ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (26)
  • English  (26)
  • German
  • Finnish
  • German
  • Italian
  • Polish
  • 2020-2024
  • 2015-2019  (23)
  • 2010-2014  (3)
  • 2000-2004
  • 1990-1994
  • 1965-1969
  • 1930-1934
  • 2019  (12)
  • 2016  (11)
  • 2014  (1)
  • 2011  (2)
  • 2003
  • 2000
  • 1990
  • 1
    Publication Date: 2021-09-02
    Description: Abstract
    Description: XGM2019e is a combined global gravity field model represented through spheroidal harmonics up to d/o 5399, corresponding to a spatial resolution of 2’ (~4 km). As data sources it includes the satellite model GOCO06s in the longer wavelength area combined with terrestrial measurements for the shorter wavelengths. The terrestrial data itself consists over land and ocean of gravity anomalies provided by courtesy of NGA (identical to XGM2016, having a resolution of 15’) augmented with topographically derived gravity over land (EARTH2014). Over the oceans, gravity anomalies derived from satellite altimetry are used (DTU13, in consistency with the NGA dataset).The combination of the satellite data with the terrestrial observations is performed by using full normal equations up to d/o 719 (15’). Beyond d/o 719, a block-diagonal least-squares solution is calculated for the high-resolution terrestrial data (from topography and altimetry). All calculations are performed in the spheroidal harmonic domain.In the spectral band up to d/o 719 the new model shows over land a slightly improved behavior over preceding models such as XGM2016, EIGEN6c4 or EGM2008 when comparing it to independent GPS leveling data. Over land and in the spectral range above d/o 719 the accuracy of XGM2019e suffers from the sole use of topographic forward modelling; Hence, errors are increased in well-surveyed areas compared to models containing real gravity data, e.g. EIGEN6c4 or EGM2008. However, the performance of XGM2019e can be considered as globally more homogeneous and independent from existing high resolution global models. Over the oceans the model exhibits an improved performance throughout the complete spectrum (equal or better than preceding models).
    Keywords: geodesy ; global gravity field model ; ICGEM ; GOCO ; GOCE ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Language: English
    Type: Dataset , Dataset
    Format: 6 Files
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-09-02
    Description: Abstract
    Description: TIM_R6e is an extended version of the satellity-only global gravity field model TIM_R6 (Brockmann et al., 2019) which includes additional terrestrial gravity field observations over GOCE's polar gap areas. The included terrestrial information consists of the PolarGap campaign data (Forsberg et al., 2017) augumented by the AntGG gravity data compilation (Scheinert et al., 2016) over the southern polar gap (〉83°S) and the ArcGP data (Forsberg et al. 2007) over the northern polar gap (〉83°N). The combination is performed on normal equation level, encompassing the terrestrial data as spectrally limited geographic 0.5°x0.5° grids over the polar gaps.
    Description: TechnicalInfo
    Description: Processing procedures: (extending TIM_R6)Gravity from orbits (SST): (identical to TIM_R6)- short-arc integral method applied to kinematic orbits, up to degree/order 150- orbit variance information included as part of the stochastic model, it is refined by empirical covariance functionsGravity from gradients (SGG): (identical to TIM_R6)- parameterization up to degree/order 300- observations used: Vxx, Vyy, Vzz and Vxz in the Gradiometer Reference Frame (GRF)- realistic stochastic modelling by applying digital decorrelation filters to the observation equations; estimated separately for individual data segments applying a robust procedureGravity from terrestrial observations (TER):- collocation of the original terrestrial data sources onto 30'x30' geographic gravity disturbance grids (in the polar gap areas above 83° southern/northern latitude, thus forming a pair of polar caps)- spectral limitation of the data to D/O 300 within the collocation process- the chosen grid is fully compatible with the grid of the zero observation constraints of the original TIM_R6 model. In its function it replaces the original constraints- from the collocated polar caps, a partial normal equation system, up to D/O 300 is derivedCombined solution:- addition of normal equations (SST D/O 150, SGG D/O 300, TER D/O 300)- Constraints: * Kaula-regularization applied to coefficients of degrees/orders 201 - 300 (constrained towards zero, fully compatible with TIM_R6)- weighting of SST and SGG is identical to TIM_R6. All TER observations are weighted with 5 mGal.Specific features of resulting gravity field:- Gravity field solution is (mostly) independent of any other gravity field information (outside the polar gap region)- Constraint towards zero starting from degree/order 201 to improve signal-to-noise ratio- Related variance-covariance information represents very well the true errors of the coefficients (outside the polar gap region)- Solution can be used for independent comparison and combination on normal equation level with other satellite-only models (e.g. GRACE), terrestrial gravity data, and altimetry (outside the polar gap region)- Since in the low degrees the solution is based solely on GOCE orbits, it is not competitive with a GRACE model in this spectral region (outside the polar gap region)- In comparison to TIM_R6, TIM_R6e should deliver more accurate results, especially towards the polar gaps. However, as it uses additional data sources it cannot be seen as totally independent anymore: even outside the polar gap regions correlations (introduced by the holistic nature of spherical harmonics) may be found.
    Keywords: global gravitational model ; ICGEM ; GOCE ; PolarGap ; geodesy ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Language: English
    Type: Dataset , Dataset
    Format: 3 Files
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-05
    Description: Abstract
    Description: These are maps of artificial night sky radiance that were produced by the Light Pollution Science and Technology Institute (ISTIL), and described in the paper "The New World Atlas of Artificial Night Sky Brightness" (Falchi et al. 2016).The data are stored in a 2.9 Gb geotiff file, on a 30 arcsecond grid. The map reports simulated zenith radiance data in [mcd/m^2]. The map is based on data from the VIIRS Day Night Band (DNB, MIller et al. 2013), which has been propagated through the atmosphere using the radiative transfer code reported in (Cinzano and Falchi, 2012). The upward emission function and the radiance calibration were obtained using data from Sky Quality Meters (including data from Duriscoe et al. 2007; Falchi 2010; Kyba et al 2013, 2015 and Zamorano et al. 2016).Note that the maps report artificial light only! The zenith radiance from natural sources such as stars and the Milky Way are not included, and must be added in order to match the data that would be obtained from an actual outdoor measurement.A kmz file for quick view of the data is also provided. Access to the FTP site to download the data can be requested via the data request form on the landing page.Version History:13 November 2019: change of the licence to CC BY NC 4.0 (after end of embargo period).
    Description: Other
    Description: Artificial lights raise the night sky luminance, creating the most visible effect of light pollution, artificial sky glow. Despite the increasing interest among scientists in fields such as ecology, astronomy, healthcare, land use planning, light pollution lacks a current quantification of its magnitude on a global scale. To overcome this, here we present the World atlas of the artificial sky luminance, computed with our light pollution propagation software using new high resolution satellite data and new precision sky brightness measurements. This atlas shows that more than 80% of the World and more than 99% of the U.S.A. and Europe populations live under light polluted skies. The Milky Way is hidden for more than one third of humanity, including 60% of Europeans and nearly 80% of North Americans. Moreover, 23% of World's lands between 75°N and 60°S, 88% of Europe and almost half of U.S.A. experience light polluted nights.
    Keywords: artificial light ; ALAN ; skyglow ; light pollution ; atlas ; night ; radiative transfer ; Suomi NPP ; Sky Quality Meter ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION 〉 VISUALIZATION/IMAGE PROCESSING
    Language: English
    Type: Dataset , Dataset
    Format: 26001739 Bytes
    Format: 1 Files
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Geographisches Institut der Universität zu Köln - Kölner Geographische Arbeiten
    Publication Date: 2022-01-12
    Description: Abstract
    Description: From 18th - 19th of November, 2010, the 'Workshop on Remote Sensing Methods for Change Detection and Process modelling' was held at the University of Cologne, Germany. This workshop was organized by the Working Group 5 'Methods for Change Detection and Process Modelling' within the Commission VII 'Thematic Processing, Modelling and Analysis or Remotely Sensed Data' of the International Society for Photogrammetry and Remote Sensing (ISPRS). Three research projects actively supported the workshop. The CRC/TR32 'Patterns in Soil-Vegetation-Atmosphere-Systems: Monitoring, Modelling, and Data Assimilation' as well as the CRC 806 'Our way to Europe: Culture-Environment Interaction and Human Mobility in the Later Quaternary', both Collaborative Research Centres of the German Research Foundation (DFG). Within the CROP.SENSe.net (funded by the German Federal Ministry of Education and Research, BMBF), sensor methods for monitoring crops are investigated. Finally, the workshop was supported by the International Centre for Agro-Informatics and Sustainable Development (ICASD), which was founded in cooperation with the China Agricultural University and the u CROP.SENSe.net University of Cologne. The goal of the workshop was to bring together scientific disciplines as disparate as geography, soil sciences, plant physiology, hydrology, meteorology, prehistory, archaeology, agronomy, remote sensing, and geoinformatics. The workshop was based on 14 invited talks and unusual long coffee breaks, parallel to poster sessions to encourage and support discussion. The diverse program attracted nearly 40 poster presentations and approximately 90 participants. The papers and abstracts of the workshop are summarized in the workshop proceedings.
    Description: SeriesInformation
    Description: Proceedings on the Workshop of Remote Sensing Methods for Change Detection and Process Modelling, 18-19 November 2010, University of Cologne, Germany, Kölner Geographische Arbeiten, 92, pp. III
    Keywords: Remote Sensing Methods ; Remote Sensing
    Language: English
    Type: Text , Workshop paper
    Format: 409 Kilobytes
    Format: 1 Pages
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Geographisches Institut der Universität zu Köln - Kölner Geographische Arbeiten
    Publication Date: 2022-01-12
    Description: Abstract
    Description: The Airborne Laser Scanning (ALS) technology, also referred to as LIDAR (Light Detection And Ranging), represents the most relevant advancement of Earth Observation (EO) techniques applied to archaeological research in the last decade. It allows us to overcome some limits of satellite optical remote sensing in detecting archaeological remains covered by dense vegetation as well as microrelief of cultural interest in bare-ground sites. Currently, a LIDAR survey can be carried out by using two different types of ALS sensor systems: (i) conventional scanners or discrete echo scanners, and (ii) Full-Waveform (FW) scanners. The first one generally delivers only the first and last echo, thus losing many other reflections. The second one is able to detect the entire echo waveform for each emitted laser beam, thus offering improved capabilities especially in areas with complex morphology and/or dense vegetation cover. This paper shows the results obtained by processing point clouds taken from FW scanners for two emblematic study cases in Southern Italy. The first one is the abandoned medieval village of Monte Serico, located on a bare-ground hilly plateau, the second one is the Bosco dellIncoronata. By using an approach based on the use and processing of different shaded Digital Terrain Models (DTMs), the study allowed us to improve the reconstruction of the urban fabric and the paleoenvironmental setting, respectively.
    Description: SeriesInformation
    Description: Proceedings on the Workshop of Remote Sensing Methods for Change Detection and Process Modelling, 18-19 November 2010, University of Cologne, Germany, Kölner Geographische Arbeiten, 92, pp. 79-91
    Keywords: LIDAR ; Remote Sensing
    Language: English
    Type: Text , Workshop paper
    Format: 2389 Kilobytes
    Format: 13 Pages
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Geographisches Institut der Universität zu Köln - Kölner Geographische Arbeiten
    Publication Date: 2022-01-12
    Description: Abstract
    Description: The 2nd Data Management Workshop was held at the University of Cologne in November 2014. It was organized within the research data management activities of two large interdisciplinary research projects both funded by the German Research Foundation (DFG). Both projects actively supported the workshop. The Collaborative Research Centre/Transregio 32 ‘Patterns in Soil-Vegetation-Atmosphere Systems: Monitoring, Modelling and Data Assimilation’ involves scientist from the fields of meteorology, hydrology, geography, geophysics, soil sciences and mathematics. The CRC806 ‘Our Way to Europe: Culture-Environment Interaction and Human Mobility in the Late Quaternary’ integrates scientists from the disciplines of prehistoric archaeology, geology, geography, geophysics and soil sciences. Organizing research data management of such diverse disciplines which are distributed over several universities and research centers faces several problems and challenges. Consequently, the main focus of the 2nd Data Management Workshop was to discuss solutions and approaches for interdisciplinary and disciplinary data management with other colleagues and experts of the field. The publication of the Special Issue on ‘Research Data Management’ of the ISPRS International Journal of Geo-Information (ISSN 2220-9964) emerged in the context of this workshop.
    Description: SeriesInformation
    Description: Proceedings of the 2nd Data Management Workshop, 28.-29.11.2014, University of Cologne, Germany, Kölner Geographische Arbeiten, 96, pp. III-IV
    Keywords: Data Management ; Research Data
    Language: English
    Type: Text , Workshop paper
    Format: 2 Pages
    Format: 181 Kilobytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-01-12
    Description: Abstract
    Description: The federal state of Baden-Württemberg wants to offer scientists the best conditions for research. Against the backdrop of the ever-increasing importance of data and information the bwFDM-Communities project is tasked to develop recommendations that shall enable scientists in our federal state to process and use data without barriers. In order to achieve this objective, we engage an active dialogue with all university research groups in Baden-Württemberg (~3000). Next to identifying and advertising best-practice solutions, this project is supposed to gather information on how federal IT support needs to be expanded in order to meet the increasing demands of future research. As this is an ongoing project there may be further results in time, but some early conclusions can be drawn: Scientists want clear-cut requirements and responsibilities for data management and are willing to share their data if there is a proper appreciation model for data publication. Additionally, a lot of scientists complain about too strict law regulations regarding copyright and need better information about available RDM support, partners and opportunities. Final conclusions and recommendations can only be given in the further course of the project, but we are confident that our final recommendations will help the scientists in Baden-Württemberg.
    Description: SeriesInformation
    Description: Proceedings of the 2nd Data Management Workshop, 28.-29.11.2014, University of Cologne, Germany, Kölner Geographische Arbeiten, 96, pp. 1-6
    Keywords: Data Management ; Research Data
    Language: English
    Type: Text , Workshop paper
    Format: 6 Pages
    Format: 1144 Kilobytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Geographisches Institut der Universität zu Köln - Kölner Geographische Arbeiten
    Publication Date: 2022-01-12
    Description: Abstract
    Description: This paper introduces the CRC/TR32 database (TR32DB), a research data management system developed within the multidisciplinary research project Collaborative Research Centre/Transregio 32 (CRC/TR32) funded by the German Research Foundation (DFG). The aim of the TR32DB is to support collative research within the whole project by providing data storage, backup, archive, documentation, publication and also sharing services. The entire system is self-developed according to the requirements of the funding agency, the user and project demands, as well as according to recent principles and standards. The TR32DB system architecture is basically a combination of data storage (file management), database and web-interface. In addition, the TR32DB Metadata Schema was designed and implemented to describe all project data with accurate metadata. A user-friendly multi-level approach was chosen to cover the requirements of all data stored in the TR32DB with appropriate metadata.
    Description: SeriesInformation
    Description: Proceedings of the 2nd Data Management Workshop, 28.-29.11.2014, University of Cologne, Germany, Kölner Geographische Arbeiten, 96, pp. 7-15
    Keywords: Data Management ; Metadata ; Research Data
    Language: English
    Type: Text , Workshop paper
    Format: 9 Pages
    Format: 1802 Kilobytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-01-14
    Description: Abstract
    Description: Nitrogen (N) is one of the most essential elements in agriculture and ecology due to its direct role in determining crop yield and grain quality, as well as its association with canopy photosynthetic capacity and carbon-nitrogen cycling in the earth ecosystem. Remote sensing provides a useful way to capture canopy nitrogen and biomass with high spatial and temporal resolution. However, seasonal dynamics of plant morphophysiological variation hinder the simultaneous estimation of canopy N concentration (%N) and biomass using a traditional method such as vegetation indices because of the distinct dynamics of canopy biochemical and physical traits. In contrast, multivariate analysis method offers the capability of calibrating a model with multiple dependent variables of interest. Therefore, the main objective of this study was to, simultaneously, estimate canopy %N and biomass of rice using the partial least squares regression (PLSR) model. A field experiment was conducted for paddy rice fertilized with five N rates across five growth stages in 2008, located in the Sanjiang Plain, China. Results showed that the PLS regression model simultaneously explained 84% and 91% of the variation in %N and biomass, respectively, across the five growth stages. Our results also suggest that biomass is the dominant factor that affects the link between canopy dynamical traits and canopy reflectance measures. This study demonstrates that, by incorporating with PLSR for retrieving biophysical and biochemical properties from the full-spectrum analysis, to what extent canopy %N and biomass can be simultaneously estimated from canopy reflectance measurement.
    Keywords: Nitrogen ; Biomass ; Hyperspectral ; Remote Sensing ; Agriculture ; 550 Earth sciences
    Language: English
    Type: Text , Workshop paper
    Format: 5 Pages
    Format: 1130 Kilobytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-17
    Description: Abstract
    Description: The data set provides GFZ VER11 orbits of altimetry satellitesERS-1 (August 1, 1991 - July 5, 1996),ERS-2 (May 13, 1995 - February 27, 2006),Envisat (April 12, 2002 - April 8, 2012),Jason-1 (January 13, 2002 - July 5, 2013) andJason-2 (July 5, 2008 - April 5, 2015)TOPEX/Poseidon (September 23, 1992 - October 8, 2005),derived at the time spans given at Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences within the Sea Level phase 2 project of the European Space Agency (ESA) Climate Change Initiative using "Earth Parameter and Orbit System - Orbit Computation (EPOS-OC)" software and the Altimeter Database and processing System (ADS, http://adsc.gfz-potsdam.de/ads/) developed at GFZ. The orbits were computed in the same (ITRF2008) terrestrial reference frame for all satellites using common, most precise models and standards available and described below.The ERS-1 orbit is computed using satellite laser ranging (SLR) and altimeter crossover data, while the ERS-2 orbit is derived using additionally Precise Range And Range-rate Equipment (PRARE) measurements. The Envisat, TOPEX/Poseidon, Jason-1 and Jason-2 orbits are based on Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) and SLR observations.The orbit files are available in the Extended Standard Product 3 Orbit Format (SP3-c, ftp://igscb.jpl.nasa.gov/igscb/data/format/sp3c.txt) Files are gzip-compressed. File names are given as sate_YYYYMMDD_SP3C.gz, where "sate" is the abbreviation (ENVI, ERS1, ERS2, JAS1, JAS2, TOPX) of the satellite name, YYYY stands for 4-digit year, MM stands for month and DD stands for day of the beginning of the file.More details on these orbits are provided in Rudenko et al. (2017)
    Keywords: Jason-1 ; Jason-2 ; ERS-1 ; ERS-2 ; Envisat ; ESA CCI Sea Level ; Altimetry satellite ; Low Earth Orbit satellites ; sea level ; TOPEX/POSEIDON ; ITRF2008 ; Earth Remote Sensing Instruments 〉 Active Remote Sensing 〉 Altimeters 〉 Radar Altimeters ; equipment 〉 artificial satellite 〉 observation satellite ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 SATELLITE ORBITS/REVOLUTION 〉 ORBITAL POSITION ; EARTH SCIENCE 〉 OCEANS 〉 SEA SURFACE TOPOGRAPHY 〉 SEA SURFACE HEIGHT
    Language: English
    Type: Dataset
    Format: 6 Files
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...