ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • DEMMIN  (102)
  • Environmental management
  • English  (135)
  • Chinese
  • Hungarian
  • Portuguese
  • Romanian
  • Turkish
  • 2015-2019  (132)
  • 2005-2009  (3)
  • 1965-1969
  • 1945-1949
  • 2018  (112)
  • 2016  (20)
  • 2006  (3)
Collection
Language
  • English  (135)
  • Chinese
  • Hungarian
  • Portuguese
  • Romanian
  • +
Years
  • 2015-2019  (132)
  • 2005-2009  (3)
  • 1965-1969
  • 1945-1949
Year
  • 1
    Keywords: Biochemistry ; Biotechnology ; Environmental management ; Environmental protection ; Food science ; Plant Ecology
    ISBN: 9783540289975
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Earth sciences ; Environmental management ; Hydrogeology ; Sustainable development ; Economic growth ; Earth Sciences ; Hydrogeology ; Water Policy/Water Governance/Water Management ; Economic Growth ; Sustainable Development
    Description / Table of Contents: From the Contents: Overview concepts, approaches and challenges of integrated groundwater management --- Disentangling the complexity of a groundwater dependent socio-ecological system --- The scale of the groundwater issue internationally --- Groundwater law --- Groundwater regulation and integrated water planning
    Pages: Online-Ressource (XIII, 762 pages) , 101 illustrations
    ISBN: 9783319235769
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Unknown
    Singapore : Springer
    Keywords: Environment ; Climate change ; Environmental management ; Sustainable development ; Environment ; Sustainable Development ; Climate Change Management and Policy ; Environmental Management
    Description / Table of Contents: Introduction --- Part 1: Asia is a key for sustainable low carbon society --- 1. GHG reduction potential in Asia --- 2. Transition to a low carbon future in China towards 2°C Global target --- 3. India’s GHG Emission Reduction and Sustainable Development --- 4. 80% reduction scenario in Japan --- 5. Potential of low carbon development in Vietnam, from practices to legal framework --- Part 2: Brigding the gap between modeling and real policy development --- 6. Designing a National Policy Framework for NAMAs -Lesson learnt from Thailand- --- 7. ‘Science-to-Action’ of the Sustainable Low Carbon City-region --- Part 3:Best parctices and recommendations in each sector to make it happen --- 8. Low Carbon Transport in India - Assessment of Best Practice Case Studies - --- 9. Potential of Reducing GHG Emission from REDD+ Activities in Indonesia --- 10. Fostering capacity development for ASIA leapfrog --- 11. Capacity development on GHG inventories in Asia -WGIA Workshop on Greenhouse gas Inventory in Asia- --- 12. Japan’s Comprehensive and Continual Support Package for the Creation of Scientific Climate Policies in Asia
    Pages: Online-Ressource (X, 270 pages) , 99 illustrations, 70 illustrations in color
    ISBN: 9789812878267
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Earth sciences ; Environmental management ; Hydrogeology ; Sustainable development ; Economic growth ; Earth Sciences ; Hydrogeology ; Water Policy/Water Governance/Water Management ; Economic Growth ; Sustainable Development
    Description / Table of Contents: From the Contents: Overview concepts, approaches and challenges of integrated groundwater management --- Disentangling the complexity of a groundwater dependent socio-ecological system --- The scale of the groundwater issue internationally --- Groundwater law --- Groundwater regulation and integrated water planning
    Pages: Online-Ressource (XIII, 762 pages) , 101 illustrations
    ISBN: 9783319235769
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: Earth sciences ; Remote sensing ; Environmental management ; Earth Sciences ; Earth Sciences, general ; Big Data ; Remote Sensing/Photogrammetry ; Environmental Management ; Space Sciences (including Extraterrestrial Physics, Space Exploration and Astronautics)
    Description / Table of Contents: This book is published open access under a CC BY 4.0 license. Over  the  past  decades,  rapid developments in digital and sensing technologies, such  as the Cloud, Web and Internet of Things, have dramatically changed the way we live and work. The digital transformation is revolutionizing our ability to monitor our planet and transforming the  way we access, process and exploit Earth Observation data from satellites. This book reviews these megatrends and their implications for the Earth Observation community as well as the wider data economy. It provides insight into new paradigms of Open Science and Innovation applied to space data, which are characterized by openness, access to large volume of complex data, wide availability of new community tools, new techniques for big data analytics such as Artificial Intelligence, unprecedented level of computing power, and new types of collaboration among researchers, innovators, entrepreneurs and citizen scientists. In addition, this book aims to provide readers with some reflections on the future of Earth Observation, highlighting through a series of use cases not just the new opportunities created by the New Space revolution, but also the new challenges that must be addressed in order to make the most of the large volume of complex and diverse data delivered by the new generation of satellites.  
    Pages: Online-Ressource (VIII, 332 pages) , 116 illustrations, 111 illustrations in color
    ISBN: 9783319656335
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: Environmental management ; Cultural heritage ; Tourism ; Management ; Nature conservation ; Sustainable development ; Development economics ; Economics ; Development Economics ; Water Policy/Water Governance/Water Management ; Sustainable Development ; Nature Conservation ; Cultural Heritage ; Tourism Management
    Description / Table of Contents: Introduction --- The Jordan Valley --- Projections And Objectives --- Meeting The Strategic Planning Objectives --- The Year 2050 --- Final Conclusions And Recommendations --- Colophon.
    Pages: Online-Ressource (XLII, 239 pages) , 181 illustrations, 179 illustrations in color
    ISBN: 9783319300368
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: Environment ; Nuclear energy ; Natural disasters ; Probabilities ; Quality control ; Reliability ; Industrial safety ; Environmental management ; Environment ; Environmental Management ; Nuclear Energy ; Natural Hazards ; Quality Control, Reliability, Safety and Risk ; Probability Theory and Stochastic Processes
    Description / Table of Contents: Foreword --- Preface --- Cooperators --- Part 1 Active Faults --- Part 2 Seismic Source Modeling and Seismic Motion --- Part 3 Probabilistic Risk Assessment with External Hazards --- Part 4 Nuclear Risk Governance in Society
    Pages: Online-Ressource (XII, 177 pages) , 74 illustrations, 36 illustrations in color
    ISBN: 9784431558224
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: Earth sciences ; Geology ; Natural disasters ; Environmental management ; Communication ; Earth Sciences ; Natural Hazards ; Geology ; Environmental Management ; Communication Studies
    Description / Table of Contents: Part I: Bill McGuire --- Volcano Crisis Communication: Challenges and Solutions in the 21st Century --- Volcanic Gases: Silent Killers --- The Communication and Risk Management of Volcanic Ballistic Hazards --- Part One Summary: Adapting Warnings for Volcanic Hazards --- Part II: Gill Jolly --- Volcanic Unrest and Hazard Communication in Long Valley Volcanic Region, California --- Organisational Response to the 2007 Ruapehu Crater Lake Dam-Break Lahar in New Zealand: Use of Communication in Creating an Effective Response --- Social Representation of Human Resettlement Associated with Risk from Volcán de Colima, Mexico --- Part Two Summary: Observing Volcanic Crises --- Part III: Deanne Bird and Kat Haynes --- Communicating Information on Eruptions and Their Impacts from the Earliest Times Until the Late Twentieth Century --- “There’s no Plastic in Our Volcano”: A Story About Losing and Finding a Path to Participatory Volcanic Risk Management in Colombia --- Challenges of Volcanic Crises on Small Islands States --- Living with an Active Volcano: Informal and Community Learning for Preparedness in South of Japan --- Part Three Summary: Communicating into the Future. Volcanic Crisis Communication: Where Do We Go from Here?
    Pages: Online-Ressource (XV, 771 pages)
    ISBN: 9783319440972
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: Environment ; Renewable energy resources ; Energy policy ; Energy and state ; Ecosystems ; Renewable energy sources ; Alternate energy sources ; Green energy industries ; Environmental law ; Environmental policy ; Environmental management ; Sustainable development ; Environment ; Sustainable Development ; Energy Policy, Economics and Management ; Ecosystems ; Environmental Management ; Renewable and Green Energy ; Environmental Law/Policy/Ecojustice
    Description / Table of Contents: Preface.-Introduction.-Part 1: Biofuels and Sustainability Conceptual Framework --- Chapter 1. Sustainability Science Perspective for Biofuels [Takeuchi, Matsuda] --- Chapter 2. Stakeholder perspectives and Multilevel Governance [Shiroyama, Matsuura] --- Chapter 3. Applying stakeholder perspectives to sustainable biofuel strategy: a summary of our analyses [Shiroyama, Matsuura].-Part 2: Impacts on land use and ecosystem services --- Chapter 4. Global Economic and Environmental Impacts - Economic Impacts of biofuels and related policy [Suzuki and Takahashi] --- Chapter 5. Global Economic and Environmental Impacts - Environmental impacts of biofuel production on the GHG emission reduction [Hanaki] --- Chapter 6. Impacts at the National & Regional Scales - Land use change impacts [Hayashi] --- Chapter 7. Impacts at the National & Regional Scales - Socioeconomic impacts in East Asia [Elder, Kozima, Sano and Hayashi] --- Chapter 8. Social, Economic and Political Impacts - Socio-Political impacts to the roles of stakeholders [Shiroyama and Matsuura ] --- Chapter 9. Social, Economic and Political Impacts - Impacts on ecosystem services [Alexandros and Stromberg] --- Part 3: Sustainable biofuels strategy options --- Chapter 10. Roadmap for building sustainable strategy options - Developing sustainable strategy options [Shiroyama and Matsuura] --- Chapter 11. Roadmap for building sustainable strategy options - Application of Ontology for developing strategy options [Kozaki, Mizoguchi and Saito] --- Chapter 12. Key strategies for policy makers - Global Strategies options [Arai, Matsuda and Suzuki] --- Chapter 13. Key strategies for policy makers - Regional Strategy options for East Asia [Elder, Kozima, Sano and Hayashi] --- Chapter 14. Key strategies for policy makers - National strategy options for Japan [Shiroyama, Matsuura and Saito]
    Pages: Online-Ressource (VI, 265 pages) , 72 illustrations, 22 illustrations in color
    ISBN: 9784431548959
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: Earth sciences ; Remote sensing ; Environmental management ; Earth Sciences ; Earth Sciences, general ; Big Data ; Remote Sensing/Photogrammetry ; Environmental Management ; Space Sciences (including Extraterrestrial Physics, Space Exploration and Astronautics)
    Description / Table of Contents: This book is published open access under a CC BY 4.0 license. Over  the  past  decades,  rapid developments in digital and sensing technologies, such  as the Cloud, Web and Internet of Things, have dramatically changed the way we live and work. The digital transformation is revolutionizing our ability to monitor our planet and transforming the  way we access, process and exploit Earth Observation data from satellites. This book reviews these megatrends and their implications for the Earth Observation community as well as the wider data economy. It provides insight into new paradigms of Open Science and Innovation applied to space data, which are characterized by openness, access to large volume of complex data, wide availability of new community tools, new techniques for big data analytics such as Artificial Intelligence, unprecedented level of computing power, and new types of collaboration among researchers, innovators, entrepreneurs and citizen scientists. In addition, this book aims to provide readers with some reflections on the future of Earth Observation, highlighting through a series of use cases not just the new opportunities created by the New Space revolution, but also the new challenges that must be addressed in order to make the most of the large volume of complex and diverse data delivered by the new generation of satellites.  
    Pages: Online-Ressource (VIII, 332 pages) , 116 illustrations, 111 illustrations in color
    ISBN: 9783319656335
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Keywords: Life sciences ; Agriculture ; Climate change ; Environmental management ; Soil science ; Soil conservation ; Air pollution ; Life Sciences ; Agriculture ; Climate Change ; Atmospheric Protection/Air Quality Control/Air Pollution ; Soil Science & Conservation ; Environmental Management
    Description / Table of Contents: Chapter 1 Introduction to the SAMPLES Approach --- Chapter 2 Targeting Landscapes to Identify Mitigation Options --- Chapter 3 Determining Greenhouse Gas Emissions and Removals Associated with Land Use and Land Cover Change --- Chapter 4 Quantifying Greenhouse Gas Emissions from Managed and Natural Soils --- Chapter 5 A Comparison of Methodologies for Measuring Methane Emissions from Ruminants --- Chapter 6 Quantifying Tree Biomass Carbon Stocks and Fluxes in Agricultural Landscapes --- Chapter 7 Methods for Smallholder Quantification of Soil Carbon Stocks and Stock Changes --- Chapter 8 Yield Estimation of Food and Non-Food Crops in Smallholder Production Systems --- Chapter 9 Scaling Point and Plot Measurements of Greenhouse Gas Fluxes, Balances and Intensities to Whole Farms and Landscapes --- Chapter 10 Methods for Environment-Productivity Trade-off Analysis in Agricultural Systems
    Pages: Online-Ressource (XV, 203 pages) , 33 illustrations, 27 illustrations in color
    ISBN: 9783319297941
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Keywords: Environmental policy ; Environmental management ; Sustainable development ; Natural resources ; Environmental Geography ; Environmental Policy ; Environmental Management ; Sustainable Development ; Natural Resources
    Description / Table of Contents: Section 1: Research Highlights and Framework --- 1. Ecosystem Services, Well-Being and Deltas: Current Knowledge and Understanding; W. Neil Adger et al. --- 2. Ecosystem Services Linked to Livelihoods and Well-Being in the Ganges-Brahmaputra-Meghna Delta; Helen Adams, W. Neil Adger and Robert J. Nicholls --- 3. An Integrated Approach Providing Scientific and Policy Relevant Insights for South-West Bangladesh; Robert J Nicholls et al. --- 4. Integrative Analysis for the Ganges-Brahmaputra-Meghna Delta, Bangladesh; Robert J Nicholls et al. --- Section 2: Present Status of the Ganges-Brahmaputra-Meghna Delta --- 5. Recent Trends in Ecosystem Services in Coastal Bangladesh; John A Dearing and Sarwar Hossain --- 6. Governance of Ecosystem Services Across Scales in Bangladesh ; Andrew Allan and Michelle Lim --- 7. Health, Livelihood and Well-Being in the Coastal Delta of Bangladesh; Mofizur Rahman and Sate Ahmad --- 8. Floods and the Ganges-Brahmaputra-Meghna Delta; Anisul Haque and Robert J Nicholls --- Section 3: Scenarios for Policy Analysis --- 9. Integrating Science and Policy Using Stakeholder-Engaged Scenarios; Emily J Barbour et al. --- 10. Incorporating Stakeholder Perspectives in Scenario Development; Andrew Allan, Michelle Lim and Emily J Barbour --- 11. Regional Climate Change over South Asia; John Caesar and Tamara Janes --- 12. Future Scenarios of Economic Development; Alistair Hunt --- Section 4: Observations and Potential Trends --- 13. Biophysical Modelling of the Ganges, Brahmaputra and Meghna Catchment; Paul G Whitehead --- 14. Marine Dynamics and Productivity in the Bay of Bengal; Susan Kay, John Caesar and Tamara Janes --- 15. A Sustainable Future Supply of Fluvial Sediment for the Ganges-Brahmaputra Delta; Stephen E Darby et al. --- 16. Present and Future Fluvial, Tidal and Storm Surge Flooding in Coastal Bangladesh; Anisul Haque, Susan Kay and Robert J Nicholls --- 17. Modelling Tidal River Salinity in Coastal Bangladesh; Lucy Bricheno and Judtih Wold --- 18. Mechanisms and Drivers of Soil Salinity in Coastal Bangladesh; Mashfiqus Salehin et al. --- 19. Population Dynamics in the South-West of Bangladesh; Sylvia Szabo, Sate Ahmad and W Neil Adger --- 20. Land Cover and Land Use Analysis in Coastal Bangladesh;Anirban Mukhopadhyay et al. --- 21. Social, Economic and Environmental Dimensions and Drivers of Poverty in South-West Coastal Bangladesh; Fiifi Amoako Johnson and Craig W Hutton --- 22. Defining Social-Ecological Systems in South-West Bangladesh; Helen Adams et al. --- 23. Characterising Associations Between Poverty and Ecosystem Services; Helen Adams et al. --- Section 5: Present and Future Ecosystem Services --- 24. Prospects for Agriculture under Climate Change and Soil Salinisation; Derek Clarke et al. --- 25. Marine Ecosystems and Fisheries: Trends and Prospect; Manuel Barange et al. --- 26. Dynamics of the Sundarbans Mangroves in Bangladesh Under Climate Change; Anirban Mukhopadhyay et al. --- 27. Hypertension and Malnutrition as Health Outcomes Related to Ecosystem Services; Ali Ahmed et al. Section 6: Integration and Dissemination --- 28. Integrative Analysis Spplying the Delta Dynamic Integrated Emulator Model in South-West Coastal Bangladesh; Attila N. Lázár et al. --- 29. Communicating Integrated Analysis Research Findings; Mashrekur Rahman and Munsur Rahman
    Pages: Online-Ressource (L, 593 pages) , 147 illustrations, 1 illustrations in color
    ISBN: 9783319710938
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Keywords: Earth sciences ; Remote sensing ; Environmental management ; Earth Sciences ; Earth Sciences, general ; Big Data ; Remote Sensing/Photogrammetry ; Environmental Management ; Space Sciences (including Extraterrestrial Physics, Space Exploration and Astronautics)
    Description / Table of Contents: This book is published open access under a CC BY 4.0 license. Over  the  past  decades,  rapid developments in digital and sensing technologies, such  as the Cloud, Web and Internet of Things, have dramatically changed the way we live and work. The digital transformation is revolutionizing our ability to monitor our planet and transforming the  way we access, process and exploit Earth Observation data from satellites. This book reviews these megatrends and their implications for the Earth Observation community as well as the wider data economy. It provides insight into new paradigms of Open Science and Innovation applied to space data, which are characterized by openness, access to large volume of complex data, wide availability of new community tools, new techniques for big data analytics such as Artificial Intelligence, unprecedented level of computing power, and new types of collaboration among researchers, innovators, entrepreneurs and citizen scientists. In addition, this book aims to provide readers with some reflections on the future of Earth Observation, highlighting through a series of use cases not just the new opportunities created by the New Space revolution, but also the new challenges that must be addressed in order to make the most of the large volume of complex and diverse data delivered by the new generation of satellites.  
    Pages: Online-Ressource (VIII, 332 pages) , 116 illustrations, 111 illustrations in color
    ISBN: 9783319656335
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Keywords: Chemicals ; Safety measures ; Environmental management
    ISBN: 9781402050985
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Environmental management ; Soil conservation ; Water pollution
    ISBN: 9783540334125
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Keywords: Environment ; Radiation protection ; Radiation ; Safety measures ; Environmental management ; Environmental pollution ; Environment ; Effects of Radiation/Radiation Protection ; Environmental Management ; Terrestrial Pollution
    Description / Table of Contents: Foreword --- Preface --- Cooperators --- Part 1 Radioactivity in the Terrestrial Environment --- Part 2 Decontamination and Radioactive Waste --- Part 3 Environmental Radiation and External Exposure --- Part 4 Radioactivity in Foods and Internal Exposure
    Pages: Online-Ressource (XIII, 232 pages) , 75 illustrations, 32 illustrations in color
    ISBN: 9784431558484
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Keywords: Marine Sciences ; Environmental management ; Atmospheric Sciences ; Marine & Freshwater Sciences ; Environmental Management
    Description / Table of Contents: Introduction to the Assessment --- Past and Current Climate Change --- Past and Current Changes in the North Sea (and interface regions) --- Climate Change Projections --- Impacts of Current and Future Climate Change in Ecosystems --- Climate Impacts on Socio-economy
    Pages: Online-Ressource (XLV, 528 pages) , 277 illustrations, 215 illustrations in color
    ISBN: 9783319397450
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Keywords: Environment ; Nuclear energy ; Natural disasters ; Probabilities ; Quality control ; Reliability ; Industrial safety ; Environmental management ; Environment ; Environmental Management ; Nuclear Energy ; Natural Hazards ; Quality Control, Reliability, Safety and Risk ; Probability Theory and Stochastic Processes
    Description / Table of Contents: Foreword --- Preface --- Cooperators --- Part 1 Active Faults --- Part 2 Seismic Source Modeling and Seismic Motion --- Part 3 Probabilistic Risk Assessment with External Hazards --- Part 4 Nuclear Risk Governance in Society
    Pages: Online-Ressource (XII, 177 pages) , 74 illustrations, 36 illustrations in color
    ISBN: 9784431558224
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Keywords: Environment ; Radiation protection ; Radiation ; Safety measures ; Environmental management ; Environmental pollution ; Environment ; Effects of Radiation/Radiation Protection ; Environmental Management ; Terrestrial Pollution
    Description / Table of Contents: Foreword --- Preface --- Cooperators --- Part 1 Radioactivity in the Terrestrial Environment --- Part 2 Decontamination and Radioactive Waste --- Part 3 Environmental Radiation and External Exposure --- Part 4 Radioactivity in Foods and Internal Exposure
    Pages: Online-Ressource (XIII, 232 pages) , 75 illustrations, 32 illustrations in color
    ISBN: 9784431558484
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Unknown
    Singapore : Springer
    Keywords: Environment ; Climate change ; Environmental management ; Sustainable development ; Environment ; Sustainable Development ; Climate Change Management and Policy ; Environmental Management
    Description / Table of Contents: Introduction --- Part 1: Asia is a key for sustainable low carbon society --- 1. GHG reduction potential in Asia --- 2. Transition to a low carbon future in China towards 2°C Global target --- 3. India’s GHG Emission Reduction and Sustainable Development --- 4. 80% reduction scenario in Japan --- 5. Potential of low carbon development in Vietnam, from practices to legal framework --- Part 2: Brigding the gap between modeling and real policy development --- 6. Designing a National Policy Framework for NAMAs -Lesson learnt from Thailand- --- 7. ‘Science-to-Action’ of the Sustainable Low Carbon City-region --- Part 3:Best parctices and recommendations in each sector to make it happen --- 8. Low Carbon Transport in India - Assessment of Best Practice Case Studies - --- 9. Potential of Reducing GHG Emission from REDD+ Activities in Indonesia --- 10. Fostering capacity development for ASIA leapfrog --- 11. Capacity development on GHG inventories in Asia -WGIA Workshop on Greenhouse gas Inventory in Asia- --- 12. Japan’s Comprehensive and Continual Support Package for the Creation of Scientific Climate Policies in Asia
    Pages: Online-Ressource (X, 270 pages) , 99 illustrations, 70 illustrations in color
    ISBN: 9789812878267
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Keywords: Environment ; Environmental management ; Political science ; Wildlife ; Fish ; Marine sciences ; Freshwater ; Environment ; Environmental Management ; Political Science ; Water Policy/Water Governance/Water Management ; Marine & Freshwater Sciences ; Fish & Wildlife Biology & Management
    Description / Table of Contents: Chapter 1. Environmental Governance of the Baltic Sea: Identifying Key Challenges Research Topics and Analytical Approaches. Part 1: Interdisciplinary Case Studies of Environmental Governance --- Chapter 2. Eutrophication and the Ecosystem Approach to Management: A Case Study of Baltic Sea Environmental Governance --- Chapter 3. Fisheries: A Case Study of Baltic Sea Environmental Governance --- Chapter 4. Biological Invasions: a Case Study of Baltic Sea Environmental Governance --- Chapter 5. Governance of Chemicals in the Baltic Sea Region: A Study of Three Generations of Hazardous Substances --- Chapter 6. Oil Spills from Shipping: A Case Study of the Governance of Accidental Hazards and Intentional Pollution in the Baltic Sea --- Part 2: Cross-Case Analysis of Key Environmental Governance Challenges --- Chapter 7. The Ecosystem Approach to Management in Baltic Sea Governance: Towards Increased Reflexivity? --- Chapter 8. Science-Policy Interfaces in Baltic Sea Environmental Governance: Towards Regional Cooperation and Management of Uncertainty? --- Chapter 9. Risk Communication and the Role of the Public: Towards Inclusive Environmental Governance of the Baltic Sea? --- Chapter 10. Seeking Pathways Towards Improved Environmental Governance of the Baltic Sea
    Pages: Online-Ressource (XIX, 253 pages) , 10 illustrations, 3 illustrations in color
    ISBN: 9783319270067
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Keywords: Marine Sciences ; Environmental management ; Atmospheric Sciences ; Marine & Freshwater Sciences ; Environmental Management
    Description / Table of Contents: Introduction to the Assessment --- Past and Current Climate Change --- Past and Current Changes in the North Sea (and interface regions) --- Climate Change Projections --- Impacts of Current and Future Climate Change in Ecosystems --- Climate Impacts on Socio-economy
    Pages: Online-Ressource (XLV, 528 pages) , 277 illustrations, 215 illustrations in color
    ISBN: 9783319397450
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Keywords: Life sciences ; Agriculture ; Climate change ; Environmental management ; Soil science ; Soil conservation ; Air pollution ; Life Sciences ; Agriculture ; Climate Change ; Atmospheric Protection/Air Quality Control/Air Pollution ; Soil Science & Conservation ; Environmental Management
    Description / Table of Contents: Chapter 1 Introduction to the SAMPLES Approach --- Chapter 2 Targeting Landscapes to Identify Mitigation Options --- Chapter 3 Determining Greenhouse Gas Emissions and Removals Associated with Land Use and Land Cover Change --- Chapter 4 Quantifying Greenhouse Gas Emissions from Managed and Natural Soils --- Chapter 5 A Comparison of Methodologies for Measuring Methane Emissions from Ruminants --- Chapter 6 Quantifying Tree Biomass Carbon Stocks and Fluxes in Agricultural Landscapes --- Chapter 7 Methods for Smallholder Quantification of Soil Carbon Stocks and Stock Changes --- Chapter 8 Yield Estimation of Food and Non-Food Crops in Smallholder Production Systems --- Chapter 9 Scaling Point and Plot Measurements of Greenhouse Gas Fluxes, Balances and Intensities to Whole Farms and Landscapes --- Chapter 10 Methods for Environment-Productivity Trade-off Analysis in Agricultural Systems
    Pages: Online-Ressource (XV, 203 pages) , 33 illustrations, 27 illustrations in color
    ISBN: 9783319297941
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Keywords: Environmental management ; Cultural heritage ; Tourism ; Management ; Nature conservation ; Sustainable development ; Development economics ; Economics ; Development Economics ; Water Policy/Water Governance/Water Management ; Sustainable Development ; Nature Conservation ; Cultural Heritage ; Tourism Management
    Description / Table of Contents: Introduction --- The Jordan Valley --- Projections And Objectives --- Meeting The Strategic Planning Objectives --- The Year 2050 --- Final Conclusions And Recommendations --- Colophon.
    Pages: Online-Ressource (XLII, 239 pages) , 181 illustrations, 179 illustrations in color
    ISBN: 9783319300368
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Keywords: Geography ; Hydrology ; Environmental management ; Regional planning ; Urban planning ; Landscape ecology ; Sustainable development ; Geography ; Landscape/Regional and Urban Planning ; Hydrology/Water Resources ; Sustainable Development ; Water Policy/Water Governance/Water Management ; Landscape Ecology
    Description / Table of Contents: Part I: Introduction --- 1. Balanced Urban Development: Is it a myth or reality? - Part II: Peri-Urbansation --- 2. Re-Ruralising the Urban Edge: Lessons from Europe, USA & the Global South --- 3. Nimbyism and Nature – Whose Backyard is it Anyway? - 4. Connecting Urban and Rural Futures Through Rural Design --- 5. Archaeology and Contemporary Dynamics for More Sustainable, Resilient Cities in the Peri-Urban Interface --- 6. Decontamination of Urban Run-off: Importance and Methods --- Part III: Peri-Urban Culture and Socio-Economy --- 7. Socio-economy of Peri-Urban Areas: The Case of Lisbon Metropolitan Area --- 8. Changing Economic Scenario of the Peri-Urban Area of Udaipur City, India --- 9. Community Stakeholder Viewpoints on Issues of Urbanisation along the River Ma Oya, Sri Lanka --- Part IV: Peri-Urban Landuse Planning --- 10. The role of peri-urban land use planning in resilient urban agriculture: a case study of Melbourne, Australia --- 11. Engaging Peri-Urban Landholders in Natural Resources Management.-12. Urban Farming Master Plan in Western Sydney - From Planning to Reality --- Part V: Urban Water Security --- 13. Study of urban water bodies in view of potential for micro-climatic cooling and natural purification of waste water --- 14. Groundwater Crisis in a Mega City – A Case Study of New Delhi, India --- 15. Safe Water Supply Determinants in Peri-Urban Communities of South-East Nigeria --- 16. Risks of Coal Seam and Shale Gas Extraction on Groundwater and Aquifers in Eastern Australia --- Part VI: Wastewater and Irrigation --- 17. Use of recycled water for irrigation of open spaces: Benefits and Risks --- 18. Global Experiences on Wastewater Irrigation: Challenges and Prospects --- 19. Impacts of Wastewater Reuse on Peri-Urban Agriculture: Case Study in Udaipur City, India --- Part VII: Urban Agriculture and Food Security --- 20. Urban Agriculture in Cuba: Alternative Legal Structures, Crisis and Change --- 21. High quality agricultural land in Western Australia – A new decision tool for planning --- 22. Food Efficient Planning and Design for Peri-urban Neighbourhoods --- 23. Role of Peri-urban Areas in the Food System of Kampala, Uganda --- Part VIII: Climate Change Impacts and Adaptations --- 24. Climate Change Adaptation Planning with Peri-Urban Local Government in Victoria, Australia --- 25. Awareness of Climate Change Impacts and Adaptation at Local Level in Punjab, Pakistan --- 26. Urbanisation, Nutrition and Food Security: A Climatological Perspective --- 27. Coastal Urban and Peri-Urban Indigenous People’s Adaptive Capacity to Climate Change --- Part IX: Legal, Policy and Institutional Challenges --- 28. Effect of Social and Institutional Fragmentation on Collective Action in Peri-urban Settings --- 29. Gentrification versus Territorialisation: The Peri-Urban Agriculture Area in Beirut --- 30. Reimagining the “Peri-Urban” in the Mega-Urban Regions of Southeast Asia --- Part X: Integrated Urban Development --- 31. Sustainability of Water Resources in Peri-urban Landscapes: Learning from the Journey of Engagement --- 32. Development of Future Management Options for the Hawkesbury River --- 33. Planning Development to Reduce Mosquito Hazard in Coastal Peri-Urban Areas: Case Studies in NSW, Australia --- 34. An Integrated Simulation and Visualisation Platform for the Design of Sustainable Urban Developments in a Peri-Urban Context --- 35. Options and Strategies for Balanced Development for Liveable Cities: An Epilogue
    Pages: Online-Ressource (XXII, 601 pages) , 136 illustrations, 109 illustrations in color
    ISBN: 9783319281124
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Keywords: Geography ; Hydrology ; Environmental management ; Regional planning ; Urban planning ; Landscape ecology ; Sustainable development ; Geography ; Landscape/Regional and Urban Planning ; Hydrology/Water Resources ; Sustainable Development ; Water Policy/Water Governance/Water Management ; Landscape Ecology
    Description / Table of Contents: Part I: Introduction --- 1. Balanced Urban Development: Is it a myth or reality? - Part II: Peri-Urbansation --- 2. Re-Ruralising the Urban Edge: Lessons from Europe, USA & the Global South --- 3. Nimbyism and Nature – Whose Backyard is it Anyway? - 4. Connecting Urban and Rural Futures Through Rural Design --- 5. Archaeology and Contemporary Dynamics for More Sustainable, Resilient Cities in the Peri-Urban Interface --- 6. Decontamination of Urban Run-off: Importance and Methods --- Part III: Peri-Urban Culture and Socio-Economy --- 7. Socio-economy of Peri-Urban Areas: The Case of Lisbon Metropolitan Area --- 8. Changing Economic Scenario of the Peri-Urban Area of Udaipur City, India --- 9. Community Stakeholder Viewpoints on Issues of Urbanisation along the River Ma Oya, Sri Lanka --- Part IV: Peri-Urban Landuse Planning --- 10. The role of peri-urban land use planning in resilient urban agriculture: a case study of Melbourne, Australia --- 11. Engaging Peri-Urban Landholders in Natural Resources Management.-12. Urban Farming Master Plan in Western Sydney - From Planning to Reality --- Part V: Urban Water Security --- 13. Study of urban water bodies in view of potential for micro-climatic cooling and natural purification of waste water --- 14. Groundwater Crisis in a Mega City – A Case Study of New Delhi, India --- 15. Safe Water Supply Determinants in Peri-Urban Communities of South-East Nigeria --- 16. Risks of Coal Seam and Shale Gas Extraction on Groundwater and Aquifers in Eastern Australia --- Part VI: Wastewater and Irrigation --- 17. Use of recycled water for irrigation of open spaces: Benefits and Risks --- 18. Global Experiences on Wastewater Irrigation: Challenges and Prospects --- 19. Impacts of Wastewater Reuse on Peri-Urban Agriculture: Case Study in Udaipur City, India --- Part VII: Urban Agriculture and Food Security --- 20. Urban Agriculture in Cuba: Alternative Legal Structures, Crisis and Change --- 21. High quality agricultural land in Western Australia – A new decision tool for planning --- 22. Food Efficient Planning and Design for Peri-urban Neighbourhoods --- 23. Role of Peri-urban Areas in the Food System of Kampala, Uganda --- Part VIII: Climate Change Impacts and Adaptations --- 24. Climate Change Adaptation Planning with Peri-Urban Local Government in Victoria, Australia --- 25. Awareness of Climate Change Impacts and Adaptation at Local Level in Punjab, Pakistan --- 26. Urbanisation, Nutrition and Food Security: A Climatological Perspective --- 27. Coastal Urban and Peri-Urban Indigenous People’s Adaptive Capacity to Climate Change --- Part IX: Legal, Policy and Institutional Challenges --- 28. Effect of Social and Institutional Fragmentation on Collective Action in Peri-urban Settings --- 29. Gentrification versus Territorialisation: The Peri-Urban Agriculture Area in Beirut --- 30. Reimagining the “Peri-Urban” in the Mega-Urban Regions of Southeast Asia --- Part X: Integrated Urban Development --- 31. Sustainability of Water Resources in Peri-urban Landscapes: Learning from the Journey of Engagement --- 32. Development of Future Management Options for the Hawkesbury River --- 33. Planning Development to Reduce Mosquito Hazard in Coastal Peri-Urban Areas: Case Studies in NSW, Australia --- 34. An Integrated Simulation and Visualisation Platform for the Design of Sustainable Urban Developments in a Peri-Urban Context --- 35. Options and Strategies for Balanced Development for Liveable Cities: An Epilogue
    Pages: Online-Ressource (XXII, 601 pages) , 136 illustrations, 109 illustrations in color
    ISBN: 9783319281124
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Unknown
    Cham : Springer
    Keywords: Environment ; Engineering economics ; Engineering economy ; Environmental management ; Waste management ; Sustainable development ; Industrial organization ; Environmental economics ; Environment ; Sustainable Development ; Waste Management/Waste Technology ; Environmental Economics ; Industrial Organization ; Engineering Economics, Organization, Logistics, Marketing ; Environmental Management
    Description / Table of Contents: Introduction --- General reflections --- The Price of Everything and the Value of Nothing: sustainability ‘after the crisis’ --- Impacts of global trade flows --- Stocks and flows in the performance economy --- The Embeddedness of carbon in UK Lifestyles --- Ethics of Industrial Ecology --- Complexity and prediction --- Urban metabolism --- Industrial Symbiosis --- Industrial Ecology and the Solidarity Economy --- Industrial Ecology in Developing Countries --- Material Flow Analysis and Waste Management --- Social sciences in Industrial Ecology --- Life Cycle Sustainability Assessment --- Prospective Models of Society’s Future Metabolism --- Planetary boundaries and sustainable business --- Working with policymakers --- Portugal’s national waste plan --- The Industrial Ecology of the automobile
    Pages: Online-Ressource (XXI, 362 pages) , 43 illustrations, 34 illustrations in color
    ISBN: 9783319205717
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Keywords: Environment ; Environmental management ; Political science ; Wildlife ; Fish ; Marine sciences ; Freshwater ; Environment ; Environmental Management ; Political Science ; Water Policy/Water Governance/Water Management ; Marine & Freshwater Sciences ; Fish & Wildlife Biology & Management
    Description / Table of Contents: Chapter 1. Environmental Governance of the Baltic Sea: Identifying Key Challenges Research Topics and Analytical Approaches. Part 1: Interdisciplinary Case Studies of Environmental Governance --- Chapter 2. Eutrophication and the Ecosystem Approach to Management: A Case Study of Baltic Sea Environmental Governance --- Chapter 3. Fisheries: A Case Study of Baltic Sea Environmental Governance --- Chapter 4. Biological Invasions: a Case Study of Baltic Sea Environmental Governance --- Chapter 5. Governance of Chemicals in the Baltic Sea Region: A Study of Three Generations of Hazardous Substances --- Chapter 6. Oil Spills from Shipping: A Case Study of the Governance of Accidental Hazards and Intentional Pollution in the Baltic Sea --- Part 2: Cross-Case Analysis of Key Environmental Governance Challenges --- Chapter 7. The Ecosystem Approach to Management in Baltic Sea Governance: Towards Increased Reflexivity? --- Chapter 8. Science-Policy Interfaces in Baltic Sea Environmental Governance: Towards Regional Cooperation and Management of Uncertainty? --- Chapter 9. Risk Communication and the Role of the Public: Towards Inclusive Environmental Governance of the Baltic Sea? --- Chapter 10. Seeking Pathways Towards Improved Environmental Governance of the Baltic Sea
    Pages: Online-Ressource (XIX, 253 pages) , 10 illustrations, 3 illustrations in color
    ISBN: 9783319270067
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Keywords: Environment ; Environmental management ; Nutrition ; Medical research ; Agriculture ; Sustainable development ; Quality of life ; Environment ; Sustainable Development ; Quality of Life Research ; Water Policy/Water Governance/Water Management ; Agriculture ; Nutrition
    Description / Table of Contents: Introduction: Understanding the Complexities of Eating, Drinking, and Surviving --- Globalization and Malnutrition: Geographical Perspectives on Its Paradoxes --- Drinking Water --- The Politics and Consequences of Virtual Water Export --- Integrated Water Resources Management as a New Approach to Water Security --- Surviving as an Unequal Community: WASH for Those on the Margins --- Challenges to Food Security in a Changing World --- Moral Economies of Food in the Socialist/Post-socialist World --- The Nutrition Transition in Developing Asia: Dietary Change, Drivers and Health Impacts. Food Sovereignty and the Possibilities for an Equitable, Just and Sustainable Food System --- Food Security and Food Waste
    Pages: Online-Ressource (XI, 105 pages) , 32 illustrations in color
    ISBN: 9783319424682
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Keywords: Environment ; Environmental management ; Sustainable development ; Pollution prevention ; Environment ; Environmental Management ; Sustainable Development ; Industrial Pollution Prevention
    Description / Table of Contents: This book is published open access under a CC BY 4.0 license. This report transfers the Ecological Scarcity Method (ESM) to the EU and its 28 member states. It provides a powerful tool for unbiased environmental assessments in enterprises and surveys the current impacts and the targets published by environmental authorities, specifically the European Environment Agency. ESM assesses environmental impacts of manufacturing sites and production processes. Developed in 1990 in Switzerland, ESM has already gained regulatory status in proving entitlements for tax exemptions. The method assesses all important impacts in air, water, energy consumption, waste generation and freshwater consumption and also supports en vironmental investment decisions. Contents Methodological Basics  Data Research and Results Eco Factors for EU28 Target Groups Practitioners in industries and public authorities in the field of Environment  Researchers and students of Ecological Sciences and Industrial Management About the Authors Dr. Stephan Ahbe is initiator and author of Swiss Ecological Scarcity Method published in 1990 and today develops Environmental Management Systems at SYRCON in Darmstadt, Germany. Dr. Simon Weihofen is Environmental and Energy Manager in Group Management at E.ON SE in Essen, Germany. Dr. Steffen Wellge is an Environmental and Energy Management Specialist at the Volkswagen Group Research, Wolfsburg, Germany
    Pages: Online-Ressource (XIV, 93 pages) , 5 illustrations
    ISBN: 9783658195069
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Keywords: Environmental policy ; Environmental management ; Sustainable development ; Natural resources ; Environmental Geography ; Environmental Policy ; Environmental Management ; Sustainable Development ; Natural Resources
    Description / Table of Contents: Section 1: Research Highlights and Framework --- 1. Ecosystem Services, Well-Being and Deltas: Current Knowledge and Understanding; W. Neil Adger et al. --- 2. Ecosystem Services Linked to Livelihoods and Well-Being in the Ganges-Brahmaputra-Meghna Delta; Helen Adams, W. Neil Adger and Robert J. Nicholls --- 3. An Integrated Approach Providing Scientific and Policy Relevant Insights for South-West Bangladesh; Robert J Nicholls et al. --- 4. Integrative Analysis for the Ganges-Brahmaputra-Meghna Delta, Bangladesh; Robert J Nicholls et al. --- Section 2: Present Status of the Ganges-Brahmaputra-Meghna Delta --- 5. Recent Trends in Ecosystem Services in Coastal Bangladesh; John A Dearing and Sarwar Hossain --- 6. Governance of Ecosystem Services Across Scales in Bangladesh ; Andrew Allan and Michelle Lim --- 7. Health, Livelihood and Well-Being in the Coastal Delta of Bangladesh; Mofizur Rahman and Sate Ahmad --- 8. Floods and the Ganges-Brahmaputra-Meghna Delta; Anisul Haque and Robert J Nicholls --- Section 3: Scenarios for Policy Analysis --- 9. Integrating Science and Policy Using Stakeholder-Engaged Scenarios; Emily J Barbour et al. --- 10. Incorporating Stakeholder Perspectives in Scenario Development; Andrew Allan, Michelle Lim and Emily J Barbour --- 11. Regional Climate Change over South Asia; John Caesar and Tamara Janes --- 12. Future Scenarios of Economic Development; Alistair Hunt --- Section 4: Observations and Potential Trends --- 13. Biophysical Modelling of the Ganges, Brahmaputra and Meghna Catchment; Paul G Whitehead --- 14. Marine Dynamics and Productivity in the Bay of Bengal; Susan Kay, John Caesar and Tamara Janes --- 15. A Sustainable Future Supply of Fluvial Sediment for the Ganges-Brahmaputra Delta; Stephen E Darby et al. --- 16. Present and Future Fluvial, Tidal and Storm Surge Flooding in Coastal Bangladesh; Anisul Haque, Susan Kay and Robert J Nicholls --- 17. Modelling Tidal River Salinity in Coastal Bangladesh; Lucy Bricheno and Judtih Wold --- 18. Mechanisms and Drivers of Soil Salinity in Coastal Bangladesh; Mashfiqus Salehin et al. --- 19. Population Dynamics in the South-West of Bangladesh; Sylvia Szabo, Sate Ahmad and W Neil Adger --- 20. Land Cover and Land Use Analysis in Coastal Bangladesh;Anirban Mukhopadhyay et al. --- 21. Social, Economic and Environmental Dimensions and Drivers of Poverty in South-West Coastal Bangladesh; Fiifi Amoako Johnson and Craig W Hutton --- 22. Defining Social-Ecological Systems in South-West Bangladesh; Helen Adams et al. --- 23. Characterising Associations Between Poverty and Ecosystem Services; Helen Adams et al. --- Section 5: Present and Future Ecosystem Services --- 24. Prospects for Agriculture under Climate Change and Soil Salinisation; Derek Clarke et al. --- 25. Marine Ecosystems and Fisheries: Trends and Prospect; Manuel Barange et al. --- 26. Dynamics of the Sundarbans Mangroves in Bangladesh Under Climate Change; Anirban Mukhopadhyay et al. --- 27. Hypertension and Malnutrition as Health Outcomes Related to Ecosystem Services; Ali Ahmed et al. Section 6: Integration and Dissemination --- 28. Integrative Analysis Spplying the Delta Dynamic Integrated Emulator Model in South-West Coastal Bangladesh; Attila N. Lázár et al. --- 29. Communicating Integrated Analysis Research Findings; Mashrekur Rahman and Munsur Rahman
    Pages: Online-Ressource (L, 593 pages) , 147 illustrations, 1 illustrations in color
    ISBN: 9783319710938
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Keywords: Sustainable development ; Environmental management ; Renewable energy sources ; Industrial management-Environmen ; Sustainable Development ; Environmental Management ; Renewable and Green Energy ; Environmental Science and Engineering ; Sustainability Management
    Description / Table of Contents: Part I: Introducing Life Cycle Management --- Introduction: Life Cycle Management --- Life Cycle Management: Implementing Sustainability in Business Practice --- Life Cycle Management as a Way to Operationalize Sustainability Within Organizations --- How to Implement Life Cycle Management in Business? --- Life Cycle Sustainability Assessment: A Tool for Exercising due Diligence in Life Cycle Management --- Life Cycle Management: Labeling, Declarations and Certifications at the Product Level —Different Approaches --- Mainstreaming the Use of Life Cycle Management in Small and Medium Sized Enterprises Using a Sector Based and Regional Approach --- Part II: Advancing the Implementation of Life Cycle Management in Business Practice --- From Projects to Processes to Implement Life Cycle Management in Business --- How to Make the LCA Team a Business Partner --- Sustainability Improvements and Life Cycle Approaches in Industry Partnerships --- Sustainable Value Creation with Life Cycle Management --- Part III: Life Cycle Management as Part of Sustainable Consumption and Production Strategies and Policies --- Hotspots Analysis: Providing the Focus for Action --- From Sustainable Production to Sustainable Consumption.-Life Cycle Management Responsibilities and Procedures in the Value Chain --- Policy Options for Life Cycle Assessment Deployment in Legislation --- Part IV: Mainstreaming and Capacity Building on Life Cycle Management --- Taking Life Cycle Management Mainstream: Integration in Corporate Finance and Accounting --- Building Organizational Capability for Life Cycle Management --- Promoting Life Cycle Thinking, Life Cycle Assessment and Life Cycle Management Within Business in Brazil --- Mainstreaming Life Cycle Sustainability Management in Rapidly Growing and Emerging Economies Through Capacity-building.-Communication and Collaboration as Essential Elements for Mainstreaming Life Cycle Management.-Part V: Implementation and Case Studies of Life Cycle Management in Different Business and Industry Sector --- Exploring Challenges and Opportunities of Life Cycle Management in the Electricity Sector --- Life Cycle Management Applied to Urban Fabric Planning --- Implementing Life Cycle Engineering in Automotive Development as a Helpful Management Tool to Support Design for Environment --- Managing Life cycle Sustainability Aspects in the Automotive Industry --- Life Cycle Management as a Way to Operationalize the Creating Shared Value Concept in the Food and Beverage Industry: A Case Study
    Pages: Online-Ressource (XIV, 520 pages) , 106 illustrations, 27 illustrations in color
    ISBN: 9783319669816
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Keywords: Energy ; Energy policy ; Energy and state ; Environmental geography ; Environmental management ; Energy ; Energy Policy, Economics and Management ; Environment Studies ; Environmental Geography ; Environmental Management
    Description / Table of Contents: Foreword 1. Making Multiple Views Count – Why Energy Research Needs to Be Interdisciplinary; Gerd Schönwälder --- Foreword 2. Multidisciplinary Partnerships for Access to Energy; Lidia Borrell-Damián --- Foreword 3. Energy Policies Outside the Silos; Ernst Ulrich von Weizsäcker --- Chapter 1. Introduction: Mobilising the Energy-Related Social Sciences and Humanities; Chris Foulds, Rosie Robison --- Part I. Energy as a Social Issue --- Chapter 2. Plugging the Gap Between Energy Policy and the Lived Experience of Energy Poverty: Five Principles for a Multidisciplinary Approach; Lucie Middlemiss, Ross Gillard, Victoria Pellicer, Koen Straver --- Chapter 3. Shaping Blue Growth: Social Sciences at the Nexus Between Marine Renewables and Energy Policy; Sandy Kerr, Laura Watts, Ruth Brennan, Rhys Howell, Marcello Graziano, Anne Marie O’Hagan, Dan van der Horst, Stephanie Weir, Glen Wright, Brian Wynne --- Chapter 4. Looking for Perspectives! EU Energy Policy in Context; Anna Åberg, Johanna Höffken, Susanna Lidström --- Part II. Social Sciences and Humanities in Interdisciplinary Endeavours --- Chapter 5. Achieving Data Synergy: The Socio-Technical Process of Handling Data; Sarah Higginson, Marina Topouzi, Carlos Andrade-Cabrera, Ciara O’Dwyer, Sarah Darby, Donal Finn --- Chapter 6. Building Governance and Energy Efficiency: Mapping the Interdisciplinary Challenge; Frankie McCarthy, Susan Bright, Tina Fawcett --- Chapter 7. Crossing Borders: Social Sciences and Humanities Perspectives on European Energy Systems Integration; Antti Silvast, Ronan Bolton, Vincent Lagendijk, Kacper Szulecki --- Chapter 8. A Complementary Understanding of Residential Energy Demand, Consumption and Services; Ralitsa Hiteva, Matthew Ives, Margot Weijnen, Igor Nikolic --- Part III. Interplay with Energy Policymaking Environments --- Chapter 9. Imaginaries and Practices: Learning from ‘ENERGISE’ About the Integration of Social Sciences with the EU Energy Union; Audley Genus, Frances Fahy, Gary Goggins, Marfuga Iskandarova, Senja Laakso --- Chapter 10. Challenges Ahead: Understanding, Assessing, Anticipating and Governing Foreseeable Societal Tensions to Support Accelerated Low-Carbon Transitions in Europe; Bruno Turnheim, Joeri H. Wesseling, Bernhard Truffer, Harald Rohracher, Luis Carvalho, Claudia R. Binder --- Chapter 11. Towards a Political Ecology of EU Energy Policy; Gavin Bridge, Stefania Barca, Begüm Özkaynak, Ethemcan Turhan, Ryan Wyeth --- Afterword 1. Important Contributions Towards Renewal of a Stubborn Energy Research and Policy Agenda; Harold Wilhite --- Afterword 2. A New Energy Storyline; Inês Campos
    Pages: Online-Ressource (XXVII, 193 pages) , 11 illustrations
    ISBN: 9783319990972
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-05-11
    Description: Abstract
    Description: The Sassen climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Sassen was installed in 2011. It is located on a small elevation and next to a tree stand within a field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature025cm, AdconSM1_Soiltemperature015-025cm, AdconSM1_Soiltemperature045-075cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AdconSM1_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.275 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-05-11
    Description: Abstract
    Description: The Sanzkow BF2 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Sanzkow BF2 was installed in 2014. It is located on grassland, next to a pylon, with organic soil. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_2_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.060 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Zarnekla BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Zarnekla BF1 was installed in 2013. It is located on the edge of a field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_1_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.082 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Zarnekla climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Zarnekla was installed in 2012. It is located next to a trench, which seperates a field and grassland. Some trees are growing along the trench, in about 80m distance to the station. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.279 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Wotenick BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Wotenick BF1 was installed in 2013. It is located next to a pylon on a flat field and next to climate station Wotenick. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_4_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.080 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Zarrenthin climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Zarrenthin was installed in 2011. It is located on flat terrain within a small wind farm on grassland, surrounded by agricultural used fields.' The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature025cm, AdconSM1_Soiltemperature015-025cm, AdconSM1_Soiltemperature045-075cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AdconSM1_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.281 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Zarrenthin BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Zarrenthin BF1 was installed in 2012. It is located within a field, close to an irrigation water supply. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.084 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Zeitlow BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Zeitlow BF1 was installed in 2012. It is located next to a pylon on a flat field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_3_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.086 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Zeitlow climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Zeitlow was installed in 2011. It is located on a former farm track between to fields, on an small elevation. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature025cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AdconSM1_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.282 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Ueckeritz climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Ueckeritz was installed in 2013. It is located on the eastern border of a natural sink, with some bushes on the western slope of the sink. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.277 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Ueckeritz BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Ueckeritz BF1 was installed in 2014. It is located next to a pylon on a flat field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.071 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Upost BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Upost BF1 was installed in 2014. It is located on a flat field, next to climate station upost. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.072 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Verchen BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Verchen BF1 was installed in 2013. It is located next to a former sand pit, with sensors below a field and equipped with a rain gauge. The station is equipped with sensor for measuring the following variables: AdconRainGauge_Precipitation, ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.073 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/scsv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Voelschow climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Voelschow was installed in 2013. It is located at the edge of a field, next to the highway. A bridge on the northern site is a major obstacle. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.305 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Warrenzin BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Warrenzin BF1 was installed in 2013. It is located next to drainage installations and climate station Warrenzin on a flat field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_1_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.077 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Vorbein BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Vorbein BF1 was installed in 2013. It is located next to a pylon on a flat field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_2_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.076 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: applicatiapplication/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Wietzow BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Wietzow BF1 was installed in 2012. It is located next to a pylon on a field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_3_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.078 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Wilhelminenthal BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Wilhelminenthal BF1 was installed in 2012. It is located on a flat field, next to a trench. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.079 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Wotenick climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Wotenick was installed in 2004. It is located on flat terrain, near to a high-voltage tower within an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.021 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Warrenzin climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Warrenzin was installed in 2004. It is located on flat terrain, near to an high-voltage tower within an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCM3_PyranometerIncoming, KuZCM3_PyranometerOutgoing, KuZCG3_PyrgeometerIncoming, KuZCG3_PyrgeometerOutgoing, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.020 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Beestland climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Beestland was installed in 2011. It is located on a boundary ridge, surrounded by agricultural used fields. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.002 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Volksdorf climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Volksdorf was installed in 2004. It is located on flat terrain, within an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.019 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Verchen climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Verchen was installed in 2004. It is located on flat terrain, within an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCM3_PyranometerIncoming, KuZCM3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, KuZCG3_PyrgeometerIncoming, KuZCG3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.018 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Upost climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Upost was installed in 2004. It is located on flat terrain, within an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.017 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Hohenbuessow BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Hohenbuessow BF1 was installed in 2013. It is located next to a dirt track with sensors below the southern field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.026 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Kletzin climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Kletzin was installed in 2004. It is located on a hilly terrain, closed to a drainage basin, surrounded by an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCM3_PyranometerIncoming, KuZCM3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, KuZCG3_PyrgeometerIncoming, KuZCG3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.008 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Medrow climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Medrow was installed in 2004. It is located on flat terrain, near to a hedge on grassland, surrounded by agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCM3_PyranometerIncoming, KuZCM3_PyranometerOutgoing, KuZCG3_PyrgeometerIncoming, KuZCG3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.010 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Goermin climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Goermin was installed in 2004. It is located on flat terrain within an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCM3_PyranometerIncoming, KuZCM3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, KuZCG3_PyrgeometerIncoming, KuZCG3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.007 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Droennewitz climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Droennewitz was installed in 2010. It is located on flat terrain within an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature025cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.006 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Kruckow climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Kruckow was installed in 2008. It is located on flat terrain within a small wind farm and a drainage basin, surrounded by agricultural used fields. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.009 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Buchholz climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Buchholz was installed in 2007. It is located on a hilly terrain near a boundary ridge and near to a hedge surrounded by agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, Temperature5cm_Temperature005cm, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCM3_PyranometerIncoming, KuZCM3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, KuZCG3_PyrgeometerIncoming, KuZCG3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.005 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Bentzin climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Bentzin was installed in 2004. It is located on a flat terrain on a boundary ridge, surrounded by agricultural used fields. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.004 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Alt Tellin climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Alt Tellin was installed in 2011. It is located on a flat terrain within the field on grassland, surrounded by agricultural used fields. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.001 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Beggerow climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Beggerow was installed in 2012. It is located on a small wind farm on grassland, surrounded by agricultural used fields. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.003 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Heydenhof BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Heydenhof BF1 was installed in 2012. It is located on the southern edge of a hedge row with sensors south of the station and below the field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_2_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.025 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Heydenhof climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Heydenhof was installed in 2013. It is located within a large field, with no obstacles surrounding the stations. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.290 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Kletzin BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Kletzin BF1 was installed in 2012. It is located near a former wind turbine location within a field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_5_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.031 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Nossendorf BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Nossendorf BF1 was installed in 2013. It is located within a field, next to some drainage installations. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6, ScemeSpadeSoilMoisture_Spade_1_Temperature and ScemeSpadeSoilMoisture_Spade_4_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.049 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Karlshof climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Karlshof was installed in 2013. It is located within a field, with close obstacles surrounding the station from western, northern and partly eastern direction. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.265 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Kran-droennewitz climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Kran-droennewitz was installed in 2014. It is located on top of a tower crane at 40m height, on the border of a deciduous forest to natural wetlands. The station is equipped with sensor for measuring the following variables: Temperature, Precipitation, BarometricPressure, RelativeHumidity, LeafWetness, WindDirection, WindSpeed, PyrgeometerCGR3incoming, PyrgeometerCGR3outgoing, PyranometerCMP3incoming and PyranometerCMP3outgoingThe dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level. Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: TERENO ; TERENO Northeast ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Nielitz climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Nielitz was installed in 2012. It is located on a small patch of conservated land, including some trees, west of the stations The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.271 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Kletzin BF2 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Kletzin BF2 was installed in 2015. It is located near a wind turbine location within a field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.032 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Nielitz BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Nielitz BF1 was installed in 2013. It is located next to a pylon, within an flat field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.048 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Kuntzow climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Kuntzow was installed in 2011. It is located on a natural grassland, with an agricultural used field to the south and east. 50m to the north are some trees. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature025cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AdconSM1_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.267 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Kruckow BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Kruckow BF1 was installed in 2012. It is located on the border of a conserved area within a flat field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6, ScemeSpadeSoilMoisture_Spade_1_Temperature and ScemeSpadeSoilMoisture_Spade_2_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.034 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Leppin climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Leppin was installed in 2013. It is located within a field, close to a collection of huge stones (~1.5m height) and small shrubs. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.268 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Lindenfelde BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Lindenfelde BF1 was installed in 2014. It is located next to a pylon, within an undulating field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.037 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Marienfelde BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Marienfelde BF1 was installed in 2012. It is located next to garden inside a field, with sensors below the field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.038 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Medrow BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Medrow BF1 was installed in 2014. It is located on a forest edge with sensors below grassland. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6, ScemeSpadeSoilMoisture_Spade_3_Temperature and ScemeSpadeSoilMoisture_Spade_5_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.039 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Sophienhof climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Sophienhof was installed in 2017. It is located on a flat terrain, near to a boundary ridge and near to a hedge, surrounded by agricultural used fields. The station is equipped with sensor for measuring the following variables: Temperature and RelativeHumidityThe dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level. Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: TERENO ; TERENO Northeast ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Neu Tellin climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Neu Tellin was installed in 2011. It is located on a flat terrain closed to a boundary ridge surrounded by agricultural fields. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.012 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Sommersdorf climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Sommersdorf was installed in 2011. It is located on flat terrain, within an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZSPLite_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.014 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Seedorf climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Seedorf was installed in 2004. It is located on flat terrain, surrounded by agricultural used fields. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCM3_PyranometerIncoming, KuZCM3_PyranometerOutgoing, KuZCG3_PyrgeometerIncoming, KuZCG3_PyrgeometerOutgoing, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.013 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Seedorf BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Seedorf BF1 was installed in 2013. It is located next to a railway track with sensors below the field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_2_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.063 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Tutow BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Tutow BF1 was installed in 2012. It is located on the southern edge of a conserved area within a field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.069 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Toitz climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Toitz was installed in 2004. It is located on flat terrain, within an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.016 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Metschow climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Metschow was installed in 2004. It is located on a hilly terrain within an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.011 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Teusin BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Teusin BF1 was installed in 2013. It is located within a flat field, and next to a pylon. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.064 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/octet-stream
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Toitz BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Toitz BF1 was installed in 2014. It is located next to a forest edge with sensors below an agricultural field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6, ScemeSpadeSoilMoisture_Spade_1_Temperature and ScemeSpadeSoilMoisture_Spade_4_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.065 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Passow climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Passow was installed in 2011. It is located within a field, next to some drainage installations. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature025cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AdconSM1_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.272 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Trittelwitz BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Trittelwitz BF1 was installed in 2014. It is located next to a pylon on a flat field. The station is equipped with sensor for measuring the following variables: AdconRainGauge_Precipitation, ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.068 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Trantow BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Trantow BF1 was installed in 2012. It is located next to a pylon on a flat field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.067 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Ploetz BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Ploetz BF1 was installed in 2012. It is located on the border of a field to gardens, sensors are below the field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.051 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Pustow BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Pustow BF1 was installed in 2012. It is located on the border of a conserved area within a field, with sensors below the field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6, ScemeSpadeSoilMoisture_Spade_1_Temperature, ScemeSpadeSoilMoisture_Spade_2_Temperature and ScemeSpadeSoilMoisture_Spade_5_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.052 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Quitzerow BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Quitzerow BF1 was installed in 2013. It is located on the field border, sensors below the field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.053 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Rustow climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Rustow was installed in 2011. It is located next to a lysimeter facility, with buildings east of the station. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature025cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AdconSM1_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.273 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Roidin BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Roidin BF1 was installed in 2012. It is located next to a conserved, wet spot within a field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6, ScemeSpadeSoilMoisture_Spade_1_Temperature and ScemeSpadeSoilMoisture_Spade_4_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.054 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...