ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Sciences; Mineralogy ; Mineral Resources ; Geology  (3)
  • Characeae; Chara; Ooids; Green algae; Carbonate sand; Freshwater carbonates; Facies  (1)
  • Berlin/Heidelberg  (4)
  • English  (4)
  • Bulgarian
  • Chinese
  • 2020-2022
  • 2015-2019  (4)
  • 1995-1999
  • 1985-1989
  • 1945-1949
Collection
Keywords
Publisher
Language
  • English  (4)
  • Bulgarian
  • Chinese
Years
  • 2020-2022
  • 2015-2019  (4)
  • 1995-1999
  • 1985-1989
  • 1945-1949
Year
  • 1
    facet.materialart.
    Unknown
    Springer Berlin Heidelberg | Berlin/Heidelberg
    Publication Date: 2021-03-29
    Description: Characeae, a family of calcifying green algae, are common in carbonate-rich freshwaters. The southwestern shoreline of Lake Ganau (Kurdistan Region, northeastern Iraq) harbors dense and thick mats of these algae (genus Chara). On the lake bottom and along the shore, carbonate sands and rocks rich in the remains of stems, branches, nodes, and whorls of Chara are deposited. These deposits show all stages of growth and degradation of characean algae, including replacement and lithification into limestone. The replacement of the fragments by fine-grained calcite preserved delicate microstructures of Chara, such as cortical walls, cell shape, inner and outer layers of the stems, and reproductive organs. Based on roundness, sorting, the degree of lithification, and preserved microstructures of the grains (fragments), three facies were recognized. The first is represented by a newly formed lime sand facies showing elongated grains, poor sorting, and reduced roundness, with pristine preservation of characean surface microstructures. The second is a weathered lime sand facies, which shows better sorting and good roundness, whereas internal structures of characean fragments are still well preserved. The third is comprised of a lithified lime sand facies (grainstone), with very well sorted and rounded grains, and poorly preserved external and internal structures of the characeans. As compared to the newly formed lime sand facies, the grainstone facies shows an increase in grain size by more than 30 %, owing to precipitation of micritic lamina of possible microbial origin. Eventually, the Characeae-derived lime sands are lithified into oolitic limestones with sparry calcite cement, forming a grainstone microfacies. The present study has important implications for the interpretation of pre-Quaternary environments, as it records all stages of the fossilization process of characean green algae and highlights the role of these algae in the formation of oolitic carbonate rocks.
    Keywords: Characeae; Chara; Ooids; Green algae; Carbonate sand; Freshwater carbonates; Facies ; 551 ; Earth Sciences; Sedimentology; Biogeosciences; Geochemistry; Paleontology; Ecology
    Language: English
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-29
    Description: This study documents the chemical and textural responses of zircon in the Elba igneous complex, with particular reference to the 7- to 7.8-Ma-old Monte Capanne pluton in relation to its coeval volcanic counterpart (Capraia), using BSE imaging and quantitative electron microprobe analyses. The Monte Capanne pluton displays multiple field and geochemical evidence for magma mixing. The samples we have investigated (including monzogranitic, mafic enclave and dyke samples) display similar zircon textures and are associated with an extremely large range of trace and minor element (Hf, Y, HREE, Th, U) compositions, which contrast with relatively simple textures and zoning patterns in zircons from a Capraia dacite. We have used a relatively simple textural classification (patchy zoning, homogenous cores, oscillatory zoning and unzoned zircon) as the basis for discussing the chemical composition and chemical variation within zircons from the Monte Capanne pluton. Based on these data and other works (Dini et al. 2004 in Lithos 78:101–118, 2004) , it is inferred that mixing between metaluminous and peraluminous melts occurred early in the evolution of the Monte Capanne magma chamber. In particular, mixing was responsible for the development of the patchy-zoning texture in the zircon cores, which was associated with reactions between other accessory phases (including monazite, apatite, allanite), which we infer to have significantly affected the Th distribution in zircon. Zircons from the MC pluton displaying “homogeneous cores” have chemical affinities with zircons in the coeval Capraia volcanic system, consistent with the participation of a Capraia-like mantle end-member during mixing. Further zircon growth in the MC pluton produced the oscillatory zoning texture, which records both long-term (crystal fractionation) and transient (recharge with both silicic and mafic magmas) events in a hybrid magma chamber. It is inferred that Hf and the Th/U ratio cannot be used alone to infer magmatic processes due to their dependency on temperature, nor are they a diagnostic feature of xenocrystic grains. This study shows that zircon chemistry coupled with detailed textural analysis can provide a powerful tool to elucidate the complex evolution of a magma system.
    Keywords: Granite petrology; Zircon; Elba; Capraia; Electron microprobe; Magma mixing ; 551 ; Earth Sciences; Mineralogy ; Mineral Resources ; Geology
    Language: English
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-29
    Description: Multi-isotope study including whole-rock Nd–Sr, single zircon Hf, and SIMS δ18O analyses of zircons sheds light on magma sources in the northernmost Arabian–Nubian Shield (ANS) during ~820–570 Ma. Reconnaissance initial Nd and Sr isotope data for the older rocks (~820–740 Ma) reaffirms previous estimates that early crustal evolution in this part of the shield involved some crustal contamination by pre-ANS material. Prominent isotope provinciality is displayed by post-collisional calc-alkaline and alkaline igneous rocks of ~635–570 Ma across a NW-SE transect across basement of the Sinai Peninsula (Egypt) and southern Israel. Silicic rocks of the NW-region are characterized by lower εNd(T)–εHf(T) and higher Sri and δ18O compared with rocks of the SE-region, and the transition between the regions is gradual. Within each region isotope ratios are independent of the extent of magma fractionation, and zircon cores and rims yield similar δ18O values. Comparison with southern segments of the ANS shows that the source for most ~635–570 Ma rocks can be modeled as the isotopically aged lower-intermediate crust in the ANS core (SE-region) and its northern, more contaminated ANS margins (NW-region). Nevertheless, Nd–Sr isotope enrichment of the lithospheric mantle is indicated by some basic magmas of the NW-region displaying the most enriched Nd–Sr isotope compositions. Comparison of Nd and Hf depleted mantle model ages for rocks of the SE-region may indicate that crustal formation events in the ANS geographical core took place at 1.1–1.2 Ga and were followed by crustal differentiation starting at ~0.9 Ga.
    Keywords: Nd–Sr–Hf–O; Arabian–Nubian Shield; Magma-sources; Zircon ; 551 ; Earth Sciences; Mineralogy ; Mineral Resources ; Geology
    Language: English
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-29
    Description: Oligoclase and labradorite crystals have been experimentally replaced by albite in an aqueous sodium silicate solution at 600°C and 2 kbars. The replacement is pseudomorphic and is characterised by a sharp chemical interface which progresses through the feldspar while preserving the crystallographic orientation. Reaction rims of albite, up to 50 μm thick, can be readily achieved within 14 days. Re-equilibration of plagioclase in an 18O-enriched sodium- and silica-bearing solution results in oxygen isotope redistribution within the feldspar framework structure. The observed characteristics of the reaction products are similar to naturally albitised plagioclase and are indicative of an interface-coupled dissolution–reprecipitation mechanism. Chemical analyses demonstrate that the albitisation is accompanied by the mobilisation of major, minor and trace elements also including elements such as Al and Ti which are commonly regarded as immobile during hydrothermal alteration. The results contribute to developing our understanding of the close association between large-scale albitisation and secondary ore mineralisation which is common in nature.
    Keywords: Plagioclase albitisation; Fluid–mineral interaction; Interface-coupled dissolution–reprecipitation; Hydrothermal experiments; Element mobility ; 551 ; Earth Sciences; Mineralogy ; Mineral Resources ; Geology
    Language: English
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...