ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (4,306)
  • German  (2,833)
  • Danish  (1)
  • Swedish
  • 2010-2014  (7,097)
Collection
Keywords
Language
Years
Year
  • 1
    Call number: IASS 14.0036
    Type of Medium: Monograph available for loan
    Pages: 525 S.
    ISBN: 9783593399171
    Uniform Title: The Zero Marginal Cost Society: The Internet of Things, the Collaborative Common
    Language: German
    Branch Library: RIFS Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: IASS 15.0023
    Type of Medium: Monograph available for loan
    Pages: 437 S.
    ISBN: 9783593391694
    Uniform Title: Commonwealth
    Language: German
    Branch Library: RIFS Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Monograph available for loan
    Monograph available for loan
    Sankt-Peterburg : Sankt-Peterburgskij Gosudarstvennyj Universitet
    Call number: AWI Bio-13-0030
    Description / Table of Contents: Atlas contains photographic images of 91 plant species and pollen which are found in Lena River Delta as well as information about current conditions of their growth. This is a major advantage of this atlas as compared to other publications of this kind. All information is presented in Russian and English. All materials were collected in framework of the Russian-German expeditions "Lena-2009", "Lena-2010", "Lena-2011" and "Lena-2012". Photographs illustrate the general view of the plant, inflorescence and pollen grains in different positions and from high to low focus. Plants are grouped into families, where each family has its own color. Atlas is addressed not only to specialists in palynology, but to all who are interested in the flora and vegetation of the Arctic region, including students of geographical, biological and environmental fields.
    Type of Medium: Monograph available for loan
    Pages: 111 Seiten , Illustrationen
    ISBN: 9785439100361
    Language: Russian , English
    Note: Contents: Introduction. - Apiaceae. - Asteraceae. - Betulaceae. - Boraginaceae. - Brassicaceae. - Campanulaceae. - Caryophyllaceae. - Crassulaceae. - Cyperaceae. - Diapensiaceae. - Ericaceae. - Fabaceae. - Gentianaceae. - Hippuriadaceae. - Juncaceae. - Lentibulariaceae. - Liliaceae. - Onagraceae. - Papaveraceae. - Parnassiaceae. - Pinaceae. - Plumbaginaceae. - Poaceae. - Polemoniaceae. - Polygonaceae. - Portulacaceae. - Primulaceae. - Pyrolaceae. - Ranunculaceae. - Rosaceae. - Salicaceae. - Saxifragaceae. - Scrophulariaceae. - Valerianaceae. - Index of plants by family. - Alphabetical index of plants. , In englischer und russischer Sprache. , Teilw. in kyrillischer Schrift
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Monograph available for loan
    Monograph available for loan
    Berlin : Springer
    Call number: AWI G3-13-0054
    Description / Table of Contents: Permafrost hydrology systematically elucidates the roles of seasonally and perennially frozen ground on the distribution, storage and flow of water. Cold regions of the world are subject to mounting development which significantly affects the physical environment. Climate change, natural or human-induced, reinforces the impacts. Knowledge of surface and ground water processes operating in permafrost terrain is fundamental to planning, management and conservation. This book is an indispensable reference for libraries and researchers, an information source for practitioners, and a valuable text for training the next generations of cold region scientists and engineers.
    Type of Medium: Monograph available for loan
    Pages: XII, 563 Seiten , Illustrationen, Diagramme, Karten (teilweise farbig)
    ISBN: 9783642234613
    Language: English
    Note: Contents: 1 Introduction. - 1.1 The world cold regions. - 1.2 Water in frozen soils. - 1.3 Permafrost. - 1.3.1 Definitions. - 1.3.2. Distribution. - 1.3.3. Factors influencing permafrost occurence. - 1.4 Permafrost and hydrology. - 1.4.1 Permafrost hydrology. - 1.4.2 Hydrologic behavior of seasonal frost and permafrost. - 1.5 Environments of permafrost regions. - 1.5.1 Hydroclimatology. - 1.5.2 Geology. - 1.5.3 Glaciation. - 1.5.4 Physiography. - 1.5.5 Vegetation. - 1.5.6 Peat cover. - 1.6 Presentation of the book. - 2 Moisture and heat. - 2.1 Precipitation. - 2.1.1 General pattern. - 2.1.2 Cyclones. - 2.1.3 Recycling. - 2.1.4 Trace precipitation. - 2.2 Surface energy balance. - 2.3 Evaporation. - 2.3.1 Eddy Fluctuation Method. - 2.3.2 Aerodynamic method. - 2.3.3 Bowen Ratio Method. - 2.3.4 Priestley and Taylor Method. - 2.4 Energy balance of the active layer. - 2.4.1 Energy Balance. - 2.4.2 Thermal conductivity and heat capacity. - 2.5 Ground temperature. - 2.5.1 Penetration of temperature waves. - 2.5.2 Frost table development. - 2.6 Heat and moisture flows in frozen soils. - 2.6.1 Stefan's Algorithm. - 2.6.2 Near-Surface ground temperature. - 2.6.3 Moisture migration and ice lens formation. - 2.7 Ground ice. - 2.7.1 Types of ground ice. - 2.7.2 Excess ice. - 3 Groundwater. - 3.1 Groundwater occurence in permafrost. - 3.1.1 Suprapermafrost groundwater. - 3.1.2 Intrapermafrost groundwater. - 3.1.3 Subpermafrost groundwater. - 3.2 Groundwater recharge and circulation. - 3.2.1 Recharge. - 3.2.2 Groundwater movement. - 3.3 Groundwater discharge. - 3.3.1 Seeps. - 3.3.2 Springs. - 3.3.3 Baseflow. - 3.3.4 Ponds and lakes. - 3.4 Icings. - 3.4.1 Ground and spring icings. - 3.4.2 River icings. - 3.4.3 Icing dimension. - 3.4.4 Icing problems. - 3.5 Domed ice features. - 3.5.1 Frost mounds and icing mounds. - 3.5.2 Pingos. - References. - 4 Snow cover. - 4.1 Snow accumulation. - 4.1.1 Winter precipitation. - 4.1.2 Blowing snow. - 4.1.3 Terrain heterogeneity. - 4.1.4 Vegetation cover. - 4.2 Characteristics of the snow cover. - 4.2.1 Snow temperature and insulation. - 4.2.2 Snow metamorphism. - 4.2.3 Snow stratigraphy. - 4.3 Snowmelt processes. - 4.3.1 Radiation melt. - 4.3.2 Turbulent fluxes melt. - 4.3.3 Other melt terms. - 4.4 Snowmelt in permafrost areas. - 4.4.1 Tundra and Barren areas. - 4.4.2 Dirty snow. - 4.4.3 Shrub fields. - 4.4.4 Forests. - 4.5 Meltwater movement in snow. - 4.5.1 Dry snow. - 4.5.2 Wet snow. - References. - 5 Active layer dynamics. - 5.1 Freeze-back and winter periods. - 5.1.1 Snow cover and ground freezing. - 5.1.2 Moisture flux and ice formation. - 5.1.3 Vapor flux from soil to snow. - 5.2 Snowmelt period. - 5.2.1 Snowmelt and basal ice. - 5.2.2 Infiltration into frozen soil. - 5.2.3 Soil warming. - 5.2.4 Surface saturation, evaporation and runoff. - 5.3 Summer. - 5.3.1 Active layer thaw. - 5.3.2 Summer precipitation. - 5.3.3 Evaporation. - 5.3.4 Rainwater infiltration. - 5.3.5 Soil moisture. - 5.3.6 Groundwater. - References. - 6 Slope processes. - 6.1 Flow paths. - 6.1.1 Flow paths in snow. - 6.1.2 Surface and subsurface flows. - 6.1.3 Flow in bedrock areas. - 6.1.4 Flow in unconsolidated materials. - 6.2 Water sources. - 6.3 Factors influencing slope runoff generation. - 6.3.1 Microclimatic control. - 6.3.2 Topographic influence. - 6.3.3 Importance of the Frost table. - 6.3.4 Roles of organic materials. - 6.3.5 Bedrock control. - 6.4 Basin slopes in permafrost regions. - 6.4.1 High Arctic slopes. - 6.4.2 Low Arctic slopes. - 6.4.3 Subarctic slopes. - 6.4.4 Alpine permafrost zones. - 6.4.5 Precambrian bedrock terrain. - 6.5 Concepts for basin flow generation. - 6.5.1 Variable source area and fill-and-spill concepts. - 6.5.2 Heterogenous slopes. - References. - 7 Cold lakes. - 7.1 Types of lake. - 7.2 Lake ice. - 7.2.1 Lake ice regime. - 7.2.2 Ice formation and growth. - 7.2.3 Ice decay. - 7.3 Lake circulation. - 7.4 Hydrologic inputs. - 7.5 Lake evaporation. - 7.6 Lake outflow. - 7.6.1 Outflow conditions. - 7.6.2 Fill-and-Spill concept and lake outflow. - 7.7 Lake level. - 7.8 Large lakes. - 7.9 Permafrost and lakes. - References. - 8 Northern wetlands. - 8.1 Wetlands in permafrost regions. - 8.2 Factors favoring wetland occurence. - 8.2.1 Climate. - 8.2.2 Topography. - 8.2.3 Stratigraphy. - 8.2.4 Other factors. - 8.3 Hydrogeomorphic features in wetlands. - 8.3.1 Bog-related features. - 8.3.2 Fen-related features. - 8.3.3 Marshes and swamps. - 8.3.4 Shallow water bodies. - 8.4 Hydrologic behavior of wetlands. - 8.4.1 Seasonality of hydrologic activities. - 8.4.2 Wetland storage. - 8.4.3 Flow paths. - 8.4.4 Application of Fill-and-Spill concept. - 8.5 Patchy arctic wetlands. - 8.5.1 Wetlands maintained by snowmelt. - 8.5.2 Groundwater-fed wetlands. - 8.5.3 Valley bottom fens. - 8.5.4 Wetlands due to lateral inundation. - 8.5.5 Tundra ponds. - 8.5.6 Lake-fed and lake-bed wetlands. - 8.6 Extensive wetlands. - 8.6.1 Wet terrain. - 8.6.2 Ice-wedge polygon fields. - 8.6.3 Coastal plains. - 8.6.4 Deltas. - 8.6.5 Subarctic continental wetlands. - 8.7 Wetlands, permafrost and disturbances. - References. - 9 Rivers in cold regions. - 9.1 Drainage patterns. - 9.2 In-valley conditions. - 9.2.1 Geological setting for channels. - 9.2.2 River ice. - 9.2.3 River icing. - 9.2.4 In-channel snow. - 9.2.5 Permafrost. - 9.2.6 Alluvial environment. - 9.3 In-channel hydrology. - 9.3.1 Lateral inflow. - 9.3.2 Channel inflow. - 9.3.3 Vertical water exchanges. - 9.3.4 Storage in channels. - 9.4 Flow connectivity and delivery. - 9.4.1 Flow network integration. - 9.4.2 Decoupling of flow network. - 9.4.3 Flow delivery. - References. - 10 Basin hydrology. - 10.1 Basin outflow generation. - 10.1.1 The roles of snow. - 10.1.2 Meltwater from glaciers. - 10.1.3 Rainfall contribution. - 10.1.4 Groundwater supply. - 10.1.5 Evaporation losses. - 10.1.6 Permafrost effects. - 10.1.7 Consequences of basin storage. - 10.2 Streamflow hydrograph. - 10.3 Streamflow regimes. - 10.3.1 Nival regime. - 10.3.2 Proglacial regime. - 10.3.3 Pluvial regime. - 10.3.4 Spring-fed Regime. - 10.3.5 Prolacustrine regime. - 10.3.6 Wetland regime. - 10.4 Streamflow in large basins. - 10.4.1 Scaling up to large rivers. - 10.4.2 Flow generation in a large basin: the Liard river. - 10.4.3 Regulated discharge of large rivers. - 10.4.4 Flow in a sub-continental scale basin: Mackenzie basin. - 10.5 Basin water balance. - 10.5.1 Considerations in water balance investigation. - 10.5.2 Regional tendencies. - 10.5.3 Examples from permafrost environments. - 10.6 Permafrost basin hydrology: general remarks. - References. - Appendices. - Index.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Call number: AWI A14-13-0083 ; ad AWI A14-13-0083
    Description / Table of Contents: This handbook provides the first comprehensive review of measurement principles, instruments and processing techniques for airborne observation of the earth's atmosphere and surface. For each field, the major prinicples of measurement are presented and illustrated with commonly-used airborne instruments, to assess the present capabilities in terms of accuracy, to raise awareness of specific issues with the interpretation of measurements from airborne operations, and to review emerging measurement techniques. The authors are internationally-recognized experts in their field, who actively contribute to the design and developement of modern airborne instrumentation and processing techniques. While primarily intended for climate, geophysical and atmospheric researchers, its relevance to the solar system makes this work useful to astronomers studying planetary atmospheres with telescopes and space probes.
    Type of Medium: Monograph available for loan
    Pages: XXXII, 655 Seiten , Illustrationen
    ISBN: 9783527409969
    Series Statement: Wiley series in atmospheric physics and remote sensing
    Language: English
    Note: Contents Preface A Tribute to Dr. Robert Knollenberg List of Contributors 1 Introduction to Airborne Measurements of the Earth Atmosphere and Surface / Ulrich Schumann, David W. Fahey, Manfred Wendisch, and Jean-Louis Brenguier 2 Measurement of Aircraft State and Thermodynamic and Dynamic Variables / Jens Bange, Marco Esposito, Donald H. Lenschow, Philip R. A. Brown,Volker Dreiling, Andreas Giez, Larry Mahrt, Szymon P. Malinowski, Alfred R. Rodi, Raymond A. Shaw, Holger Siebert, Herman Smit, Martin Zöger 2.1 Introduction 2.2 Historical 2.3 Aircraft State Variables 2.3.1 Barometric Measurement of Aircraft Height 2.3.2 Inertial Attitude, Velocity, and Position 2.3.2.1 System Concepts 2.3.2.2 Attitude Angle Definitions 2.3.2.3 Gyroscopes and Accelerometers 2.3.2.4 Inertial-Barometric Corrections 2.3.3 Satellite Navigation by Global Navigation Satellite Systems 2.3.3.1 GNSS Signals 2.3.3.2 Differential GNSS 2.3.3.3 Position Errors and Accuracy of Satellite Navigation 2.3.4 Integrated IMU/GNSS Systems for Position and Attitude Determination 2.3.5 Summary, Gaps, Emerging Technologies 2.4 Static Air Pressure 2.4.1 Position Error 2.4.1.1 Tower Flyby 2.4.1.2 Trailing Sonde 2.4.2 Summary 2.5 Static Air Temperature 2.5.1 Aeronautic Definitions of Temperatures 2.5.2 Challenges of Airborne Temperature Measurements 2.5.3 Immersion Probe 2.5.4 Reverse-Flow Sensor 2.5.5 Radiative Probe 2.5.6 Ultrasonic Probe 2.5.7 Error Sources 2.5.7.1 Sensor 2.5.7.2 Dynamic Error Sources 2.5.7.3 In-Cloud Measurements 2.5.8 Calibration of Temperature Sensors 2.5.9 Summary, Gaps, Emerging Technologies 2.6 Water Vapor Measurements 2.6.1 Importance of Atmospheric Water Vapor 2.6.2 Humidity Variables 2.6.3 Dew or Frost Point Hygrometer 2.6.4 Lyman-α Absorption Hygrometer 2.6.5 Lyman-α Fluorescence Hygrometer 2.6.6 Infrared Absorption Hygrometer 2.6.7 Tunable Laser Absorption Spectroscopy Hygrometer 2.6.8 Thin Film Capacitance Hygrometer 2.6.9 Total Water Vapor and Isotopic Abundances of 18O and 2H 2.6.10 Factors Influencing In-Flight Performance 2.6.10.1 Sticking of Water Vapor at Surfaces 2.6.10.2 Sampling Systems 2.6.11 Humidity Measurements with Dropsondes 2.6.12 Calibration and In-Flight Validation 2.6.13 Summary and Emerging Technologies 2.7 Three-Dimensional Wind Vector 2.7.1 Airborne Wind Measurement Using Gust Probes 2.7.1.1 True Airspeed (TAS) and Aircraft Attitude 2.7.1.2 Wind Vector Determination 2.7.1.3 Baseline Instrumentation 2.7.1.4 Angles of Attack and Sideslip 2.7.2 Errors and Flow Distortion 2.7.2.1 Parameterization Errors 2.7.2.2 Measurement Errors 2.7.2.3 Timing Errors 2.7.2.4 Errors due to Incorrect Sensor Configuration 2.7.3 In-Flight Calibration 2.8 Small-Scale Turbulence 2.8.1 Hot-Wire/Hot-Film Probes for High-Resolution Flow Measurements 2.8.2 Laser Doppler Anemometers 2.8.3 Ultrasonic Anemometers/Thermometers 2.8.4 Measurements of Atmospheric Temperature Fluctuations with Resistance Wires 2.8.5 Calibration of Fast-Response Sensors 2.8.6 Summary, Gaps, and Emerging Technologies 2.9 Flux Measurements 2.9.1 Basics 2.9.2 Measurement Errors 2.9.3 Flux Sampling Errors 2.9.3.1 Systematic Flux Error 2.9.3.2 Random Flux Error 2.9.4 Area-Averaged Turbulent Flux 2.9.5 Preparation for Airborne Flux Measurement 3 In SituTrace Gas Measurements / Jim McQuaid, Hans Schlager, Maria Dolores Andrés-Hernández,Stephen Ball, Agnès Borbon, Steve S. Brown, Valery Catoire, Piero Di Carlo, Thomas G. Custer, Marc von Hobe, James Hopkins, Klaus Pfeilsticker, Thomas Röckmann, Anke Roiger, Fred Stroh, Jonathan Williams, and Helmut Ziereis 3.1 Introduction 3.2 Historical and Rationale 3.3 Aircraft Inlets for Trace Gases 3.4 Examples of Recent Airborne Missions 3.5 Optical In SituTechniques 3.5.1 UV Photometry 3.5.2 Differential Optical Absorption Spectroscopy 3.5.2.1 Measurement Principle 3.5.2.2 Examples of Measurement 3.5.3 Cavity Ring-Down Spectroscopy 3.5.3.1 Measurement Principle 3.5.3.2 Aircraft Implementation 3.5.3.3 Calibration and Uncertainty 3.5.3.4 Broadband Cavity Spectroscopic Methods 3.5.4 Gas Filter Correlation Spectroscopy 3.5.5 Tunable Laser Absorption Spectroscopy 3.5.5.1 Tunable Diode Versus QCLs 3.5.5.2 Further Progress 3.5.6 Fluorescence Techniques 3.5.6.1 Resonance Fluorescence 3.5.6.2 LIF Techniques 3.5.6.3 Chemical Conversion Resonance Fluorescence Technique 3.6 Chemical Ionization Mass Spectrometry 3.6.1 Negative-Ion CIMS 3.6.1.1 Measurement Principle and Aircraft Implementation 3.6.1.2 Calibration and Uncertainties 3.6.1.3 Measurement Example 3.6.2 The Proton Transfer Reaction Mass Spectrometer 3.6.3 Summary and Future Perspectives 3.7 Chemical Conversion Techniques 3.7.1 Peroxy Radical Chemical Amplification 3.7.1.1 Measurement Principles 3.7.1.2 Airborne Measurements 3.7.1.3 Calibration and Uncertainties 3.7.2 Chemiluminescence Techniques 3.7.2.1 Measurement Principle 3.7.2.2 Measurement of Ozone Using Chemiluminescence 3.7.2.3 NOy and NO2 Conversion 3.7.2.4 Calibration and Uncertainties 3.7.2.5 Measurement Examples 3.7.2.6 Summary 3.7.3 Liquid Conversion Techniques 3.7.3.1 Measurement Principles 3.7.3.2 Aircraft Implementation 3.7.3.3 Data Processing 3.7.3.4 Limitations, Uncertainties, and Error Propagation 3.7.3.5 Calibration and Maintenance 3.7.3.6 Measurement Examples 3.7.3.7 Summary and Emerging Technologies 3.8 Whole Air Sampler and Chromatographic Techniques 3.8.1 Rationale 3.8.2 Whole Air Sampling Systems 3.8.2.1 Design of Air Samplers 3.8.2.2 The M55-Geophysica Whole Air Sampler 3.8.3 Water Vapor Sampling for Isotope Analysis 3.8.4 Measurement Examples 3.8.5 Off-Line Analysis of VOCs 3.8.5.1 Air Mass Ageing 3.8.5.2 Using VOC Observations to Probe Radical Chemistry 4 In Situ Measurements of Aerosol Particles / Andreas Petzold, Paola Formenti, Darrel Baumgardner, Ulrich Bundke, Hugh Coe, Joachim Curtius, Paul J. DeMott, Richard C. Flagan, Markus Fiebig, James G. Hudson, Jim McQuaid, Andreas Minikin, Gregory C. Roberts, and Jian Wang 4.1 Introduction 4.1.1 Historical Overview 4.1.2 Typical Mode Structure of Aerosol Particle Size Distribution 4.1.3 Quantitative Description of Aerosol Particles 4.1.4 Chapter Structure 4.2 Aerosol Particle Number Concentration 4.2.1 Condensation Particle Counters 4.2.2 Calibration of Cut-Off and Low-Pressure Detection Efficiency 4.3 Aerosol Particle Size Distribution 4.3.1 Single-Particle Optical Spectrometers 4.3.1.1 Measurement Principles and Implementation 4.3.1.2 Measurement Issues 4.3.2 Aerodynamic Separators 4.3.3 Electrical Mobility Measurements of Particle Size Distributions 4.3.4 Inversion Methods 4.4 Chemical Composition of Aerosol Particles 4.4.1 Direct Offline Methods 4.4.2 Direct Online Methods (Aerosol Mass Spectrometer, Single Particle Mass Spectrometer, and Particle-Into-Liquid Sampler) 4.4.2.1 Bulk Aerosol Collection and Analysis 4.4.2.2 Mass Spectrometric Methods 4.4.2.3 Incandescence Methods 4.4.3 Indirect Methods 4.5 Aerosol Optical Properties 4.5.1 Scattering Due to Aerosol Particles 4.5.2 Absorption of Solar Radiation Due to Aerosol Particles 4.5.2.1 Filter-Based Methods 4.5.2.2 In Situ Methods 4.5.2.3 Airborne Application 4.5.3 Extinction Due to Aerosol Particles 4.5.4 Inversion Methods 4.6 CCN and IN 4.6.1 CCN Measurements Methods 4.6.2 IN Measurement Methods 4.6.3 Calibration 4.6.3.1 CCN Instrument Calibration 4.6.3.2 IN Instrument Calibration 4.7 Challenges and Emerging Techniques 4.7.1 Particle Number 4.7.2 Particle Size 4.7.3 Aerosol Optical Properties 4.7.4 Chemical Composition of Aerosol Particles 4.7.5 CCN Measurements 4.7.6 IN Measurements 5 In Situ Measurements of Cloud and Precipitation Particles / Jean-Louis Brenguier, William Bachalo, Patrick Y. Chuang, Biagio M. Esposito, Jacob Fugal, Timothy Garrett, Jean-Francois Gayet, Hermann Gerber, Andy Heymsfield, Alexander Kokhanovsky, Alexei Korolev, R. Paul Lawson, David C. Rogers, Raymond A. Shaw, Walter Strapp, and Manfred Wendisch 5.1 Introduction 5.1.1 Rationale 5.1.2 Characterization of Cloud Microphysical Properties 5.1.3 Chapter Outline 5.
    Location: AWI Reading room
    Location: AWI Reading room
    Branch Library: AWI Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Monograph available for loan
    Monograph available for loan
    Washington, DC [u.a.] : Island Press
    Call number: IASS 13.0071
    Type of Medium: Monograph available for loan
    Pages: 207 S. : Ill., graph. Darst.
    ISBN: 9781597268271
    Uniform Title: Livet mellem husene
    Language: English
    Branch Library: RIFS Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Monograph available for loan
    Monograph available for loan
    Princeton [u.a.] : Princeton Univ. Press
    Call number: AWI A3-13-0048
    Description / Table of Contents: The atmosphere is critical to climate change. It can amplify shifts in the climate system, and also mitigate them. This primer offers a short, reader-friendly introduction to these atmospheric processes and how they work, written by a leading expert on the subject. Giving readers an overview of key atmospheric processes, David Randall looks at how our climate system receives energy from the sun and sheds it by emitting infrared radiation back into space. The atmosphere regulates these radiative energy flows and transports energy through weather systems such as thunderstorms, monsoons, hurricanes, and winter storms. Randall explains how these processes work, and also how precipitation, cloud formation, and other phase changes of water strongly influence weather and climate. He discusses how atmospheric feedbacks affect climate change, how the the large-scale atmospheric circulation works, how predicting the weather and the climate are fundamentally different challenges, and much more. This is the ideal introduction for students and nonspecialists. No prior experience in atmospheric science is needed, only basic college physics.
    Type of Medium: Monograph available for loan
    Pages: VIII, 277 S. : Ill., graph. Darst.
    ISBN: 9780691143750
    Series Statement: Princeton primers in climate
    Language: English
    Note: Contents: Preface. - 1 Basics. - 2 Radiative energy flows. - 3 How turbulence and cumulus clouds carry energy upward. - Appendix to Chapter 3: More about Eddy Fluxes. - 4 How energy travels from the tropics to the poles. - Appendix to chapter 4: Conservation of momentum on a rotating sphere. - 5 Feedbacks. - 6 The water planet. - 7 Predictability of weather and climate. - 8 Air, sea, land. - 9 Frontiers. - Notes. - Glossary. - Suggestions for further reading. - Bibliography. - Index.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Call number: 8/M 13.0191
    Description / Table of Contents: Early warning for geologic disasters is a subject of intensive research. Opening up the path for students and lecturers alike, this book presents innovative trends in geoscientific research in this subject. The book successfully fills a gap in this field. The past years have seen new technologies that could be utilized for early warning and real-time loss estimation. They include self-organizing sensor networks, new satellite imagery with high resolution, multi-sensor observational capacities, and crowd sourcing. From this and improved physical models, data processing and communication methodologies a significant step towards better early warning technologies has been achieved by research.At the same time, early warning systems became part of the disaster management practice for instance in Japan and Indonesia. This book marks the important point where:* Research activities continue to improve early warning * Experience with applications is expandingAt this critical point in development of early warning for geological disasters it is timely to provide a volume that documents the state-of-the-art, provides an overview on recent developments and serves as knowledge resource for researcher and practitioners.
    Type of Medium: Monograph available for loan
    Pages: XV, 379 S. : Ill., graph. Darst., Kt. , 235 mm x 155 mm
    ISBN: 9783642122323
    Series Statement: Advanced technologies in earth sciences
    Classification:
    B..
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Delft ; 1.1969-76.2010
    Call number: S 90.0083
    ISSN: 0165-1706
    Language: English
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Monograph available for loan
    Monograph available for loan
    San Francisco : No Starch Press
    Call number: PIK M 034-13-0174
    Type of Medium: Monograph available for loan
    Pages: XVIII, 656 S. : zahlr. Ill., graph. Darst. , 24 cm
    Edition: 1. print.
    ISBN: 1593273835 , 978-1-59327-383-5
    Uniform Title: GIMP.
    Language: English
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...