperature equation for air. - 3.3.3 Application: the dry adiabatic lapse rate near the surface. - 3.3.4 Application: decay of a sea surface temperature anomaly. - 3.3.5 Time derivative following the parcel. - 3.4 Continuity equation. - 3.4.1 Oceanic continuity equation. - 3.4.2 Atmospheric continuity equation. - 3.4.3 Application: coastal upwelling. - 3.4.4 Application: equatorial upwelling. - 3.4.5 Application: conservation of warm water mass in an idealized layer above the thermocline. - 3.5 Conservation of mass applied to moisture. - 3.5.1 Moisture equation for the atmosphere and surface. - 3.5.2 Sources and sinks of moisture, and latent heat. - 3.5.3 Application: surface melting on an ice sheet. - 3.5.4 Salinity equation for the ocean. - 3.6 Moist processes. - 3.6.1 Saturation. - 3.6.2 Saturation in convection; lifting condensation level. - 3.6.3 The moist adiabat and lapse rate in convective regions. - 3.6.4 Moist convection. - 3.7 Wave processes in the atmosphere and ocean. - 3.7.1 Gravity waves. - 3.7.2 Kelvin waves. - 3.7.3 Rossby waves. - 3.8 Overview. - Notes. - 4. El Niño and year-to-year climate prediction. - 4.1 Recap of El Niño basics. - 4.1.1 The Bjerknes hypothesis. - 4.2 Tropical Pacific climatology. - 4.3 ENSO mechanisms I: extreme phases. - 4.4 Pressure gradients in an idealized upper layer. - 4.4.1 Subsurface temperature anomalies in an idealized upper layer. - 4.5 Transition into the 1997-98 El Niño. - 4.5.1 Subsurface temperature measurements. - 4.5.2 Subsurface temperature anomalies during the onset of El Niño. - 4.5.3 Subsurface temperature anomalies during the transition to La Niña. - 4.6 El Niño mechanisms II: dynamics of transition phases. - 4.6.1 Equatorial jets and the Kelvin wave. - 4.6.2 The Kelvin wave speed. - 4.6.3 What sets the width of the Kelvin wave and equatorial jet?. - 4.6.4 Response of the ocean to a wind anomaly. - 4.6.5 The delayed oscillator model and the recharge oscillator model. - 4.6.6 ENSO transition mechanism in brief. - 4.7 El Niño prediction. - 4.7.1 Limits to skill in ENSO forecasts. - 4.8 El Niño remote impacts: teleconnections. - 4.9 Other interannual climate phenomena. - 4.9.1 Hurricane season forecasts. - 4.9.2 Sahel drought. - 4.9.3 North Atlantic oscillation and annular modes. - Notes. - 5. Climate models. - 5.1 Constructing a climate model. - 5.1.1 An atmospheric model. - 5.1.2 Treatment of sub-grid-scale processes. - 5.1.3 Resolution and computational cost. - 5.1.4 An ocean model and ocean-atmosphere coupling. - 5.1.5 Land surface, snow, ice and vegetation. - 5.1.6 Summary of principal climate model equations. - 5.1.7 Climate system modeling. - 5.2 Numerical representation of atmospheric and oceanic equations. - 5.2.1 Finite-difference versus spectral models. - 5.2.2 Time-stepping and numerical stability. - 5.2.3 Staggered grids and other grids. - 5.2.4 Parallel computer architecture. - 5.3 Parameterization of small-scale processes. - 5.3.1 Mixing and surface fluxes. - 5.3.2 Dry convection. - 5.3.3 Moist convection. - 5.3.4 Land surface processes and soil moisture. - 5.3.5 Sea ice and snow. - 5.4 The hierarchy of climate models. - 5.5 Climate simulations and climate drift. - 5.6 Evaluation of climate model simulations for present-day climate. - 5.6.1 Atmospheric model climatology from specified SST. - 5.6.2 Climate model simulation of climatology. - 5.6.3 Simulation of ENSO response. - Notes. - 6. The greenhouse effect and climate feedbacks. - 6.1 The greenhouse effect in Earth's current climate. - 6.1.1 Global energy balance. - 6.1.2 A global-average energy balance model with a one-layer atmosphere. - 6.1.3 Infrared emissions from a layer. - 6.1.4 The greenhouse effect: example with a completely IR-absorbing atmosphere. - 6.1.5 The greenhouse effect in a one-layer atmosphere, global-average model. - 6.1.6 Temperatures from the one-layer energy balance model. - 6.2 Global warming I: example in the global-average energy balance model. - 6.2.1 Increases in the basic greenhouse effect. - 6.2.2 Climate feedback parameter in the one-layer global-average model. - 6.3 Climate feedbacks. - 6.3.1 Climate feedback parameter. - 6.3.2 Contributions of climate feedbacks to global-average temperature response. - 6.3.3 Climate sensitivity. - 6.4 The water vapor feedback. - 6.5 Snow/ice feedback. - 6.6 Cloud feedbacks. - 6.7 Other feedbacks in the physical climate system. - 6.7.1 Stratospheric cooling. - 6.7.2 Lapse rate feedback. - 6.8 Climate response time in transient climate change. - 6.8.1 Transient climate change versus equilibrium response experiments. - 6.8.2 A doubled-CO2 equilibrium response experiment. - 6.8.3 The role of the oceans in slowing warming. - 6.8.4 Climate sensitivity in transient climate change. - Notes. - 7. Climate model scenarios for global warming. - 7.1 Greenhouse gases, aerosols and other climate forcings. - 7.1.1 Scenarios, forcings and feedbacks. - 7.1.2 Forcing by sulfate aerosols. - 7.1.3 Commonly used scenarios. - 7.2 Global-average response to greenhouse warming scenarios. - 7.3 Spatial patterns of warming for time-dependent scenarios. - 7.3.1 Comparing projections of different climate models. - 7.3.2 Multi-model ensemble averages. - 7.3.3 Polar amplification of warming. - 7.3.4 Summary of spatial patterns of the response. - 7.4 Ice, sea level, extreme events. - 7.4.1 Sea ice and snow. - 7.4.2 Land ice. - 7.4.3 Extreme events. - 7.5 Summary: the best-estimate prognosis. - 7.6 Climate change observed to date. - 7.6.1 Temperature trends and natural variability: scale dependence. - 7.6.2 Is the observed trend consistent with natural variability or anthropogenic forcing?. - 7.6.3 Sea ice, land ice, ocean heat storage and sea level rise. - 7.7 Emissions
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Call number: AWI A3-12-0018
    In: Atmospheric and oceanographic sciences library, Vol. 43
    Description / Table of Contents: The Arctic is now experiencing some of the most rapid and severe climate change on earth. Over the next 100 years, climate change is expected to accelerate, contributing to major physical, ecological, social, and economic changes, many of which have already begun. Changes in arctic climate will also affect the rest of the world through increased global warming and rising sea levels. The volume addresses the following major topics: research results in observing aspects of the Arctic climate system and its processes across a range of time and space scales; representation of cryospheric, atmospheric, and oceanic processes in models, including simulation of their interaction with coupled models; our understanding of the role of the arctic in the global climate system, its response to large-scale climate variations, and the processes involved.
    Type of Medium: Monograph available for loan
    Pages: XIV, 464 Seiten , Illustrationen
    ISBN: 9789400720268
    Series Statement: Atmospheric and oceanographic sciences library 43
    Language: English
    Note: Contents: 1 The origins of ACSYS / Victor Savtchenko. - PART I OBSERVATIONS: 2 Advances in Arctic atmospheric research / James E. Overland and Mark C. Serreze. - 3 Sea-ice observation: advances and challenges / Humfrey Melling. - 4 Observations in the ocean / Bert Rudels, Leif Anderson, Patrick Eriksson, Eberhard Fahrbach, Martin Jakobsson, E. Peter Jones, Humfrey Melling, Simon Prinsenberg, Ursula Schauer, and Tom Yao. - 5 Observed hydrological cycle / Hermann Mächel, Bruno Rudolf, Thomas Maurer, Stefan Hagemann, Reinhard Hagenbrock, Lev Kitaev, Eirik J. Førland, Vjacheslav Rasuvaev, and Ole Einar Tveito. - 6 Interaction with the global climate system / T. A. McClimans, G. V. Alekseev, O. M. Johannessen, and M. W. Miles. - PART II MODELLING: 7 Mesoscale modelling of the Arctic atmospheric boundary layer and its interaction with sea ice / Christof Lüpkes, Timo Vihma, Gerit Birnbaum, Silke Dierer, Thomas Garbrecht, Vladimir M. Gryanik, Micha Gryschka, Jörg Hartmann, Günther Heinemann, Lars Kaleschke, Siegfried Raasch, Hannu Savijärvi, K. Heinke Schlünzen, and Ulrike Wacker. - 8 Arctic regional climate models / K. Dethloff, A. Rinke, A. Lynch, W. Dorn, S. Saha, and D. Handorf. - 9 Progress in hydrological modeling over high latitudes: under arctic climate system study (ACSYS) / Dennis P. Lettenmaier and Fengge Su. - 10 Sea-ice-ocean modelling / Rüdiger Gerdes and Peter Lemke. - 11 Global climate models and 20th and 21st century Arctic climate change / Cecilia M. Bitz, Jeff K. Ridley, Marika Holland, and Howard Cattle. - 12 ACSYS: Scientific foundation for the climate and cryosphere (CliC) project / Konrad Steffen, Daqing Yang, Vladimir Ryabinin, and Ghassem Asrar.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Monograph available for loan
    Monograph available for loan
    Princeton : Princeton University Press
    Call number: AWI G3-12-0048
    Description / Table of Contents: Contents: Chapter 1: Introduction to the Cryosphere. - Chapter 2: Material Properties of Snow and Ice. - Chapter 3: Snow and Ice Thermodynamics. - Chapter 4: Seasonal Snow and Freshwater Ice. - Chapter 5: Sea Ice. - Chapter 6: Glaciers and Ice Sheets. - Chapter 7: Permafrost. - Chapter 8: Cryosphere-Climate Processes. - Chapter 9: The Cryosphere and Climate Change.
    Description / Table of Contents: The cryosphere encompasses the Earth's snow and ice masses. It is a critical part of our planet's climate system, one that is especially at risk from climate change and global warming. "The Cryosphere" provides an essential introduction to the subject, written by one of the world's leading experts in Earth-system science. In this primer, glaciologist Shawn Marshall introduces readers to the cryosphere and the broader role it plays in our global climate system. After giving a concise overview, he fully explains each component of the cryosphere and how it works - seasonal snow, permafrost, river and lake ice, sea ice, glaciers, ice sheets, and ice shelves. Marshall describes how snow and ice interact with our atmosphere and oceans and how they influence climate, sea level, and ocean circulation. He looks at the cryosphere's role in past ice ages, and considers the changing cryosphere's future impact on our landscape, oceans, and climate. Accessible and authoritative, this primer also features a glossary of key terms, suggestions for further reading, explanations of equations, and a discussion of open research questions in the field.
    Type of Medium: Monograph available for loan
    Pages: IX, 288 Seiten , Illustrationen
    ISBN: 9780691145266
    Series Statement: Princeton primers in climate
    Language: English
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Series available for loan
    Series available for loan
    [Zürich] : IAHS (ICSI)
    Associated volumes
    Call number: AWI G7-12-0001
    In: Glacier mass balance bulletin
    Type of Medium: Series available for loan
    Pages: 102 S. : Ill., graph. Darst., Kt.
    Language: English
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Monograph available for loan
    Monograph available for loan
    London [u.a.] : Routledge [u.a.]
    Call number: PIK B 160-12-0326
    Description / Table of Contents: Contents: Foreword ; 1. The Limited Environmental Capacity ; 2. On politics in crisis ; 3. On science's role and responsibility ; 4. From Copenhagen to Durban ; 5. Respect The Planetary Boundaries ; 6. A Triply Green Revolution ; 7. The Critical Role of Energy ; 8. The Forgotten Issue ; 9. The Weapon of Doubt ; 10. The Greenhouse Effect ; 11. What Climate Denies Do Not Want To Know ; 12. The Arctic: Canary in the mine ; 13. Is Sweden a World Champion in Climate Policy ; 14. Getting the Economy Right ; 15. The Financial Sector: Ignoring The Risks ; 16. Growth's Dilemma ; 17. Toward A Circular Economy ; 18. How much is enough? ; 19. The Road Ahead
    Type of Medium: Monograph available for loan
    Pages: XII, 206 S. : graph. Darst.
    Edition: revised ed.
    ISBN: 9780415539692
    Uniform Title: Den stora förnekelsen
    Language: English
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...