ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • exopolysaccharides  (3)
  • biotechnology  (2)
  • Basel, Beijing, Wuhan : MDPI  (5)
  • English  (5)
  • Chinese
  • 2015-2019  (5)
  • 1985-1989
  • 1945-1949
Collection
Publisher
  • Basel, Beijing, Wuhan : MDPI  (5)
Language
  • English  (5)
  • Chinese
Years
  • 2015-2019  (5)
  • 1985-1989
  • 1945-1949
Year
  • 1
    Unknown
    Basel, Beijing, Wuhan : MDPI
    Keywords: astrobiology ; biochemistry and molecular biology ; biodiversity and ecology ; biotechnology ; extraterrestrial analogues ; extreme environments ; extremophiles ; genetics, genomics and proteomics ; origin of life ; phylogeny and evolution ; physiology and metabolism
    Description / Table of Contents: Over the last decades, the study of extremophiles has providing ground breaking discoveries that challenge the paradigms of modern biology and make us rethink intriguing questions such as “what is life?”, “what are the limits of life?”, and “what are the fundamental features of life?”. The mechanisms by which different microorganisms adapt to extreme environments provide a unique perspective on the fundamental characteristics of biological processes present in most species. Extremophiles are also critical for evolutionary studies related to the origins of life, since they form a cluster on the base of the tree of life. Furthermore, the application of extremophiles in industrial processes has opened a new era in biotechnology. The study of extreme environments has become a key area of research for astrobiology. Extremophiles may help us understand what form life takes on other planetary bodies in our own solar system and beyond. These findings and possibilities have made the study of life in extreme environments one of the most exciting areas of research in recent decades. However, despite the latest advances we are just in the beginning of exploring and characterizing the world of extremophiles. This special issue covers all aspects of life in extreme environments.
    Pages: Online-Ressource (XVII, 418 Seiten)
    Edition: Printed Edition of the Special Issue Published in Life
    ISBN: 9783038421788
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Unknown
    Basel, Beijing, Wuhan : MDPI
    Keywords: chitosan ; alginate ; agar ; carrageenans ; exopolysaccharides ; chemical modification ; drug delivery ; gene delivery
    Description / Table of Contents: Biopolymers, as natural polysaccharides, are considered benign polymers for what concerns the environment. This is not a new invention, but at best a renaissance: the first type of polymers used by human kind were animal hides, cellulose, silk, wool. Among benefits of natural occurring biopolymers there are potential biocompatibility, renewable resources, low processing costs, tailoring of structure by genetic manipulation, and, as said, environmentally compatibility. Limits are, sometimes, premature degradation and high production costs due to the very high purity required for medical uses. Polysaccharides are not drugs by themselves, but their use in pharmaceutical field, for example as drug carriers or antimicrobial, anti-inflammatory or anticoagulant agents, is increasingly promising. Marine polysaccharides include chitin, chitosan, alginate, agar and carrageenans. Chitosan is a cationic carbohydrate biopolymer derived from chitin, the second most abundant polysaccharides present in nature after cellulose. The main sources of chitin are the shell wastes of shrimps, lobsters and crabs. For its characteristics, chitosan founds particular application as non viral vector in gene delivery. Films from chitosan are very tough and long lasting. Alginates derive from seaweed extraction (pheophyceae), and are mainly used in drug delivery and as hydrogels for immobilizing cells and enzymes, due to the mild conditions of cross-linking through bivalent cations (Ca2 ). Agar (or agar-agar) and carrageenans are linear polysaccharides from red seaweeds. They are highly reactive chemically and are peculiar for thermoreversible gel formation. Exopolysaccharides (EPS), substantial components of the extracellular matrix of many cells of marine origin, also have to be mentioned for their potential interest in pharmaceuticals, and new EPS producing bacteria, particularly from extreme marine environments, are being isolated.The possibility of chemical modification, blending and addition of biodegradable additives allows to tailor the final properties of polysaccharides and opens the doors to wider applications, particularly in pharmaceutical area. This issue is intended to explore any new potentiality of marine polysaccharides, as those above mentioned, deriving from chemical or chemical-physical modifications, and the scaling-up of their pharmaceutical applications.
    Pages: Online-Ressource (X, 290 Seiten)
    Edition: Printed Edition of the Special Issue Published in Marine Drugs
    ISBN: 9783038429005
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Unknown
    Basel, Beijing, Wuhan : MDPI
    Keywords: biodiversity ; biogeochemistry ; biogeography ; biotechnology ; evolutionary biology ; genetics, genomics and proteomics ; microbiology ; molecular biology ; molecular ecology ; physiology and metabolism
    Description / Table of Contents: Polar microbiology is a promising field of research that can tell us much about the fundamental features of life. The microorganisms that inhabit Arctic and Antarctic environments are important not only because of the unique species they represent, but also because of their diverse and unusual physiological and biochemical properties. Furthermore, microorganisms living in Polar Regions provide useful models for general questions in ecology and evolutionary biology given the reduced complexity of their ecosystems, the relative absence of confounding effects associated with higher plants or animals, and the severe biological constraints imposed by the polar environment. In terms of applied science, the unique cold-adapted enzymes and other molecules of polar microorganisms provide numerous opportunities for biotechnological development. Another compelling reason to study polar microbial ecosystems is the fact that they are likely to be among the ecosystems most strongly affected by global change. For these reasons, polar microbiology is a thriving branch of science with the potential to provide new insights into a wide range of basic and applied issues in biological science. In this context, it is timely to review and highlight the progress so far and discuss exciting future perspectives. In this special issue, some of the leaders in the field describe their work, ideas and findings.
    Pages: Online-Ressource (XIII, 449 Seiten)
    Edition: Printed Edition of the Special Issue Published in Biology
    ISBN: 9783038421764
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Unknown
    Basel, Beijing, Wuhan : MDPI
    Keywords: chitosan ; alginate ; agar ; carrageenans ; exopolysaccharides ; chemical modification ; drug delivery ; gene delivery
    Description / Table of Contents: Biopolymers, as natural polysaccharides, are considered benign polymers for what concerns the environment. This is not a new invention, but at best a renaissance: the first type of polymers used by human kind were animal hides, cellulose, silk, wool. Among benefits of natural occurring biopolymers there are potential biocompatibility, renewable resources, low processing costs, tailoring of structure by genetic manipulation, and, as said, environmentally compatibility. Limits are, sometimes, premature degradation and high production costs due to the very high purity required for medical uses. Polysaccharides are not drugs by themselves, but their use in pharmaceutical field, for example as drug carriers or antimicrobial, anti-inflammatory or anticoagulant agents, is increasingly promising. Marine polysaccharides include chitin, chitosan, alginate, agar and carrageenans. Chitosan is a cationic carbohydrate biopolymer derived from chitin, the second most abundant polysaccharides present in nature after cellulose. The main sources of chitin are the shell wastes of shrimps, lobsters and crabs. For its characteristics, chitosan founds particular application as non viral vector in gene delivery. Films from chitosan are very tough and long lasting. Alginates derive from seaweed extraction (pheophyceae), and are mainly used in drug delivery and as hydrogels for immobilizing cells and enzymes, due to the mild conditions of cross-linking through bivalent cations (Ca2+). Agar (or agar-agar) and carrageenans are linear polysaccharides from red seaweeds. They are highly reactive chemically and are peculiar for thermoreversible gel formation. Exopolysaccharides (EPS), substantial components of the extracellular matrix of many cells of marine origin, also have to be mentioned for their potential interest in pharmaceuticals, and new EPS producing bacteria, particularly from extreme marine environments, are being isolated. The possibility of chemical modification, blending and addition of biodegradable additives allows to tailor the final properties of polysaccharides and opens the doors to wider applications, particularly in pharmaceutical area. This issue is intended to explore any new potentiality of marine polysaccharides, as those above mentioned, deriving from chemical or chemical-physical modifications, and the scaling-up of their pharmaceutical applications.
    Pages: Online-Ressource (VIII, 224 Seiten)
    Edition: Printed Edition of the Special Issue Published in Marine Drugs
    ISBN: 9783038428985
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Unknown
    Basel, Beijing, Wuhan : MDPI
    Keywords: chitosan ; alginate ; agar ; carrageenans ; exopolysaccharides ; chemical modification ; drug delivery ; gene delivery
    Description / Table of Contents: Biopolymers, as natural polysaccharides, are considered benign polymers for what concerns the environment. This is not a new invention, but at best a renaissance: the first type of polymers used by human kind were animal hides, cellulose, silk, wool. Among benefits of natural occurring biopolymers there are potential biocompatibility, renewable resources, low processing costs, tailoring of structure by genetic manipulation, and, as said, environmentally compatibility. Limits are, sometimes, premature degradation and high production costs due to the very high purity required for medical uses. Polysaccharides are not drugs by themselves, but their use in pharmaceutical field, for example as drug carriers or antimicrobial, anti-inflammatory or anticoagulant agents, is increasingly promising. Marine polysaccharides include chitin, chitosan, alginate, agar and carrageenans. Chitosan is a cationic carbohydrate biopolymer derived from chitin, the second most abundant polysaccharides present in nature after cellulose. The main sources of chitin are the shell wastes of shrimps, lobsters and crabs. For its characteristics, chitosan founds particular application as non viral vector in gene delivery. Films from chitosan are very tough and long lasting. Alginates derive from seaweed extraction (pheophyceae), and are mainly used in drug delivery and as hydrogels for immobilizing cells and enzymes, due to the mild conditions of cross-linking through bivalent cations (Ca2 ). Agar (or agar-agar) and carrageenans are linear polysaccharides from red seaweeds. They are highly reactive chemically and are peculiar for thermoreversible gel formation. Exopolysaccharides (EPS), substantial components of the extracellular matrix of many cells of marine origin, also have to be mentioned for their potential interest in pharmaceuticals, and new EPS producing bacteria, particularly from extreme marine environments, are being isolated.The possibility of chemical modification, blending and addition of biodegradable additives allows to tailor the final properties of polysaccharides and opens the doors to wider applications, particularly in pharmaceutical area. This issue is intended to explore any new potentiality of marine polysaccharides, as those above mentioned, deriving from chemical or chemical-physical modifications, and the scaling-up of their pharmaceutical applications.
    Pages: Online-Ressource (X, 564 Seiten)
    Edition: Printed Edition of the Special Issue Published in Marine Drugs
    ISBN: 9783038429029
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...