ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (393)
  • English  (393)
  • Chinese
  • Latin
  • Spanish
  • 2020-2022  (393)
Collection
Source
Keywords
Language
Years
Year
  • 1
    Publication Date: 2021-12-07
    Description: The cultivation of perennial instead of annual energy crops has received growing interest. Previous studies identified numerous beneficial effects of perennial energy crop (PEC) cultivation for the agricultural landscape such as promotion of agrobiodiversity, reduced requirements for agrochemicals and fertilizers as well as a large potential for carbon accumulation in soil. However, the mere presence of soil organic matter (SOM) accumulation gives no indication about the persistence of the SOM for example after a recultivation of the stands. Therefore, this study focused on SOM pools of different density fractions and soil microbial parameters. Six different PECs were tested against a typical benchmark system as feedstock for anaerobic digestion. The study has shown that all PEC species increased soil microbial activity and provided an insight how they sequester carbon in soil. Moreover, significant modifications in basic soil properties caused by plant growth were observed. For example, the cultivation of giant knotweed has lowered the soil pH by more than 0.5 pH units compared to the benchmark system. After 5 years of PEC cultivation, total soil organic carbon stocks were increased between 1,500 ± 400 and 4,500 ± 1,500 kg C ha-1 for the upper 10 centimetres of soil. The distribution among different soil fractions showed species-specific patterns. Tall wheatgrass and Virginia mallow showed particular high accumulation rates in the mineral-associated SOM fraction which indicates long residence times of the SOM after a possible recultivation of the fields.
    Keywords: 631.4 ; perennial energy crop ; soil carbon accumulation ; soil microbiological activity
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-12-06
    Description: Abstract Vegetation covers on dikes and embankment dams have proven as sustainable and cost-effective surface protection against external erosion caused by hydraulic, mechanical, or climatic impacts. Determination of the hydraulic loads that act upon these covers requires the knowledge of the flow resistance. While the high-velocity flows on vegetated slopes are often aerated, the flow aeration has rarely been considered, and no direct measurements of the air-water flow properties have been conducted to date. The air-water flow properties are needed for a direct estimation of important design parameters such as friction factors and residual head at the downstream end. Herein, unique air-water flow measurements were conducted in high-velocity air-water flows down a vegetated chute with a 1:3 slope. Several vegetation covers were tested for a range of flow rates. The experiments revealed strong flow aeration within three-dimensional, fragmented flows associated with complex interactions of vegetation and high-velocity flows. The air-water flow properties were measured with phase-detection intrusive probes providing novel insights into aerated flows on vegetated chutes including distributions of void fraction, bubble count rate, and interfacial velocity as well as direct estimates of energy dissipation and flow resistance. The results highlighted strong flow aeration and energy dissipation for all vegetated configurations. The median equivalent Darcy-Weisbach friction factors for all vegetations were within 0.19 to 0.45, comparable to aerated flows on stepped spillways. The present results highlighted the significant flow resistance of vegetated covers and the need to consider air-water flow properties in the design of vegetated chutes.
    Keywords: 550.78 ; vegetated chutes ; air‐water flow properties
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-12-06
    Description: We describe a low-cost three-dimensional underwater particle tracking velocimetry system to directly measure particle settling rate and flux in low-turbulence aquatic environments. The system consists of two waterproof cameras that acquire stereoscopic videos of sinking particles at 48 frames s−1 over a tunable sampling volume of about 45 × 25 × 24 cm. A dedicated software package has been developed to allow evaluation of particle velocities, concentration and flux, but also of morphometric parameters such as particle area, sinking angle, shape irregularity, and density. Our method offers several advantages over traditional approaches, like sediment trap or expensive in situ camera systems: (1) it does not require beforehand particle collection and handling; (2) it is not subjected to sediment trap biases from turbulence, horizontal advection, or presence of swimmers, that may alter particulate load and flux; (3) the camera system enables faster data processing and flux computation at higher spatial resolution; (4) apart from the particle settling rates, the particle size distribution, and morphology is determined. We tested the camera system in Lake Stechlin (Germany) in low turbulence and mean flow, and analyzed the morphological properties and settling rates of particles to determine their sinking behavior. The particle flux assessed from conventional sediment trap measurements agreed well with that determined by our system. By this, the low-cost approach demonstrated its reliability in low turbulence environments and a strong potential to provide new insights into particulate carbon transport in aquatic systems. Extension of the method to more turbulent and advective conditions is also discussed.
    Keywords: 551.48 ; aquatic environments ; particle velocity ; tracking system
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-12-06
    Description: Trait-based approaches have broadened our understanding of how the composition of ecological communities responds to environmental drivers. This research has mainly focussed on abiotic factors and competition determining the community trait distribution, while effects of trophic interactions on trait dynamics, if considered at all, have been studied for two trophic levels at maximum. However, natural food webs are typically at least tritrophic. This enables indirect interactions of traits and biomasses among multiple trophic levels leading to underexplored effects on food web dynamics. Here, we demonstrate the occurrence of mutual trait adjustment among three trophic levels in a natural plankton food web (Lake Constance) and in a corresponding mathematical model. We found highly recurrent seasonal biomass and trait dynamics, where herbivorous zooplankton increased its size, and thus its ability to counter phytoplankton defense, before phytoplankton defense actually increased. This is contrary to predictions from bitrophic systems where counter-defense of the consumer is a reaction to prey defense. In contrast, counter-defense of carnivores by size adjustment followed the defense of herbivores as expected. By combining observations and model simulations, we show how the reversed trait dynamics at the two lower trophic levels result from a “trophic biomass–trait cascade” driven by the carnivores. Trait adjustment between two trophic levels can therefore be altered by biomass or trait changes of adjacent trophic levels. Hence, analyses of only pairwise trait adjustment can be misleading in natural food webs, while multitrophic trait-based approaches capture indirect biomass–trait interactions among multiple trophic levels.
    Keywords: 577.2 ; Lake Constance ; food web dynamics
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-12-06
    Description: Periphytic biofilms are the major resource for many herbivorous invertebrates in both marine and freshwater benthos. They are of crucial importance for benthic food webs, substrate stability, and biogeochemical processes in littoral zones. While the importance of invertebrate grazing on biofilms has been studied extensively using natural, mixed algal communities grown on artificial substrates, there is so far no method available to create defined periphyton communities for these grazing studies. The reason for this is that many benthic algae interact with co-occurring species within the extracellular polymeric substances (EPSs) that form the nonorganismic part of the biofilm. Here, we present a novel method that allows the manufacturing of defined monoculture and multispecies biofilms by using an alginate polymer as artificial EPS structure, into which algal cultures can be embedded. Using confocal laser scanning microscopy, we show that alginate effectively embeds various algal taxa in an EPS matrix that is very similar to natural biofilms. In a grazing experiment, we demonstrate that several common freshwater herbivorous invertebrates can graze these alginate biofilms efficiently. As the method is easy to handle, it allows for highly controlled feeding experiments with benthic herbivores to assess, for example, the role of algal biodiversity on the efficiency of top-down control, the effects of environmental drivers such as nutrients, salinity, or seawater acidification on biofilm community structure, and the impacts of herbivory in benthic communities.
    Keywords: 577.2 ; benthic ecology ; biofilm pads
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-12-06
    Description: Abstract Although the majority of coastal sediments consist of sandy material, in some areas marine ingression caused the submergence of terrestrial carbon-rich peat soils. This affects the coastal carbon balance, as peat represents a potential carbon source. We performed a column experiment to better understand the coupled flow and biogeochemical processes governing carbon transformations in submerged peat under coastal fresh groundwater (GW) discharge and brackish water intrusion. The columns contained naturally layered sediments with and without peat (organic carbon content in peat 39 ± 14 wt%), alternately supplied with oxygen-rich brackish water from above and oxygen-poor, low-saline GW from below. The low-saline GW discharge through the peat significantly increased the release and ascent of dissolved organic carbon (DOC) from the peat (δ13CDOC − 26.9‰ to − 27.7‰), which was accompanied by the production of dissolved inorganic carbon (DIC) and emission of carbon dioxide (CO2), implying DOC mineralization. Oxygen respiration, sulfate (SO42−) reduction, and methane (CH4) formation were differently pronounced in the sediments and were accompanied with higher microbial abundances in peat compared to sand with SO42−-reducing bacteria clearly dominating methanogens. With decreasing salinity and SO42− concentrations, CH4 emission rates increased from 16.5 to 77.3 μmol m−2 d−1 during a 14-day, low-saline GW discharge phase. In contrast, oxygenated brackish water intrusion resulted in lower DOC and DIC pore water concentrations and significantly lower CH4 and CO2 emissions. Our study illustrates the strong dependence of carbon cycling in shallow coastal areas with submerged peat deposits on the flow and mixing dynamics within the subterranean estuary.
    Keywords: 550.724 ; coastal peatlands ; coastal peatlands ; biogeochemical processes ; carbon release ; column experiments
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-12-03
    Description: In recent years, X-ray speckle-tracking techniques have emerged as viable tools for wavefront metrology and sample imaging applications. These methods are based on the measurement of near-field images. Thanks to their simple experimental setup, high angular sensitivity and compatibility with low-coherence sources, these methods have been actively developed for use with synchrotron and laboratory light sources. Not only do speckle-tracking techniques give the potential for high-resolution imaging, but they also provide rapid and robust characterization of aberrations of X-ray optical elements, focal spot profiles, and sample position and transmission properties. In order to realize these capabilities, software implementations are required that are equally rapid and robust. To address this need, a software suite has been developed for the ptychographic X-ray speckle-tracking technique, an X-ray speckle-based method suitable for highly divergent wavefields. The software suite is written in Python 3, with an OpenCL back end for GPU and multi-CPU core processing. It is accessible as a Python module, through the command line or through a graphical user interface, and is available as source code under Version 3 or later of the GNU General Public License.
    Keywords: 548 ; software ; wavefront metrology ; speckle tracking ; ptychography ; X-ray projection imaging
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-12-03
    Description: We examine the relative dispersion and the contribution of tides on the relative diffusivities of surface drifters in the North Sea. The drifters are released in two clusters, yielding 43 pairs, in the vicinity of a tidal mixing front in the German Bight, which is located in the southeastern area of the North Sea. Both clusters indicate decreasing dispersion when crossing the tidal mixing front, followed by exponentially increasing dispersion with e-folding times of 0.5 days for Cluster 1 and 0.3 days for Cluster 2. A transition of the dispersion regimes is observed at scales of the order of the Rossby radius of deformation (10 km). After that, the relative dispersion grows with a power-law dependency with a short period of ballistic dispersion (quadratic growth), followed by a Richardson regime (cubic growth) in the final phase. Scale-dependent metrics such as the relative diffusivities are consistent with these findings, while the analysis of the finite-scale Lyapunov exponents (FSLEs) shows contradictory results for the submesoscales. In summary, the analysis of various statistical Lagrangian metrics suggests that tracer stirring at the submesoscales is nonlocal and becomes local at separation scales larger than 10 km. The analysis of meridional and zonal dispersion components indicates anisotropic dispersion at the submesoscales, which changes into isotropic dispersion on the mesoscales. Spectral analysis of the relative diffusivity gives evidence that semidiurnal and shallow-water tides influence relative diffusivity at the mesoscales, especially for drifter separations above 50 km.
    Keywords: 551.46 ; North Sea ; drifter dispersion
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-12-03
    Description: Micro-macro models for dissolution processes are derived from detailed pore-scale models applying upscaling techniques. They consist of flow and transport equations at the scale of the porous medium (macroscale). Both include averaged time- and space-dependent coefficient functions (permeability, porosity, reactive surface, and effective diffusion). These are in turn explicitly computed from the time- and space-dependent geometry of unit cells and by means of auxiliary cell problems defined therein (microscale). The explicit geometric structure is characterized by a level set. For its evolution, information from the transport equations solutions is taken into account (micro-macro scales). A numerical scheme is introduced, which is capable of evaluating such complex settings. For the level-set equation a second-order scheme is applied, which enables us to accurately determine the dynamic reactive surface. Local mesh refinement methods are applied to evaluate Stokes type cell problems using P2/P1 elements and a Uzawa type linear solver. Applications of our permeability solver to scenarios involving static and evolving geometries are presented. Furthermore, macroscopic flow and transport equations are solved applying mixed finite elements. Finally, adaptive strategies to overcome the computational burden are discussed. We apply our approach to the dissolution of an array of dolomite grains in the micro-macro context and validate our numerical scheme.
    Keywords: 551.49 ; 550.724 ; porous media ; reactive flow ; dissolution processes ; modeling
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-12-03
    Description: In contrast to seamount chains, small solitary seamounts/seamount groups have rarely been sampled despite their large number and therefore their origins remain enigmatic. Here we present new 40Ar/39Ar, trace element and Nd-Hf-Pb isotope data from the solitary Demenitskoy Seamount, the isolated Tolkien seamount group and the Krylov Seamount and Ridge in the Canary Basin, Central Atlantic Ocean. Their chemical compositions range from intraplate ocean-island-basalt (Demenitskoy) to mid-ocean-ridge-basalt (Tolkien and Krylov) types. Lavas from all three seamount groups, however, show geochemical evidence for involvement of enriched Canary/Cape Verde plume material. Seismic tomography shows that large areas around these mantle plumes consist of dispersed low-velocity material, which could represent diffusely-upwelling plume mantle. Melts from such upwelling mantle could form isolated seamounts. Diffuse upwelling of plume material is likely to be extremely widespread but has been poorly studied to date. Significance Statement A fundamental question concerns the origin of the hundreds of thousands of solitary seamounts and small isolated clusters of such seamounts on the seafloor of the world's ocean basins. Most of them do not fit into any currently accepted models (e.g. they are not associated with a linear hotspot track or plate boundary processes). Their formation could therefore represent a new kind of intraplate volcanism that in fact could be extremely widespread but has been thus far largely neglected. In this manuscript, we report geochemical data from three isolated seamount sites in the Canary Basin and propose a provocative model for their formation that can also be applied to isolated seamounts elsewhere. Our study is therefore also a plea for the long overdue systematic investigation of small seamount volcanism in the world's ocean basins. I hereby confirm that all the data and interpretations are new and have not been published elsewhere. All co-authors have been actively involved in this work, have approved the manuscript and agreed to this submission.
    Keywords: 551 ; Canary Basin ; seamounts ; isotopic compositions
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...